1
|
Quesada-Vázquez S, Codina Moreno R, Della Badia A, Castro O, Riahi I. Promising Phytogenic Feed Additives Used as Anti-Mycotoxin Solutions in Animal Nutrition. Toxins (Basel) 2024; 16:434. [PMID: 39453210 PMCID: PMC11511298 DOI: 10.3390/toxins16100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Mycotoxins are a major threat to animal and human health, as well as to the global feed supply chain. Among them, aflatoxins, fumonisins, zearalenone, T-2 toxins, deoxynivalenol, and Alternaria toxins are the most common mycotoxins found in animal feed, with genotoxic, cytotoxic, carcinogenic, and mutagenic effects that concern the animal industry. The chronic negative effects of mycotoxins on animal health and production and the negative economic impact on the livestock industry make it crucial to develop and implement solutions to mitigate mycotoxins. In this review, we summarize the current knowledge of the mycotoxicosis effect in livestock animals as a result of their contaminated diet. In addition, we discuss the potential of five promising phytogenics (curcumin, silymarin, grape pomace, olive pomace, and orange peel extracts) with demonstrated positive effects on animal performance and health, to present them as potential anti-mycotoxin solutions. We describe the composition and the main promising characteristics of these bioactive compounds that can exert beneficial effects on animal health and performance, and how these phytogenic feed additives can help to alleviate mycotoxins' deleterious effects.
Collapse
Affiliation(s)
| | | | | | | | - Insaf Riahi
- Bionte Nutrition, 43204 Reus, Spain; (S.Q.-V.); (R.C.M.); (A.D.B.)
| |
Collapse
|
2
|
Ofori-Attah E, Hashimoto M, Oki M, Kadowaki D. Therapeutic Effect of Natural Products and Dietary Supplements on Aflatoxin-Induced Nephropathy. Int J Mol Sci 2024; 25:2849. [PMID: 38474096 PMCID: PMC10932067 DOI: 10.3390/ijms25052849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Aflatoxins are harmful natural contaminants found in foods and are known to be hepatotoxic. However, recent studies have linked chronic consumption of aflatoxins to nephrotoxicity in both animals and humans. Here, we conducted a systematic review of active compounds, crude extracts, herbal formulations, and probiotics against aflatoxin-induced renal dysfunction, highlighting their mechanisms of action in both in vitro and in vivo studies. The natural products and dietary supplements discussed in this study alleviated aflatoxin-induced renal oxidative stress, inflammation, tissue damage, and markers of renal function, mostly in animal models. Therefore, the information provided in this review may improve the management of kidney disease associated with aflatoxin exposure and potentially aid in animal feed supplementation. However, future research is warranted to translate the outcomes of this study into clinical use in kidney patients.
Collapse
Affiliation(s)
- Ebenezer Ofori-Attah
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mai Hashimoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mayu Oki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Daisuke Kadowaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan
| |
Collapse
|
3
|
Francis S, Kortei NK, Sackey M, Richard SA. Aflatoxin B 1 induces infertility, fetal deformities, and potential therapies. Open Med (Wars) 2024; 19:20240907. [PMID: 38283584 PMCID: PMC10818061 DOI: 10.1515/med-2024-0907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a subsidiary poisonous metabolite, archetypally spawned by Aspergillus flavus and A. parasiticus, which are often isolated in warm or tropical countries across the world. AFB1 is capable of disrupting the functioning of several reproductive endocrine glands by interrupting the enzymes and their substrates that are liable for the synthesis of various hormones in both males and females. In men, AFB1 is capable of hindering testicular development, testicular degeneration, and reduces reproductive capabilities. In women, a direct antagonistic interaction of AFB1 with steroid hormone receptors influencing gonadal hormone production of estrogen and progesterone was responsible for AFB1-associated infertility. AFB1 is potentially teratogenic and is responsible for the development of malformation in humans and animals. Soft-tissue anomalies such as internal hydrocephalus, microphthalmia, cardiac defects, augmented liver lobes, reproductive changes, immune modifications, behavioral changes and predisposition of animals and humans to neoplasm development are AFB1-associated anomalies. Substances such as esculin, selenium, gynandra extract, vitamins C and E, oltipraz, and CDDO-Im are potential therapies for AFB1. Thus, this review elucidates the pivotal pathogenic roles of AFB1 in infertility, fetal deformities, and potential therapies because AFB1 toxicity is a key problem globally.
