1
|
Anobile G, Petrizzo I, Paiardini D, Burr D, Cicchini GM. Sensorimotor mechanisms selective to numerosity derived from individual differences. eLife 2024; 12:RP92169. [PMID: 38564239 PMCID: PMC10987086 DOI: 10.7554/elife.92169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
We have previously shown that after few seconds of adaptation by finger-tapping, the perceived numerosity of spatial arrays and temporal sequences of visual objects displayed near the tapping region is increased or decreased, implying the existence of a sensorimotor numerosity system (Anobile et al., 2016). To date, this mechanism has been evidenced only by adaptation. Here, we extend our finding by leveraging on a well-established covariance technique, used to unveil and characterize 'channels' for basic visual features such as colour, motion, contrast, and spatial frequency. Participants were required to press rapidly a key a specific number of times, without counting. We then correlated the precision of reproduction for various target number presses between participants. The results showed high positive correlations for nearby target numbers, scaling down with numerical distance, implying tuning selectivity. Factor analysis identified two factors, one for low and the other for higher numbers. Principal component analysis revealed two bell-shaped covariance channels, peaking at different numerical values. Two control experiments ruled out the role of non-numerical strategies based on tapping frequency and response duration. These results reinforce our previous reports based on adaptation, and further suggest the existence of at least two sensorimotor number channels responsible for translating symbolic numbers into action sequences.
Collapse
Affiliation(s)
- Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of FlorenceFlorenceItaly
| | - Irene Petrizzo
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of FlorenceFlorenceItaly
| | - Daisy Paiardini
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of FlorenceFlorenceItaly
| | - David Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of FlorenceFlorenceItaly
- School of Psychology, University of Sydney, Camperdown NSWSydneyAustralia
| | | |
Collapse
|
2
|
Bueno FD, Nobre AC, Cravo AM. Time for What? Dissociating Explicit Timing Tasks through Electrophysiological Signatures. eNeuro 2024; 11:ENEURO.0351-23.2023. [PMID: 38272676 PMCID: PMC10884563 DOI: 10.1523/eneuro.0351-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
Estimating durations between hundreds of milliseconds and seconds is essential for several daily tasks. Explicit timing tasks, which require participants to estimate durations to make a comparison (time for perception) or to reproduce them (time for action), are often used to investigate psychological and neural timing mechanisms. Recent studies have proposed that mechanisms may depend on specific task requirements. In this study, we conducted electroencephalogram (EEG) recordings on human participants as they estimated intervals in different task contexts to investigate the extent to which timing mechanisms depend on the nature of the task. We compared the neural processing of identical visual reference stimuli in two different tasks, in which stimulus durations were either perceptually compared or motorically reproduced in separate experimental blocks. Using multivariate pattern analyses, we could successfully decode the duration and the task of reference stimuli. We found evidence for both overlapping timing mechanisms across tasks as well as recruitment of task-dependent processes for comparing intervals for different purposes. Our findings suggest both core and specialized timing functions are recruited to support explicit timing tasks.
Collapse
Affiliation(s)
- Fernanda D Bueno
- Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC (UFABC), São Bernardo do Campo 09606-045, Brazil
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - André M Cravo
- Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC (UFABC), São Bernardo do Campo 09606-045, Brazil
| |
Collapse
|
3
|
Torres NL, Castro SL, Silva S. Visual movement impairs duration discrimination at short intervals. Q J Exp Psychol (Hove) 2024; 77:57-69. [PMID: 36717537 PMCID: PMC10712207 DOI: 10.1177/17470218231156542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
The classic advantage of audition over vision in time processing has been recently challenged by studies using continuously moving visual stimuli such as bouncing balls. Bouncing balls drive beat-based synchronisation better than static visual stimuli (flashes) and as efficiently as auditory ones (beeps). It is yet unknown how bouncing balls modulate performance in duration perception. Our previous study addressing this was inconclusive: there were no differences among bouncing balls, flashes, and beeps, but this could have been due to the fact that intervals were too long to allow sensitivity to modality (visual vs auditory). In this study, we conducted a first experiment to determine whether shorter intervals elicit cross-stimulus differences. We found that short (mean 157 ms) but not medium (326 ms) intervals made duration perception worse for bouncing balls compared with flashes and beeps. In a second experiment, we investigated whether the lower efficiency of bouncing balls was due to experimental confounds, lack of realism, or movement. We ruled out the experimental confounds and found support for the hypothesis that visual movement-be it continuous or discontinuous-impairs duration perception at short interval lengths. Therefore, unlike beat-based synchronisation, duration perception does not benefit from continuous visual movement, which may even have a detrimental effect at short intervals.
