1
|
Pareek P, Chaudhary S, Singh S, Thodikayil AT, Kalyanasundaram D, Kumar S. Bridging biomimetic and bioenergetics scaffold: Cellulose-graphene oxide-arginine functionalized aerogel for stem cell-mediated cartilage repair. Int J Biol Macromol 2024; 278:134608. [PMID: 39134192 DOI: 10.1016/j.ijbiomac.2024.134608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/18/2024]
Abstract
The avascular nature of cartilage tissue limits inherent regenerative capacity to counter any damage and this has become a substantial burden to the health of individuals. As a result, there is a high demand to repair and regenerate cartilage. Existing tissue engineering approaches for cartilage regeneration typically produce either microporous or nano-fibrous scaffolds lacking the desired biological outcome due to lack of biomimetic dual architecture of microporous construct with nano-fibrous interconnected structures like the native cartilage. Most of these scaffolds also fail to suppress ROS generation and provide sustained bioenergetics to cells, resulting in the loss of metabolic activity under avascular microenvironment of cartilage. A dual architecture microporous construct with nano-fibrous interconnected network of cellulose aerogel reinforced with arginine-coated graphene oxide (CNF-GO-Arg aerogel) was developed for cartilage regeneration. The designed dual-architectured CNF-GO-Arg aerogel using dual ice templating assembly demonstrates 80 % strain recovery ability under compression. The release of Arginine from CNF-GO-Arg aerogel supported 41 % reduction in intracellular ROS activity and promoted chondrogenic differentiation of hMSCs by shifting mitochondrial bioenergetics towards oxidative phosphorylation indicated by JC-1 dye staining. Overall developed CNF-GO-Arg aerogel provided multifunctionality via biomimetic morphology, cellular bioenergetics, and suppressed ROS generation to address the need for regeneration of cartilage.
Collapse
Affiliation(s)
- Puneet Pareek
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shivani Chaudhary
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sonu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | - Dinesh Kalyanasundaram
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sachin Kumar
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
2
|
Dwivedi N, Patra B, Mentink-Vigier F, Wi S, Sinha N. Unveiling Charge-Pair Salt-Bridge Interaction Between GAGs and Collagen Protein in Cartilage: Atomic Evidence from DNP-Enhanced ssNMR at Natural Isotopic Abundance. J Am Chem Soc 2024; 146:23663-23668. [PMID: 38980938 DOI: 10.1021/jacs.4c05539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The interactions between glycosaminoglycans (GAGs) and proteins are essential in numerous biochemical processes that involve ion-pair interactions. However, there is no evidence of direct and specific interactions between GAGs and collagen proteins in native cartilage. The resolution of solid-state NMR (ssNMR) can offer such information but the detection of GAG interactions in cartilage is limited by the sensitivity of the experiments when 13C and 15N isotopes are at natural abundance. In this communication, this limitation is overcome by taking advantage of dynamic nuclear polarization (DNP)-enhanced magic-angle spinning (MAS) experiments to obtain two-dimensional (2D) 15N-13C and 13C-13C correlations on native samples at natural abundance. These experiments unveiled inter-residue correlations in the aliphatic regions of the collagen protein previously unobserved. Additionally, our findings provide direct evidence of charge-pair salt-bridge interactions between negatively charged GAGs and positively charged arginine (Arg) residues of collagen protein. We also identified potential hydrogen bonding interactions between hydroxyproline (Hyp) and GAGs, offering atomic insights into the biochemical interactions within the extracellular matrix of native cartilage. Our approach may provide a new avenue for the structural characterization of other native systems.
Collapse
Affiliation(s)
- Navneet Dwivedi
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Bijaylaxmi Patra
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Sungsool Wi
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Cadelano F, Della Morte E, Niada S, Anzano F, Zagra L, Giannasi C, Brini ATM. Cartilage responses to inflammatory stimuli and adipose stem/stromal cell-derived conditioned medium: Results from an ex vivo model. Regen Ther 2024; 26:346-353. [PMID: 39036443 PMCID: PMC11260398 DOI: 10.1016/j.reth.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Osteoarthritis (OA), a chronic inflammatory joint disorder, still lacks effective therapeutic interventions. Consequently, the development of convenient experimental models is crucial. Recently, research has focused on the plasticity of Mesenchymal Stem/stromal Cells, particularly adipose-derived ones (ASCs), in halting OA progression. This study investigates the therapeutic potential of a cell-free approach, ASC-derived conditioned medium (CM), in reversing cytokine-induced OA markers in an ex vivo model of human cartilage explants. Methods 4 mm cartilage punches, derived from the femoral heads of patients undergoing total hip replacement, were treated with 10 ng/ml TNFα, 1 ng/ml IL-1β, or a combination of both, over a 3-day period. Analysis of OA-related markers, such as MMP activity, the release of NO and GAGs, and the expression of PTGS2, allowed for the selection of the most effective inflammatory stimulus. Subsequently, explants challenged with TNFα+IL-1β were exposed to CM, consisting of a pool of concentrated supernatants from 72-h cultured ASCs, in order to evaluate its effect on cartilage catabolism and inflammation. Results The 3-day treatment with both 10ng/ml TNFα and 1ng/ml IL-1β significantly increased MMP activity and NO release, without affecting GAG release. The addition of CM significantly downregulated the abnormal MMP activity induced by the inflammatory stimuli, while also mildly reducing MMP3, MMP13, and PTGS2 gene expression. Finally, SOX9 and COL2A1 were downregulated by the cytokines, and further decreased by CM. Conclusion The proposed cartilage explant model offers encouraging evidence of the therapeutic potential of ASC-derived CM against OA, and it could serve as a convenient ex vivo platform for drug screening.
Collapse
Affiliation(s)
- Francesca Cadelano
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Elena Della Morte
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Stefania Niada
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Francesco Anzano
- Hip Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Luigi Zagra
- Hip Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Chiara Giannasi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Anna Teresa Maria Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
4
|
Reyes Alcaraz V, Pattappa G, Miura S, Angele P, Blunk T, Rudert M, Hiraki Y, Shukunami C, Docheva D. A Narrative Review of the Roles of Chondromodulin-I (Cnmd) in Adult Cartilage Tissue. Int J Mol Sci 2024; 25:5839. [PMID: 38892027 PMCID: PMC11173128 DOI: 10.3390/ijms25115839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Articular cartilage is crucial for joint function but its avascularity limits intrinsic repair, leading to conditions like osteoarthritis (OA). Chondromodulin-I (Cnmd) has emerged as a key molecule in cartilage biology, with potential implications for OA therapy. Cnmd is primarily expressed in cartilage and plays an important role in chondrocyte proliferation, cartilage homeostasis, and the blocking of angiogenesis. In vivo and in vitro studies on Cnmd, also suggest an involvement in bone repair and in delaying OA progression. Its downregulation correlates with OA severity, indicating its potential as a therapeutic target. Further research is needed to fully understand the mode of action of Cnmd and its beneficial implications for managing OA. This comprehensive review aims to elucidate the molecular characteristics of Cnmd, from its expression pattern, role in cartilage maintenance, callus formation during bone repair and association with OA.
Collapse
Affiliation(s)
- Viviana Reyes Alcaraz
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (V.R.A.); (G.P.)
| | - Girish Pattappa
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (V.R.A.); (G.P.)
| | - Shigenori Miura
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (S.M.); (C.S.)
| | - Peter Angele
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Maximilian Rudert
- Department of Orthopaedics, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany;
| | - Yuji Hiraki
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8501, Japan;
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (S.M.); (C.S.)
