1
|
Wumiti T, Wang L, Xu B, Ma Y, Zhu Y, Zuo X, Qian W, Chu X, Sun H. lncTIMP3 promotes osteogenic differentiation of bone marrow mesenchymal stem cells via miR-214/Smad4 axis to relieve postmenopausal osteoporosis. Mol Biol Rep 2024; 51:719. [PMID: 38824271 DOI: 10.1007/s11033-024-09652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Promoting the balance between bone formation and bone resorption is the main therapeutic goal for postmenopausal osteoporosis (PMOP), and bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation plays an important regulatory role in this process. Recently, several long non-coding RNAs (lncRNAs) have been reported to play an important regulatory role in the occurrence and development of OP and participates in a variety of physiological and pathological processes. However, the role of lncRNA tissue inhibitor of metalloproteinases 3 (lncTIMP3) remains to be investigated. METHODS The characteristics of BMSCs isolated from the PMOP rat model were verified by flow cytometry assay, alkaline phosphatase (ALP), alizarin red and Oil Red O staining assays. Micro-CT and HE staining assays were performed to examine histological changes of the vertebral trabeculae of the rats. RT-qPCR and western blotting assays were carried out to measure the RNA and protein expression levels. The subcellular location of lncTIMP3 was analyzed by FISH assay. The targeting relationships were verified by luciferase reporter assay and RNA pull-down assay. RESULTS The trabecular spacing was increased in the PMOP rats, while ALP activity and the expression levels of Runx2, Col1a1 and Ocn were all markedly decreased. Among the RNA sequencing results of the clinical samples, lncTIMP3 was the most downregulated differentially expressed lncRNA, also its level was significantly reduced in the OVX rats. Knockdown of lncTIMP3 inhibited osteogenesis of BMSCs, whereas overexpression of lncTIMP3 exhibited the reverse results. Subsequently, lncTIMP3 was confirmed to be located in the cytoplasm of BMSCs, implying its potential as a competing endogenous RNA for miRNAs. Finally, the negative targeting correlations of miR-214 between lncTIMP3 and Smad4 were elucidated in vitro. CONCLUSION lncTIMP3 may delay the progress of PMOP by promoting the activity of BMSC, the level of osteogenic differentiation marker gene and the formation of calcium nodules by acting on the miR-214/Smad4 axis. This finding may offer valuable insights into the possible management of PMOP.
Collapse
Affiliation(s)
- Taxi Wumiti
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Chinese Medicine Centre (International Collaboration between Western Sydney University, Beijing University of Chinese Medicine), Western Sydney University, Sydney, Australia
| | - Bin Xu
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, Jiangsu, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214000, Jiangsu, China
| | - Yihua Zhu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Xinchen Zuo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Weiqing Qian
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, China
| | - Xudong Chu
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, Jiangsu, China.
| | - Haitao Sun
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, Jiangsu, China.
| |
Collapse
|
2
|
Al-Ameri HW, Shetty S, Rahman B, Gopalakrishnan ARK, Ismail AA, Acharya AB. Evaluation of salivary Thy-1 in health, periodontitis, and obesity. Oral Dis 2024; 30:2670-2677. [PMID: 37338076 DOI: 10.1111/odi.14652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES Thy-1 (CD90) is a glycosylphosphatidyl-anchored protein belonging to the immunoglobulin family and is known to control mesenchymal stromal cells differentiation into osteoblasts or adipocytes. The study aimed to investigate the salivary levels of Thy-1 in health, periodontitis, obesity, and any potential association. MATERIALS AND METHODS Seventy-one participants were divided into four groups: healthy (H), subjects with periodontitis (P), obese individuals (O), and obese individuals having periodontitis (PO). Unstimulated whole saliva was collected from participants who were evaluated for periodontal parameters. The levels of Thy-1 were measured with a commercially available ELISA kit. The data were statistically analyzed. RESULTS A significant difference in salivary Thy-1 levels among different groups was observed. Periodontitis patients had the maximum, and obese individuals had the minimum Thy-1 levels. Significant differences between H and P, H and PO, P and O, and O and PO were observed. Overall correlations between Thy-1 and periodontal parameters and a positive correlation with pocket depth in group PO were noted. CONCLUSION Thy-1 could be detected in the saliva of all study participants. It is implied that a local inflammatory condition like periodontitis elevates the salivary levels of Thy-1 with, and without obesity.