Collapse
Affiliation(s)
- Nathércia L Torres
- Center for Psychology at the University of Porto (CPUP), Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| | - São Luís Castro
- Center for Psychology at the University of Porto (CPUP), Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| | - Susana Silva
- Center for Psychology at the University of Porto (CPUP), Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Shinn AK, Hurtado-Puerto AM, Roh YS, Ho V, Hwang M, Cohen BM, Öngür D, Camprodon JA. Cerebellar transcranial magnetic stimulation in psychotic disorders: intermittent, continuous, and sham theta-burst stimulation on time perception and symptom severity. Front Psychiatry 2023; 14:1218321. [PMID: 38025437 PMCID: PMC10679721 DOI: 10.3389/fpsyt.2023.1218321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background The cerebellum contributes to the precise timing of non-motor and motor functions, and cerebellum abnormalities have been implicated in psychosis pathophysiology. In this study, we explored the effects of cerebellar theta burst stimulation (TBS), an efficient transcranial magnetic stimulation protocol, on temporal discrimination and self-reported mood and psychotic symptoms. Methods We conducted a case-crossover study in which patients with psychosis (schizophrenias, schizoaffective disorders, or bipolar disorders with psychotic features) were assigned to three sessions of TBS to the cerebellar vermis: one session each of intermittent (iTBS), continuous (cTBS), and sham TBS. Of 28 enrolled patients, 26 underwent at least one TBS session, and 20 completed all three. Before and immediately following TBS, participants rated their mood and psychotic symptoms and performed a time interval discrimination task (IDT). We hypothesized that cerebellar iTBS and cTBS would modulate these measures in opposing directions, with iTBS being adaptive and cTBS maladaptive. Results Reaction time (RT) in the IDT decreased significantly after iTBS vs. Sham (LS-mean difference = -73.3, p = 0.0001, Cohen's d = 1.62), after iTBS vs. cTBS (LS-mean difference = -137.6, p < 0.0001, d = 2.03), and after Sham vs. cTBS (LS-mean difference = -64.4, p < 0.0001, d = 1.33). We found no effect on IDT accuracy. We did not observe any effects on symptom severity after correcting for multiple comparisons. Conclusion We observed a frequency-dependent dissociation between the effects of iTBS vs. cTBS to the cerebellar midline on the reaction time of interval discrimination in patients with psychosis. iTBS showed improved (adaptive) while cTBS led to worsening (maladaptive) speed of response. These results demonstrate behavioral target engagement in a cognitive dimension of relevance to patients with psychosis and generate testable hypotheses about the potential therapeutic role of cerebellar iTBS in this clinical population. Clinical Trial Registration clinicaltrials.gov, identifier NCT02642029.
Collapse
Affiliation(s)
- Ann K. Shinn
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Aura M. Hurtado-Puerto
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| | - Youkyung S. Roh
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Victoria Ho
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| | - Melissa Hwang
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Program for Neuropsychiatric Research, McLean Hospital, Belmont, MA, United States
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Joan A. Camprodon
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
5
|
Droit-Volet S, Hallez Q. Difference Between the Judgment of Short and Long Durations: Estimates of Durations and Judgment of the Passage of Time. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
This study aimed to examine intra-individual differences in both duration and passage of time (PoT) judgments, and the relationships between them, for a wide range of durations going from a few hundred milliseconds to several minutes. Participants performed a study with a within-subjects design with durations in the milliseconds (200–400 ms), seconds (2–4 s), tens of seconds (20–40 s) and minutes (2–4 min) ranges. For the duration judgments, the results revealed individual differences in temporal accuracy between short durations (<3 s) and long durations (>20 s). In contrast, positive relationships were observed for PoT judgments across the different time scales, except for the millisecond duration. Finally, a significant correlation between duration and PoT judgments appeared in our study only for durations longer than 1 s. Taken together, these results support the temporal taxonomy that distinguishes between the processing of short and long durations, with the latter likely being modulated by memory mechanisms and the awareness of the PoT.
Collapse
Affiliation(s)
- Sylvie Droit-Volet
- Université Clermont-Ferrand, CNRS, LAPSCO, F-63000 Clermont-Ferrand, France
| | - Quentin Hallez
- Institut de Psychologie, DIPHE, Université Lumière Lyon 2, 69500 Bron, France
| |
Collapse
|
6
|
|
7
|
Cravo AM, de Azevedo GB, Moraes Bilacchi Azarias C, Barne LC, Bueno FD, de Camargo RY, Morita VC, Sirius EVP, Recio RS, Silvestrin M, de Azevedo Neto RM. Time experience during social distancing: A longitudinal study during the first months of COVID-19 pandemic in Brazil. SCIENCE ADVANCES 2022; 8:eabj7205. [PMID: 35417245 PMCID: PMC9007501 DOI: 10.1126/sciadv.abj7205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Social distancing in response to the COVID-19 pandemic brought several modifications in our daily lives. With these changes, some people have reported alterations in their feelings of how fast time was passing. In this study, we assessed whether and how social distancing and the evolution of the COVID-19 pandemic influenced participants' time awareness and production of time intervals. Participants (n = 3855) filled in the first questionnaire approximately 60 days after the start of social distancing in Brazil and weekly questionnaires for 15 weeks during social distancing. Our results indicate that time was perceived as expanded at the beginning, but this feeling decreased across the weeks. Time awareness was strongly associated with psychological factors such as loneliness, stress, and positive emotions, but not with time production. This relation was shown between participants and within their longitudinal reports. Together, our findings show how emotions are a crucial aspect of how time is felt.
Collapse
Affiliation(s)
- André Mascioli Cravo
- Universidade Federal do ABC (UFABC), Centro de Matemática, Computação e Cognição, Santo André, Brazil
| | - Gustavo Brito de Azevedo
- Universidade Federal do ABC (UFABC), Centro de Matemática, Computação e Cognição, Santo André, Brazil
| | | | | | - Fernanda Dantas Bueno
- Universidade Federal do ABC (UFABC), Centro de Matemática, Computação e Cognição, Santo André, Brazil
| | - Raphael Y. de Camargo
- Universidade Federal do ABC (UFABC), Centro de Matemática, Computação e Cognição, Santo André, Brazil
| | - Vanessa Carneiro Morita
- Institut de Neurosciences de la Timone, UMR7289, CNRS, Aix-Marseille Université, F13005 Marseille, France
| | - Esaú Ventura Pupo Sirius
- Universidade Federal do ABC (UFABC), Centro de Matemática, Computação e Cognição, Santo André, Brazil
| | | | - Mateus Silvestrin
- Universidade Federal do ABC (UFABC), Centro de Matemática, Computação e Cognição, Santo André, Brazil
| | | |
Collapse
|
8
|
Auditory time thresholds in the range of milliseconds but not seconds are impaired in ADHD. Sci Rep 2022; 12:1352. [PMID: 35079097 PMCID: PMC8789844 DOI: 10.1038/s41598-022-05425-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/11/2022] [Indexed: 11/08/2022] Open
Abstract
The literature on time perception in individuals with ADHD is extensive but inconsistent, probably reflecting the use of different tasks and performances indexes. A sample of 40 children/adolescents (20 with ADHD, 20 neurotypical) was engaged in two identical psychophysical tasks measuring auditory time thresholds in the milliseconds (0.25–1 s) and seconds (0.75–3 s) ranges. Results showed a severe impairment in ADHD for milliseconds thresholds (Log10BF = 1.9). The deficit remained strong even when non-verbal IQ was regressed out and correlation with age suggests a developmental delay. In the seconds range, thresholds were indistinguishable between the two groups (Log10BF = − 0.5) and not correlated with milliseconds thresholds. Our results largely confirm previous evidence suggesting partially separate mechanisms for time perception in the ranges of milliseconds and seconds. Moreover, since the evidence suggests that time perception of milliseconds stimuli might load relatively less on cognitive control and working memory, compared to longer durations, the current results are consistent with a pure timing deficit in individuals with ADHD.
