1
|
Bandyopadhyay A, Mitra I, Goodman SB, Kumar M, Bose S. Improving Biocompatibility for Next Generation of Metallic Implants. PROGRESS IN MATERIALS SCIENCE 2023; 133:101053. [PMID: 36686623 PMCID: PMC9851385 DOI: 10.1016/j.pmatsci.2022.101053] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The increasing need for joint replacement surgeries, musculoskeletal repairs, and orthodontics worldwide prompts emerging technologies to evolve with healthcare's changing landscape. Metallic orthopaedic materials have a shared application history with the aerospace industry, making them only partly efficient in the biomedical domain. However, suitability of metallic materials in bone tissue replacements and regenerative therapies remains unchallenged due to their superior mechanical properties, eventhough they are not perfectly biocompatible. Therefore, exploring ways to improve biocompatibility is the most critical step toward designing the next generation of metallic biomaterials. This review discusses methods of improving biocompatibility of metals used in biomedical devices using surface modification, bulk modification, and incorporation of biologics. Our investigation spans multiple length scales, from bulk metals to the effect of microporosities, surface nanoarchitecture, and biomolecules such as DNA incorporation for enhanced biological response in metallic materials. We examine recent technologies such as 3D printing in alloy design and storing surface charge on nanoarchitecture surfaces, metal-on-metal, and ceramic-on-metal coatings to present a coherent and comprehensive understanding of the subject. Finally, we consider the advantages and challenges of metallic biomaterials and identify future directions.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Indranath Mitra
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Stuart B. Goodman
- Department of Orthopedic Surgery, Stanford University Medical Center, Redwood City, CA 94063
| | | | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| |
Collapse
|
2
|
Paré A, Charbonnier B, Veziers J, Vignes C, Dutilleul M, De Pinieux G, Laure B, Bossard A, Saucet-Zerbib A, Touzot-Jourde G, Weiss P, Corre P, Gauthier O, Marchat D. Standardized and axially vascularized calcium phosphate-based implants for segmental mandibular defects: A promising proof of concept. Acta Biomater 2022; 154:626-640. [PMID: 36210043 DOI: 10.1016/j.actbio.2022.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
The reconstruction of massive segmental mandibular bone defects (SMDs) remains challenging even today; the current gold standard in human clinics being vascularized bone transplantation (VBT). As alternative to this onerous approach, bone tissue engineering strategies have been widely investigated. However, they displayed limited clinical success, particularly in failing to address the essential problem of quick vascularization of the implant. Although routinely used in clinics, the insertion of intrinsic vascularization in bioengineered constructs for the rapid formation of a feeding angiosome remains uncommon. In a clinically relevant model (sheep), a custom calcium phosphate-based bioceramic soaked with autologous bone marrow and perfused by an arteriovenous loop was tested to regenerate a massive SMD and was compared to VBT (clinical standard). Animals did not support well the VBT treatment, and the study was aborted 2 weeks after surgery due to ethical and animal welfare considerations. SMD regeneration was successful with the custom vascularized bone construct. Implants were well osseointegrated and vascularized after only 3 months of implantation and totally entrapped in lamellar bone after 12 months; a healthy yellow bone marrow filled the remaining space. STATEMENT OF SIGNIFICANCE: Regenerative medicine struggles with the generation of large functional bone volume. Among them segmental mandibular defects are particularly challenging to restore. The standard of care, based on bone free flaps, still displays ethical and technical drawbacks (e.g., donor site morbidity). Modern engineering technologies (e.g., 3D printing, digital chain) were combined to relevant surgical techniques to provide a pre-clinical proof of concept, investigating for the benefits of such a strategy in bone-related regenerative field. Results proved that a synthetic-biologics-free approach is able to regenerate a critical size segmental mandibular defect of 15 cm3 in a relevant preclinical model, mimicking real life scenarii of segmental mandibular defect, with a full physiological regeneration of the defect after 12 months.
Collapse
Affiliation(s)
- Arnaud Paré
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Department of Maxillofacial and Plastic surgery, Burn Unit, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Baptiste Charbonnier
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Joëlle Veziers
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Caroline Vignes
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Maeva Dutilleul
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Gonzague De Pinieux
- Department of Pathology, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Boris Laure
- Department of Maxillofacial and Plastic surgery, Burn Unit, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Adeline Bossard
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Annaëlle Saucet-Zerbib
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Gwenola Touzot-Jourde
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Pierre Weiss
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Pierre Corre
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Clinique de Stomatologie et Chirurgie Maxillo-Faciale, Nantes University Hospital, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Olivier Gauthier
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - David Marchat
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France.
