1
|
Ding L, Liang X, Ma J, Liu X, Zhang Y, Long Q, Wen Z, Teng Z, Jiang L, Liu G. Sono-Triggered Biomimetically Nanoantibiotics Mediate Precise Sequential Therapy of MRSA-Induced Lung Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2403612. [PMID: 39344919 DOI: 10.1002/adma.202403612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/23/2024] [Indexed: 10/01/2024]
Abstract
Bacterial-induced lower respiratory tract infections are a growing global health concern, exacerbated by the inefficacy of conventional antibiotics and delivery methods to effectively target the lower respiratory tract, leading to suboptimal therapeutic outcomes. To address this challenge, this work engineers PBP2a antibody-presenting membrane nanovesicles (AMVs) specifically designed to target the penicillin-binding protein variant on the surface of methicillin-resistant Staphylococcus aureus (MRSA). Concurrently, this work develops pure ciprofloxacin nanoparticles (NanoCip) that, for the first time, exhibits exceptional self-generated sonodynamic properties, attributed to hydrogen-bond-driven self-assembly, while maintaining their inherent pharmacological efficacy. These NanoCip particles are integrated with AMVs to create a novel biomimetic nanomedicine, AMV@NanoCip. This formulation demonstrated remarkable MRSA-targeting affinity in both in vitro and in vivo models, significantly enhancing antibacterial activity. Upon ultrasound stimulation, AMV@NanoCip achieves over 99.99% sterilization of MRSA in vitro, with a reduction exceeding 5.14 Log CFU. Prokaryotic transcriptomic analysis further elucidates the synergistic mechanisms by which AMV@NanoCip, coupled with ultrasound, disrupts the MRSA exoskeleton. In a MRSA-induced pneumonia animal model, AMV@NanoCip+US results in a substantial bacterial load reduction in the lungs (99.99%, 4.02 Log CFU). This sequential treatment strategy (adhesion-membrane disruption-synergistic therapy) offers significant promise as an innovative therapeutic approach for combating bacterial infections.
Collapse
Affiliation(s)
- Linyu Ding
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Xiaoliu Liang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, P. R. China
| | - Jiaxin Ma
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xue Liu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Yang Zhang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Qiuyue Long
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| | - Zihao Wen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Zihao Teng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Lai Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China
| | - Gang Liu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
2
|
Jiang H, Fang W, Xu S, Luo H, Li D, Liu Y, Zeng Z, Tong Y, Zhao L. Synergistic quorum sensing inhibition and mild-temperature photothermal therapy of integrated nanoplatform for implant-associated biofilm infections. J Colloid Interface Sci 2024; 663:143-156. [PMID: 38401436 DOI: 10.1016/j.jcis.2024.02.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
In current clinical practice, the presence of biofilms poses a significant challenge in the effective elimination of bacterial infections because of the physical and chemical barriers formed by biofilms, which offer persistent protection to bacteria. Here, we developed hollow mesoporous polydopamine (hMP) nanoparticles (NPs) loaded with luteolin (Lu) as a quorum sensing inhibitor, which were further coated with hyaluronic acid (HA) shells to create hMP-Lu@HA NPs. We observed that upon reaching the infection site, the HA shells underwent initial degradation by the hyaluronidase enzyme present in the bacterial infection's microenvironment to expose the hMP-Lu NPs. Subsequently, Lu was released in response to the acidic conditions characteristic of bacterial infections, which effectively hindered and dispersed the biofilm. Moreover, when subjected to near-infrared irradiation, the robust photothermal conversion effect of hMP NPs accelerated the release of Lu and disrupted the integrity of the biofilms by localized heating. This dual action enhanced the eradication of the biofilm infection. Importantly, hMP-Lu@HA NPs also promoted tissue regeneration and healing at the implantation site, concurrently addressing biofilm infection. Taken together, this nanosystem, combined with mild-temperature photothermal therapy and quorum sensing inhibition strategy, holds significant potential for applications in the treatment of implantation-associated infections.
