1
|
Alphonse N, Sécher T, Heuzé-Vourc'h N. A breath of fresh air: inhaled antibodies to combat respiratory infectious diseases - a clinical trial overview. Expert Opin Drug Deliv 2024:1-22. [PMID: 39711323 DOI: 10.1080/17425247.2024.2446608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION With the worldwide growing burden of respiratory tract infections (RTIs), innovative therapeutic approaches are in high demand. Inhaled antibodies (Abs) represent a promising avenue, offering targeted treatment options with potentially better therapeutic index compared to traditional delivery methods. AREAS COVERED This comprehensive review summarizes the challenges faced in delivering Abs by (intranasal and pulmonary) inhalation. It outlines the physiological and biological barriers encountered by inhaled drugs, as well as the influence of delivery devices and formulation on the deposition and efficacy of inhaled molecules. Moreover, it provides a detailed overview of the current clinical trial landscape of inhaled anti-RTI Abs, highlighting the progress in the development of inhaled Abs targeting a range of pathogens, such as severe acute respiratory syndrome coronavirus 2 and respiratory syncytial virus. The mechanism of action, therapeutic targets, and clinical outcomes of these novel therapies are detailed. EXPERT OPINION Delivery of Abs by inhalation faces several challenges. Addressing these challenges and developing specific approaches to deliver inhaled Abs represent a promising avenue for the development of the next generation of inhaled Abs. By offering targeted, localized therapy with the potential for a better therapeutic index, inhaled Abs could significantly improve outcomes for patients with RTIs.
Collapse
Affiliation(s)
- Noémie Alphonse
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| | - Thomas Sécher
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| | - Nathalie Heuzé-Vourc'h
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| |
Collapse
|
2
|
Schaefer A, Yang B, Schroeder HA, Harit D, Humphry MS, Zeitlin L, Whaley KJ, Ravel J, Fischer WA, Lai SK. ZMapp reduces diffusion of Ebola viral particles in fresh human cervicovaginal mucus. Emerg Microbes Infect 2024; 13:2352520. [PMID: 38713593 PMCID: PMC11100441 DOI: 10.1080/22221751.2024.2352520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Vaginal transmission from semen of male Ebola virus (EBOV) survivors has been implicated as a potential origin of Ebola virus disease (EVD) outbreaks. While EBOV in semen must traverse cervicovaginal mucus (CVM) to reach target cells, the behaviour of EBOV in CVM is poorly understood. CVM contains substantial quantities of IgG, and arrays of IgG bound to a virion can develop multiple Fc-mucin bonds, immobilizing the IgG/virion complex in mucus. Here, we measured the real-time mobility of fluorescent Ebola virus-like-particles (VLP) in 50 CVM specimens from 17 women, with and without ZMapp, a cocktail of 3 monoclonal IgGs against EBOV. ZMapp-mediated effective trapping of Ebola VLPs in CVM from a subset of women across the menstrual cycle, primarily those with Lactobacillus crispatus dominant microbiota. Our work underscores the influence of the vaginal microbiome on IgG-mucin crosslinking against EBOV and identifies bottlenecks in the sexual transmission of EBOV.
Collapse
Affiliation(s)
- Alison Schaefer
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, USA
| | - Bing Yang
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Holly A. Schroeder
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dimple Harit
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mike S. Humphry
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William A. Fischer
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Chapel Hill, NC, USA
| | - Samuel K. Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology & Immunology; University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Cherenack EM, Broedlow CA, Klatt NR. The vaginal microbiome and HIV transmission dynamics. Curr Opin HIV AIDS 2024; 19:234-240. [PMID: 38935063 PMCID: PMC11756713 DOI: 10.1097/coh.0000000000000869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW Among women, having a nonoptimal, highly diverse vaginal microbiome dominated by bacteria other than optimal Lactobacillus species such as L. crispatus or L. jensenii predicts HIV transmission. Reducing HIV acquisition among women requires a better understanding of the mechanisms through which the vaginal microbiome impacts HIV transmission dynamics and how to more effectively treat and intervene. Technological advancements are improving the ability of researchers to fully characterize interacting host-bacteria mechanisms. Consequently, the purpose of this review was to summarize the most innovative research on the vaginal microbiome and its role in HIV transmission in the past year. RECENT FINDINGS Studies combining multiomics, experimental, and translational approaches highlight the associations of a nonoptimal microbiome with maladaptive alterations in immune cell functioning, vaginal metabolites, host cell transcription, mucosal immunity, and epithelial barrier integrity. While there are multiple mechanisms proposed to increase HIV acquisition risk, there are virtually zero acceptable and effective treatments to improve the vaginal microbiome and immunity. SUMMARY Women-centered solutions to modify the vaginal microbiome and bacterial metabolites should continue to be explored as a mechanism to reduce HIV acquisition.
Collapse
Affiliation(s)
- Emily M Cherenack
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Courtney A Broedlow
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nichole R Klatt
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Choi MW, Isidoro CA, Gillgrass A. Mechanisms of mucosal immunity at the female reproductive tract involved in defense against HIV infection. Curr Opin Virol 2024; 66:101398. [PMID: 38484474 DOI: 10.1016/j.coviro.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 06/07/2024]
Abstract
Human immunodeficiency virus-1 remains a major global health threat. Since the virus is often transmitted through sexual intercourse and women account for the majority of new infections within the most endemic regions, research on mucosal immunity at the female reproductive tract (FRT) is of paramount importance. At the FRT, there are intrinsic barriers to HIV-1 infection, such as epithelial cells and the microbiome, and immune cells of both the innate and adaptive arms are prepared to respond in case the virus overcomes the first line of defense. In this review, we discuss recent findings on FRT mucosal mechanisms of HIV-1 defense and highlight research gaps. While defense from HIV-1 infection at the FRT has been understudied, current and future research is essential to develop new therapeutics and vaccines that can protect this unique mucosal site from HIV-1.