Collapse
|
9
|
Similar CNV Neurodynamic Patterns between Sub- and Supra-Second Time Perception. Brain Sci 2021; 11:brainsci11101362. [PMID: 34679426 PMCID: PMC8534208 DOI: 10.3390/brainsci11101362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
In the field of time psychology, the functional significance of the contingent negative variation (CNV) component in time perception and whether the processing mechanisms of sub- and supra-second are similar or different still remain unclear. In the present study, event-related potential (ERP) technology and classical temporal discrimination tasks were used to explore the neurodynamic patterns of sub- and supra-second time perception. In Experiment 1, the standard interval (SI) was fixed at 500 ms, and the comparison interval (CI) ranged from 200 ms to 800 ms. In Experiment 2, the SI was fixed at 2000 ms, and the CI ranged from 1400 ms to 2600 ms. Participants were required to judge whether the CI was longer or shorter than the SI. The ERP results showed similar CNV activity patterns in the two experiments. Specifically, CNV amplitude would be more negative when the CI was longer or closer to the memorized SI. CNV peak latency increased significantly until the CI reached the memorized SI. We propose that CNV amplitude might reflect the process of temporal comparison, and CNV peak latency might represent the process of temporal decision-making. To our knowledge, it is the first ERP task explicitly testing the two temporal scales, sub- and supra-second timing, in one study. Taken together, the present study reveals a similar functional significance of CNV between sub- and supra-second time perception.
Collapse
|
10
|
Shivhare YK, Sanjram PK. Less effortful auditory-motor synchronization with low-frequency tones in isochronous sound sequence. Neurosci Lett 2021; 756:135945. [PMID: 34019968 DOI: 10.1016/j.neulet.2021.135945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
In music aided rehabilitation therapies like Rhythmic auditory stimulation (RAS), it is important for a subject to engage with isochronous sound sequence for efficient auditory-motor synchronization (AMS). This engagement will depend upon listening effort (which is the amount of cognitive resources needed to comprehend and synchronize with the isochronous sound sequence). Less effort will lead to more engagement. Frequency of tone and inter-stimulus interval (ISI) are two main elements of sound sequence which are likely to affect the synchronization accuracy and listening effort. This study examines the motor response of the participants to the tone and their listening effort involved in performing continuous tapping task. The emphasis is how the effect of frequency of the tone and inter-stimulus interval (ISI) affect synchronization error and listening effort in isochronous sound sequence. Thirty participants (aged, 18-35 years, M = 24.6 years) took part on a voluntary basis in this study. Their finger tapping responses and listening efforts were measured. Pupillary dilation was recorded using Tobii tx-30 eye tracker in order to analyze listening effort. The results suggest that the frequency of tone plays a crucial role in tapping performance and listening effort. In summary, this study demonstrates that there is better temporal alignment to low-frequency tones with lesser listening effort as compared to high-frequency tones.
Collapse
Affiliation(s)
- Yogesh Kumar Shivhare
- Human Factors & Applied Cognition Lab, Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| | - Premjit Khanganba Sanjram
- Human Factors & Applied Cognition Lab, Discipline of Biosciences and Biomedical Engineering, and, Discipline of Psychology, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| |
Collapse
|
11
|
Troche SJ, Kapanci T, Rammsayer TH, Kesseler CPA, Häusler MG, Geis T, Schimmel M, Elpers C, Kreth JH, Thiels C, Rostásy K. Interval Timing in Pediatric Multiple Sclerosis: Impaired in the Subsecond Range but Unimpaired in the One-Second Range. Front Neurol 2020; 11:575780. [PMID: 33193026 PMCID: PMC7606509 DOI: 10.3389/fneur.2020.575780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
Background: For adult multiple sclerosis (MS) patients, impaired temporal processing of simultaneity/successiveness has been frequently reported although interval timing has been investigated in neither adult nor pediatric MS patients. We aim to extend previous research in two ways. First, we focus on interval timing (instead of simultaneity/successiveness) and differentiate between sensory-automatic processing of intervals in the subsecond range and cognitive processing of intervals in the one-second range. Second, we investigate whether impaired temporal information processing would also be observable in pediatric MS patients' interval timing in the subsecond and one-second ranges. Methods: Participants were 22 pediatric MS patients and 22 healthy controls, matched for age, gender, and psychometric intelligence as measured by the Culture Fair Test 20-R. They completed two auditory interval-timing tasks with stimuli in the subsecond and one-second ranges, respectively, as well as a frequency discrimination task. Results: Pediatric MS patients showed impaired interval timing in the subsecond range compared to healthy controls with a mean difference of the difference limen (DL) of 6.3 ms, 95% CI [1.7, 10.9 ms] and an effect size of Cohen's d = 0.830. The two groups did not differ significantly in interval timing in the one-second range (mean difference of the DL = 26.9 ms, 95% CI [−14.2, 67.9 ms], Cohen's d = 0.399) or in frequency discrimination (mean difference of the DL = 0.4 Hz, 95% CI [−1.1, 1.9 Hz], Cohen's d = 0.158). Conclusion: The results indicate that, in particular, the sensory-automatic processing of intervals in the subsecond range but not the cognitive processing of longer intervals is impaired in pediatric MS patients. This differential pattern of results is unlikely to be explained by general deficits of auditory information processing. A tentative explanation, to be tested in future studies, points to subcortical deficits in pediatric MS patients, which might also underlie deficits in speech and visuomotor coordination typically reported in pediatric MS patients.