Collapse
Affiliation(s)
- Sullibie Francis
- Department of Obstetrics and Gynecology, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| | - Nii Korley Kortei
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Marian Sackey
- Department of Pharmacy, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| | - Seidu A. Richard
- Department of Medicine, Princefield University, P. O. Box MA128, Ho, Ghana
| |
Collapse
|
4
|
Ma H, Chen Q, Yang H, Wan X. Effects of lycopene on the growth performance, meat quality, and antioxidant capacity of broiler chickens challenged with aflatoxin B 1. J Food Sci 2024; 89:96-103. [PMID: 37983886 DOI: 10.1111/1750-3841.16848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
The present study aimed to investigate the effects of dietary lycopene (LYC) supplementation on the growth performance, meat quality, and antioxidant capacity of breast muscle in aflatoxin B1 (AFB1 )-challenged broilers. A total of 192 1-day-old healthy Arbor Acres broilers were randomly assigned to 3 treatments, each with 8 replicates (8 broilers per replicate). The broilers of the three treatments were fed a basal diet (control), a basal diet supplemented with 100 µg/kg AFB1 (CA), and a basal diet supplemented with 100 µg/kg AFB1 and 200 mg/kg LYC (CAL). The results demonstrated that the AFB1 diet increased the feed-to-gain (F/G) ratio (p < 0.05), yellowness and shear force of breast muscle (p < 0.05), and protein carbonyl (PC) content (p < 0.05) while decreasing the average daily gain (ADG) (p < 0.05), redness of breast muscle (p < 0.05), glutathione peroxidase activity (p < 0.05), and ability to clear OH· from breast muscle (p < 0.05) in comparison to the control group. Dietary LYC supplementation significantly decreased the F/G ratio (p < 0.05), yellowness and shear force (p < 0.05), and the content of PC and hydrogen peroxide (p < 0.05) while significantly increasing the ADG (p < 0.05), redness of breast muscle (p < 0.05), and ability of breast muscle to clear ABTS·+ (p < 0.05) compared to the CA diet. In conclusion, LYC can alleviate the negative impacts of AFB1 on the growth performance, meat quality, and antioxidant capacity of breast muscle in broilers. PRACTICAL APPLICATION: LYC, as a popular antioxidant, is beneficial to the growth and health of animals. The detailed application effects are still being investigated. In this study, by adding LYC to an AFB1 -contaminated diet, it was found that LYC could alleviate the adverse effects of AFB1 on the growth performance, meat quality, and muscle antioxidant capacity of broilers. These findings can provide a reference for the application of LYC and similar plant-derived materials in animal production.
Collapse
Affiliation(s)
- Huimin Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoli Wan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Liu Y, Wang J, Chang Z, Li S, Zhang Z, Liu S, Wang S, Wei L, Lv Q, Ding K, Zhang Z. SeMet alleviates AFB 1-induced oxidative stress and apoptosis in rabbit kidney by regulating Nrf2//Keap1/NQO1 and PI3K/AKT signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115742. [PMID: 38039849 DOI: 10.1016/j.ecoenv.2023.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
The purpose of this study was to explore the protective effect of SeMet on renal injury induced by AFB1 in rabbits and its molecular mechanism. Forty rabbits of 35 days old were randomly divided into control group, AFB1 group (0.3 mg AFB1/kg b.w), 0.2 mg/kg Se + AFB1 group (0.3 mg AFB1/kg b.w + 0.2 mg SeMet/kg feed) and 0.4 mg/kg Se + AFB1 group (0.3 mg AFB1/kg b.w + 0.4 mg SeMet/kg feed). The SeMet treatment group was fed different doses of SeMet diets every day for 21 days. On the 17-21 day, the AFB1 treatment group, the 0.2 mg/kg Se + AFB1 group and the 0.4 mg/kg Se + AFB1 group were administered 0.3 mg AFB1 /kg b.w by gavage (dissolved in 0.5 ml olive oil) respectively. The results showed that AFB1 poisoning resulted in the changes of renal structure, the increase of renal coefficient and serum biochemical indexes, the ascent of ROS and MDA levels, the descent of antioxidant enzyme activity, and the significant down-regulation of Nrf2, HO-1 and NQO1. Besides, AFB1 poisoning increased the number of renal apoptotic cells, rised the levels of PTEN, Bax, Caspase-3 and Caspase-9, and decreased the levels of PI3K, AKT, p-AKT and Bcl-2. In summary, SeMet was added to alleviate the oxidative stress injury and apoptosis of kidney induced by AFB1, and the effect of 0.2 mg/kg Se + AFB1 is better than 0.4 mg/kg Se + AFB1.
Collapse
Affiliation(s)
- Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jianing Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Zhaoyang Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | | | - Zhikai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Shiyang Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Shuaishuai Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Lan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Ke Ding
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| |
Collapse
|
6
|
Wang Q, Liu T, Koci M, Wang Y, Fu Y, Ma M, Ma Q, Zhao L. Chlorogenic Acid Alleviated AFB1-Induced Hepatotoxicity by Regulating Mitochondrial Function, Activating Nrf2/HO-1, and Inhibiting Noncanonical NF-κB Signaling Pathway. Antioxidants (Basel) 2023; 12:2027. [PMID: 38136147 PMCID: PMC10740517 DOI: 10.3390/antiox12122027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Aflatoxin B1 (AFB1), a kind of mycotoxin, imposes acute or chronic toxicity on humans and causes great public health concerns. Chlorogenic acid (CGA), a natural phenolic substance, shows a powerful antioxidant and anti-inflammatory effect. This study was conducted to investigate the effect and mechanism of CGA on alleviating cytotoxicity induced by AFB1 in L-02 cells. The results showed that CGA (160 μM) significantly recovered cell viability and cell membrane integrity in AFB1-treated (8 μM) cells. Furthermore, it was found that CGA reduced AFB1-induced oxidative injury by neutralizing reactive oxygen species (ROS) and activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In addition, CGA showed anti-inflammatory effects as it suppressed the expression of inflammation-related genes (IL-6, IL-8, and TNF-α) and AFB1-induced noncanonical nuclear factor kappa-B (NF-κB) activation. Moreover, CGA mitigated AFB1-induced apoptosis by maintaining the mitochondrial membrane potential (MMP) and inhibiting mRNA expressions of Caspase-3, Caspase-8, Bax, and Bax/Bcl-2. These findings revealed a possible mechanism: CGA prevents AFB1-induced cytotoxicity by maintaining mitochondrial membrane potential, activating Nrf2/HO-1, and inhibiting the noncanonical NF-κB signaling pathway, which may provide a new direction for the application of CGA.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Tianxu Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Matthew Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Yutong Fu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Mingxin Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| |
Collapse
|
7
|
Dabbaghi MM, Fadaei MS, Soleimani Roudi H, Baradaran Rahimi V, Askari VR. A review of the biological effects of Myrtus communis. Physiol Rep 2023; 11:e15770. [PMID: 37464095 PMCID: PMC10354007 DOI: 10.14814/phy2.15770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
The World Health Organization stated that 1.6 million deaths worldwide were caused by contact with chemicals and toxins in 2019. In the same year, the Centers for Disease Control and Prevention stated that natural toxins caused 3960 deaths. Myrtus communis, also known as common Myrtle, is a flowering plant native to the Mediterranean region. Myrtle has been traditionally used to treat diarrhea, inflammation, bleeding, headache, pulmonary and skin diseases. This review was performed to assess Myrtle's protective and therapeutic efficacy against various chemical, natural, and radiational noxious. Multiple databases such as PubMed, Web of Sciences, and Scopus were investigated without publication time limitation. Recent studies have demonstrated its potential as a protective agent against both natural and chemical toxins. One of Myrtle's most significant protective properties is its high antioxidant content. Studies have shown that the antioxidant properties of Myrtle can protect against harmful substances such as heavy metals, pesticides, and other environmental toxins. Additionally, Myrtle has anti-inflammatory properties that can help reduce the damage caused by long-term exposure to toxins. The anti-inflammatory and antimicrobial properties of Myrtle have also proven effective in alleviating gastrointestinal conditions such as gastric ulcers.