| |
Collapse
|
3
|
A partially demineralized allogeneic bone graft: in vitro osteogenic potential and preclinical evaluation in two different intramembranous bone healing models. Sci Rep 2021; 11:4907. [PMID: 33649345 PMCID: PMC7921404 DOI: 10.1038/s41598-021-84039-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
In skeletal surgical procedures, bone regeneration in irregular and hard-to-reach areas may present clinical challenges. In order to overcome the limitations of traditional autologous bone grafts and bone substitutes, an extrudable and easy-to-handle innovative partially demineralized allogenic bone graft in the form of a paste has been developed. In this study, the regenerative potential of this paste was assessed and compared to its clinically used precursor form allogenic bone particles. Compared to the particular bone graft, the bone paste allowed better attachment of human mesenchymal stromal cells and their commitment towards the osteoblastic lineage, and it induced a pro-regenerative phenotype of human monocytes/macrophages. The bone paste also supported bone healing in vivo in a guide bone regeneration model and, more interestingly, exhibited a substantial bone-forming ability when implanted in a critical-size defect model in rat calvaria. Thus, these findings indicate that this novel partially demineralized allogeneic bone paste that combines substantial bone healing properties and rapid and ease-of-use may be a promising alternative to allogeneic bone grafts for bone regeneration in several clinical contexts of oral and maxillofacial bone grafting.
Collapse
|
4
|
Santinoni CS, Neves APC, Almeida BFM, Kajimoto NC, Pola NM, Caliente EA, Belem ELG, Lelis JB, Fucini SE, Messora MR, Garcia VG, Bomfim SRM, Ervolino E, Nagata MJH. Bone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization. J Biomed Mater Res A 2020; 109:849-858. [PMID: 32815657 DOI: 10.1002/jbm.a.37076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
Abstract
The present study evaluated bone marrow aspirate (BMA) and low-level laser therapy (LLLT) on bone healing. It was created critical-size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser irradiation and blood clot), and BMA/LLLT (laser irradiation and coagulated BMA). Euthanasia was performed at 15 or 30 days postoperative. Immunohistochemical reactions were performed to identify vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), runt-related transcription factor-2 (Runx2), bone morphogenetic protein-2 (BMP-2), osteocalcin (OCN), and osteopontin (OPN). The markers were quantified, and data were statistically analyzed. Groups BMA/LLLT and LLLT presented significantly higher VEGF expression than group control. Group BMA/LLLT presented a significantly higher expression of PCNA than all experimental groups. Groups BMA and BMA/LLLT presented significantly higher expression of BMP-2 than all experimental groups. Groups LLLT and BMA/LLLT presented significantly higher expression of OPN than groups control and BMA. Groups LLLT, BMA, and BMA/LLLT presented a significantly higher expression of OCN than group control. It can be concluded that the association of BMA and LLLT enhanced bone healing by improving expression of VEGF, PCNA, Runx2, BMP-2, OPN, and OCN.
Collapse
Affiliation(s)
- Carolina S Santinoni
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), UNOESTE-University of Western Sao Paulo, Presidente Prudente, Brazil.,Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Adrieli P C Neves
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), UNOESTE-University of Western Sao Paulo, Presidente Prudente, Brazil.,Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Breno F M Almeida
- Division of Clinical, Surgery and Animal Reproduction, Veterinary School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Natália C Kajimoto
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Natália M Pola
- Division of Periodontics, Dental School of Pelotas, Federal University of Pelotas-UFPel, Pelotas, Brazil
| | - Eliana A Caliente
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Eduarda L G Belem
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Joilson B Lelis
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Stephen E Fucini
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil.,Periodontics, Private Practice, Hanover, New Hampshire, USA
| | - Michel R Messora
- Division of Periodontics, School of Dentistry of Ribeirão Preto, University of São Paulo-USP, São Paulo, Brazil
| | - Valdir G Garcia
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Suely R M Bomfim
- Division of Clinical, Surgery and Animal Reproduction, Veterinary School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Edilson Ervolino
- Division of Histology, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Maria J H Nagata
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| |
Collapse
|
5
|
Nohara K, Itoh S, Akizuki T, Nakamura M, Fukuba S, Matsuura T, Okada M, Izumi Y, Iwata T, Yamashita K. Enhanced new bone formation in canine maxilla by a graft of electrically polarized β-tricalcium phosphate. J Biomed Mater Res B Appl Biomater 2020; 108:2820-2826. [PMID: 32239795 DOI: 10.1002/jbm.b.34612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/03/2020] [Accepted: 03/19/2020] [Indexed: 11/06/2022]
Abstract
We succeeded in the electrical polarization of β-tricalcium phosphate (β-TCP) granules and performed an unprecedented attempt to implant them into maxillary bone defects in canines to confirm their ability to facilitate new bone formation. Two holes were drilled into each maxilla half of a canine and filled with electrically polarized and nonpolarized β-TCP granules (grouping assignment was decided randomly). The implanted specimens were dissected en bloc and used for microcomputed tomography (μCT) observations and histological analyses 4 and 8 weeks after the operation. New bone ingrowth in the bone hole progressed over time from the superficial layer of the cortex toward the inner cancellous bone. The percentage area of new bone in the bone hole, as measured by μCT in the sagittal plane, was significantly larger after 4 and 8 weeks, and that measured by H&E-stained specimens in the transverse plane after 4 weeks was significantly larger in the polarized group than in the nonpolarized group. In addition to the structural stability and chemical characteristics of the β-TCP granules, electrical stimulation bears influence not indirectly but directly on osteogenic and vessel cells, which might work cooperatively for the early initiation of the bone formation process.