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (V.R.A.); (G.P.)
| |
Collapse
|
5
|
Fongsodsri K, Tiyasatkulkovit W, Chaisri U, Reamtong O, Adisakwattana P, Supasai S, Kanjanapruthipong T, Sukphopetch P, Aramwit P, Ampawong S. Sericin promotes chondrogenic proliferation and differentiation via glycolysis and Smad2/3 TGF-β signaling inductions and alleviates inflammation in three-dimensional models. Sci Rep 2024; 14:11553. [PMID: 38773312 PMCID: PMC11109159 DOI: 10.1038/s41598-024-62516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Knee osteoarthritis is a chronic joint disease mainly characterized by cartilage degeneration. The treatment is challenging due to the lack of blood vessels and nerve supplies in cartilaginous tissue, causing a prominent limitation of regenerative capacity. Hence, we investigated the cellular promotional and anti-inflammatory effects of sericin, Bombyx mori-derived protein, on three-dimensional chondrogenic ATDC5 cell models. The results revealed that a high concentration of sericin promoted chondrogenic proliferation and differentiation and enhanced matrix production through the increment of glycosaminoglycans, COL2A1, COL X, and ALP expressions. SOX-9 and COL2A1 gene expressions were notably elevated in sericin treatment. The proteomic analysis demonstrated the upregulation of phosphoglycerate mutase 1 and triosephosphate isomerase, a glycolytic enzyme member, reflecting the proliferative enhancement of sericin. The differentiation capacity of sericin was indicated by the increased expressions of procollagen12a1, collagen10a1, rab1A, periostin, galectin-1, and collagen6a3 proteins. Sericin influenced the differentiation capacity via the TGF-β signaling pathway by upregulating Smad2 and Smad3 while downregulating Smad1, BMP2, and BMP4. Importantly, sericin exhibited an anti-inflammatory effect by reducing IL-1β, TNF-α, and MMP-1 expressions and accelerating COL2A1 production in the early inflammatory stage. In conclusion, sericin demonstrates potential in promoting chondrogenic proliferation and differentiation, enhancing cartilaginous matrix synthesis through glycolysis and TGF-β signaling pathways, and exhibiting anti-inflammatory properties.
Collapse
Affiliation(s)
- Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | | | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Suangsuda Supasai
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10330, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Yu Y, Jiang Y, Ge H, Fan X, Gao H, Zhou Z. HIF-1α in cartilage homeostasis, apoptosis, and glycolysis in mice with steroid-induced osteonecrosis of the femoral head. J Cell Physiol 2024; 239:e31224. [PMID: 38481029 DOI: 10.1002/jcp.31224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 05/16/2024]
Abstract
With the prevalence of coronavirus disease 2019, the administration of glucocorticoids (GCs) has become more widespread. Treatment with high-dose GCs leads to a variety of problems, of which steroid-induced osteonecrosis of the femoral head (SONFH) is the most concerning. Since hypoxia-inducible factor 1α (HIF-1α) is a key factor in cartilage development and homeostasis, it may play an important role in the development of SONFH. In this study, SONFH models were established using methylprednisolone (MPS) in mouse and its proliferating chondrocytes to investigate the role of HIF-1α in cartilage differentiation, extracellular matrix (ECM) homeostasis, apoptosis and glycolysis in SONFH mice. The results showed that MPS successfully induced SONFH in vivo and vitro, and MPS-treated cartilage and chondrocytes demonstrated disturbed ECM homeostasis, significantly increased chondrocyte apoptosis rate and glycolysis level. However, compared with normal mice, not only the expression of genes related to collagens and glycolysis, but also chondrocyte apoptosis did not demonstrate significant differences in mice co-treated with MPS and HIF-1α inhibitor. And the effects observed in HIF-1α activator-treated chondrocytes were similar to those induced by MPS. And HIF-1α degraded collagens in cartilage by upregulating its downstream target genes matrix metalloproteinases. The results of activator/inhibitor of endoplasmic reticulum stress (ERS) pathway revealed that the high apoptosis rate induced by MPS was related to the ERS pathway, which was also affected by HIF-1α. Furthermore, HIF-1α affected glucose metabolism in cartilage by increasing the expression of glycolysis-related genes. In conclusion, HIF-1α plays a vital role in the pathogenesis of SONFH by regulating ECM homeostasis, chondrocyte apoptosis, and glycolysis.
Collapse
Affiliation(s)
- Yaling Yu
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yixin Jiang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongfan Ge
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoli Fan
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hang Gao
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenlei Zhou
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Liu G, Wei X, Zhai Y, Zhang J, Li J, Zhao Z, Guan T, Zhao D. 3D printed osteochondral scaffolds: design strategies, present applications and future perspectives. Front Bioeng Biotechnol 2024; 12:1339916. [PMID: 38425994 PMCID: PMC10902174 DOI: 10.3389/fbioe.2024.1339916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Articular osteochondral (OC) defects are a global clinical problem characterized by loss of full-thickness articular cartilage with underlying calcified cartilage through to the subchondral bone. While current surgical treatments can relieve pain, none of them can completely repair all components of the OC unit and restore its original function. With the rapid development of three-dimensional (3D) printing technology, admirable progress has been made in bone and cartilage reconstruction, providing new strategies for restoring joint function. 3D printing has the advantages of fast speed, high precision, and personalized customization to meet the requirements of irregular geometry, differentiated composition, and multi-layered boundary layer structures of joint OC scaffolds. This review captures the original published researches on the application of 3D printing technology to the repair of entire OC units and provides a comprehensive summary of the recent advances in 3D printed OC scaffolds. We first introduce the gradient structure and biological properties of articular OC tissue. The considerations for the development of 3D printed OC scaffolds are emphatically summarized, including material types, fabrication techniques, structural design and seed cells. Especially from the perspective of material composition and structural design, the classification, characteristics and latest research progress of discrete gradient scaffolds (biphasic, triphasic and multiphasic scaffolds) and continuous gradient scaffolds (gradient material and/or structure, and gradient interface) are summarized. Finally, we also describe the important progress and application prospect of 3D printing technology in OC interface regeneration. 3D printing technology for OC reconstruction should simulate the gradient structure of subchondral bone and cartilage. Therefore, we must not only strengthen the basic research on OC structure, but also continue to explore the role of 3D printing technology in OC tissue engineering. This will enable better structural and functional bionics of OC scaffolds, ultimately improving the repair of OC defects.
Collapse
Affiliation(s)
- Ge Liu
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaowei Wei
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yun Zhai
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Jingrun Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Junlei Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhenhua Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Tianmin Guan
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Deiwei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
8
|
Wang J, Sun Z, Yu C, Zhao H, Yan M, Sun S, Han X, Wang T, Yu T, Zhang Y. Single-cell RNA sequencing reveals the impact of mechanical loading on knee tibial cartilage in osteoarthritis. Int Immunopharmacol 2024; 128:111496. [PMID: 38224628 DOI: 10.1016/j.intimp.2024.111496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
Articular cartilage degeneration is one of the major pathogenic alterations observed in knee osteoarthritis (KOA). Mechanical stress has been verified to contribute to KOA development. To gain insight into the pathogenic mechanism of KOA development, we investigated chondrocyte subsets under different mechanical loading conditions via single-cell RNA sequencing (scRNA-seq). Articular cartilage tissues from both high mechanical loading (named the OATL group) and low mechanical loading (named the OATN group) surfaces were obtained from the proximal tibia of KOA patients, and scRNA-seq was conducted. Chondrocyte subtypes, including a new subset, HTC-C (hypertrophic chondrocytes-C), and their functions, development and interactions among cell subsets were identified. Immunohistochemical staining was also conducted to verify the existence and location of each chondrocyte subset. Furthermore, differentially expressed genes (DEGs) and their functions between regions with high and low mechanical loading were identified. Based on Gene Ontology terms for the DEGs in each cell type, the characteristic of cartilage degeneration in the OATL region was clarified. Mitochondrial dysfunction may be involved in the KOA process in the OATN region.