Collapse
Affiliation(s)
- Mohammad Mahdi Dabbaghi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Saleh Fadaei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesan Soleimani Roudi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Katati B, Kovacs S, Njapau H, Kachapulula PW, Zwaan BJ, van Diepeningen AD, Schoustra SE. Aflatoxigenic Aspergillus Modulates Aflatoxin-B1 Levels through an Antioxidative Mechanism. J Fungi (Basel) 2023; 9:690. [PMID: 37367626 DOI: 10.3390/jof9060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Aflatoxins (AFs) are considered to play important functions in species of Aspergillus section Flavi including an antioxidative role, as a deterrent against fungivorous insects, and in antibiosis. Atoxigenic Flavi are known to degrade AF-B1 (B1). To better understand the purpose of AF degradation, we investigated the degradation of B1 and AF-G1 (G1) in an antioxidative role in Flavi. Atoxigenic and toxigenic Flavi were treated with artificial B1 and G1 with or without the antioxidant selenium (Se), which is expected to affect levels of AF. After incubations, AF levels were measured by HPLC. To estimate which population would likely be favoured between toxigenic and atoxigenic Flavi under Se, we investigated the fitness, by spore count, of the Flavi as a result of exposure to 0, 0.40, and 0.86 µg/g Se in 3%-sucrose cornmeal agar (3gCMA). Results showed that levels B1 in medium without Se were reduced in all isolates, while G1 did not significantly change. When the medium was treated with Se, toxigenic Flavi significantly digested less B1, while levels of G1 significantly increased. Se did not affect the digestion of B1 in atoxigenic Flavi, and also did not alter levels of G1. Furthermore, atoxigenic strains were significantly fitter than toxigenic strains at Se 0.86 µg/g 3gCMA. Findings show that while atoxigenic Flavi degraded B1, toxigenic Flavi modulated its levels through an antioxidative mechanism to levels less than they produced. Furthermore, B1 was preferred in the antioxidative role compared to G1 in the toxigenic isolates. The higher fitness of atoxigenic over toxigenic counterparts at a plant non-lethal dose of 0.86 µg/g would be a useful attribute for integration in the broader biocontrol prospects of toxigenic Flavi.
Collapse
Affiliation(s)
- Bwalya Katati
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
- Mycotoxicology Laboratory, National Institute for Scientific and Industrial Research, Lusaka 310158, Zambia
| | - Stan Kovacs
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Henry Njapau
- Mycotoxicology Laboratory, National Institute for Scientific and Industrial Research, Lusaka 310158, Zambia
| | - Paul W Kachapulula
- School of Agricultural Sciences, University of Zambia, Lusaka 10101, Zambia
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Anne D van Diepeningen
- Biointeractions and Plant Health, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Sijmen E Schoustra
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
- School of Agricultural Sciences, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
9
|
Braga ACM, Souto NS, Cabral FL, Dassi M, Rosa ÉVF, Guarda NDS, Royes LFF, Fighera MR, Moresco RN, Oliveira MS, Sari MHM, Furian AF. Intermittent Exposure to Aflatoxin B1 Did Not Affect Neurobehavioral Parameters and Biochemical Markers of Oxidative Stress. Brain Sci 2023; 13:brainsci13030386. [PMID: 36979196 PMCID: PMC10046455 DOI: 10.3390/brainsci13030386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Aflatoxin B1 (AFB1) is the most common toxic mycotoxin that contaminates food. The treatment of its intoxication and the management of contaminations are a constant subject of health agendas worldwide. However, such efforts are not always enough to avoid population intoxication. Our objective was to investigate whether intermittent exposure to AFB1 would cause any impairment in biochemical and behavioral parameters, intending to simulate an irregular consumption. Male Wistar rats received four AFB1 administrations (250 μg/kg) by intragastric route separated by a 96-h interval. Toxicity was evaluated using behavioral tests (open field, object recognition, nest construction, marble burying, and splash test), biochemical markers of oxidative stress (cerebral cortex, hippocampus, liver, and kidneys), and plasma parameters of hepatic and renal functions. The intermittent exposure caused no modification in body weight gain as well as in organ weight. Both control and AFB1 groups presented similar profiles of behavior to all tests performed. Furthermore, AFB1 administrations alter neither antioxidant defenses nor markers of oxidation in all assayed tissues and in the plasma markers of hepatic and renal functions. Therefore, AFB1 intermittent administration did not cause its common damage from exposure to this toxicant, which must be avoided, and additional studies are required.