Collapse
Affiliation(s)
- Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Wenlan Fang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shiqi Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Haimeng Luo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Dongqiu Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yuan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhijun Zeng
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu 610051, China.
| | - Yan Tong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Long Zhao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu 610051, China.
| |
Collapse
|
3
|
Guo H, Tian Y, Wu X, Tu L, Liu J, Zheng Y, Huang R. Efficient assembly and anti-tumor evaluation of novel polycyclic [1,2-a]-fused indoles. Bioorg Chem 2024; 146:107289. [PMID: 38493636 DOI: 10.1016/j.bioorg.2024.107289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Structurally diverse cyclopenta[4,5]pyrrolo[1,2-a]indoles heterocycles were smoothly constructed in good to excellent yields (up to 99 %) with excellent diastereoselectivities (>19:1 dr) through a novel and facile strategy based on BF3-catalyzed Friedel-Crafts alkylation/Aldol/Dehydrative cyclization cascade reaction. The anti-proliferative activity of these newly synthesized polycyclic indoles was screened, and all the functionalized reductive derivatives exhibited favorable anti-tumor activity. Notably, compound 4ae displayed the remarkable inhibitory activity against MCF-7 and HeLa cells with IC50 values of 4.62 μM and 7.71 μM, respectively. Mechanistically, the representative compound 4ae could effectively induce apoptosis of MCF-7 cells in crediting to up-regulate the relative expression of apoptotic protein BAX/Bcl-2, subsequently activate Pro-caspase 9 and cleave PARP, simultaneously block the cell cycle through down- and up-regulate the expression of cyclin B1 and p53, respectively. Moreover, compound 4ae also exhibited promising antineoplastic efficacy in subcutaneous MCF-7 xenograft mice which manifest significant shrunken tumors conspicuous nuclear apoptotic signal and minimal systemic toxicity. This strategy not only established a novel and efficient method for the assembly of structurally complex indole heterocycles, but also provided a series of compounds possessing attractive anti-cancer activity, which holds immense potential for future biomedical applications.
Collapse
Affiliation(s)
- Hui Guo
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yuqi Tian
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Xing Wu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Liang Tu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Jikai Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| | - Yongsheng Zheng
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| | - Rong Huang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
4
|
Chen Q, Dong Z, Yao X, Sun H, Pan X, Liu J, Huang R. Bactericidal and biofilm eradication efficacy of a fluorinated benzimidazole derivative, TFBZ, against methicillin-resistant Staphylococcus aureus. Front Pharmacol 2024; 15:1342821. [PMID: 38659587 PMCID: PMC11039886 DOI: 10.3389/fphar.2024.1342821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major inducement of nosocomial infections and its biofilm formation render the high tolerance to conventional antibiotics, which highlights the requirement to develop new antimicrobial agents urgently. In this study, we identified a fluorinated benzimidazole derivative, TFBZ, with potent antibacterial efficacy toward planktonic MRSA (MIC = 4 μg/mL, MBC = 8 μg/mL) and its persistent biofilms (≥99%, MBEC = 8 μg/mL). TFBZ manifested significant irreversible time-dependent killing against MRSA as characterized by diminished cell viability, bacterial morphological change and protein leakage. Furthermore, the results from CBD devices, crystal violet assay in conjunction with live/dead staining and scanning electron microscopy confirmed that TFBZ was capable of eradicating preformed MRSA biofilms with high efficiency. Simultaneously, TFBZ reduced the bacterial invasiveness and exerted negligible hemolysis and cytotoxicity toward mammalian cells, which ensuring the robust therapeutic effect on mouse skin abscess model. The transcriptome profiling and quantitative RT-PCR revealed that a set of encoding genes associated with cell adhesion, biofilm formation, translation process, cell wall biosynthesis was consistently downregulated in MRSA biofilms upon exposure to TFBZ. In conclusion, TFBZ holds promise as a valuable candidate for therapeutic applications against MRSA chronic infections.