Collapse
Affiliation(s)
- Stefan J Troche
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Tugba Kapanci
- Department of Psychology and Psychotherapy, University of Witten/Herdecke, Witten, Germany
| | | | - Carl P A Kesseler
- Department of Psychology and Psychotherapy, University of Witten/Herdecke, Witten, Germany
| | - Martin Georg Häusler
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Tobias Geis
- Department of Pediatric Neurology, Klinik St. Hedwig, University Children's Hospital Regensburg (Kinder-Universitätsklinik Ostbayern KUNO), Regensburg, Germany
| | - Mareike Schimmel
- Pediatric Neurology, Children's Hospital, University Hospital Augsburg, Augsburg, Germany
| | - Christiane Elpers
- Neuropediatric Department, Children's University Hospital Muenster, Muenster, Germany
| | - Jonas H Kreth
- Department of Pediatric Neurology, Hospital for Children and Adolescents, Klinikum Leverkusen, Leverkusen, Germany
| | - Charlotte Thiels
- Department of Pediatrics and Pediatric Neurology, Ruhr University Bochum, Bochum, Germany
| | - Kevin Rostásy
- Pediatric Neurology, University of Witten/Herdecke, Children's Hospital Datteln, Datteln, Germany
| |
Collapse
|
12
|
Jia B, Zhang Z, Feng T. Sports experts' unique perception of time duration based on the processing principle of an integrated model of timing. PeerJ 2020; 8:e8707. [PMID: 32195051 PMCID: PMC7069406 DOI: 10.7717/peerj.8707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/06/2020] [Indexed: 11/20/2022] Open
Abstract
Background Duration perception is an essential part of our cognitive and behavioral system, helping us interact with the outside world. An integrated model of timing, which states that the perceived duration of a given stimulus is based on the efficiency of information extraction, was recently set forth to improve current understanding of the representation and judgment of time. However, the prediction from this model that more efficient information extraction results in longer perceived duration has not been tested. Thus, the aim of this study is to investigate whether sports experts, as a group of individuals with information extraction superiority in situations relevant to their sport skill, have longer duration perceptions when they view expertise-related stimuli compared with others with no expertise/experience. Methods For this study, 81 subjects were recruited based on a prior power analysis. The sports experts group had 27 athletes with years of professional training in diving; a wrestler group and a nonathlete group, with each of these groups having 27 subjects, were used as controls. All participants completed a classic duration reproduction task for subsecond and suprasecond durations with both the diving images and general images involved. Results The divers reproduced longer durations for diving stimuli compared with general stimuli under both subsecond and suprasecond time ranges, while the other samples showed the opposite pattern. Furthermore, the years of training in diving were positively correlated with the magnitude of the prolonged reproduction duration when divers viewed diving stimuli. Moreover, the diver group showed a more precise duration perception in subsecond time range for general stimuli compared with the wrestlers and nonathletes. Conclusion The results suggest that sports experts perceive longer duration when viewing expertise-related stimuli compared with others with no expertise/experience.
Collapse
Affiliation(s)
- Binbin Jia
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Zhongqiu Zhang
- Sports Psychology and Biomechanics Research Center, China Institute of Sport Science, Beijing, China
| | - Tian Feng
- Physical Education College of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Yanakieva S, Polychroni N, Family N, Williams LTJ, Luke DP, Terhune DB. The effects of microdose LSD on time perception: a randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl) 2019; 236:1159-1170. [PMID: 30478716 PMCID: PMC6591199 DOI: 10.1007/s00213-018-5119-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
RATIONALE Previous research demonstrating that lysergic acid diethylamide (LSD) produces alterations in time perception has implications for its impact on conscious states and a range of psychological functions that necessitate precise interval timing. However, interpretation of this research is hindered by methodological limitations and an inability to dissociate direct neurochemical effects on interval timing from indirect effects attributable to altered states of consciousness. METHODS We conducted a randomised, double-blind, placebo-controlled study contrasting oral administration of placebo with three microdoses of LSD (5, 10, and 20 μg) in older adults. Subjective drug effects were regularly recorded and interval timing was assessed using a temporal reproduction task spanning subsecond and suprasecond intervals. RESULTS LSD conditions were not associated with any robust changes in self-report indices of perception, mentation, or concentration. LSD reliably produced over-reproduction of temporal intervals of 2000 ms and longer with these effects most pronounced in the 10 μg dose condition. Hierarchical regression analyses indicated that LSD-mediated over-reproduction was independent of marginal differences in self-reported drug effects across conditions. CONCLUSIONS These results suggest that microdose LSD produces temporal dilation of suprasecond intervals in the absence of subjective alterations of consciousness.