Collapse
Affiliation(s)
- Junjie Wang
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zewen Sun
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenghao Yu
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haibo Zhao
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingyue Yan
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shenjie Sun
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, China
| | - Xu Han
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianrui Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao, China.
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Iqbal M, Waqas M, Mo Q, Shahzad M, Zeng Z, Qamar H, Mehmood K, Kulyar MFEA, Nawaz S, Li J. Baicalin inhibits apoptosis and enhances chondrocyte proliferation in thiram-induced tibial dyschondroplasia in chickens by regulating Bcl-2/Caspase-9 and Sox-9/Collagen-II expressions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115689. [PMID: 37992645 DOI: 10.1016/j.ecoenv.2023.115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Avian tibial dyschondroplasia (TD) is a skeletal disease affecting fast growing chickens, resulting in non-mineralized avascular cartilage. This metabolic disorder is characterized by lameness and reduced growth performance causing economic losses. The aim of this study was to investigate the protective effects of baicalin against TD caused by thiram exposure. A total of two hundred and forty (n = 240) one day-old broiler chickens were uniformly and randomly allocated into three different groups (n = 80) viz. control, TD, and baicalin groups. All chickens received standard feed, however, to induce TD, the TD and baicalin groups received thiram (tetramethylthiuram disulfide) at a rate of 50 mg/kg feed from days 4-7. The thiram induction in TD and baicalin groups resulted in lameness, high mortality, and enlarged growth-plate, poor production performance, reduction in ALP, GSH-Px, SOD, and T-AOC levels, and increased AST and ALT, and MDA levels. Furthermore, histopathological results showed less vascularization, and mRNA and protein expression levels of Sox-9, Col-II, and Bcl-2 showed significant downward trend, while caspase-9 displayed significant up-regulation in TD-affected chickens. After the TD induction, the baicalin group was orally administered with baicalin at a rate of 200 mg/kg from days 8-18. Baicalin administration increased the vascularization, and chondrocytes with intact nuclei, alleviated lameness, decreased GP size, increased productive capacity, and restored the liver antioxidant enzymes and serum biochemical levels. Furthermore, baicalin significantly up-regulated the gene and protein expressions of Sox-9, Col-II, and Bcl-2, and significantly down-regulated the expression of caspase-9 (p < 0.05). Therefore, the obtained results suggest that baicalin could be a possible choice in thiram toxicity alleviation by regulating apoptosis and chondrocyte proliferation in thiram-induced tibial dyschondroplasia.
Collapse
Affiliation(s)
- Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqas
- Department of Veterinary Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Poonch 12350, Azad Jammu and Kashmir, Pakistan
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shahzad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hammad Qamar
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Mierzejewski B, Pulik Ł, Grabowska I, Sibilska A, Ciemerych MA, Łęgosz P, Brzoska E. Coding and noncoding RNA profile of human heterotopic ossifications - Risk factors and biomarkers. Bone 2023; 176:116883. [PMID: 37597797 DOI: 10.1016/j.bone.2023.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Heterotopic ossification (HO) means the formation of bone in muscles and soft tissues, such as ligaments or tendons. HO could have a genetic history or develop after a traumatic event, as a result of muscle injury, fractures, burns, surgery, or neurological disorders. Many lines of evidence suggest that the formation of HO is related to the pathological differentiation of stem or progenitor cells present within soft tissues or mobilized from the bone marrow. The cells responsible for the initiation and progression of HO are generally called HO precursor cells. The exact mechanisms behind the development of HO are not fully understood. However, several factors have been identified as potential contributors. For example, local tissue injury and inflammation disturb soft tissue homeostasis. Inflammatory cells release growth factors and cytokines that promote osteogenic or chondrogenic differentiation of HO precursor cells. The bone morphogenetic protein (BMP) is one of the main factors involved in the development of HO. In this study, next-generation sequencing (NGS) and RT-qPCR were performed to analyze the differences in mRNA, miRNA, and lncRNA expression profiles between muscles, control bone samples, and HO samples coming from patients who underwent total hip replacement (THR). As a result, crucial changes in the level of gene expression between HO and healthy tissues were identified. The bioinformatic analysis allowed to describe the processes most severely impacted, as well as genes which level differed the most significantly between HO and control samples. Our analysis showed that the level of transcripts involved in leukocyte migration, differentiation, and activation, as well as markers of chronic inflammatory diseases, that is, miR-148, increased in HO, as compared to muscle. Furthermore, the levels of miR-195 and miR-143, which are involved in angiogenesis, were up-regulated in HO, as compared to bone. Thus, we suggested that inflammation and angiogenesis play an important role in HO formation. Importantly, we noticed that HO is characterized by a higher level of TLR3 expression, compared to muscle and bone. Thus, we suggest that infection may also be a risk factor in HO development. Furthermore, an increased level of transcripts coding proteins involved in osteogenesis and signaling pathways, such as ALPL, SP7, BGLAP, BMP8A, BMP8B, SMPD3 was noticed in HO, as compared to muscles. Interestingly, miR-99b, miR-146, miR-204, and LINC00320 were up-regulated in HO, comparing to muscles and bone. Therefore, we suggested that these molecules could be important biomarkers of HO formation and a potential target for therapies.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Łukasz Pulik
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Aleksandra Sibilska
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland.
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland.
| |
Collapse
|
11
|
Koung Ngeun S, Shimizu M, Kaneda M. Characterization of Rabbit Mesenchymal Stem/Stromal Cells after Cryopreservation. BIOLOGY 2023; 12:1312. [PMID: 37887022 PMCID: PMC10603895 DOI: 10.3390/biology12101312] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Adipose tissues (ADPs) are an alternative source for mesenchymal stem/stromal cells (MSCs), given that conventional bone marrow (BM) collection is painful and yields limited cell numbers. As the need for easily accessible MSCs grows, cryopreservation's role in regenerative medicine is becoming increasingly vital. However, limited research exists on the characteristics and functional properties of rabbit-derived MSCs from various anatomical sources before and after cryopreservation. We examined the effects of cryopreservation using Bambanker. We found that cryopreservation did not adversely affect the morphology, viability, and adipogenic or chondrogenic differentiation abilities of ADP MSCs or BM MSCs. However, there was a notable drop in the proliferation rate and osteogenic differentiation capability of BM MSCs post-cryopreservation. Additionally, after cryopreservation, the surface marker gene expression of CD90 was not evident in ADP MSCs. As for markers, ADIPOQ can serve as an adipogenic marker for ADP MSCs. ACAN and CNMD can act as chondrogenic markers, but these two markers are not as effective post-cryopreservation on ADP MSCs, and osteogenic markers could not be validated. The study highlights that compared to BM MSCs, ADP MSCs retained a higher viability, proliferation rate, and differentiation potential after cryopreservation. As such, in clinical MSC use, we must consider changes in post-cryopreservation cell functions.