Collapse
Affiliation(s)
- Ana Claudia Monteiro Braga
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Naieli Schiefelbein Souto
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Fernanda Licker Cabral
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Micheli Dassi
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Érica Vanessa Furlan Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Naiara dos Santos Guarda
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Michele Rechia Fighera
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Rafael Noal Moresco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Marcel Henrique Marcondes Sari
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Ana Flávia Furian
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
- Correspondence: ; Tel.: +55-55-3220-8254
| |
Collapse
|
10
|
Antagonism of Cyanamide-3-O-glucoside and protocatechuic acid on Aflatoxin B 1-induced toxicity in zebrafish larva (Danio rerio). Toxicon 2022; 216:139-147. [PMID: 35817093 DOI: 10.1016/j.toxicon.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
The zebrafish model was used to evaluate the antioxidant properties of cyanidin-3-O-glucoside (C3G) and its metabolite protocatechuic acid (PCA) against aflatoxin B1 (AFB1)-induced hepatotoxicity and oxidative stress. In this study, zebrafish larvae were cultured for 3 days post fertilization (dpf) and then induced with AFB1. After induced 4 h, 8 h, 12 h, and 24 h, 5 μg/mL C3G/PCA was added and then co-cultured to 5 dpf, respectively. The experiments showed that C3G/PCA suppressed AFB1-induced zebrafish liver atrophy and delayed the absorption of the yolk sac. In addition, reactive oxygen species (ROS) and cell death were also significantly decreased by 5 μg/mL C3G/PCA (P ˂ 0.05). C3G/PCA significantly reduced hepatic biomarkers in the serum contents (P ˂ 0.05). Besides, glutathione (GSH) contents were significantly upregulated, and the activities of superoxide dismutase (SOD) and catalase (CAT) were significantly elevated in zebrafish (P ˂ 0.05). The addition of 5 μg/mL C3G/PCA was capable of reducing the apoptotic levels of caspase-9 and caspase-3 after 100 ng/mL AFB1 intoxication. In conclusion, these results suggested that C3G and its metabolite PCA might antagonize the hepatotoxicity of AFB1, reduce oxidative damage and inhibit cell death.
Collapse
|
11
|
Li W, Wu G, Yang X, Yang J, Hu J. Taurine Prevents AFB1-Induced Renal Injury by Inhibiting Oxidative Stress and Apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:435-444. [DOI: 10.1007/978-3-030-93337-1_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Cao W, Yu P, Yang K, Cao D. Aflatoxin B1: metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol Mech Methods 2021; 32:395-419. [PMID: 34930097 DOI: 10.1080/15376516.2021.2021339] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aflatoxins are a class of carcinogenic mycotoxins produced by Aspergillus fungi, which are widely distributed in nature. Aflatoxin B1 (AFB1) is the most toxic of these compounds and its metabolites have a variety of biological activities, including acute toxicity, teratogenicity, mutagenicity and carcinogenicity, which has been well-characterized to lead to the development of hepatocellular carcinoma (HCC) in humans and animals. This review focuses on the metabolism of AFB1, including epoxidation and DNA adduction, as it concerns the initiation of cancer and the underlying mechanisms. In addition to DNA adduction, inflammation and oxidative stress caused by AFB1 can also participate in the occurrence of cancer. Therefore, the main carcinogenic mechanism of AFB1 related ROS is summarized. This review also describes recent reports of AFB1 exposures in occupational settings. It is hoped that people will pay more attention to occupational health, in order to reduce the incidence of cancer caused by occupational exposure.
Collapse
Affiliation(s)
- Weiya Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Pan Yu
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - KePeng Yang
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Dongli Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| |
Collapse
|
13
|
Sharma V, Patial V. Food Mycotoxins: Dietary Interventions Implicated in the Prevention of Mycotoxicosis. ACS FOOD SCIENCE & TECHNOLOGY 2021; 1:1717-1739. [DOI: 10.1021/acsfoodscitech.1c00220] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Affiliation(s)
- Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.), India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.), India
| |
Collapse
|
14
|
Sarker MT, Wan X, Yang H, Wang Z. Dietary Lycopene Supplementation Could Alleviate Aflatoxin B 1 Induced Intestinal Damage through Improving Immune Function and Anti-Oxidant Capacity in Broilers. Animals (Basel) 2021; 11:3165. [PMID: 34827896 PMCID: PMC8614560 DOI: 10.3390/ani11113165] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
The present study aims to evaluate the effects of lycopene (LYC) supplementation on the intestinal immune function, barrier function, and antioxidant capacity of broilers fed with aflatoxinB1 (AFB1) contaminated diet. A total of 144 one-day-old male Arbor Acres broilers were randomly divided into three dietary treatment groups; each group consisted of six replicates (eight birds in each cage). Treatments were: (1) a basal diet containing neither AFB1 nor LYC (Control), (2) basal diet containing 100 µg/kg AFB1, and (3) basal diets with 100 µg/kg AFB1 and 200 mg/kg LYC (AFB1 and LYC). The results showed that dietary LYC supplementation ameliorated the AFB1 induced broiler intestinal changes by decreasing the inflammatory cytokines interferon-γ (IFN-γ), interleukin 1beta (IL-1β), and increasing mRNA abundances of cludin-1 (CLDN-1) and zonula occludens-1 (ZO-1) in the jejunum mucosa. On the other hand, AFB1-induced increases in serum diamine oxidase (DAO) activities, D-lactate concentration, mucosal malondialdehyde (MDA), and hydrogen peroxide (H2O2) concentrations were reversed by dietary LYC supplementation (p < 0.05). Additionally, LYC supplementation ameliorated the redox balance through increasing the antioxidant enzyme activities and their related mRNA expression abundances compared to AFB1 exposed broilers. In conclusion, dietary supplementation with LYC could alleviate AFB1 induced broiler intestinal immune function and barrier function damage and improve antioxidants status.