Collapse
Affiliation(s)
- Kohei Nohara
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Soichiro Itoh
- Strategic Innovation Research Hub, Laboratory of Strength of Material and Science, Teikyo University, Tokyo, Japan
| | - Tatsuya Akizuki
- Periodontics, Dental Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miho Nakamura
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Shunsuke Fukuba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Matsuura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Munehiro Okada
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Oral Care Perio Center, Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Fukushima, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kimihiro Yamashita
- Strategic Innovation Research Hub, Laboratory of Strength of Material and Science, Teikyo University, Tokyo, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Paré A, Charbonnier B, Tournier P, Vignes C, Veziers J, Lesoeur J, Laure B, Bertin H, De Pinieux G, Cherrier G, Guicheux J, Gauthier O, Corre P, Marchat D, Weiss P. Tailored Three-Dimensionally Printed Triply Periodic Calcium Phosphate Implants: A Preclinical Study for Craniofacial Bone Repair. ACS Biomater Sci Eng 2020; 6:553-563. [PMID: 32158932 PMCID: PMC7064275 DOI: 10.1021/acsbiomaterials.9b01241] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Finding alternative strategies for the regeneration of craniofacial bone defects (CSD), such as combining a synthetic ephemeral calcium phosphate (CaP) implant and/or active substances and cells, would contribute to solving this reconstructive roadblock. However, CaP's architectural features (i.e., architecture and composition) still need to be tailored, and the use of processed stem cells and synthetic active substances (e.g., recombinant human bone morphogenetic protein 2) drastically limits the clinical application of such approaches. Focusing on solutions that are directly transposable to the clinical setting, biphasic calcium phosphate (BCP) and carbonated hydroxyapatite (CHA) 3D-printed disks with a triply periodic minimal structure (TPMS) were implanted in calvarial critical-sized defects (rat model) with or without addition of total bone marrow (TBM). Bone regeneration within the defect was evaluated, and the outcomes were compared to a standard-care procedure based on BCP granules soaked with TBM (positive control). After 7 weeks, de novo bone formation was significantly greater in the CHA disks + TBM group than in the positive controls (3.33 mm3 and 2.15 mm3, respectively, P=0.04). These encouraging results indicate that both CHA and TPMS architectures are potentially advantageous in the repair of CSDs and that this one-step procedure warrants further clinical investigation.
Collapse
Affiliation(s)
- Arnaud Paré
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de Chirurgie Maxillo faciale, Plastique et Brulés, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37170, France
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Baptiste Charbonnier
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, Saint-Etienne F – 42023, France
| | - Pierre Tournier
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Caroline Vignes
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Joëlle Veziers
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Julie Lesoeur
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Boris Laure
- Service de Chirurgie Maxillo faciale, Plastique et Brulés, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37170, France
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
| | - Hélios Bertin
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes F - 44093, France
| | - Gonzague De Pinieux
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Service d’Anatomo-cyto-pathologie, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37000, France
| | - Grégory Cherrier
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Service d’Anatomo-cyto-pathologie, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37000, France
| | - Jérome Guicheux
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Olivier Gauthier
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Centre de rechecherche et d’investigation préclinique (CRIP), 101 route de Gachet, Nantes F - 44300, France
| | - Pierre Corre
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes F - 44093, France
| | - David Marchat
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, Saint-Etienne F – 42023, France
| | - Pierre Weiss
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| |
Collapse
|
7
|
Su Y, Cockerill I, Zheng Y, Tang L, Qin YX, Zhu D. Biofunctionalization of metallic implants by calcium phosphate coatings. Bioact Mater 2019; 4:196-206. [PMID: 31193406 PMCID: PMC6529680 DOI: 10.1016/j.bioactmat.2019.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 01/07/2023] Open
Abstract
Metallic materials have been extensively applied in clinical practice due to their unique mechanical properties and durability. Recent years have witnessed broad interests and advances on surface functionalization of metallic implants for high-performance biofunctions. Calcium phosphates (CaPs) are the major inorganic component of bone tissues, and thus owning inherent biocompatibility and osseointegration properties. As such, they have been widely used in clinical orthopedics and dentistry. The new emergence of surface functionalization on metallic implants with CaP coatings shows promise for a combination of mechanical properties from metals and various biofunctions from CaPs. This review provides a brief summary of state-of-art of surface biofunctionalization on implantable metals by CaP coatings. We first glance over different types of CaPs with their coating methods and in vitro and in vivo performances, and then give insight into the representative biofunctions, i.e. osteointegration, corrosion resistance and biodegradation control, and antibacterial property, provided by CaP coatings for metallic implant materials.