Collapse
Affiliation(s)
- Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Miki Shimizu
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| |
Collapse
|
12
|
Etschmaier V, Glänzer D, Eck N, Schäfer U, Leithner A, Georg D, Lohberger B. Proton and Carbon Ion Irradiation Changes the Process of Endochondral Ossification in an Ex Vivo Femur Organotypic Culture Model. Cells 2023; 12:2301. [PMID: 37759523 PMCID: PMC10527791 DOI: 10.3390/cells12182301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Particle therapy (PT) that utilizes protons and carbon ions offers a promising way to reduce the side effects of radiation oncology, especially in pediatric patients. To investigate the influence of PT on growing bone, we exposed an organotypic rat ex vivo femur culture model to PT. After irradiation, histological staining, immunohistochemical staining, and gene expression analysis were conducted following 1 or 14 days of in vitro culture (DIV). Our data indicated a significant loss of proliferating chondrocytes at 1 DIV, which was followed by regeneration attempts through chondrocytic cluster formation at 14 DIV. Accelerated levels of mineralization were observed, which correlated with increased proteoglycan production and secretion into the pericellular matrix. Col2α1 expression, which increased during the cultivation period, was significantly inhibited by PT. Additionally, the decrease in ColX expression over time was more pronounced compared to the non-IR control. The chondrogenic markers BMP2, RUNX2, OPG, and the osteogenic marker ALPL, showed a significant reduction in the increase in expression after 14 DIV due to PT treatment. It was noted that carbon ions had a stronger influence than protons. Our bone model demonstrated the occurrence of pathological and regenerative processes induced by PT, thus building on the current understanding of the biological mechanisms of bone.
Collapse
Affiliation(s)
- Vanessa Etschmaier
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| | - Dietmar Glänzer
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| | - Nicole Eck
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| | - Ute Schäfer
- Department of Neurosurgery, Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria;
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria;
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| |
Collapse
|
13
|
Jammes M, Cassé F, Velot E, Bianchi A, Audigié F, Contentin R, Galéra P. Pro-Inflammatory Cytokine Priming and Purification Method Modulate the Impact of Exosomes Derived from Equine Bone Marrow Mesenchymal Stromal Cells on Equine Articular Chondrocytes. Int J Mol Sci 2023; 24:14169. [PMID: 37762473 PMCID: PMC10531906 DOI: 10.3390/ijms241814169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Osteoarthritis (OA) is a widespread osteoarticular pathology characterized by progressive hyaline cartilage degradation, exposing horses to impaired well-being, premature career termination, alongside substantial financial losses for horse owners. Among the new therapeutic strategies for OA, using mesenchymal stromal cell (MSC)-derived exosomes (MSC-exos) appears to be a promising option for conveying MSC therapeutic potential, yet avoiding the limitations inherent to cell therapy. Here, we first purified and characterized exosomes from MSCs by membrane affinity capture (MAC) and size-exclusion chromatography (SEC). We showed that intact MSC-exos are indeed internalized by equine articular chondrocytes (eACs), and then evaluated their functionality on cartilaginous organoids. Compared to SEC, mRNA and protein expression profiles revealed that MAC-exos induced a greater improvement of eAC-neosynthesized hyaline-like matrix by modulating collagen levels, increasing PCNA, and decreasing Htra1 synthesis. However, because the MAC elution buffer induced unexpected effects on eACs, an ultrafiltration step was included to the isolation protocol. Finally, exosomes from MSCs primed with equine pro-inflammatory cytokines (IL-1β, TNF-α, or IFN-γ) further improved the eAC hyaline-like phenotype, particularly IL-1β and TNF-α. Altogether, these findings indicate the importance of the exosome purification method and further demonstrate the potential of pro-inflammatory priming in the enhancement of the therapeutic value of MSC-exos for equine OA treatment.
Collapse
Affiliation(s)
- Manon Jammes
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Frédéric Cassé
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Emilie Velot
- Molecular Engineering and Articular Physiopathology (IMoPA), French National Center for Scientific Research (CNRS), Université de Lorraine, 54000 Nancy, France; (E.V.); (A.B.)
| | - Arnaud Bianchi
- Molecular Engineering and Articular Physiopathology (IMoPA), French National Center for Scientific Research (CNRS), Université de Lorraine, 54000 Nancy, France; (E.V.); (A.B.)
| | - Fabrice Audigié
- Center of Imaging and Research in Locomotor Affections on Equines, Veterinary School of Alfort, 14430 Goustranville, France;
| | - Romain Contentin
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Philippe Galéra
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| |
Collapse
|
14
|
Boča R, Štofko J, Imrich R. Effect of Solvation on Glycine Molecules: A Theoretical Study. ACS OMEGA 2023; 8:28577-28582. [PMID: 37576642 PMCID: PMC10413822 DOI: 10.1021/acsomega.3c02972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023]
Abstract
Ab initio calculations of HF+MP2 and DFT-B3LYP quality have been used in calculating the molecular geometries and properties of neutral and charged molecules of glycine in amino acid as well as zwitterionic forms. A traditional set of molecular descriptors has been enriched by the molecular chemical potential, expressed via the Mulliken electronegativity, and Pearson's chemical hardness. In the global energy minimum, the complete vibrational analysis allowed evaluating the standard Gibbs energy and related thermodynamic quantities.
Collapse
Affiliation(s)
- Roman Boča
- University of SS Cyril and
Methodius, Faculty of Health Science, 917 01 Trnava, Slovakia
| | - Juraj Štofko
- University of SS Cyril and
Methodius, Faculty of Health Science, 917 01 Trnava, Slovakia
| | - Richard Imrich
- University of SS Cyril and
Methodius, Faculty of Health Science, 917 01 Trnava, Slovakia
| |
Collapse
|
15
|
Etschmaier V, Üçal M, Lohberger B, Absenger-Novak M, Kolb D, Weinberg A, Schäfer U. Disruption of Endochondral Ossification and Extracellular Matrix Maturation in an Ex Vivo Rat Femur Organotypic Slice Model Due to Growth Plate Injury. Cells 2023; 12:1687. [PMID: 37443722 PMCID: PMC10341345 DOI: 10.3390/cells12131687] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Postnatal bone fractures of the growth plate (GP) are often associated with regenerative complications such as growth impairment. In order to understand the underlying processes of trauma-associated growth impairment within postnatal bone, an ex vivo rat femur slice model was developed. To achieve this, a 2 mm horizontal cut was made through the GP of rat femur prior to the organotypic culture being cultivated for 15 days in vitro. Histological analysis showed disrupted endochondral ossification, including disordered architecture, increased chondrocyte metabolic activity, and a loss of hypertrophic zone throughout the distal femur. Furthermore, altered expression patterns of Col2α1, Acan, and ColX, and increased chondrocyte metabolic activity in the TZ and MZ at day 7 and day 15 postinjury were observed. STEM revealed the presence of stem cells, fibroblasts, and chondrocytes within the injury site at day 7. In summary, the findings of this study suggest that the ex vivo organotypic GP injury model could be a valuable tool for investigating the underlying mechanisms of GP regeneration post-trauma, as well as other tissue engineering and disease studies.
Collapse
Affiliation(s)
- Vanessa Etschmaier
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria; (V.E.); (M.Ü.)
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (B.L.); (A.W.)
| | - Muammer Üçal
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria; (V.E.); (M.Ü.)