Collapse
Affiliation(s)
| | | | | | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, No. 48 Wenhui East Road, Yangzhou 225009, China; (M.T.S.); (X.W.); (H.Y.)
| |
Collapse
|
15
|
Yahyazadeh R, Baradaran Rahimi V, Yahyazadeh A, Mohajeri SA, Askari VR. Promising effects of gingerol against toxins: A review article. Biofactors 2021; 47:885-913. [PMID: 34418196 DOI: 10.1002/biof.1779] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Ginger is a medicinal and valuable culinary plant. Gingerols, as an active constituent in the fresh ginger rhizomes of Zingiber officinale, exhibit several promising pharmacological properties. This comprehensive literature review was performed to assess gingerol's protective and therapeutic efficacy against the various chemical, natural, and radiational stimuli. Another objective of this study was to investigate the mechanism of anti-inflammatory, antioxidant, and antiapoptotic properties of gingerol. It should be noted that the data were gathered from in vivo and in vitro experimental studies. Gingerols can exert their protective activity through different mechanisms and cell signaling pathways. For example, these are mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-kB), Wnt/β-catenin, nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), transforming growth factor beta1/Smad3 (TGF-β1/Smad3), and extracellular signal-related kinase/cAMP-response element-binding protein (ERK/CREB). We hope that more researchers can benefit from this review to conduct preclinical and clinical studies, treat cancer, inflammation, and attenuate the side effects of drugs and industrial pollutants.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Dlamini NZ, Somboro AM, Amoako DG, Arhin I, Khumalo HM, Khan RB. Toxicogenicity and mechanistic pathways of aflatoxin B1 induced renal injury. ENVIRONMENTAL TOXICOLOGY 2021; 36:1857-1872. [PMID: 34089297 DOI: 10.1002/tox.23306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The study investigated the toxicogenic effects, molecular mechanisms and proteomic assessment of aflatoxin B1 (AFB1 ) on human renal cells. Hek293 cells were exposed to AFB1 (0-100 μM) for 24 h. The effect on cell viability was assessed using the methylthiazol tetrazolium (MTT) assay, which also produced the half maximal inhibitory concentration (IC50 ) used in subsequent assays. Free radical production was evaluated by quantifying malondialdehyde (MDA) and nitrate concentration, while DNA fragmentation was determined using the single cell gel electrophoresis (SCGE) assay and DNA gel electrophoresis. Damage to cell membranes was ascertained using the lactate dehydrogenase (LDH) assay. The concentration of ATP, reduced glutathione (GSH), necrosis, annexin V and caspase activity was measured by luminometry. Western blotting and quantitative PCR was used to assess the expression of proteins and genes associated with apoptosis and oxidative stress. The MTT assay revealed a reduction in cell viability of Hek293 cells as the AFB1 concentration was increased, with a half maximum inhibitory concentration (IC50 ) of 32.60 μM. The decreased viability corresponded to decreased ATP concentration. The upregulation of Hsp70 indicated that oxidative stress was induced in the AFB1 -treated cells. While this implies an increased production of free radicals, the accompanying upregulation of the antioxidant system indicates the activation of defense mechanisms to prevent cellular damage. Thus, membrane damage associated with increased radical formation was prevented as indicated by the reduced LDH release and necrosis. In addition, cytotoxic effects were evident as AFB1 activated the intrinsic pathway of apoptosis with corresponding increased DNA fragmentation, p53 and Bax upregulation and increased caspase activity, but externalization of phosphatidylserine (PS), a major hallmark of apoptosis, did not occur in AFB1 treated renal cells. The results suggest that AFB1 induced oxidative stress leading to cell death by the intrinsic pathway of apoptosis in renal cells.