Collapse
Affiliation(s)
- Steliana Yanakieva
- Department of Psychology, Goldsmiths, University of London, 8 Lewisham Way, New Cross, London, SE14 6NW, UK
| | - Naya Polychroni
- Department of Psychology, Goldsmiths, University of London, 8 Lewisham Way, New Cross, London, SE14 6NW, UK
| | | | - Luke T J Williams
- Eleusis Pharmaceuticals Ltd, London, UK
- Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - David P Luke
- Department of Psychology, Social Work, & Counselling, University of Greenwich, London, UK
| | - Devin B Terhune
- Department of Psychology, Goldsmiths, University of London, 8 Lewisham Way, New Cross, London, SE14 6NW, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Rönnqvist L, McDonald R, Sommer M. Influences of Synchronized Metronome Training on Soccer Players' Timing Ability, Performance Accuracy, and Lower-Limb Kinematics. Front Psychol 2018; 9:2469. [PMID: 30581405 PMCID: PMC6292953 DOI: 10.3389/fpsyg.2018.02469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/21/2018] [Indexed: 01/04/2023] Open
Abstract
Planning and performance of all complex movement requires timing, integration, and coordination between sensory-perception and motor production to be successful. Despite this, there is limited research into “if” and “how” timing training may influence movement performance in athletes. The aim of the present study was to investigate the effect of synchronized metronome training (SMT) on sensorimotor timing ability, and in view of that, if improved timing may be transferred to lower-limb movement planning, precision performance, and kinematics. The sample consisted of 24 female elite- and semi-elite soccer players, randomly assigned to receive SMT and a control group. The SMT group received 12 sessions of Interactive Metronome® (IM) training over 4 weeks. At pre- and post-test, timing-precision was assessed through hand and feet movement synchronization with rhythmic sound; and leg-movements performance accuracy, duration, and kinematics were recorded during embodied high cognitive-load stepping task (6 trials×20 s) by use of a optoelectronic motion capture system. Pre- to post-test comparisons showed significant timing improvements as an effect of the IM training. Significant pre- to post-test improvements on the stepping task performance were seen in an increasing number of accurate foot taps during the stepping task sequence and by shorter duration for the SMT-group only. No evident pre- to post-test effects of SMT on the kinematic parameters investigated were found. These findings signify that the guided attention and working-memory functioning may be positively affected by SMT training; thereby, resulting in better motor planning, performance, and movement precision. Still, independent of group and test-occasion, significant correlations were found between the participants’ outcome performance differences and the kinematic parameters. It was found that a decreasing 3D movement distance and less segmented movements correlating negatively, and increasing velocity (speed) positively, with accuracy and performance duration, respectively. These findings are likely associated with inter-individual variations in the nature of higher-order cognitive processing capacity due to the highly cognitive demanding stepping task.
Collapse
Affiliation(s)
| | | | - Marius Sommer
- Department of Psychology, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Putting the temporal resolution power (TRP) hypothesis to a critical test: Is the TRP-g relationship still more fundamental than an optimized relationship between speed of information processing and g? INTELLIGENCE 2018. [DOI: 10.1016/j.intell.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Langhanns C, Müller H. Empirical Support for 'Hastening-Through-Re-Automatization' by Contrasting Two Motor-Cognitive Dual Tasks. Front Psychol 2018; 9:714. [PMID: 29887815 PMCID: PMC5981230 DOI: 10.3389/fpsyg.2018.00714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/23/2018] [Indexed: 12/02/2022] Open
Abstract
Motor-cognitive dual tasks have been intensely studied and it has been demonstrated that even well practiced movements like walking show signs of interference when performed concurrently with a challenging cognitive task. Typically walking speed is reduced, at least in elderly persons. In contrast to these findings, some authors report an increased movement frequency under dual-task conditions, which they call hastening. A tentative explanation has been proposed, assuming that the respective movements are governed by an automatic control regime. Though, under single-task conditions, these automatic processes are supervised by “higher-order” cognitive control processes. However, when a concurrent cognitive task binds all cognitive resources, the automatic process is freed from the detrimental effect of cognitive surveillance, allowing higher movement frequencies. Fast rhythmic movements (>1 Hz) should more likely be governed by such an automatic process than low frequency discrete repetitive movements. Fifteen subjects performed two repetitive movements under single and dual-task condition, that is, in combination with a mental calculation task. According to the expectations derived from the explanatory concept, we found an increased movement frequency under dual-task conditions only for the fast rhythmic movement (paddleball task) but not for the slower discrete repetitive task (pegboard task). fNIRS measurements of prefrontal cortical load confirmed the idea of an automatic processing in the paddleball task, whereas the pegboard task seems to be more controlled by processes interfering with the calculation related processing.
Collapse
Affiliation(s)
- Christine Langhanns
- Institute of Sports Science, Department of Psychology and Sports Science, Justus Liebig University Giessen, Giessen, Germany.,Nemolab, Department of Psychology and Sports Science, Justus Liebig University Giessen, Giessen, Germany
| | - Hermann Müller
- Institute of Sports Science, Department of Psychology and Sports Science, Justus Liebig University Giessen, Giessen, Germany.,Nemolab, Department of Psychology and Sports Science, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
17
|
Rammsayer T, Pichelmann S. Visual-auditory differences in duration discrimination depend on modality-specific, sensory-automatic temporal processing: Converging evidence for the validity of the Sensory-Automatic Timing Hypothesis. Q J Exp Psychol (Hove) 2018; 71:2364-2377. [PMID: 30362412 DOI: 10.1177/1747021817741611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Sensory-Automatic Timing Hypothesis assumes visual-auditory differences in duration discrimination to originate from sensory-automatic temporal processing. Although temporal discrimination of extremely brief intervals in the range of tens-of-milliseconds is predicted to depend mainly on modality-specific, sensory-automatic temporal processing, duration discrimination of longer intervals is predicted to require more and more amodal, higher order cognitive resources and decreasing input from the sensory-automatic timing system with increasing interval duration. In two duration discrimination experiments with sensory modality as a within- and a between-subjects variable, respectively, we tested two decisive predictions derived from the Sensory-Automatic Timing Hypothesis: (1) visual-auditory differences in duration discrimination were expected to be larger for brief intervals in the tens-of-milliseconds range than for longer ones, and (2) visual-auditory differences in duration discrimination of longer intervals should disappear when statistically controlled for modality-specific input from the sensory-automatic timing system. In both experiments, visual-auditory differences in duration discrimination were larger for the brief than for the longer intervals. Furthermore, visual-auditory differences observed with longer intervals disappeared when statistically controlled for modality-specific input from the sensory-automatic timing system. Thus, our findings clearly confirmed the validity of the Sensory-Automatic Timing Hypothesis.