Collapse
Affiliation(s)
- Yingchao Su
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Irsalan Cockerill
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, China
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| |
Collapse
|
8
|
Hivernaud V, Grimaud F, Guicheux J, Portron S, Pace R, Pilet P, Sourice S, Wuillem S, Bertin H, Roche R, Espitalier F, Weiss P, Corre P. Comparing “intra operative” tissue engineering strategies for the repair of craniofacial bone defects. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2019; 120:432-442. [DOI: 10.1016/j.jormas.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 01/02/2023]
|
9
|
Sakata M, Tonomura H, Itsuji T, Ishibashi H, Takatori R, Mikami Y, Nagae M, Matsuda KI, Tanaka M, Kubo T. Osteoporotic effect on bone repair in lumbar vertebral body defects in a rat model. J Orthop Surg (Hong Kong) 2019; 26:2309499018770349. [PMID: 29661112 DOI: 10.1177/2309499018770349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The number of patients who suffered from osteoporotic vertebral fractures is increasing. Osteoporosis has been reported to affect the healing process using long bone models. However, few studies have reported using vertebrae. In this study, we created a bone defect in the anterior part of vertebral body in ovariectomized rat and evaluated the healing process. METHODS Fifty-six 12-week old Sprague Dawley rats were divided into ovariectomy (OVX) and sham operation groups. A bone defect was created in the vertebral body 8 weeks after the first surgery. In both groups, the vertebral bodies were harvested immediately or at 4, 8, or 12 weeks after the second surgery ( n = 7 at each time point). Bone volume (BV, mm3), bone volume fraction (BV/TV, %), trabecular thickness (Tb.Th, mm), trabecular number (Tb.N, 1/mm), and trabecular separation (Tb.Sp, µm) were evaluated by micro-computed tomography to assess the new bone formation. Histological analysis was also performed. RESULTS The BV and the BV/TV were significantly lower at 4 and 12 weeks in the OVX group compared with those in the sham group. The Tb.Th was significantly lower at 8 and 12 weeks in the OVX group. Histologically, at 12 weeks, in the OVX group, the bone had a thinner, layered structure on the surface of the defect, and the trabecular structure was less dense. CONCLUSION This study demonstrated that bone mass formation was suppressed and the quality of repaired bone was poor in the healing process of vertebral body defect under osteoporotic conditions. These findings could be the key to understand the pathology of osteoporotic vertebral fracture and to develop its therapies.
Collapse
Affiliation(s)
- Munehiro Sakata
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hitoshi Tonomura
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Tomonori Itsuji
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hidenobu Ishibashi
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Ryota Takatori
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Yasuo Mikami
- 2 Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Masateru Nagae
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Ken Ichi Matsuda
- 3 Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Masaki Tanaka
- 3 Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Toshikazu Kubo
- 1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
10
|
Surface Modification of Pure Magnesium Mesh for Guided Bone Regeneration: In Vivo Evaluation of Rat Calvarial Defect. MATERIALS 2019; 12:ma12172684. [PMID: 31443441 PMCID: PMC6747560 DOI: 10.3390/ma12172684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Guided bone regeneration is a therapeutic method that uses a barrier membrane to provide space available for new bone formation at sites with insufficient bone volume. Magnesium with excellent biocompatibility and mechanical properties has been considered as a promising biodegradable material for guided bone regeneration; however, the rapid degradation rate in the physiological environment is a problem to be solved. In this study, surface modification of pure magnesium mesh was conducted by plasma electrolytic oxidation and hydrothermal treatment to form a densely protective layer on the Mg substrate. The protective layer mainly consisted of Mg(OH)2 with the amorphous calcium phosphate. Then, weight loss measurement and Micro-CT imaging were performed after an immersion test in a simulated body fluid. The effect of surface modification of the magnesium mesh on the guided bone regeneration was evaluated through an in vivo test using the rat calvarial defect model. The biodegradation of the magnesium mesh was identified to be significantly retarded. Additionally, the surface modification of Mg also can improve the bone volume and bone density of calvarial defect in comparison with that of the pristine Mg mesh.
