1
|
Zuo R, Li H, Cai C, Xia W, Liu J, Li J, Xu Y, Zhang Y, Li C, Wu Y, Zhang C. Autophagy modulates tenogenic differentiation of cartilage-derived stem cells in response to mechanical tension via FGF signaling. Stem Cells Transl Med 2024:szae085. [PMID: 39673221 DOI: 10.1093/stcltm/szae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/01/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND In our previous study, we demonstrated that cartilage-derived stem cells (CDSCs) possess multi-differentiation potential, enabling direct bone-to-tendon structure regeneration after transplantation in a rat model. Therefore, the objective of this study is to investigate whether CDSCs are a suitable candidate for achieving biological regeneration of tendon injuries. METHODS Tenogenic differentiation was evaluated through cell morphology observation, PCR, and Western blot (WB) analysis. Autophagic flux, transmission electron microscopy, and WB analysis were employed to elucidate the role of autophagy during CDSC tenogenic differentiation. Cell survival and tenogenesis of transplanted CDSCs were assessed using fluorescence detection of gross and frozen section images. Heterotopic ossification and quality of tendon healing were evaluated by immunofluorescence, hematoxylin-eosin (H&E), and Safrinin O/Fast Green stains. RESULTS We found autophagy is activated in CDSCs when treated with cyclic tensile stress, which facilitates the preservation of their chondrogenic potential while impeding tenogenic differentiation. Inhibiting autophagy with chloroquine promoted tenogenic differentiation of CDSCs in response to cyclic tensile stress through activation of the Fgf2/Fgfr2 signaling pathway. This mechanism was further validated by 2 mouse transplantation models, revealed that autophagy inhibition could enhance the tendon regeneration efficacy of transplanted CDSCs at the patellar tendon resection site. CONCLUSION Our findings provide insights into CDSC transplantation for achieving biological regeneration of tendon injuries, and demonstrate how modulation of autophagy in CDSCs can promote tenogenic differentiation in response to tensile stress both in vivo and in vitro.
Collapse
Affiliation(s)
- Rui Zuo
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People's Republic of China
| | - Haoke Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People's Republic of China
| | - Chenhui Cai
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People's Republic of China
| | - Wen Xia
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People's Republic of China
| | - Jiabin Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People's Republic of China
| | - Jie Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People's Republic of China
| | - Yuan Xu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People's Republic of China
| | - Yi Zhang
- Chongqing International Institute for Immunology, Chongqing 401320, People's Republic of China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People's Republic of China
| | - Yuzhang Wu
- Institute of Immunology, Army Medical University, Chongqing 400038, People's Republic of China
| | - Chao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People's Republic of China
| |
Collapse
|
2
|
Shen S, Lin Y, Sun J, Liu Y, Chen Y, Lu J. A New Tissue Engineering Strategy to Promote Tendon-bone Healing: Regulation of Osteogenic and Chondrogenic Differentiation of Tendon-derived Stem Cells. Orthop Surg 2024; 16:2311-2325. [PMID: 39043618 PMCID: PMC11456719 DOI: 10.1111/os.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
In the field of sports medicine, repair surgery for anterior cruciate ligament (ACL) and rotator cuff (RC) injuries are remarkably common. Despite the availability of relatively effective treatment modalities, outcomes often fall short of expectations. This comprehensive review aims to thoroughly examine current strategies employed to promote tendon-bone healing and analyze pertinent preclinical and clinical research. Amidst ongoing investigations, tendon-derived stem cells (TDSCs), which have comparatively limited prior exploration, have garnered increasing attention in the context of tendon-bone healing, emerging as a promising cell type for regenerative therapies. This review article delves into the potential of combining TDSCs with tissue engineering methods, with ACL reconstruction as the main focus. It comprehensively reviews relevant research on ACL and RC healing to address the issues of graft healing and bone tunnel integration. To optimize tendon-bone healing outcomes, our emphasis lies in not only reconstructing the original microstructure of the tendon-bone interface but also achieving proper bone tunnel integration, encompassing both cartilage and bone formation. In this endeavor, we thoroughly analyze the transcriptional and molecular regulatory variables governing TDSCs differentiation, incorporating a retrospective analysis utilizing single-cell sequencing, with the aim of unearthing relevant signaling pathways and processes. By presenting a novel strategy rooted in TDSCs-driven osteogenic and chondrogenic differentiation for tendon-bone healing, this study paves the way for potential future research avenues and promising therapeutic applications. It is anticipated that the findings herein will contribute to advancing the field of tendon-bone healing and foster the exploration of TDSCs as a viable option for regenerative therapies in the future.