- Bio-Tech-Med Graz, 8010 Graz, Austria
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (B.L.); (A.W.)
| | - Markus Absenger-Novak
- Center for Medical Research, Core Facility Imaging, Medical University of Graz, 8036 Graz, Austria;
| | - Dagmar Kolb
- Center for Medical Research, Core Facility Ultrastructure Analysis, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Annelie Weinberg
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (B.L.); (A.W.)
| | - Ute Schäfer
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria; (V.E.); (M.Ü.)
| |
Collapse
|
16
|
Lü G, Wu R, Wang B, Li L, Li Y, Li X, He H, Wang X, Kuang L. SPTLC2 ameliorates chondrocyte dysfunction and extracellular matrix metabolism disturbance in vitro and in vivo in osteoarthritis. Exp Cell Res 2023; 425:113524. [PMID: 36828166 DOI: 10.1016/j.yexcr.2023.113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Disturbances in chondrocyte extracellular matrix (ECM) metabolism in osteoarthritis (OA) are a major cause of OA and potentially lead to personal disability, placing a huge burden on society. Chondrocyte apoptosis and ECM catabolism have a major role in the OA process. Firstly, bioinformatics analysis was performed to screen differentially expressed genes (DEGs) in OA, and serine palmitoyltransferase subunit 2 (SPTLC2) was chosen, which had high-level expression in the OA cartilage tissues and OA chondrocytes. Overexpression and knockdown of SPTLC2 were achieved in OA chondrocytes and normal chondrocytes respectively to study the effect of SPTLC2 upon ECM metabolism of chondrocytes. Cell viability and apoptosis were measured using MTT and flow cytometry analyses; SPTLC2 overexpression enhanced the OA chondrocyte viability and decreased apoptotic rate. In addition, Western blot detection of ECM-related factors (Collagen I, Collage II, MMP-1, MMP-3, and MMP-13) revealed that SPTLC2 overexpression promoted the expression of collagens (Collagen I and Collage II) and suppressed matrix metalloproteinase (MMP-1, MMP-3, and MMP-13) level. In contrast, SPTLC2 knockdown in normal chondrocytes showed opposite effects on cell viability, apoptosis, and ECM degeneration. The articular cartilage of OA rats was transfected with lentivirus overexpressing SPTLC2; HE and Safranin-O fast green demonstrated that SPTLC2 overexpression could alleviate chondrocyte injuries and slow down the development of OA. In conclusion, SPTLC2 plays a role in OA and may be a potential target gene for the treatment of OA.
Collapse
Affiliation(s)
- Guohua Lü
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Department of Orthopaedics, The Second Xiangya Hospital of Central South University, China
| | - Ren Wu
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Department of Orthopaedics, The Second Xiangya Hospital of Central South University, China
| | - Bing Wang
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Department of Orthopaedics, The Second Xiangya Hospital of Central South University, China
| | - Lei Li
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Department of Orthopaedics, The Second Xiangya Hospital of Central South University, China
| | - Yunchao Li
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Department of Orthopaedics, The Second Xiangya Hospital of Central South University, China
| | - Xinyi Li
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Department of Orthopaedics, The Second Xiangya Hospital of Central South University, China
| | - Haoyu He
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Department of Orthopaedics, The Second Xiangya Hospital of Central South University, China
| | - Xiaoxiao Wang
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Department of Orthopaedics, The Second Xiangya Hospital of Central South University, China
| | - Lei Kuang
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Department of Orthopaedics, The Second Xiangya Hospital of Central South University, China.
| |
Collapse
|
17
|
Martínez-Puig D, Costa-Larrión E, Rubio-Rodríguez N, Gálvez-Martín P. Collagen Supplementation for Joint Health: The Link between Composition and Scientific Knowledge. Nutrients 2023; 15:nu15061332. [PMID: 36986062 PMCID: PMC10058045 DOI: 10.3390/nu15061332] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, generating pain, disability, and socioeconomic costs worldwide. Currently there are no approved disease-modifying drugs for OA, and safety concerns have been identified with the chronic use of symptomatic drugs. In this context, nutritional supplements and nutraceuticals have emerged as potential alternatives. Among them, collagen is being a focus of particular interest, but under the same term different types of collagens coexist with different structures, compositions, and origins, leading to different properties and potential effects. The aim of this narrative review is to generally describe the main types of collagens currently available in marketplace, focusing on those related to joint health, describing their mechanism of action, preclinical, and clinical evidence. Native and hydrolyzed collagen are the most studied collagen types for joint health. Native collagen has a specific immune-mediated mechanism that requires the recognition of its epitopes to inhibit inflammation and tissue catabolism at articular level. Hydrolyzed collagen may contain biologically active peptides that are able to reach joint tissues and exert chondroprotective effects. Although there are preclinical and clinical studies showing the safety and efficacy of food ingredients containing both types of collagens, available research suggests a clear link between collagen chemical structure and mechanism of action.
Collapse
|
18
|
Liu J, Zeng W, Lin Q, Dai R, Lu L, Guo Z, Lian X, Pan X, Liu H, Xiu ZB. Proteomic Analyses Reveals the Mechanism of Acupotomy Intervention on the Treatment of Knee Osteoarthritis in Rabbits. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5698387. [PMID: 36437834 PMCID: PMC9691303 DOI: 10.1155/2022/5698387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/17/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2023]
Abstract
Acupotomy intervention (AI) is an available treatment for knee osteoarthritis (KOA) in China, which is a common health problem over the world. However, the underlying mechanism of AI on the KOA treatment is still unknown. To further understand the mechanism of acupotomy in treating KOA, the morphological observation and TMT proteomic analyses were conducted in rabbits. By using X-ray and MRI, we found that the space of the knee joint was bigger in AI than in KOA. Moreover, the chondrocytes were neatly arranged in AI but disordered in KOA. With proteomic analyses in chondrocytes, 68 differently accumulated proteins (DAPs) were identified in AI vs. KOA and DAPs related to energy metabolism and the TCA cycle were suggested to play a central role in response to AI. Furthermore, AIFM1 was proposed to be an important regulator in controlling the energy production in mitochondrial. Besides, FN1, VIM, COL12A1, COL14A1, MYBPH, and DPYSL3 were suggested to play crucial roles in AI for the treatment of KOA. Our study was systematically elucidating the regulation mechanism of acupotomy intervention in the treatment of KOA.