Collapse
|
11
|
Sakata M, Tonomura H, Itsuji T, Ishibashi H, Takatori R, Mikami Y, Nagae M, Matsuda KI, Tabata Y, Tanaka M, Kubo T. Bone Regeneration of Osteoporotic Vertebral Body Defects Using Platelet-Rich Plasma and Gelatin β-Tricalcium Phosphate Sponges. Tissue Eng Part A 2018; 24:1001-1010. [PMID: 29272991 DOI: 10.1089/ten.tea.2017.0358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The objective of the present study was to investigate the effect of platelet-rich plasma (PRP) combined with gelatin β-tricalcium phosphate (β-TCP) sponge on bone generation in a lumbar vertebral body defect of ovariectomized rat. After creating critical-size defects in the center of the anterior vertebral body, the defects were filled with the following materials: (1) no material (control group), (2) gelatin β-TCP sponge with PRP (PRP sponge group), and (3) gelatin β-TCP sponge with phosphate-buffered saline (PBS sponge group). Microcomputed tomography and histological evaluation were performed immediately after surgery and at 4, 8, and 12 weeks to assess bone regeneration. Biomechanical test was also performed at postoperative week 12. In the PRP sponge group, both imaging and histological examination showed that visible osteogenesis was first induced and additional growth of bone tissue was observed in the transplanted sponge, compared with the PBS sponge group. There was no negative effect of either PRP sponge or PBS sponge transplantation on bone tissue generation around the periphery of the defect. Biomechanical test showed increased stiffness of the affected vertebral bodies in the PRP sponge group. These results indicate that PRP-impregnated gelatin β-TCP sponge is effective for facilitating bone regeneration in lumbar vertebral bone defect under osteoporotic condition. PRP combined with gelatin β-TCP sponges could be potentially useful for developing a new approach to vertebroplasty for osteoporotic vertebral fracture.
Collapse
Affiliation(s)
- Munehiro Sakata
- 1 Department of Orthopaedics, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Hitoshi Tonomura
- 1 Department of Orthopaedics, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Tomonori Itsuji
- 1 Department of Orthopaedics, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Hidenobu Ishibashi
- 1 Department of Orthopaedics, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Ryota Takatori
- 1 Department of Orthopaedics, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Yasuo Mikami
- 2 Department of Rehabilitation Medicine, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Masateru Nagae
- 1 Department of Orthopaedics, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Ken Ichi Matsuda
- 3 Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Yasuhiko Tabata
- 4 Laboratory of Biomaterials, Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University , Kyoto, Japan
| | - Masaki Tanaka
- 3 Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Toshikazu Kubo
- 1 Department of Orthopaedics, Kyoto Prefectural University of Medicine , Kyoto, Japan
| |
Collapse
|
12
|
da Silva de Oliveira JC, Luvizuto ER, Sonoda CK, Okamoto R, Garcia-Junior IR. Immunohistochemistry evaluation of BMP-2 with β-tricalcium phosphate matrix, polylactic and polyglycolic acid gel, and calcium phosphate cement in rats. Oral Maxillofac Surg 2017; 21:247-258. [PMID: 28389833 DOI: 10.1007/s10006-017-0624-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE The installation of implants has become a routine procedure in the clinic. However, it takes time and adequate bone thickness, and for that, tissue engineering has made efforts to develop substitutes for autografts, in view of certain disadvantages of this material. The decision to choose the most suitable graft material for each case is an important step in the success of bone reconstruction. This study was to verify, by means of immunohistochemical study, that the addition of bone morphogenetic protein had some influence on biomaterials commercially available, taking into account the formation of mineralized tissue, bone replacement, and the amount of degradation of biomaterials. METHODS The sample consisted of 72 rats that were divided into eight treatment groups, in which two defects of 5 mm were made in each animal calvaria. Euthanasia was performed at 5, 15, and 30 days postop. RESULTS A histologic and histometric analysis was performed to quantitate the area of mineralized tissue formed, the area of newly formed bone, and the area of degradation of the biomaterials. Data were analyzed with multiple comparisons of means by Tukey contrasts, and significant difference was assigned at the level of P < 0.05. The proteins used for immunohistochemical analysis accounted for the process of formation, mineralization, and bone resorption and was performed using ordinal qualitative analysis, where from assigning scores. CONCLUSIONS Bone morphogenetic protein 2 was shown to be effective as an inducer of bone formation process independent biomaterial used mainly for accelerating the resorption process of the framework.
Collapse
Affiliation(s)
| | - Eloá Rodrigues Luvizuto
- Department of Surgery and Integrated Clinic, Araçatuba Dentistry School, São Paulo State University, Araçatuba, SP, Brazil
| | - Celso Koogi Sonoda
- Department of Surgery and Integrated Clinic, Araçatuba Dentistry School, São Paulo State University, Araçatuba, SP, Brazil
| | - Roberta Okamoto
- Department of Surgery and Integrated Clinic, Araçatuba Dentistry School, São Paulo State University, Araçatuba, SP, Brazil
| | - Idelmo Rangel Garcia-Junior
- Department of Surgery and Integrated Clinic, Araçatuba Dentistry School, São Paulo State University, Araçatuba, SP, Brazil
| |
Collapse
|
13
|
Comparison of Effects of Pulsed Electromagnetic Field Stimulation on Platelet-Rich Plasma and Bone Marrow Stromal Stem Cell Using Rat Zygomatic Bone Defect Model. Ann Plast Surg 2016; 75:565-71. [PMID: 26461101 DOI: 10.1097/sap.0000000000000160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Reconstruction of bone defects that occur because of certain reasons has an important place in plastic and reconstructive surgery. The objective of the treatments of these defects was to reinstate the continuity of tissues placed in the area in which the defect has occurred. In this experimental study, the effect of pulsed electromagnetic field stimulation on platelet-rich plasma (PRP) and bone marrow stromal cell, which propounded that they have positive impact on bone regeneration, was evaluated with the bone healing rate in the zygomatic bone defect model enwrapped with superficial temporal fascia. METHODS After creating a 4-mm defect on the zygomatic bone of the experiments, the defect was encompassed with a superficial temporal fascial flap and a nonunion model was created. After surgery, different combinations of the PRP, bone marrow stromal cell, and electromagnetic field applications were implemented on the defective area. All the experiments were subjected to bone density measurement. RESULTS The result revealed that the PRP and pulsed electromagnetic field implementation were rather a beneficial and an effective combination in terms of bone regeneration. CONCLUSIONS It was observed that the superficial temporal fascial flap used in the experiment was a good scaffold choice, providing an ideal bone regeneration area because of its autogenous, vascular, and 3-dimensional structures. As a result, it is presumed that this combination in the nonhealing bone defects is a rather useful treatment choice and can be used in a reliable way in clinical applications.