Collapse
Affiliation(s)
- Sinuo Shen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yucheng Lin
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jiachen Sun
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuanhao Liu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuzhi Chen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jun Lu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
3
|
Wang L, Guan C, Zhang T, Zhou Y, Liu Y, Hu J, Xu D, Lu H. Comparative effect of skeletal stem cells versus bone marrow mesenchymal stem cells on rotator cuff tendon-bone healing. J Orthop Translat 2024; 47:87-96. [PMID: 39007033 PMCID: PMC11245954 DOI: 10.1016/j.jot.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 07/16/2024] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMSCs) have immense potential in applications for the enhancement of tendon-bone (T-B) healing. Recently, it has been well-reported that skeletal stem cells (SSCs) could induce bone and cartilage regeneration. Therefore, SSCs represent a promising choice for cell-based therapies to improve T-B healing. In this study, we aimed to compare the therapeutic potential of SSCs and BMSCs for tendon-bone healing. Methods SSCs and BMSCs were isolated by flow cytometry, and their proliferation ability was measured by CCK-8 assay. The osteogenic, chondrogenic, and adipogenic gene expression in cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR). C57BL/6 mice underwent unilateral supraspinatus tendon detachment and repair, and the mice were then randomly allocated to 4 groups: control group (tendon-bone interface without any treatment), hydrogel group (administration of blank hydrogel into the tendon-bone interface), hydrogel + BMSCs group (administration of hydrogel with BMSCs into the tendon-bone interface), and hydrogel + SSCs group (administration of hydrogel with SSCs into the tendon-bone interface). Histological staining, Micro-computed tomography (Micro-CT) scanning, biomechanical testing, and qRT-PCR were performed to assay T-B healing at 4 and 8 weeks after surgery. Results SSCs showed more cell proportion, exhibited stronger multiplication capacity, and expressed higher osteogenic and chondrogenic markers and lower adipogenic markers than BMSCs. In vivo assay, the SSCs group showed a better-maturated interface which was characterized by richer chondrocytes and more proteoglycan deposition, as well as more newly formed bone at the healing site and increased mechanical properties when compared to other there groups. qRT-PCR analysis revealed that the healing interface in the SSCs group expressed more transcription factors essential for osteogenesis and chondrogenesis than the interfaces in the other groups. Conclusions Overall, the results demonstrated the superior therapeutic potential of SSCs over BMSCs in tendon-bone healing. The translational potential of this article This current study provides valuable insights that SSCs may be a more effective cell therapy for enhancing T-B healing compared to BMSCs.
Collapse
Affiliation(s)
- Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Changbiao Guan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yongchun Zhou
- Department of Spine Surgery, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, Changsha, 410006, Hunan Province, China
| | - Yuqian Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Daqi Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
4
|
Ren H, Zhang L, Zhang X, Yi C, Wu L. Specific lipid magnetic sphere sorted CD146-positive bone marrow mesenchymal stem cells can better promote articular cartilage damage repair. BMC Musculoskelet Disord 2024; 25:253. [PMID: 38561728 PMCID: PMC10983655 DOI: 10.1186/s12891-024-07381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The characteristics and therapeutic potential of subtypes of bone marrow mesenchymal stem cells (BMSCs) are largely unknown. Also, the application of subpopulations of BMSCs in cartilage regeneration remains poorly characterized. The aim of this study was to explore the regenerative capacity of CD146-positive subpopulations of BMSCs for repairing cartilage defects. METHODS CD146-positive BMSCs (CD146 + BMSCs) were sorted by self-developed CD146-specific lipid magnetic spheres (CD146-LMS). Cell surface markers, viability, and proliferation were evaluated in vitro. CD146 + BMSCs were subjected to in vitro chondrogenic induction and evaluated for chondrogenic properties by detecting mRNA and protein expression. The role of the CD146 subpopulation of BMSCs in cartilage damage repair was assessed by injecting CD146 + BMSCs complexed with sodium alginate gel in the joints of a mouse cartilage defect model. RESULTS The prepared CD146-LMS had an average particle size of 193.7 ± 5.24 nm, an average potential of 41.9 ± 6.21 mv, and a saturation magnetization intensity of 27.2 Am2/kg, which showed good stability and low cytotoxicity. The sorted CD146 + BMSCs highly expressed stem cell and pericyte markers with good cellular activity and cellular value-added capacity. Cartilage markers Sox9, Collagen II, and Aggrecan were expressed at both protein and mRNA levels in CD146 + BMSCs cells after chondrogenic induction in vitro. In a mouse cartilage injury model, CD146 + BMSCs showed better function in promoting the repair of articular cartilage injury. CONCLUSION The prepared CD146-LMS was able to sort out CD146 + BMSCs efficiently, and the sorted subpopulation of CD146 + BMSCs had good chondrogenic differentiation potential, which could efficiently promote the repair of articular cartilage injury, suggesting that the sorted CD146 + BMSCs subpopulation is a promising seed cell for cartilage tissue engineering.