Collapse
Affiliation(s)
- Jing Liu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Weiquan Zeng
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Qiaoxuan Lin
- The Third People's Hospital of Fujian Province, Fuzhou 350122, China
| | - Rongqiong Dai
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Liming Lu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zexing Guo
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Xiaowen Lian
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Xigui Pan
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Hong Liu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Zhong-Biao Xiu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of TCM, Fuzhou 350122, China
- Fujian Institute of Orthopaedics, Fuzhou, Fujian 350004, China
| |
Collapse
|
19
|
Chondrogenic Potential of Human Umbilical Cord Mesenchymal Stem Cells Cultured with Exosome-Depleted Fetal Bovine Serum in an Osteoarthritis Mouse Model. Biomedicines 2022; 10:biomedicines10112773. [PMID: 36359292 PMCID: PMC9687487 DOI: 10.3390/biomedicines10112773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Osteoarthritis (OA) is characterized by the loss of articular cartilage and is also an age-related disease. Recently, stem cell therapy for cartilage repair has emerged. The stem cells need to be cultured with a fetal bovine serum (FBS)-supplemented medium. The effect of FBS-containing exosomes on the differentiation of human umbilical cord mesenchymal stem cells (HUCMSCs) is unknown. The morphology, proliferation, surface marker expressions, and trilineage differentiation ability of two groups of HUCMSCs, cultured with conventional (FBS) and exosome-depleted FBS (Exo(-)FBS), were evaluated. In a mouse OA model after two groups of HUCMSCs transplantation, the rotarod activity, histology, and immunohistochemistry (type II collagen, aggrecan, IL-1β, and MMP13) of the cartilage were evaluated. The Exo(-)FBS-cultured HUCMSCs, like FBS-cultured HUCMSCs, displayed classic MSC characteristics, including spindle-shaped morphology, surface marker expression (positive for CD44, CD73, CD90, CD105, and HLA-ABC and negative for CD34, CD45, and HLA-DR), and trilineage differentiation (chondrogenesis, osteogenesis, and adipogenesis). The Exo(-)FBS-cultured HUCMSCs proliferated significantly slower than those of the FBS-cultured HUCMSCs (p < 0.01). The trilineage gene expression of PPAR-γ, FABP4, APAL, type II collagen, aggrecan, and SOX9 was significantly increased in the Exo(-)FBS-cultured HUCMSCs than in the FBS-cultured HUCMSCs and undifferentiated controls. The Exo(-)FBS- and FBS-cultured HUCMSCs-transplanted mice showed a better rotarod activity than in the control OA mice (n = 3 in each group). A significant histological improvement in hyaline cartilage destruction after the transplantation of both types of FBS-cultured HUCMSCs was noted when compared with the OA knees. The Exo(-)FBS-cultured HUCMSCs-transplanted knees showed a higher International Cartilage Repair Society histological score (p < 0.05), staining intensity of type II collagen (p < 0.01), and aggrecan (p < 0.01) than in the control knees. Moreover, both types of the FBS-cultured HUCMSCs-transplanted knees significantly decreased the expression of MMP13 and IL-1β compared to that in the OA knees (p < 0.01). The Exo(-)FBS-cultured HUCMSCs harbor chondrogenic potential and attenuated cartilage destruction in a mouse OA model. Our study provides a basis for future clinical trials using Exo(-)FBS-cultured stem cells to treat OA.
Collapse
|
20
|
Evans LAE, Pitsillides AA. Structural clues to articular calcified cartilage function: A descriptive review of this crucial interface tissue. J Anat 2022; 241:875-895. [PMID: 35866709 PMCID: PMC9482704 DOI: 10.1111/joa.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Articular calcified cartilage (ACC) has been dismissed, by some, as a remnant of endochondral ossification without functional relevance to joint articulation or weight-bearing. Recent research indicates that morphologic and metabolic ACC features may be important, reflecting knee joint osteoarthritis (OA) predisposition. ACC is less investigated than neighbouring joint tissues, with its component chondrocytes and mineralised matrix often being either ignored or integrated into analyses of hyaline articular cartilage and subchondral bone tissue respectively. Anatomical variation in ACC is recognised between species, individuals and age groups, but the selective pressures underlying this variation are unknown. Consequently, optimal ACC biomechanical features are also unknown as are any potential locomotory roles. This review collates descriptions of ACC anatomy and biology in health and disease, with a view to revealing its structure/function relationship and highlighting potential future research avenues. Mouse models of healthy and OA joint ageing have shown disparities in ACC load-induced deformations at the knee joint. This raises the hypothesis that ACC response to locomotor forces over time may influence, or even underlie, the bony and hyaline cartilage symptoms characteristic of OA. To effectively investigate the ACC, greater resolution of joint imaging and merging of hierarchical scale data will be required. An appreciation of OA as a 'whole joint disease' is expanding, as is the possibility that the ACC may be a key player in healthy ageing and in the transition to OA joint pathology.
Collapse
Affiliation(s)
- Lucinda A. E. Evans
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of LondonLondonUK
| | - Andrew A. Pitsillides
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of LondonLondonUK
| |
Collapse
|
21
|
Felim J, Chen CK, Tsou D, Kuo HP, Kong ZL. Effect of Different Collagen on Anterior Cruciate Ligament Transection and Medial Meniscectomy-Induced Osteoarthritis Male Rats. Front Bioeng Biotechnol 2022; 10:917474. [PMID: 35866033 PMCID: PMC9295145 DOI: 10.3389/fbioe.2022.917474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Osteoarthritis (OA) is a common type of arthritis characterized by degeneration of the articular cartilage and joint dysfunction. Various pharmacological and non-pharmacological techniques have been used to manage these diseases. Due to the diverse therapeutic properties of marine collagen, it has received considerable attention in its pharmacological application. Thus, the purpose of this study was to compare the efficacy of jellyfish collagen, collagen peptide, other sources of marine collagen, and glycine in treating OA. In the OA rat model, an anterior cruciate ligament transection combined with medial meniscectomy surgery (ACLT + MMx) was used to induce osteoarthritis in rats. Two weeks before surgery, male Sprague-Dawley rats were fed a chow-fat diet. After 6 weeks of treatment with collagen, collagen peptide, and glycine, the results show that they could inhibit the production of proinflammatory cytokines and their derivatives, such as COX-2, MMP-13, and CTX-II levels; therefore, it can attenuate cartilage degradation. Moreover, collagen peptides can promote the synthesis of collagen type II in cartilage. These results demonstrate that collagen and glycine have been shown to have protective properties against OA cartilage degradation. In contrast, collagen peptides have been shown to show cartilage regeneration but less protective properties. Jellyfish collagen peptide at a dose of 5 mg/kg b. w. has the most significant potential for treating OA because it protects and regenerates cartilage in the knee.
Collapse
Affiliation(s)
- Jerrell Felim
- Laboratory of Cellular Immunology, Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| | - Chun-Kai Chen
- Laboratory of Cellular Immunology, Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| | - David Tsou
- Laboratory of Cellular Immunology, Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| | | | - Zwe-Ling Kong
- Laboratory of Cellular Immunology, Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| |
Collapse
|
22
|
Yu L, Lin YL, Yan M, Li T, Wu EY, Zimmel K, Qureshi O, Falck A, Sherman KM, Huggins SS, Hurtado DO, Suva LJ, Gaddy D, Cai J, Brunauer R, Dawson LA, Muneoka K. Hyaline cartilage differentiation of fibroblasts in regeneration and regenerative medicine. Development 2022; 149:274141. [PMID: 35005773 PMCID: PMC8917415 DOI: 10.1242/dev.200249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Amputation injuries in mammals are typically non-regenerative; however, joint regeneration is stimulated by BMP9 treatment, indicating the presence of latent articular chondrocyte progenitor cells. BMP9 induces a battery of chondrogenic genes in vivo, and a similar response is observed in cultures of amputation wound cells. Extended cultures of BMP9-treated cells results in differentiation of hyaline cartilage, and single cell RNAseq analysis identified wound fibroblasts as BMP9 responsive. This culture model was used to identify a BMP9-responsive adult fibroblast cell line and a culture strategy was developed to engineer hyaline cartilage for engraftment into an acutely damaged joint. Transplanted hyaline cartilage survived engraftment and maintained a hyaline cartilage phenotype, but did not form mature articular cartilage. In addition, individual hypertrophic chondrocytes were identified in some samples, indicating that the acute joint injury site can promote osteogenic progression of engrafted hyaline cartilage. The findings identify fibroblasts as a cell source for engineering articular cartilage and establish a novel experimental strategy that bridges the gap between regeneration biology and regenerative medicine. Summary:In vivo articular cartilage regeneration serves as a model to develop novel approaches for engineering cartilage to repair damaged joints and identifies fibroblasts as a BMP9-inducible chondroprogenitor.