Collapse
|
14
|
Abdullah WA. Evaluation of bone regenerative capacity in rats claverial bone defect using platelet rich fibrin with and without beta tri calcium phosphate bone graft material. Saudi Dent J 2016; 28:109-17. [PMID: 27656077 PMCID: PMC5021816 DOI: 10.1016/j.sdentj.2015.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/24/2015] [Accepted: 09/13/2015] [Indexed: 01/25/2023] Open
Abstract
Aim To compare bone regeneration in noncritical rat calvarial bone defects filled with platelet-rich fibrin (PRF), alone or combined with beta-tricalcium phosphate (β-TCP), using micro-computed tomographic (MCT) evaluation. Animals and methods Two calvarial bone defects were created in each of 45 male Sprague–Dawley rats (age: 20–22 weeks, weight: 350–450 g), using a dental trephine with an external diameter of 3 mm. The 90 defects were randomly allocated among three groups, each containing 30 unilateral defects in a total of 30 rats. Defects in the control group were allowed to heal spontaneously. Defects in the PRF group received PRF alone. Defects in the PRF/β-TCP group received PRF mixed with β-TCP in a 50⧹50 percentage. Nine animals (three per group) were killed after 1, 2, 3, 4, and 6 postoperative weeks, and 18 calvarial defects from each period were analyzed for new bone formation and bone mineral density using MCT. Results were compared by a one-way Analysis of Variance with the POST HOC Least Significant Difference test. Results The volume and mineral density of bone formed in the control group were significantly different from those of the other two groups. Greater bone regeneration was observed in defects receiving PRF with β-TCP compared to defects receiving PRF alone in the first 2 weeks (P < 0.001). However, differences in the volume and density of newly formed bone between the PRF and PRF/β-TCP groups were not significant at 3, 4, and 6 postoperative weeks (P > 0.005). Conclusion The addition of β-TCP to PRF significantly improved bone regeneration in the first 2 weeks after surgery. Although the differences between results with and without the addition of β-TCP to PRF were statistically insignificant from weeks 3 to 6, it was nevertheless apparent that the group receiving the combination showed better results. We suggest a synergistic mechanism for this effect.
Collapse
|
15
|
Corre P, Merceron C, Longis J, Khonsari R, Pilet P, thi TN, Battaglia S, Sourice S, Masson M, Sohier J, Espitalier F, Guicheux J, Weiss P. Direct comparison of current cell-based and cell-free approaches towards the repair of craniofacial bone defects - A preclinical study. Acta Biomater 2015; 26:306-17. [PMID: 26283163 DOI: 10.1016/j.actbio.2015.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/09/2015] [Accepted: 08/13/2015] [Indexed: 12/27/2022]
Abstract
For craniofacial bone defect repair, several alternatives to bone graft (BG) exist, including the combination of biphasic calcium phosphate (BCP) biomaterials with total bone marrow (TBM) and bone marrow-derived mesenchymal stromal cells (MSCs), or the use of growth factors like recombinant human bone morphogenic protein-2 (RhBMP-2) and various scaffolds. Therefore, clinicians might be unsure as to which approach will offer their patients the most benefit. Here, we aimed to compare different clinically relevant bone tissue engineering methods in an "all-in-one" study in rat calvarial defects. TBM, and MSCs committed or not, and cultured in two- or three-dimensions were mixed with BCP and implanted in bilateral parietal bone defects in rats. RhBMP-2 and BG were used as positive controls. After 7 weeks, significant de novo bone formation was observed in rhBMP-2 and BG groups, and in a lesser amount, when BCP biomaterials were mixed with TBM or committed MSCs cultured in three-dimensions. Due to the efficacy and safety of the TBM/BCP combination approach, we recommend this one-step procedure for further clinical investigation. STATEMENT OF SIGNIFICANCE For craniofacial repair, total bone marrow (BM) and BM mesenchymal stem cell (MSC)-based regenerative medicine have shown to be promising in alternative to bone grafting (BG). Therefore, clinicians might be unsure as to which approach will offer the most benefit. Here, BM and MSCs committed or not were mixed with calcium phosphate ceramics (CaP) and implanted in bone defects in rats. RhBMP-2 and BG were used as positive controls. After 7 weeks, significant bone formation was observed in rhBMP-2 and BG groups, and when CaP were mixed with BM or committed MSCs. Since the BM-based procedure does not require bone harvest or cell culture, but provides de novo bone formation, we recommend consideration of this strategy for craniofacial applications.