Collapse
Affiliation(s)
- Hanru Ren
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Lele Zhang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Xu Zhang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Chengqing Yi
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China.
| | - Lianghao Wu
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China.
| |
Collapse
|
5
|
Guo D, Yang J, Liu D, Zhang P, Sun H, Wang J. Human umbilical cord mesenchymal stem cells overexpressing RUNX1 promote tendon-bone healing by inhibiting osteolysis, enhancing osteogenesis and promoting angiogenesis. Genes Genomics 2024; 46:461-473. [PMID: 38180714 DOI: 10.1007/s13258-023-01478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Rotator cuff injury (RCI) is a common shoulder injury, which is difficult to be completely repaired by surgery. Hence, new strategies are needed to promote the healing of tendon-bone. OBJECTIVE We aimed to investigate the effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) overexpressing RUNX1 on the tendon-bone healing after RCI, and to further explore its mechanism. METHODS Lentiviral vector was used to mediate the overexpression of RUNX1. RUNX1-overexpressed UCB-MSCs (referred to as MSC-RUNX1) were co-cultured with osteoclasts, and TRAP staining was performed to observe the formation of osteoclasts. Then MSC-RUNX1 was cultured in osteogenic differentiation medium, Alizarin red staining was conducted to detect osteogenic differentiation. The expression of markers of osteogenesis and osteoclast was detected by RT-qPCR. EA. hy926 cells were co-cultured with MSC-RUNX1. Transwell assay was used to detect the migration, and the expression of angiogenesis related-genes VEGF and TGF-β was detected by RT-qPCR. The rat rotator cuff reconstruction model was established and MSCs were injected at the tendon-bone junction. Biomechanical test and micro-CT scanning were performed, and HE, Masson and Alcian Blue staining were used for histological evaluation of tendon-bone healing. TUNEL and PCNA immunofluorescence (IF) staining were performed to evaluate apoptosis and proliferation at the tendon-bone healing site. The levels of TNF-α, IL-6 and IL-8 in serum were detected by ELISA. The expression of CD31 and Endomucin that related to angiogenesis was detected by IF. Safranin O-fast and TRAP/CD40L immunohistochemical staining were used to assess the levels of osteoclasts and osteoblasts at the tendon-bone healing site. RESULTS hUC-MSCs overexpressing RUNX1 inhibited osteoclast formation and promoted osteogenic differentiation. MSC-RUNX1 could promote the migration and tube formation of EA. hy926 cells, and up-regulate the levels of VEGF and TGF-β. Model mice treated with MSC-RUNX1 partially restored the biomechanical indexes. Treatment of MSC-RUNX1 obviously increased the bone density, accompanied by the formation of new bone. In vivo experiments showed that MSC-RUNX1 treatment could promote tendon-bone healing and inhibit inflammatory response in rats. MSC-RUNX1 treatment also promoted angiogenesis at the tendon-bone healing site, while inhibiting osteoclast formation and promoting osteogenic differentiation. CONCLUSION hUC-MSCs overexpressing RUNX1 can inhibit the formation of osteoclasts and differentiation of osteoblasts, promote angiogenesis and inhibit inflammation, thereby promoting tendon-bone healing after RCI.