Collapse
Affiliation(s)
- Nomali Zanele Dlamini
- Drug and Innovation Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Anou M Somboro
- Drug and Innovation Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel G Amoako
- Drug and Innovation Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Isaiah Arhin
- Drug and Innovation Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel M Khumalo
- Drug and Innovation Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Rene B Khan
- Drug and Innovation Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Hakiminia B, Goudarzi A, Moghaddas A. Has vitamin E any shreds of evidence in cisplatin-induced toxicity. J Biochem Mol Toxicol 2019; 33:e22349. [PMID: 31115123 DOI: 10.1002/jbt.22349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/24/2019] [Indexed: 12/14/2022]
Abstract
Cisplatin is one of the highly consumed and effective antitumor agents whose clinical application is accompanied by nephrotoxicity adverse reaction. Also, other complications such as ototoxicity and hepatotoxicity are a matter of concern. Today, it is suggested that cisplatin-associated toxicities are mainly induced by free radicals production, which will result in oxidative organ injury. The evidence is growing over the protective effects of antioxidants on cisplatin-induced adverse reactions especially nephrotoxicity. The possible protective effects of vitamin E and its derivative in cisplatin-induced nephrotoxicity and ototoxicity are reviewed here at the light of pertinent results from basic and clinical research. Administration of vitamin E alone or in combination with other antioxidant agents could cause amelioration in oxidative stress biomarkers such as decreasing the level of malondialdehyde, reducing serum urea and creatinine, and also enhancing the activities of renal antioxidant enzymes including renal catalase, glutathione-S-transferase, and superoxide dismutase. Although the data from most of the studies are in favors of protective effects of vitamin E against cisplatin-induced toxicity, more clinical trials are needed to clarify the clinical importance of vitamin E administration as an antioxidant during cisplatin therapy in cancer condition.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Clinical Pharmacy and Pharmacy Practice, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Azadeh Moghaddas
- Clinical Pharmacy and Pharmacy Practice, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Yu K, Zhang J, Cao Z, Ji Q, Han Y, Song M, Shao B, Li Y. Lycopene attenuates AFB 1-induced renal injury with the activation of the Nrf2 antioxidant signaling pathway in mice. Food Funct 2019; 9:6427-6434. [PMID: 30462120 DOI: 10.1039/c8fo01301b] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress is an important molecular mechanism for kidney injury in aflatoxin B1 (AFB1) nephrotoxicity. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor for regulating the cellular oxidative stress response, which has been confirmed in animal models. Lycopene (LYC), a natural carotenoid, has received extensive attention due to its antioxidant effect with the activation of Nrf2. However, the role of LYC in protecting against AFB1-induced renal injury is unknown. To evaluate the chemoprotective effect of LYC on AFB1-induced renal injury, forty-eight male mice were randomly divided into 4 groups and treated with LYC (5 mg per kg of bodyweight) and/or AFB1 (0.75 mg per kg of bodyweight) by intragastric administration for 30 days. AFB1 and LYC were respectively dissolved in olive oil. We found that AFB1 exposure significantly increased the serum concentrations of blood urea nitrogen (BUN) and serum creatinine (SCR), and caused damage to the renal structure. Notably, LYC potentially alleviated AFB1-induced kidney lesions through attenuating AFB1-induced oxidative stress. Renal nuclear factor-erythroid 2-related factor 2 (Nrf2) and its downstream target gene (CAT, NQO1, SOD1, GSS, GCLM and GCLC) translation and protein expression were ameliorated by pretreatment with LYC in AFB1-exposed mice. These results suggested that LYC potentially alleviates AFB1-induced renal injury. This effect may be attributed to the enhancement of renal antioxidant capacity with the activation of the Nrf2 antioxidant signaling pathway.
Collapse
Affiliation(s)
- Kaiyuan Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Mycotoxins are the most common contaminants of food and feed worldwide and are considered an important risk factor for human and animal health. Oxidative stress occurs in cells when the concentration of reactive oxygen species exceeds the cell’s antioxidant capacity. Oxidative stress causes DNA damage, enhances lipid peroxidation, protein damage and cell death. This review addresses the toxicity of the major mycotoxins, especially aflatoxin B1, deoxynivalenol, nivalenol, T-2 toxin, fumonisin B1, ochratoxin, patulin and zearalenone, in relation to oxidative stress. It summarises the data associated with oxidative stress as a plausible mechanism for mycotoxin-induced toxicity. Given the contamination caused by mycotoxins worldwide, the protective effects of a variety of natural compounds due to their antioxidant capacities have been evaluated. We review data on the ability of vitamins, flavonoids, crocin, curcumin, green tea, lycopene, phytic acid, L-carnitine, melatonin, minerals and mixtures of anti-oxidants to mitigate the toxic effect of mycotoxins associated with oxidative stress.
Collapse
Affiliation(s)
- E.O. da Silva
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - A.P.F.L. Bracarense
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - I.P. Oswald
- Université de Toulouse, Toxalim, Research Center in Food Toxicology, INRA, UMR 1331 ENVT, INP-PURPAN, 31076 Toulouse, France
| |
Collapse
|
20
|
Eraslan G, Sarıca ZS, Bayram LÇ, Tekeli MY, Kanbur M, Karabacak M. The effects of diosmin on aflatoxin-induced liver and kidney damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27931-27941. [PMID: 28988357 DOI: 10.1007/s11356-017-0232-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Aflatoxin is among the natural toxins that cause serious side effects on living things. Diosmin is also one of the compounds with broad pharmacological effects. In this study, the effects on the oxidant/antioxidant system of 50 mg/kg body weight/day dose of diosmin, aflatoxin (500 μg/kg body weight/day), and combined aflatoxin (500 μg/kg body weight/day) plus diosmin (50 mg/kg body weight/day) given to the stomach via catheter female adult Wistar Albino rats is examined. Forty rats were used in the experiment, and these animals were randomly allocated to four equal groups. The test phase lasted 21 days, and blood samples and tissue (liver and kidney) samples were taken after this period was over. Some biochemical parameters (glucose, triglyceride, cholesterol, blood urea nitrogen, creatinine, uric acid, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total protein, albumin) and levels of malondialdehyde, nitric oxide, and 4-hydroxynonenal and activities of superoxide dismutase, catalase, and glutathione peroxidase were analyzed in the samples. The aflatoxin administered over the period indicated a significant increase in levels of malondialdehyde (MDA), nitric oxide (NO), and 4-hydroxynonenal (4-HNE) in all tissues and blood samples. Therewithal, the activity of antioxidant enzymes showed a change in the decreasing direction. Biochemical parameters of the group in which aflatoxin were administered alone changed unfavorably. Parallel effects were also observed in the histopathological findings of this group. The results showed that aflatoxin changed antioxidant/oxidant balance in favor of oxidant and eventually led to lipid peroxidation. Diosmin administration to aflatoxin-treated animals resulted in positive changes in antioxidant enzyme activities while the levels of MDA, NO, and 4-HNE were reduced in all tissues and blood samples examined. Diosmin alleviates the oxidative stress caused by aflatoxin. Similar improvement was observed in biochemical parameters of this group as well as in liver and kidney histopathology. No significant change was observed in the group treated with diosmin alone in terms of the parameters examined and histologic findings. As a result, diosmin may be included in compounds that can be used as a therapeutic and prophylactic agent in the event of the formation of aflatoxin exposure and poisoning in animals.