Collapse
|
18
|
Abstract
In research on psychological time, it is important to examine the subjective duration of entire stimulus sequences, such as those produced by music (Teki, Frontiers in Neuroscience, 10, 2016). Yet research on the temporal oddball illusion (according to which oddball stimuli seem longer than standard stimuli of the same duration) has examined only the subjective duration of single events contained within sequences, not the subjective duration of sequences themselves. Does the finding that oddballs seem longer than standards translate to entire sequences, such that entire sequences that contain oddballs seem longer than those that do not? Is this potential translation influenced by the mode of information processing-whether people are engaged in direct or indirect temporal processing? Two experiments aimed to answer both questions using different manipulations of information processing. In both experiments, musical sequences either did or did not contain oddballs (auditory sliding tones). To manipulate information processing, we varied the task (Experiment 1), the sequence event structure (Experiments 1 and 2), and the sequence familiarity (Experiment 2) independently within subjects. Overall, in both experiments, the sequences that contained oddballs seemed shorter than those that did not when people were engaged in direct temporal processing, but longer when people were engaged in indirect temporal processing. These findings support the dual-process contingency model of time estimation (Zakay, Attention, Perception & Psychophysics, 54, 656-664, 1993). Theoretical implications for attention-based and memory-based models of time estimation, the pacemaker accumulator and coding efficiency hypotheses of time perception, and dynamic attending theory are discussed.
Collapse
|
19
|
Mikulan E, Bruzzone M, Serodio M, Sigman M, Bekinschtein T, García AM, Sedeño L, Ibáñez A. Time-order-errors and duration ranges in the Episodic Temporal Generalization task. Sci Rep 2017; 7:2643. [PMID: 28572663 PMCID: PMC5453992 DOI: 10.1038/s41598-017-02386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/11/2017] [Indexed: 12/02/2022] Open
Abstract
The current model of the Episodic Temporal Generalization task, where subjects have to judge whether pairs of auditory stimuli are equal in duration, predicts that results are scale-free and unaffected by the presentation order of the stimuli. To test these predictions, we conducted three experiments assessing sub- and supra-second standards and taking presentation order into account. Proportions were spaced linearly in Experiments 1 and 2 and logarithmically in Experiment 3. Critically, we found effects of duration range and presentation order with both spacing schemes. Our results constitute the first report of presentation order effects in the Episodic Temporal Generalization task and demonstrate that future studies should always consider duration range, number of trials and presentation order as crucial factors modulating performance.
Collapse
Affiliation(s)
- Ezequiel Mikulan
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| | - Manuel Bruzzone
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Manuel Serodio
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | | | - Tristán Bekinschtein
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
- Universidad Autónoma del Caribe, Barranquilla, Colombia.
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibañez, Santiago de Chile, Chile.
- Australian Research Council Centre of Excellence in Cognition and its Disorders, Sydney, Australia.
| |
Collapse
|
20
|
García-Garibay O, Cadena-Valencia J, Merchant H, de Lafuente V. Monkeys Share the Human Ability to Internally Maintain a Temporal Rhythm. Front Psychol 2016; 7:1971. [PMID: 28066294 PMCID: PMC5179533 DOI: 10.3389/fpsyg.2016.01971] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Timing is a fundamental variable for behavior. However, the mechanisms allowing human and non-human primates to synchronize their actions with periodic events are not yet completely understood. Here we characterize the ability of rhesus monkeys and humans to perceive and maintain rhythms of different paces in the absence of sensory cues or motor actions. In our rhythm task subjects had to observe and then internally follow a visual stimulus that periodically changed its location along a circular perimeter. Crucially, they had to maintain this visuospatial tempo in the absence of movements. Our results show that the probability of remaining in synchrony with the rhythm decreased, and the variability in the timing estimates increased, as a function of elapsed time, and these trends were well described by the generalized law of Weber. Additionally, the pattern of errors shows that human subjects tended to lag behind fast rhythms and to get ahead of slow ones, suggesting that a mean tempo might be incorporated as prior information. Overall, our results demonstrate that rhythm perception and maintenance are cognitive abilities that we share with rhesus monkeys, and these abilities do not depend on overt motor commands.
Collapse
Affiliation(s)
- Otto García-Garibay
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| | - Jaime Cadena-Valencia
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| | - Hugo Merchant
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| | - Victor de Lafuente
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| |
Collapse
|
21
|
Holm L, Karampela O, Ullén F, Madison G. Executive control and working memory are involved in sub-second repetitive motor timing. Exp Brain Res 2016; 235:787-798. [PMID: 27885405 PMCID: PMC5315705 DOI: 10.1007/s00221-016-4839-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/03/2016] [Indexed: 01/04/2023]
Abstract
The nature of the relationship between timing and cognition remains poorly understood. Cognitive control is known to be involved in discrete timing tasks involving durations above 1 s, but has not yet been demonstrated for repetitive motor timing below 1 s. We examined the latter in two continuation tapping experiments, by varying the cognitive load in a concurrent task. In Experiment 1, participants repeated a fixed three finger sequence (low executive load) or a pseudorandom sequence (high load) with either 524-, 733-, 1024- or 1431-ms inter-onset intervals (IOIs). High load increased timing variability for 524 and 733-ms IOIs but not for the longer IOIs. Experiment 2 attempted to replicate this finding for a concurrent memory task. Participants retained three letters (low working memory load) or seven letters (high load) while producing intervals (524- and 733-ms IOIs) with a drum stick. High load increased timing variability for both IOIs. Taken together, the experiments demonstrate that cognitive control processes influence sub-second repetitive motor timing.