Collapse
Affiliation(s)
- Hawra'a Wisam Al-Ameri
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sunaina Shetty
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Betul Rahman
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Asmaa Anwer Ismail
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Anirudh B Acharya
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Yan Y, Li Y, Chi Y, Ji M, Shen Y, Zou L. A comparative study of biological properties of three root canal sealers. Clin Oral Investig 2023; 28:11. [PMID: 38129367 DOI: 10.1007/s00784-023-05402-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the effects of Hiflow with other two kinds of root canal sealers on the biological behavior of stem cells from the apical papilla (SCAP), the influence on inflammatory cytokines release and its antibacterial effects. MATERIALS AND METHODS Material extracts of Hiflow, iRoot SP, and AH Plus were prepared. Then, SCAP was incubated with extracts. The effects were evaluated by CCK-8, wound healing assay, ALP staining, alizarin red staining, and qRT-PCR. Meanwhile, polymorphonuclears (PMNs) and monocytes were isolated and treated with extracts for 4 h and 24 h respectively. Cell viability was analyzed by Annexin-V/PI double staining flow cytometry. The effects on the release of cytokines were observed by ELISA. The antibacterial effects of different sealers were tested against three kinds of bacteria found in chronic apical periodontitis. RESULTS A series of results of SCAP showed that Hiflow and iRoot SP could promote cell proliferation, migration, and osteogenesis (p < 0.05). Although Hiflow was associated with greater cell apoptosis and necrosis when incubated with PMNs and monocytes (p < 0.05), it had an approximate release of anti-inflammatory cytokines with iRoot SP, which was higher than AH plus (p < 0.05). The co-culture showed that Hiflow and iRoot SP inhibited the colony formation of F. nucleatum (p < 0.05). However, both sealers had no obvious antibacterial effect on E. faecalis and P. gingivalis (p > 0.05). CONCLUSIONS In summary, Hiflow and iRoot SP both had positive biological stimulus on SCAP. Meanwhile, Hiflow showed a better induction on anti-inflammatory cytokines over the others. All the properties mentioned above and its antibacterial effect of F. nucleatum promise Hiflow a bright application prospect in endodontic uses. CLINICAL RELEVANCE References for clinical work to use BC Sealer Hiflow as a good biological root canal sealer.
Collapse
Affiliation(s)
- Yujia Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanyao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yaqi Chi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mengzhen Ji
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological & Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ling Zou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Santos MS, Carvalho MS, Silva JC. Recent Advances on Electrospun Nanofibers for Periodontal Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1307. [PMID: 37110894 PMCID: PMC10141626 DOI: 10.3390/nano13081307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Periodontitis is an inflammatory infection caused by bacterial plaque accumulation that affects the periodontal tissues. Current treatments lack bioactive signals to induce tissue repair and coordinated regeneration of the periodontium, thus alternative strategies are needed to improve clinical outcomes. Electrospun nanofibers present high porosity and surface area and are able to mimic the natural extracellular matrix, which modulates cell attachment, migration, proliferation, and differentiation. Recently, several electrospun nanofibrous membranes have been fabricated with antibacterial, anti-inflammatory, and osteogenic properties, showing promising results for periodontal regeneration. Thus, this review aims to provide an overview of the current state of the art of these nanofibrous scaffolds in periodontal regeneration strategies. First, we describe the periodontal tissues and periodontitis, as well as the currently available treatments. Next, periodontal tissue engineering (TE) strategies, as promising alternatives to the current treatments, are addressed. Electrospinning is briefly explained, the characteristics of electrospun nanofibrous scaffolds are highlighted, and a detailed overview of electrospun nanofibers applied to periodontal TE is provided. Finally, current limitations and possible future developments of electrospun nanofibrous scaffolds for periodontitis treatment are also discussed.
Collapse
Affiliation(s)
- Mafalda S. Santos
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta S. Carvalho
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Che Z, Ye Z, Zhang X, Lin B, Yang W, Liang Y, Zeng J. Mesenchymal stem/stromal cells in the pathogenesis and regenerative therapy of inflammatory bowel diseases. Front Immunol 2022; 13:952071. [PMID: 35990688 PMCID: PMC9386516 DOI: 10.3389/fimmu.2022.952071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) represent a group of chronic inflammatory disorders of the gastrointestinal (GI) tract including ulcerative colitis (UC), Crohn’s disease (CD), and unclassified IBDs. The pathogenesis of IBDs is related to genetic susceptibility, environmental factors, and dysbiosis that can lead to the dysfunction of immune responses and dysregulated homeostasis of local mucosal tissues characterized by severe inflammatory responses and tissue damage in GI tract. To date, extensive studies have indicated that IBDs cannot be completely cured and easy to relapse, thus prompting researchers to find novel and more effective therapeutics for this disease. Due to their potent multipotent differentiation and immunomodulatory capabilities, mesenchymal stem/stromal cells (MSCs) not only play an important role in regulating immune and tissue homeostasis but also display potent therapeutic effects on various inflammatory diseases, including IBDs, in both preclinical and clinical studies. In this review, we present a comprehensive overview on the pathological mechanisms, the currently available therapeutics, particularly, the potential application of MSCs-based regenerative therapy for IBDs.