Collapse
Affiliation(s)
- Qian Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhihui Dong
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xuedi Yao
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Huan Sun
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xin Pan
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Jikai Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Rong Huang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| |
Collapse
|
5
|
Liang Y, Wang J, Liu X, Chen S, He G, Fang X, Yang J, Teng Z, Liu HB. Anti-adhesion multifunctional poly(lactic-co-glycolic acid)/polydimethylsiloxane wound dressing for bacterial infection monitoring and photodynamic antimicrobial therapy. Int J Biol Macromol 2024; 260:129501. [PMID: 38224803 DOI: 10.1016/j.ijbiomac.2024.129501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Wound infection and adhesion are important factors affecting wound healing. Early detection of pathogen infection and reduction of wound-to-dressing adhesion are critical for improving wound healing. Herein, Ester-J, which can rapidly respond to lipase secreted by bacteria, was designed and synthesized. Then, Ester-J was co-spun with poly(lactic-co-glycolic acid) (PLGA) and polydimethylsiloxane (PDMS) to prepare a PP-EsJ hydrophobic anti-adhesion dressing with a contact angle of 140.7°. When the PP-EsJ membrane came into contact with the bacteria, the loaded Ester-J was hydrolyzed to Tph-TSF-OH, releasing bright cyan-blue fluorescence, thus providing a fluorescence switch for an early warning of infection. The detection limits of PP-EsJ for Pseudomonas aeruginosa and Staphylococcus aureus were 1.0 × 105 and 1.0 × 106 CFU/mL, respectively. Subsequently, Tph-TSF-OH released 1O2 through light irradiation, which rapidly killed P. aeruginosa and S. aureus, and accelerated wound healing. Compared with the control group, enhanced wound closure (up to 99.80 ± 1.10 %) was observed in mice treated with the PP-EsJ membrane. The PP-EsJ membrane not only effectively reduced the risk of external infection but also reduced adhesions to the skin during dressing changes. These characteristics make PP-EsJ membranes potentially useful for clinical treatment.
Collapse
Affiliation(s)
- Yuehui Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Xu Liu
- Medical College of Guangxi University, Guangxi University, Nanning 53004, PR China
| | - Shirong Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Guangpeng He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Xiru Fang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Jiaying Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Zhongshan Teng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China.
| |
Collapse
|
6
|
Zhou Y, Xu L, Sun X, Zhan W, Liang G. In situ peptide assemblies for bacterial infection imaging and treatment. NANOSCALE 2024; 16:3211-3225. [PMID: 38288668 DOI: 10.1039/d3nr05557d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Bacterial infections, especially antibiotic-resistant ones, remain a major threat to human health. Advances in nanotechnology have led to the development of numerous antimicrobial nanomaterials. Among them, in situ peptide assemblies, formed by biomarker-triggered self-assembly of peptide-based building blocks, have received increasing attention due to their unique merits of good spatiotemporal controllability and excellent disease accumulation and retention. In recent years, a variety of "turn on" imaging probes and activatable antibacterial agents based on in situ peptide assemblies have been developed, providing promising alternatives for the treatment and diagnosis of bacterial infections. In this review, we introduce representative design strategies for in situ peptide assemblies and highlight the bacterial infection imaging and treatment applications of these supramolecular materials. Besides, current challenges in this field are proposed.
Collapse
Affiliation(s)
- Yanyan Zhou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Lingling Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
7
|
Peng M, Dong H, Shao M, Zhang X, Sun J, Ding C, Han X, Yang Q, Sang X, Cao G. Self-heating mitochondrion-induced free radical blast for immunogenic cell death stimulation and HCC immunotherapy. J Control Release 2024; 366:694-711. [PMID: 38228273 DOI: 10.1016/j.jconrel.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Hepatocellular carcinoma (HCC) is an immunosuppressive tumor associated with high mortality. Photothermal and photodynamic therapies have been applied to induce immunogenic cell death (ICD) in HCC, successfully eliciting immune responses but facing limitations in penetration depth in clinical trials. Here, intrinsic mitochondrial hyperthermia was used to trigger thermosensitive drug release. The mitochondria were further self-heated through 2,4-dinitrophenol uncoupling, dramatically promoting free radical initiation and inducing tumor ICD. The synthesized mitochondrial-targeting TPP-HA-TDV nanoparticles specifically generated free radicals in the mitochondria without external stimulation, and obviously enhanced the release of ICD markers, subsequently evoking immune responses. The results showed that mitochondrial hyperthermia could be an endogenous target for thermosensitive drug release. Furthermore, self-heating mitochondria-induced free radical blast could be an efficient therapeutic for deep-seated tumor therapy.