Collapse
Affiliation(s)
- Linus Holm
- Department of Psychology, Umeå University, 901 87, Umeå, Sweden.
| | | | - Fredrik Ullén
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Guy Madison
- Department of Psychology, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
22
|
Timescale- and Sensory Modality-Dependency of the Central Tendency of Time Perception. PLoS One 2016; 11:e0158921. [PMID: 27404269 PMCID: PMC4942040 DOI: 10.1371/journal.pone.0158921] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/23/2016] [Indexed: 02/04/2023] Open
Abstract
When individuals are asked to reproduce intervals of stimuli that are intermixedly presented at various times, longer intervals are often underestimated and shorter intervals overestimated. This phenomenon may be attributed to the central tendency of time perception, and suggests that our brain optimally encodes a stimulus interval based on current stimulus input and prior knowledge of the distribution of stimulus intervals. Two distinct systems are thought to be recruited in the perception of sub- and supra-second intervals. Sub-second timing is subject to local sensory processing, whereas supra-second timing depends on more centralized mechanisms. To clarify the factors that influence time perception, the present study investigated how both sensory modality and timescale affect the central tendency. In Experiment 1, participants were asked to reproduce sub- or supra-second intervals, defined by visual or auditory stimuli. In the sub-second range, the magnitude of the central tendency was significantly larger for visual intervals compared to auditory intervals, while visual and auditory intervals exhibited a correlated and comparable central tendency in the supra-second range. In Experiment 2, the ability to discriminate sub-second intervals in the reproduction task was controlled across modalities by using an interval discrimination task. Even when the ability to discriminate intervals was controlled, visual intervals exhibited a larger central tendency than auditory intervals in the sub-second range. In addition, the magnitude of the central tendency for visual and auditory sub-second intervals was significantly correlated. These results suggest that a common modality-independent mechanism is responsible for the supra-second central tendency, and that both the modality-dependent and modality-independent components of the timing system contribute to the central tendency in the sub-second range.
Collapse
|
23
|
Mitani K, Kashino M. Self-Produced Time Intervals Are Perceived as More Variable and/or Shorter Depending on Temporal Context in Subsecond and Suprasecond Ranges. Front Integr Neurosci 2016; 10:19. [PMID: 27313515 PMCID: PMC4887498 DOI: 10.3389/fnint.2016.00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/17/2016] [Indexed: 11/24/2022] Open
Abstract
The processing of time intervals is fundamental for sensorimotor and cognitive functions. Perceptual and motor timing are often performed concurrently (e.g., playing a musical instrument). Although previous studies have shown the influence of body movements on time perception, how we perceive self-produced time intervals has remained unclear. Furthermore, it has been suggested that the timing mechanisms are distinct for the sub- and suprasecond ranges. Here, we compared perceptual performances for self-produced and passively presented time intervals in random contexts (i.e., multiple target intervals presented in a session) across the sub- and suprasecond ranges (Experiment 1) and within the sub- (Experiment 2) and suprasecond (Experiment 3) ranges, and in a constant context (i.e., a single target interval presented in a session) in the sub- and suprasecond ranges (Experiment 4). We show that self-produced time intervals were perceived as shorter and more variable across the sub- and suprasecond ranges and within the suprasecond range but not within the subsecond range in a random context. In a constant context, the self-produced time intervals were perceived as more variable in the suprasecond range but not in the subsecond range. The impairing effects indicate that motor timing interferes with perceptual timing. The dependence of impairment on temporal contexts suggests multiple timing mechanisms for the subsecond and suprasecond ranges. In addition, violation of the scalar property (i.e., a constant variability to target interval ratio) was observed between the sub- and suprasecond ranges. The violation was clearer for motor timing than for perceptual timing. This suggests that the multiple timing mechanisms for the sub- and suprasecond ranges overlap more for perception than for motor. Moreover, the central tendency effect (i.e., where shorter base intervals are overestimated and longer base intervals are underestimated) disappeared with motor timing within the subsecond range, suggesting multiple subsecond timing system for perception and motor.
Collapse
Affiliation(s)
- Keita Mitani
- Department of Information Processing, Tokyo Institute of Technology Yokohama, Japan
| | - Makio Kashino
- Department of Information Processing, Tokyo Institute of TechnologyYokohama, Japan; Human Information Science Laboratory, NTT Communication Science Laboratories, Nippon Telegraph and Telephone CorporationAtsugi, Japan
| |
Collapse
|
24
|
Murai Y, Yotsumoto Y. Context-Dependent Neural Modulations in the Perception of Duration. Front Integr Neurosci 2016; 10:12. [PMID: 27013993 PMCID: PMC4781865 DOI: 10.3389/fnint.2016.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Abstract
Recent neuroimaging studies have revealed that distinct brain networks are recruited in the perception of sub- and supra-second timescales, whereas psychophysical studies have suggested that there are common or continuous mechanisms for perceiving these two durations. The present study aimed to elucidate the neural implementation of such continuity by examining the neural correlates of peri-second timing. We measured neural activity during a duration reproduction task using functional magnetic resonance imaging. Our results replicate the findings of previous studies in showing that separate neural networks are recruited for sub-versus supra-second time perception: motor systems including the motor cortex and the supplementary motor area for sub-second perception, and the frontal, parietal, and auditory cortical areas for supra-second perception. We further found that the peri-second perception activated both the sub- and supra-second networks, and that the timing system that processed duration perception in previous trials was more involved in subsequent peri-second processing. These results indicate that the sub- and supra-second timing systems overlap at around 1 s, and cooperate to optimally encode duration based on the hysteresis of previous trials.
Collapse
Affiliation(s)
- Yuki Murai
- Department of Life Sciences, The University of TokyoTokyo, Japan; Japan Society for the Promotion of ScienceTokyo, Japan
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
25
|
Shima S, Murai Y, Hashimoto Y, Yotsumoto Y. Duration Adaptation Occurs Across the Sub- and Supra-Second Systems. Front Psychol 2016; 7:114. [PMID: 26903920 PMCID: PMC4746325 DOI: 10.3389/fpsyg.2016.00114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022] Open
Abstract
After repetitive exposure to a stimulus of relatively short duration, a subsequent stimulus of long duration is perceived as being even longer, and after repetitive exposure to a stimulus of relatively long duration, a subsequent stimulus of short duration is perceived as being even shorter. This phenomenon is called duration adaptation, and has been reported only for sub-second durations. We examined whether duration adaptation also occurs for supra-second durations (Experiment 1) and whether duration adaptation occurs across sub- and supra-second durations (Experiment 2). Duration adaptation occurred not only for sub-second durations, but also for supra-second durations and across sub- and supra-second durations. These results suggest that duration adaptation involves an interval-independent system or two functionally related systems that are associated with both the sub- and supra-second durations.