Collapse
Affiliation(s)
- Zhengping Che
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xueying Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Weiqing Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yanfang Liang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- *Correspondence: Jincheng Zeng, ; Yanfang Liang,
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
- Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
- *Correspondence: Jincheng Zeng, ; Yanfang Liang,
| |
Collapse
|
6
|
Li N, Li Z, Fu L, Yan M, Wang Y, Yu J, Wu J. PD-1 suppresses the osteogenic and odontogenic differentiation of stem cells from dental apical papilla via targeting SHP2/NF-κB axis. Stem Cells 2022; 40:763-777. [PMID: 35589562 DOI: 10.1093/stmcls/sxac037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022]
Abstract
Stem cells from the apical papilla (SCAPs) are important for tooth root development and regeneration of root dentin. Here, we examined the expression of programmed cell death protein-1 (PD-1) in SCAPs and investigated the effect of PD-1 on odontogenic and osteogenic differentiation and the relationship between PD-1 and SHP2/NF-κB signals. SCAPs were obtained and cultured in the related medium. The proliferation ability was evaluated by cell counting kit 8 (CCK-8) and 5-ethynyl-20-deoxyuridine (EdU) assay. Alkaline phosphatase (ALP) activity assay, ALP staining, western blot, real time quantitative reverse-transcription polymerase chain reaction (RT-qPCR), Alizarin Red S (ARS) staining, and immunofluorescence (IF) staining were performed to explore the osteo/odontogenic potential and the involvement of SHP2/NF-κB pathways. Besides, we transplanted SCAPs component into mouse calvaria defects to evaluate osteogenesis in vivo. We found that human SCAPs expressed PD-1 for the first time. PD-1 knockdown enhanced the osteo/odontogenic differentiation of SCAPs by suppressing SHP2 pathway and activating NF-κB pathway. Overexpression of PD-1 inhibited the osteogenesis and odontogenesis of SCAPs via activation of SHP2 signal and inhibition of NF-κB pathway. PD-1 activated SHP2 signal to block NF-κB signal and then played a vital role in osteo/odontogenic differentiation of SCAPs.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Fu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Yan
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanqiu Wang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jintao Wu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Hypoxia Induces DPSC Differentiation versus a Neurogenic Phenotype by the Paracrine Mechanism. Biomedicines 2022; 10:biomedicines10051056. [PMID: 35625792 PMCID: PMC9138575 DOI: 10.3390/biomedicines10051056] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
As previously described by several authors, dental pulp stem cells (DPSCs), when adequately stimulated, may acquire a neuronal-like phenotype acting as a favorable source of stem cells in the generation of nerves. Besides, it is known that hypoxia conditioning is capable of stimulating cell differentiation as well as survival and self-renewal, and that multiple growth factors, including Epidermal Growth factor (EGF) and basic fibroblast growth factor (bFGF), are often involved in the induction of the neuronal differentiation of progenitor cells. In this work, we investigated the role of hypoxia in the commitment of DPSCs into a neuronal phenotype. These cells were conditioned with hypoxia (O2 1%) for 5 and 16 days; subsequently, we analyzed the proliferation rate and morphology, and tested the cells for neural and stem markers. Moreover, we verified the possible autocrine/paracrine role of DPSCs in the induction of neural differentiation by comparing the secretome profile of the hypoxic and normoxic conditioned media (CM). Our results showed that the hypoxia-mediated DPSC differentiation was time dependent. Moreover, conditioned media (CM derived from DPSCs stimulated by hypoxia were able, in turn, to induce the neural differentiation of SH-SY5Y neuroblastoma cells and undifferentiated DPSCs. In conclusion, under the herein-mentioned conditions, hypoxia seems to favor the differentiation of DPSCs into neuron-like cells. In this way, we confirm the potential clinical utility of differentiated neuronal DPSCs, and we also suggest the even greater potential of CM-derived-hypoxic DPSCs that could more readily be used in regenerative therapies.
Collapse
|
8
|
Gan Z, Song Y, Zhang H, Ye Y, Chu H. WITHDRAWN: MiR-363-3p attenuates simvastatin-induced osteogenic differentiation of periodontal ligament stem cells by targeting KLF2. Tissue Cell 2021. [DOI: 10.1016/j.tice.2021.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|