Collapse
|
16
|
Matsuda H, Furuya Y, Sasaki H, Takanashi T, Morioka T, Miura T, Yoshinari M, Yajima Y. Comparison of Surface Morphology and Healing in Rat Calvaria Bone Defects between Ultrasonic Surgical Method and Rotary Cutting Method. J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hiroya Matsuda
- Division of Oral Implants Research, Oral Health Science Center, Tokyo Dental College
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
| | - Yoshitaka Furuya
- Division of Oral Implants Research, Oral Health Science Center, Tokyo Dental College
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
| | - Hodaka Sasaki
- Division of Oral Implants Research, Oral Health Science Center, Tokyo Dental College
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
| | - Takuya Takanashi
- Division of Oral Implants Research, Oral Health Science Center, Tokyo Dental College
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
| | - Toshiyuki Morioka
- Division of Oral Implants Research, Oral Health Science Center, Tokyo Dental College
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
| | - Tadashi Miura
- Division of Oral Implants Research, Oral Health Science Center, Tokyo Dental College
| | - Masao Yoshinari
- Division of Oral Implants Research, Oral Health Science Center, Tokyo Dental College
| | - Yasutomo Yajima
- Division of Oral Implants Research, Oral Health Science Center, Tokyo Dental College
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
| |
Collapse
|
17
|
Mardas N, Dereka X, Donos N, Dard M. Experimental Model for Bone Regeneration in Oral and Cranio-Maxillo-Facial Surgery. J INVEST SURG 2013; 27:32-49. [DOI: 10.3109/08941939.2013.817628] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Jagodzinski M, Liu C, Guenther D, Burssens A, Petri M, Abedian R, Willbold E, Krettek C, Haasper C, Witte F. Bone marrow-derived cell concentrates have limited effects on osteochondral reconstructions in the mini pig. Tissue Eng Part C Methods 2013; 20:215-26. [PMID: 23815398 DOI: 10.1089/ten.tec.2013.0102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study investigates the effects of seeding a chondrogenic and osteogenic scaffold with a bone marrow-derived cell concentrate (BMCC) and reports the histological and mechanical properties 3 months after implantation in the miniature pig. Twenty defects (7×10 mm) were created in the femoral condyles of 10 miniature pigs. The defects were left empty (E), filled with the grafted cylinder upside down (U) or with a combined scaffold (S) containing a spongious bone cylinder (Tutobone®) covered with a collagen membrane (Chondrogide®). In a fourth group, the same scaffolds were implanted but seeded with a stem cell concentrate (S+ BMCC). The animals were stained with calcein green after 2 weeks and xylenol orange after 4 weeks. After 3 months, the animals were sacrificed, and a mechanical analysis (Young's modulus), macroscopic, and histologic (ICRS Score) examination of the specimens was conducted. Young's modulus in the periphery was significantly lower for group E (67.5±15.3 kPa) compared with untreated controls (171.7±21.6 kPa, p<0.04). Bone defects were smaller in group S (10%±8%) compared with E (27%±7%; p<0.05). There was a trend toward smaller bony defects on comparing groups E and S+ BMCC (11%±8%; p=0.07). More red fluorescence was detected in group S+ BMCC (2.3%±1.1%) compared with groups E (0.4%±0.2%) and U (0.5%±0.2%, p<0.03). ICRS scores were higher for groups S (25.3±3.8) and S+ BMCC (26.2±5.2, p<0.01). In this animal model of osteochondral defects, stem cell concentrates enhance new bone apposition but fail to improve mechanical properties or histological appearance of cartilage regenerates in critical-sized defects.