Collapse
Affiliation(s)
- Margaret Wy Choi
- McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Carmina A Isidoro
- McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Amy Gillgrass
- McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
5
|
McSweeney MD, Alnajjar S, Schaefer AM, Richardson Z, Wolf W, Stewart I, Sriboonyapirat P, McCallen J, Farmer E, Nzati B, Lord S, Farrer B, Moench TR, Kumar PA, Arora H, Pickles RJ, Hickey AJ, Ackermann M, Lai SK. Inhaled "Muco-Trapping" Monoclonal Antibody Effectively Treats Established Respiratory Syncytial Virus (RSV) Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306729. [PMID: 38225749 DOI: 10.1002/advs.202306729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in infants, the immunocompromised, and the elderly. RSV infects the airway epithelium via the apical membrane and almost exclusively sheds progeny virions back into the airway mucus (AM), making RSV difficult to target by systemically administered therapies. An inhalable "muco-trapping" variant of motavizumab (Mota-MT), a potent neutralizing mAb against RSV F is engineered. Mota-MT traps RSV in AM via polyvalent Fc-mucin bonds, reducing the fraction of fast-moving RSV particles in both fresh pediatric and adult AM by ≈20-30-fold in a Fc-glycan dependent manner, and facilitates clearance from the airways of mice within minutes. Intranasal dosing of Mota-MT eliminated viral load in cotton rats within 2 days. Daily nebulized delivery of Mota-MT to RSV-infected neonatal lambs, beginning 3 days after infection when viral load is at its maximum, led to a 10 000-fold and 100 000-fold reduction in viral load in bronchoalveolar lavage and lung tissues relative to placebo control, respectively. Mota-MT-treated lambs exhibited reduced bronchiolitis, neutrophil infiltration, and airway remodeling than lambs receiving placebo or intramuscular palivizumab. The findings underscore inhaled delivery of muco-trapping mAbs as a promising strategy for the treatment of RSV and other acute respiratory infections.
Collapse
Affiliation(s)
| | - Sarhad Alnajjar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Alison M Schaefer
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ian Stewart
- RTI International, Research Triangle Park, NC, 27709, USA
| | | | - Justin McCallen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen Farmer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Sam Lord
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | - Brian Farrer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Priya A Kumar
- Department of Anesthesiology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Outcomes Research Consortium, Cleveland, OH, 44195, USA
| | - Harendra Arora
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Raymond J Pickles
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Mark Ackermann
- USDA/ARS-National Animal Disease Center, Ames, IA, 50010, USA
| | - Samuel K Lai
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
6
|
Laskou A, Znalesniak EB, Harder S, Schlüter H, Jechorek D, Langer K, Strecker C, Matthes C, Tchaikovski SN, Hoffmann W. Different Forms of TFF3 in the Human Endocervix, including a Complex with IgG Fc Binding Protein (FCGBP), and Further Aspects of the Cervico-Vaginal Innate Immune Barrier. Int J Mol Sci 2024; 25:2287. [PMID: 38396964 PMCID: PMC10888570 DOI: 10.3390/ijms25042287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
TFF3 is a typical secretory poplypeptide of mucous epithelia belonging to the trefoil factor family (TFF) of lectins. In the intestine, respiratory tract, and saliva, TFF3 mainly exists as a high-molecular-mass complex with IgG Fc binding protein (FCGBP), which is indicative of a role in mucosal innate immunity. For the first time, we identified different forms of TFF3 in the endocervix, i.e., monomeric and homodimeric TFF3, as well as a high-molecular-mass TFF3-FCGBP complex; the latter also exists in a hardly soluble form. Immunohistochemistry co-localized TFF3 and FCGBP. Expression analyses of endocervical and post-menopausal vaginal specimens revealed a lack of mucin and TFF3 transcripts in the vaginal specimens. In contrast, genes encoding other typical components of the innate immune defense were expressed in both the endocervix and vagina. Of note, FCGBP is possibly fucosylated. Endocervical specimens from transgender individuals after hormonal therapy showed diminished expression, particularly of FCGBP. Furthermore, mucus swabs from the endocervix and vagina were analyzed concerning TFF3, FCGBP, and lysozyme. It was the aim of this study to illuminate several aspects of the cervico-vaginal innate immune barrier, which is clinically relevant as bacterial and viral infections are also linked to infertility, pre-term birth and cervical cancer.
Collapse
Affiliation(s)
- Aikaterini Laskou
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Eva B. Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Dörthe Jechorek
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Kathrin Langer
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Carina Strecker
- Department of Gynecology and Obstetrics, Otto-von-Guericke University Magdeburg, Gerhart-Hauptmann-Str. 35, 39108 Magdeburg, Germany
| | - Claudia Matthes
- Department of Gynecology and Obstetrics, Otto-von-Guericke University Magdeburg, Gerhart-Hauptmann-Str. 35, 39108 Magdeburg, Germany
| | - Svetlana N. Tchaikovski
- Department of Gynecology and Obstetrics, Otto-von-Guericke University Magdeburg, Gerhart-Hauptmann-Str. 35, 39108 Magdeburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|