Collapse
Affiliation(s)
- Dan Guo
- Department of Orthopedic, Yangzhou Clinical Medical College of Nanjing Medical University, Yangzhou, 225001, Jiangsu, China
| | - Jian Yang
- Department of Orthopedic, Yangzhou Clinical Medical College of Nanjing Medical University, Yangzhou, 225001, Jiangsu, China
| | - Dianwei Liu
- Department of Orthopedic, Yangzhou Clinical Medical College of Nanjing Medical University, Yangzhou, 225001, Jiangsu, China
| | - Pei Zhang
- Department of Orthopedic, Yangzhou Clinical Medical College of Nanjing Medical University, Yangzhou, 225001, Jiangsu, China
| | - Hao Sun
- Department of Orthopedic, Yangzhou Clinical Medical College of Nanjing Medical University, Yangzhou, 225001, Jiangsu, China
| | - Jingcheng Wang
- Department of Orthopedic, Yangzhou Clinical Medical College of Nanjing Medical University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
6
|
Luo W, Wang Y, Han Q, Wang Z, Jiao J, Gong X, Liu Y, Zhang A, Zhang H, Chen H, Wang J, Wu M. Advanced strategies for constructing interfacial tissues of bone and tendon/ligament. J Tissue Eng 2022; 13:20417314221144714. [PMID: 36582940 PMCID: PMC9793068 DOI: 10.1177/20417314221144714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/26/2022] [Indexed: 12/25/2022] Open
Abstract
Enthesis, the interfacial tissue between a tendon/ligament and bone, exhibits a complex histological transition from soft to hard tissue, which significantly complicates its repair and regeneration after injury. Because traditional surgical treatments for enthesis injury are not satisfactory, tissue engineering has emerged as a strategy for improving treatment success. Rapid advances in enthesis tissue engineering have led to the development of several strategies for promoting enthesis tissue regeneration, including biological scaffolds, cells, growth factors, and biophysical modulation. In this review, we discuss recent advances in enthesis tissue engineering, particularly the use of biological scaffolds, as well as perspectives on the future directions in enthesis tissue engineering.
Collapse
Affiliation(s)
- Wangwang Luo
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Qing Han
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China,Orthopaedic Research Institute of Jilin
Province, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Xuqiang Gong
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Aobo Zhang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Han Zhang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Hao Chen
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China,Minfei Wu, Department of Orthopedics, The
Second Hospital of Jilin University, 218 Ziqiang Sreet, Changchun 130041, China.
| |
Collapse
|
7
|
Li Y, Zhou M, Zheng W, Yang J, Jiang N. Scaffold-based tissue engineering strategies for soft-hard interface regeneration. Regen Biomater 2022; 10:rbac091. [PMID: 36683751 PMCID: PMC9847541 DOI: 10.1093/rb/rbac091] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Repairing injured tendon or ligament attachments to bones (enthesis) remains costly and challenging. Despite superb surgical management, the disorganized enthesis newly formed after surgery accounts for high recurrence rates after operations. Tissue engineering offers efficient alternatives to promote healing and regeneration of the specialized enthesis tissue. Load-transmitting functions thus can be restored with appropriate biomaterials and engineering strategies. Interestingly, recent studies have focused more on microstructure especially the arrangement of fibers since Rossetti successfully demonstrated the variability of fiber underspecific external force. In this review, we provide an important update on the current strategies for scaffold-based tissue engineering of enthesis when natural structure and properties are equally emphasized. We firstly described compositions, structures and features of natural enthesis with their special mechanical properties highlighted. Stimuli for growth, development and healing of enthesis widely used in popular strategies are systematically summarized. We discuss the fabrication of engineering scaffolds from the aspects of biomaterials, techniques and design strategies and comprehensively evaluate the advantages and disadvantages of each strategy. At last, this review pinpoints the remaining challenges and research directions to make breakthroughs in further studies.
Collapse
Affiliation(s)
| | | | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Nan Jiang
- Correspondence address. E-mail: (N.J.); (J.Y.)
| |
Collapse
|