Collapse
Affiliation(s)
- Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yu-Lieh Lin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tao Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Emily Y. Wu
- Dewpoint Therapeutics, 6 Tide Street, Suite 300, Boston, MA 02210, USA
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Alyssa Falck
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kirby M. Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Shannon S. Huggins
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Daniel Osorio Hurtado
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Larry J. Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - James Cai
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lindsay A. Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
23
|
Main and Minor Types of Collagens in the Articular Cartilage: The Role of Collagens in Repair Tissue Evaluation in Chondral Defects. Int J Mol Sci 2021; 22:ijms222413329. [PMID: 34948124 PMCID: PMC8706311 DOI: 10.3390/ijms222413329] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022] Open
Abstract
Several collagen subtypes have been identified in hyaline articular cartilage. The main and most abundant collagens are type II, IX and XI collagens. The minor and less abundant collagens are type III, IV, V, VI, X, XII, XIV, XVI, XXII, and XXVII collagens. All these collagens have been found to play a key role in healthy cartilage, regardless of whether they are more or less abundant. Additionally, an exhaustive evaluation of collagen fibrils in a repaired cartilage tissue after a chondral lesion is necessary to determine the quality of the repaired tissue and even whether or not this repaired tissue is considered hyaline cartilage. Therefore, this review aims to describe in depth all the collagen types found in the normal articular cartilage structure, and based on this, establish the parameters that allow one to consider a repaired cartilage tissue as a hyaline cartilage.
Collapse
|
24
|
Spittler AP, Afzali MF, Martinez RB, Culver LA, Leavell SE, Timkovich AE, Sanford JL, Story MR, Santangelo KS. Evaluation of electroacupuncture for symptom modification in a rodent model of spontaneous osteoarthritis. Acupunct Med 2021; 39:700-707. [PMID: 34105396 PMCID: PMC11110889 DOI: 10.1177/09645284211020755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Faced with the frustration of chronic discomfort and restricted mobility due to osteoarthritis (OA), many individuals have turned to acupuncture for relief. However, the efficacy of acupuncture for OA is uncertain, as much of the evidence is inconclusive. The purpose of this study was to evaluate electroacupuncture (EA) in a rodent model of OA such that conclusions regarding its effectiveness for symptom or disease modification could be drawn. METHODS Ten 12-month-old male Hartley guinea pigs-which characteristically have moderate to advanced OA at this age-were randomly assigned to receive EA for knee OA (n = 5) or anesthesia only (control group, n = 5). Treatments were performed three times weekly for 3 weeks, followed by euthanasia 2 weeks later. Gait analysis and enclosure monitoring were performed weekly to evaluate changes in movement. Serum was collected for inflammatory biomarker testing. Knee joints were collected for histology and gene expression. RESULTS Animals receiving EA had significantly greater changes in movement parameters compared to those receiving anesthesia only. There was a tendency toward decreased serum protein concentrations of complement component 3 (C3) in the EA group compared to the control group. Structural and antioxidant gene transcripts in articular cartilage were increased by EA. There was no significant difference in total joint histology scores between groups. CONCLUSION This study provides evidence that EA has a positive effect on symptom, but not disease, modification in a rodent model of OA. Further investigations into mechanistic pathways that may explain the efficacy of EA in this animal model are needed.
Collapse
Affiliation(s)
- Alexa P Spittler
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Maryam F Afzali
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Richard B Martinez
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lauren A Culver
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sarah E Leavell
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ariel E Timkovich
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joseph L Sanford
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Melinda R Story
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kelly S Santangelo
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
25
|
Wu Z, Korntner SH, Mullen AM, Zeugolis DI. Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100030. [PMID: 36824570 PMCID: PMC9934443 DOI: 10.1016/j.bbiosy.2021.100030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Collagen type II is the major constituent of cartilage tissue. Yet, cartilage engineering approaches are primarily based on collagen type I devices that are associated with suboptimal functional therapeutic outcomes. Herein, we briefly describe cartilage's development and cellular and extracellular composition and organisation. We also provide an overview of collagen type II biosynthesis and purification protocols from tissues of terrestrial and marine species and recombinant systems. We then advocate the use of collagen type II as a building block in cartilage engineering approaches, based on safety, efficiency and efficacy data that have been derived over the years from numerous in vitro and in vivo studies.
Collapse
Affiliation(s)
- Z Wu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - SH Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - AM Mullen
- Teagasc Research Centre, Ashtown, Ireland
| | - DI Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
- Correspondence author at: REMODEL, NUI Galway & UCD.
| |
Collapse
|
26
|
Echinacoside Upregulates Sirt1 to Suppress Endoplasmic Reticulum Stress and Inhibit Extracellular Matrix Degradation In Vitro and Ameliorates Osteoarthritis In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3137066. [PMID: 34777682 PMCID: PMC8580641 DOI: 10.1155/2021/3137066] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022]
Abstract
Background Osteoarthritis (OA) is a progressive illness that destroys cartilage. Oxidative stress is a major contributor of OA, while endoplasmic reticulum (ER) stress is the key cellular damage under oxidative stress in chondrocytes. Echinacoside (ECH) is the main extract and active substance of Cistanche, with potent antioxidative stress (OS) properties, and currently under clinical trials in China. However, its function in OA is yet to be determined. Purpose We aimed to explore the specific role of ECH in the occurrence and development of OA and its underlying mechanism in vivo and in vitro. Methods After the mice were anesthetized, the bilateral medial knee joint meniscus resection was performed to establish the DMM model. TBHP was used to induce oxidative stress to establish the OA model in chondrocytes in vitro. Western blot and RT-PCR were used to evaluate the level of ER stress-related biomarkers such as p-PERK/PERK, GRP78, ATF4, p-eIF2α/eIF2α, and CHOP and apoptosis-related proteins such as BAX, Bcl-2, and cleaved caspase-3. Meanwhile, we used SO staining, immunofluorescence, and immunohistochemical staining to evaluate the pharmacological effects of ECH in mice in vivo. Results We demonstrated the effectiveness of ECH in suppressing ER stress and restoring ECM metabolism in vitro. In particular, ECH was shown to suppress tert-Butyl hydroperoxide- (TBHP-) induced OS and subsequently lower the levels of p-PERK/PERK, GRP78, ATF4, p-eIF2α/eIF2α, and CHOP in vitro. Simultaneously, ECH reduced MMP13 and ADAMTS5 levels and promoted Aggrecan and Collagen II levels, suggesting ECM degradation suppression. Moreover, we showed that ECH mediates its cellular effects via upregulation of Sirt1. Lastly, we confirmed that ECH can protect against OA in mouse OA models. Conclusion In summary, our findings indicate that ECH can inhibit ER stress and ECM degradation by upregulating Sirt1 in mouse chondrocytes treated with TBHP. It can also prevent OA development in vivo.