Collapse
Affiliation(s)
- Gökhan Eraslan
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey.
| | - Zeynep Soyer Sarıca
- Experimental Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Latife Çakır Bayram
- Faculty of Veterinary Medicine, Department of Pathology, Erciyes University, Kayseri, Turkey
| | - Muhammet Yasin Tekeli
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey
| | - Murat Kanbur
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey
| | - Mürsel Karabacak
- Safiye Çıkrıkçıoğlu Vocational Collage, Department of Animal Health, Erciyes University, Kayseri, Turkey
| |
Collapse
|
21
|
Xu F, Yu K, Yu H, Wang P, Song M, Xiu C, Li Y. Lycopene relieves AFB 1 -induced liver injury through enhancing hepatic antioxidation and detoxification potential with Nrf2 activation. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
22
|
Ali Rajput S, Sun L, Zhang N, Mohamed Khalil M, Gao X, Ling Z, Zhu L, Khan FA, Zhang J, Qi D. Ameliorative Effects of Grape Seed Proanthocyanidin Extract on Growth Performance, Immune Function, Antioxidant Capacity, Biochemical Constituents, Liver Histopathology and Aflatoxin Residues in Broilers Exposed to Aflatoxin B₁. Toxins (Basel) 2017; 9:toxins9110371. [PMID: 29140290 PMCID: PMC5705986 DOI: 10.3390/toxins9110371] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/03/2017] [Accepted: 11/14/2017] [Indexed: 01/05/2023] Open
Abstract
Aflatoxicosis is a grave threat to the poultry industry. Dietary supplementation with antioxidants showed a great potential in enhancing the immune system; hence, protecting animals against aflatoxin B1-induced toxicity. Grape seed proanthocyanidin extract (GSPE) one of the most well-known and powerful antioxidants. Therefore, the purpose of this research was to investigate the effectiveness of GSPE in the detoxification of AFB1 in broilers. A total of 300 one-day-old Cobb chicks were randomly allocated into five treatments of six replicates (10 birds per replicate), fed ad libitum for four weeks with the following dietary treatments: 1. Basal diet (control); 2. Basal diet + 1 mg/kg AFB1 contaminated corn (AFB1); 3. Basal diet + GSPE 250 mg/kg; (GSPE 250 mg/kg) 4. Basal diet + AFB1 (1 mg/kg) + GSPE 250 mg/kg; (AFB1 + GSPE 250 mg/kg) 5. Basal diet + AFB1 (1mg/kg) + GSPE 500 mg/kg, (AFB1 + GSPE 500 mg/kg). When compared with the control group, feeding broilers with AFB1 alone significantly reduced growth performance, serum immunoglobulin contents, negatively altered serum biochemical contents, and enzyme activities, and induced histopathological lesion in the liver. In addition, AFB1 significantly increased malondialdehyde content and decreased total superoxide dismutase, catalase, glutathione peroxide, glutathione-S transferase, glutathione reductase activities, and glutathione concentration within the liver and serum. The supplementation of GSPE (250 and 500 mg/kg) to AFB1 contaminated diet reduced AFB1 residue in the liver and significantly mitigated AFB1 negative effects. From these results, it can be concluded that dietary supplementation of GSPE has protective effects against aflatoxicosis caused by AFB1 in broiler chickens.
Collapse
Affiliation(s)
- Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lvhui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mahmoud Mohamed Khalil
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor, Benha, Kalubia 13736, Egypt.
| | - Xin Gao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhao Ling
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Luoyi Zhu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Farhan Anwar Khan
- Department of Animal Health, Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar 25120, Pakistan.
| | - Jiacai Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Effect of UV irradiation on aflatoxin reduction: a cytotoxicity evaluation study using human hepatoma cell line. Mycotoxin Res 2017; 33:343-350. [PMID: 28844113 DOI: 10.1007/s12550-017-0291-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022]
Abstract
In this proof-of-concept study, the efficacy of a medium-pressure UV (MPUV) lamp source to reduce the concentrations of aflatoxin B1, aflatoxin B2, and aflatoxin G1 (AFB1, AFB2, and AFG1) in pure water is investigated. Irradiation experiments were conducted using a collimated beam system operating between 200 to 360 nm. The optical absorbance of the solution and the irradiance of the lamp are considered in calculating the average fluence rate. Based on these factors, the UV dose was quantified as a product of average fluence rate and treatment time. Known concentrations of aflatoxins were spiked in water and irradiated at UV doses ranging from 0, 1.22, 2.44, 3.66, and 4.88 J cm-2. The concentration of aflatoxins was determined by HPLC with fluorescence detection. LC-MS/MS product ion scans were used to identify and semi-quantify degraded products of AFB1, AFB2, and AFG1. It was observed that UV irradiation significantly reduced aflatoxins in pure water (p < 0.05). Irradiation doses of 4.88 J cm-2 reduced concentrations 67.22% for AFG1, 29.77% for AFB2, and 98.25% for AFB1 (p < 0.05). Using this technique, an overall reduction of total aflatoxin content of ≈95% (p < 0.05) was achieved. We hypothesize that the formation of ˙OH radicals initiated by UV light may have caused photolysis of AFB1, AFB2, and AFG1 molecules. In cell culture studies, our results demonstrated that the increase of UV dosage decreased the aflatoxin-induced cytotoxicity in HepG2 cells. Therefore, our research finding suggests that UV irradiation can be used as an effective technique for the reduction of aflatoxins.