Collapse
Affiliation(s)
- Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, PR China
| | - Hongyan Dong
- School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, PR China
| | - Meiyu Shao
- School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, PR China
| | - Xiaoqing Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, PR China
| | - Jiamei Sun
- School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, PR China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, PR China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, PR China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, PR China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, PR China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, 310053 Hangzhou, PR China.
| |
Collapse
|
8
|
Zhang DY, Cao RG, Cheng YJ, Liu WL, Huang R, Zhang AQ, Qin SY. Programming lipopeptide nanotherapeutics for tandem treatment of postsurgical infection and melanoma recurrence. J Control Release 2023; 362:565-576. [PMID: 37673305 DOI: 10.1016/j.jconrel.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Tumor recurrence and chronic bacterial infection constitute two major criteria in postsurgical intervention for malignant melanoma. One plausible strategy is the equipment of consolidation therapy after surgery, which relies on adjuvants to eliminate the residual tumor cells and inhibit bacterial growth. Until now, a number of proof-of-concept hybrid nanoadjuvants have been proposed to combat tumor recurrence and postsurgical bacterial infection, which may suffer from the potential bio-unsafety or involve complex design and synthesis. The batch-to-batch inconsistencies in drug composition further delay the clinical trials. To circumvent these issues, herein we develop a programmable strategy to generate lipopeptide nanotherapeutics with identical constitution for tandem intervention of postsurgical bacterial infection and cancer recurrence of melanoma. Increasing the number of hydrophobic linoleic acid within lipopeptides has been found to be a simple and practical strategy to improve the therapeutic outcomes for both tumor cells and bacteria. Self-assembled lipopeptide nanotherapeutics with two linoleic acid molecules possesses excellent antitumor activity and antimicrobial function toward both susceptible strains and drug-resistant bacteria. Arising from the incorporation of unsaturated linoleic acid, the unavoidable hemolysis of cationic peptide drugs was effectively alleviated. In vivo therapeutic abilities of postsurgical infection and tumor recurrence were investigated in BALB/c nude mice bearing a B16-F10 tumor model, with an incomplete surgical resection and in situ infection by methicillin-resistant Staphylococcus aureus (MRSA). Self-assembled lipopeptide nanotherapeutics could effectively inhibit cancer cell growth and bacterial infection, as well as promote wound healing. The easily scalable large-scale production, broad-spectrum antitumor and antibacterial bioactivities as well as fixed component endows lipopeptide nanotherapeutics as promising adjuvants for clinically postsurgical therapy of melanoma.
Collapse
Affiliation(s)
- Ding-Yi Zhang
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Rui-Ge Cao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yin-Jia Cheng
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Wen-Long Liu
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Rong Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| | - Ai-Qing Zhang
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Si-Yong Qin
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
9
|
Zhou Y, Li Q, Wu Y, Li X, Zhou Y, Wang Z, Liang H, Ding F, Hong S, Steinmetz NF, Cai H. Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy. ACS NANO 2023; 17:8004-8025. [PMID: 37079378 DOI: 10.1021/acsnano.3c01452] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembly has emerged as an extensively used method for constructing biomaterials with sizes ranging from nanometers to micrometers. Peptides have been extensively investigated for self-assembly. They are widely applied owing to their desirable biocompatibility, biodegradability, and tunable architecture. The development of peptide-based nanoparticles often requires complex synthetic processes involving chemical modification and supramolecular self-assembly. Stimuli-responsive peptide nanoparticles, also termed "smart" nanoparticles, capable of conformational and chemical changes in response to stimuli, have emerged as a class of promising materials. These smart nanoparticles find a diverse range of biomedical applications, including drug delivery, diagnostics, and biosensors. Stimuli-responsive systems include external stimuli (such as light, temperature, ultrasound, and magnetic fields) and internal stimuli (such as pH, redox environment, salt concentration, and biomarkers), facilitating the generation of a library of self-assembled biomaterials for biomedical imaging and therapy. Thus, in this review, we mainly focus on peptide-based nanoparticles built by self-assembly strategy and systematically discuss their mechanisms in response to various stimuli. Furthermore, we summarize the diverse range of biomedical applications of peptide-based nanomaterials, including diagnosis and therapy, to demonstrate their potential for medical translation.
Collapse
Affiliation(s)
- Yang Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Ye Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Xinyu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ya Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Zhu Wang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Hui Liang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Nicole F Steinmetz
- Department of NanoEngineering, Department of Biongineering, Department of Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Center for Engineering in Cancer, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| |
Collapse
|