Collapse
Affiliation(s)
- Michael Jagodzinski
- 1 Department of Orthopedic Trauma, Hannover Medical School (MHH) , Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nagata MJ, Santinoni CS, Pola NM, de Campos N, Messora MR, Bomfim SR, Ervolino E, Fucini SE, Faleiros PL, Garcia VG, Bosco AF. Bone marrow aspirate combined with low-level laser therapy: A new therapeutic approach to enhance bone healing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 121:6-14. [DOI: 10.1016/j.jphotobiol.2013.01.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023]
|
20
|
Shadanbaz S, Dias GJ. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater 2012; 8:20-30. [PMID: 22040686 DOI: 10.1016/j.actbio.2011.10.016] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 12/13/2022]
Abstract
Magnesium has been suggested as a revolutionary biodegradable metal for use as an orthopaedic material. As a biocompatible and degradable metal, it has several advantages over the permanent metallic materials currently in use, including eliminating the effects of stress shielding, improving biocompatibility concerns in vivo and improving degradation properties, removing the requirement of a second surgery for implant removal. The rapid degradation of magnesium, however, is a double-edged sword as it is necessary to control the corrosion rates of the materials to match the rates of bone healing. In response, calcium phosphate coatings have been suggested as a means to control these corrosion rates. The potential calcium phosphate phases and their coating techniques on substrates are numerous and can provide several different properties for different applications. The reactivity and low melting point of magnesium, however, require specific parameters for calcium phosphate coatings to be successful. Within this review, an overview of the different calcium phosphate phases, their properties and their behaviour in vitro and in vivo has been provided, followed by the current coating techniques used for calcium phosphates that may be or may have been adapted for magnesium substrates.
Collapse
Affiliation(s)
- Shaylin Shadanbaz
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
21
|
Histologic evaluation of human alveolar sockets treated with an artificial bone substitute material. J Craniofac Surg 2011; 22:490-3. [PMID: 21415629 DOI: 10.1097/scs.0b013e318208bacf] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study involved a histologic, enzyme histologic, immunohistologic, and three-dimensional microstructure evaluating the extent of osteogenesis and repair in the human alveolar extraction socket achievable with an artificial bone substitute. After tooth extraction in 7 patients, extraction sockets were filled with Mastergraft (15% hydroxyapatite, 85% β-tricalcium phosphate complex). Radiomicrographs and histologic examinations were performed on samples obtained during dental implant placement procedure. On micro-computed tomography, new bone was observed in all collected samples, and osteogenesis was observed to have taken place around the artificial bone substitute. Histologically, active osteogenesis was found throughout the region observed. Addition of new bone around the Mastergraft was observed, and osteoblast-like cells were present. Cells that had partially invaded the artificial bone included tartrate-resistant acid phosphate-positive and CD34-positive cells. These findings indicate that the Mastergraft artificial bone induced osteogenesis in the jawbone and seemed effective for repairing bone defects.
Collapse
|
22
|
Hayashi M, Takahashi T, Kawaguchi K, Watanabe T, Zhao J, Abiko Y. Connexin 43 expression at an early stage in dog mandibles by β-TCP. Dent Mater J 2011; 30:58-65. [PMID: 21282887 DOI: 10.4012/dmj.2010-058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
β-TCP was implanted into bone defects of dog mandibles, and gene expression profiles were examined using DNA microarray. An implant drill was used to make bone defects, and then β-TCP was filled into bone defects. All specimens were taken out, total RNA was isolated, and levels were analyzed using Affymetrix GeneChip. Higher mRNA levels of connexin 43 (Cx43) and Cx45 were observed in β-TCP-implanted samples compared with controls. The enhancement of Cx43 and Cx45 by β-TCP was confirmed by RT-PCR and real-time RT-PCR. Since Cx43 is known to express in bone-forming regions and is involved in osteogenesis through gap junctional intercellular bone-cell communication (GJIB), immunohistochemical staining was also examined and demonstrated Cx43 protein expression was increased in β-TCP-implanted bone. Cx43 plays a role in osteogenesis through GJIB; therefore, the stimulation of Cx43 expression by β-TCP might be a mechanism of accelerating wound healing and bone formation.
Collapse
Affiliation(s)
- Miho Hayashi
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba 271-8587, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Tan L, Ren Y, Kuijer R. A 1-min Method for Homogenous Cell Seeding in Porous Scaffolds. J Biomater Appl 2010; 26:877-89. [PMID: 21123281 DOI: 10.1177/0885328210389504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to develop and evaluate a simple and rapid cell seeding procedure for both calcium phosphate ceramic scaffolds and polymer scaffolds. Poly(d,l-lactic acid) and β-tri-calcium phosphate scaffolds were seeded with MC3T3-E1 cells in a syringe. Scaffolds were put in the syringe. After replacing the plunger, the cell suspension was drawn into the syringe. The syringe was closed and the plunger was retracted to the volume of the cell suspension to create a vacuum. This was done for 3 × 10 s. By this procedure, cells were homogenously distributed throughout the scaffold. The efficiency of cell seeding was approximately 60% for both scaffolds independent of the initial cell density. The hypotension the cells experienced for 3 × 10 s did not affect the proliferation capacity of the cells. In conclusion, this method of syringe-vacuum cell seeding is easy, quick, cheap, and easily to perform at an operating theatre.
Collapse
Affiliation(s)
- Lijun Tan
- Department of Orthodontics, West China College of Stomatology, Sichuan University, China
- Department of Biomedical Engineering, Department of Orthodontics, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Yijin Ren
- Department of Orthodontics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Roel Kuijer
- Department of Biomedical Engineering, FB40, University Medical Centre Groningen, PO Box 196, 9700 AD Groningen, The Netherlands
| |
Collapse
|