Collapse
|
24
|
Abstract
Aflatoxin B1 (AFB1) is widely distributed in nature, especially in a variety of food commodities. It is confirmed to be the most toxic of all the aflatoxins. The toxicity of AFB1 has been well investigated, and it may result in severe health problems including carcinogenesis, mutagenesis, growth retardation, and immune suppression. Epigenetic modifications including DNA methylation, histone modifications and regulation of non-coding RNA play an important role in AFB1-induced disease and carcinogenesis. To better understand the evidence for AFB1-induced epigenetic alterations and the potential mechanisms of the toxicity of AFB1, we conducted a review of published studies of AFB1-induced epigenetic alterations.
Collapse
Affiliation(s)
- Yaqi Dai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, 100083, Beijing, China
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, 100083, Beijing, China.
| |
Collapse
|
25
|
Abdel-Hamid AAM, Firgany AEDL, Mesbah Y, Soliman MF. Vascular and cellular changes accompany altered expression of angiopoietins in placenta of non-complicated ART pregnancies. Exp Mol Pathol 2017; 102:284-289. [PMID: 28238760 DOI: 10.1016/j.yexmp.2017.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND ART is steadily performed for infertility cases and most of the previous researches have focused on complicated pregnancies. Nonetheless, few ones have concerned with placenta of ART in non-complicated pregnancies. OBJECTIVES To investigate the expression of angiopoietins (ANG) and their receptor, TIE-2, in placenta of full-term non-complicated pregnancies having ART (n=28) versus those with spontaneous conception (n=28) together with the histological as well as morphometric analysis. RESULTS While no prominent changes were noticed in the histological structure of the placenta ART pregnancies, it showed a significant decrease (p<0.05) in the percentage of syncytial area and numbers of syncytial knots with insignificant reduction in the placental villous area. Vascular changes in the form of significant decrease (p<0.05) in the chorionic vessel diameter and significant increase (p<0.05) in percentage of vessel area were detected in the ART placenta. In addition, the levels ANG-1, ANG-2 and TIE-2 were significantly increased (p<0.05) in the ART placentas compared with those of SC. CONCLUSIONS We demonstrated that there is an altered expression of angiopoietins accompanying the morphometric changes occurring in placenta of ART pregnancies. These changes may indicate vascular and cellular adaptation mechanism for a potential subclinical hypoxia in placenta of ART even in non-complicated pregnancies.
Collapse
Affiliation(s)
- Ahmed A M Abdel-Hamid
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| | - Alaa El-Din L Firgany
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt
| | - Yaser Mesbah
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mansoura University, Egypt
| | - Mona Fm Soliman
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
26
|
Liu T, Ma Q, Zhao L, Jia R, Zhang J, Ji C, Wang X. Protective Effects of Sporoderm-Broken Spores of Ganderma lucidum on Growth Performance, Antioxidant Capacity and Immune Function of Broiler Chickens Exposed to Low Level of Aflatoxin B₁. Toxins (Basel) 2016; 8:toxins8100278. [PMID: 27669305 PMCID: PMC5086638 DOI: 10.3390/toxins8100278] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/14/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022] Open
Abstract
This study was conducted to investigate the toxic effects of aflatoxin B₁ (AFB₁) and evaluate the effects of sporoderm-broken spores of Ganoderma lucidum (SSGL) in relieving aflatoxicosis in broilers. A total of 300 one-day-old male Arbor Acre broiler chickens were randomly divided into four dietary treatments; the treatment diets were: Control (a basal diet containing normal peanut meal); AFB₁ (the basal diet containing AFB₁-contaminated peanut meal); SSGL (basal diet with 200 mg/kg of SSGL); AFB₁+SSGL (supplementation of 200 mg/kg of SSGL in AFB₁ diet). The contents of AFB₁ in AFB₁ and AFB₁+SSGL diets were 25.0 μg/kg in the starter period and 22.5 μg/kg in the finisher period. The results showed that diet contaminated with a low level of AFB₁ significantly decreased (p < 0.05) the average daily feed intake and average daily gain during the entire experiment and reduced (p < 0.05) serum contents of total protein IgA and IgG. Furthermore, a dietary low level of AFB₁ not only increased (p < 0.05) levels of hydrogen peroxide and lipid peroxidation, but also decreased (p < 0.05) total antioxidant capability, catalase, glutathione peroxidase, and hydroxyl radical scavenger activity in the liver and spleen of broilers. Moreover, the addition of SSGL to AFB₁-contaminated diet counteracted these negative effects, indicating that SSGL has a protective effect against aflatoxicosis.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ru Jia
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xinyue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|