Collapse
Affiliation(s)
- Shuhei Shima
- Department of Integrated Sciences, The University of Tokyo Tokyo, Japan
| | - Yuki Murai
- Department of Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yuki Hashimoto
- Department of Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
26
|
Rammsayer TH, Borter N, Troche SJ. Visual-auditory differences in duration discrimination of intervals in the subsecond and second range. Front Psychol 2015; 6:1626. [PMID: 26579013 PMCID: PMC4620148 DOI: 10.3389/fpsyg.2015.01626] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/08/2015] [Indexed: 12/02/2022] Open
Abstract
A common finding in time psychophysics is that temporal acuity is much better for auditory than for visual stimuli. The present study aimed to examine modality-specific differences in duration discrimination within the conceptual framework of the Distinct Timing Hypothesis. This theoretical account proposes that durations in the lower milliseconds range are processed automatically while longer durations are processed by a cognitive mechanism. A sample of 46 participants performed two auditory and visual duration discrimination tasks with extremely brief (50-ms standard duration) and longer (1000-ms standard duration) intervals. Better discrimination performance for auditory compared to visual intervals could be established for extremely brief and longer intervals. However, when performance on duration discrimination of longer intervals in the 1-s range was controlled for modality-specific input from the sensory-automatic timing mechanism, the visual-auditory difference disappeared completely as indicated by virtually identical Weber fractions for both sensory modalities. These findings support the idea of a sensory-automatic mechanism underlying the observed visual-auditory differences in duration discrimination of extremely brief intervals in the millisecond range and longer intervals in the 1-s range. Our data are consistent with the notion of a gradual transition from a purely modality-specific, sensory-automatic to a more cognitive, amodal timing mechanism. Within this transition zone, both mechanisms appear to operate simultaneously but the influence of the sensory-automatic timing mechanism is expected to continuously decrease with increasing interval duration.
Collapse
Affiliation(s)
- Thomas H Rammsayer
- Institute of Psychology, University of Bern Bern, Switzerland ; Center for Cognition, Learning, and Memory, University of Bern Bern, Switzerland
| | - Natalie Borter
- Institute of Psychology, University of Bern Bern, Switzerland ; Center for Cognition, Learning, and Memory, University of Bern Bern, Switzerland
| | - Stefan J Troche
- Department of Psychology and Psychotherapy, University of Witten/Herdecke Witten, Germany
| |
Collapse
|
27
|
Time-order errors and standard-position effects in duration discrimination: An experimental study and an analysis by the sensation-weighting model. Atten Percept Psychophys 2015; 77:2409-23. [DOI: 10.3758/s13414-015-0946-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Abstract
Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions.
Collapse
|
29
|
Bobin-Bègue A, Droit-Volet S, Provasi J. Young children's difficulties in switching from rhythm production to temporal interval production (>1 s). Front Psychol 2014; 5:1346. [PMID: 25538640 PMCID: PMC4256987 DOI: 10.3389/fpsyg.2014.01346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/05/2014] [Indexed: 11/13/2022] Open
Abstract
This study examined the young children's abilities to switch from rhythm production, with short inter-tap intervals (ITIs), to temporal interval production, with long ITI (>1 s), in a sensorimotor synchronization task. Children aged 3- and 5-year-olds were given six sessions of synchronization. In a control group, they had to synchronize their ITI to an inter-stimulus interval (ISI) of 4 s. In the experimental group, they must progressively increase their ITI for one session to the next (from 0.4 to 4.0-s ISI). Our results showed that the 5-year-olds produced longer ITI that the 3-year-olds in synchronization. However, the value of ITI in the 5-year-olds never exceeded 1.5 s, with more variable ITI in the control than in the experimental group. In addition, at 5 years, boys had more difficulties than girls in changing their tapping rhythm. These results suggest a temporal window in sensorimotor synchronization, beyond which the rhythm is lost and the synchronization becomes difficult.
Collapse
Affiliation(s)
- Anne Bobin-Bègue
- Laboratoire Éthologie, Cognition, Développement, Université Paris Ouest Nanterre La Défense Nanterre, France
| | - Sylvie Droit-Volet
- Clermont Université, Université Blaise Pascal, Laboratoire de Psychologie Sociale et Cognitive, CNRS UMR 6024 Clermont-Ferrand, France
| | - Joëlle Provasi
- Laboratoire Cognition Humaine et Artificielle, École Pratique des Hautes Études Paris, France
| |
Collapse
|
30
|
Van Volkinburg H, Balsam P. Effects of Emotional Valence and Arousal on Time Perception. TIMING & TIME PERCEPTION 2014; 2:360-378. [PMID: 27110491 DOI: 10.1163/22134468-00002034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the influence of emotional arousal and valence on estimating time intervals. A reproduction task was used in which images from the International Affective Picture System served as the stimuli to be timed. Experiment 1 assessed the effects of positive and negative valence at a moderate arousal level and Experiment 2 replicated Experiment 1 with the addition of a high arousal condition. Overestimation increased as a function of arousal during encoding of times regardless of valence. For images presented during reproduction, overestimation occurred at the moderate arousal level for positive and negative valence but underestimation occurred in the negative valence high arousal condition. The overestimation of time intervals produced by emotional arousal during encoding and during reproduction suggests that emotional stimuli affect temporal information processing in a qualitatively different way during different phases of temporal information processing.
Collapse
Affiliation(s)
| | - Peter Balsam
- Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA
| |
Collapse
|