Collapse
|
27
|
Huynh PD, Vu NB, To XHV, Le TM. Culture and Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells on Growth Factor-Rich Fibrin Scaffolds to Produce Engineered Cartilages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021:193-208. [PMID: 34739721 DOI: 10.1007/5584_2021_670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION After injuries, the cartilage healing capacity is limited owing to its nature as a particular connective tissue without blood vessels, lymphatics, or nerves. The creation of artificial cartilage tissue mimics the biological properties of native cartilage and can reduce the need for donated tissue. Fibrin is a type of biodegradable scaffold that has great potential in tissue engineering applications. It can become good material for cell adhesion and proliferation in vitro. Therefore, this study aimed to create a cartilage tissue in vitro using umbilical cord-derived mesenchymal stem cells (UCMSC) and growth factor-rich fibrin (GRF) scaffolds. METHODS UCMSCs were isolated and expanded, and platelet-rich plasma (PRP) preparations were performed following previously published protocols. PRP was activated (aPRP) by a 0.45-μm syringe filter to release growth factors inside the platelets. Each 2.105 of the UCMSCs were suspended in 2 ml of aPRP to make the mixture of MSC and PRP (MSC-PRP). Then, Ca2+ solution was added to this mixture to produce the fibril scaffold with UCMSCs inside. UCMSCs' adhesion and proliferation inside the scaffold were evaluated by observation under inverted microscopy, H-E staining, MTT assays, and scanning electron microscopy (SEM). The fibril structure containing UCMSCs was cultured, and chondrogenesis was induced using commercial chondrogenesis media for 21 days (iMSC-GRF). The differentiation in efficacy toward cartilage was evaluated based on the accumulation of aggrecan (acan), glycosaminoglycans (GAGs), and collagen type II (Col II). RESULTS The results showed that we successfully created a cartilage tissue with some characteristics that mimic the properties of natural cartilage. The engineered cartilage tissue was positive with some cartilage protein, such as acan, GAG, and Coll II. In vitro cartilage presented some natural chondrocyte-like cells. The artificial cartilage tissue was positive for CD14, CD34, CD90, CD105, and HLA-DR and negative for CD44, CD45, and CD73. CONCLUSION These results showed that using UCMSCs and growth factor-rich fibril from platelet-rich plasma was feasible to produce engineered cartilage tissue for further experiments or clinical usage.
Collapse
Affiliation(s)
- Phat Duc Huynh
- Laboratory of Stem Cell Research and Application, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ngoc Bich Vu
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| | - Xuan Hoang-Viet To
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thuan Minh Le
- Laboratory of Stem Cell Research and Application, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
28
|
Evaluation of the Usability of a Low-Cost 3D Printer in a Tissue Engineering Approach for External Ear Reconstruction. Int J Mol Sci 2021; 22:ijms222111667. [PMID: 34769096 PMCID: PMC8584065 DOI: 10.3390/ijms222111667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/02/2023] Open
Abstract
The use of alloplastic materials instead of autologous cartilage grafts offers a new perspective in craniofacial reconstructive surgery. Particularly for regenerative approaches, customized implants enable the surgeon to restore the cartilaginous framework of the ear without donor site morbidity. However, high development and production costs of commercially available implants impede clinical translation. For this reason, the usability of a low-cost 3D printer (Ultimaker 2+) as an inhouse-production tool for cheap surgical implants was investigated. The open software architecture of the 3D printer was modified in order to enable printing of biocompatible and biologically degradable polycaprolactone (PCL). Firstly, the printing accuracy and limitations of a PCL implant were compared to reference materials acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). Then the self-made PCL-scaffold was seeded with adipose-tissue derived stem cells (ASCs), and biocompatibility was compared to a commercially available PCL-scaffold using a cell viability staining (FDA/PI) and a dsDNA quantification assay (PicoGreen). Secondly, porous and solid patient-customized ear constructs were manufactured from mirrored CT-imagining data using a computer-assisted design (CAD) and computer-assisted manufacturing (CAM) approach to evaluate printing accuracy and reproducibility. The results show that printing of a porous PCL scaffolds was possible, with an accuracy equivalent to the reference materials at an edge length of 10 mm and a pore size of 0.67 mm. Cell viability, adhesion, and proliferation of the ASCs were equivalent on self-made and the commercially available PCL-scaffolds. Patient-customized ear constructs could be produced well in solid form and with limited accuracy in porous form from all three thermoplastic materials. Printing dimensions and quality of the modified low-cost 3D printer are sufficient for selected tissue engineering applications, and the manufacturing of personalized ear models for surgical simulation at manufacturing costs of EUR 0.04 per cell culture scaffold and EUR 0.90 (0.56) per solid (porous) ear construct made from PCL. Therefore, in-house production of PCL-based tissue engineering scaffolds and surgical implants should be further investigated to facilitate the use of new materials and 3D printing in daily clinical routine.
Collapse
|
29
|
Engineering of Optimized Hydrogel Formulations for Cartilage Repair. Polymers (Basel) 2021; 13:polym13091526. [PMID: 34068542 PMCID: PMC8126049 DOI: 10.3390/polym13091526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022] Open
Abstract
The ideal scaffold for cartilage regeneration is expected to provide adequate mechanical strength, controlled degradability, adhesion, and integration with the surrounding native tissue. As it does this, it mimics natural ECMs functions, which allow for nutrient diffusion and promote cell survival and differentiation. Injectable hydrogels based on tyramine (TA)-functionalized hyaluronic acid (HA) and dextran (Dex) are a promising approach for cartilage regeneration. The properties of the hydrogels used in this study were adjusted by varying polymer concentrations and ratios. To investigate the changes in properties and their effects on cellular behavior and cartilage matrix formation, different ratios of HA- and dextran-based hybrid hydrogels at both 5 and 10% w/v were prepared using a designed mold to control generation. The results indicated that the incorporation of chondrocytes in the hydrogels decreased their mechanical properties. However, rheological and compression analysis indicated that 5% w/v hydrogels laden with cells exhibit a significant increase in mechanical properties after 21 days when the constructs are cultured in a chondrogenic differentiation medium. Moreover, compared to the 10% w/v hydrogels, the 5% w/v hybrid hydrogels increased the deposition of the cartilage matrix, especially in constructs with a higher Dex-TA content. These results indicated that 5% w/v hybrid hydrogels with 25% HA-TA and 75% Dex-TA have a high potential as injectable scaffolds for cartilage tissue regeneration.
Collapse
|
30
|
Abstract
Hydrogels comprise a class of soft materials which are extremely useful in a number of contexts, for example as matrix-mimetic biomaterials for applications in regenerative medicine and drug delivery. One particular subclass of hydrogels consists of materials prepared through non-covalent physical crosslinking afforded by supramolecular recognition motifs. The dynamic, reversible, and equilibrium-governed features of these molecular-scale motifs often transcend length-scales to endow the resulting hydrogels with these same properties on the bulk scale. In efforts to engineer hydrogels of all types with more precise or application-specific uses, inclusion of stimuli-responsive sol-gel transformations has been broadly explored. In the context of biomedical uses, temperature is an interesting stimulus which has been the focus of numerous hydrogel designs, supramolecular or otherwise. Most supramolecular motifs are inherently temperature-sensitive, with elevated temperatures commonly disfavoring motif formation and/or accelerating its dissociation. In addition, supramolecular motifs have also been incorporated for physical crosslinking in conjunction with polymeric or macromeric building blocks which themselves exhibit temperature-responsive changes to their properties. Through molecular-scale engineering of supramolecular recognition, and selection of a particular motif or polymeric/macromeric backbone, it is thus possible to devise a number of supramolecular hydrogel materials to empower a variety of future biomedical applications.
Collapse
Affiliation(s)
- Sijie Xian
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
31
|
Marine Collagen Hydrolysates Promote Collagen Synthesis, Viability and Proliferation While Downregulating the Synthesis of Pro-Catabolic Markers in Human Articular Chondrocytes. Int J Mol Sci 2021; 22:ijms22073693. [PMID: 33916312 PMCID: PMC8036580 DOI: 10.3390/ijms22073693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/08/2023] Open
Abstract
Cartilage is a non-innervated and non-vascularized tissue. It is composed of one main cell type, the chondrocyte, which governs homeostasis within the cartilage tissue, but has low metabolic activity. Articular cartilage undergoes substantial stresses that lead to chondral defects, and inevitably osteoarthritis (OA) due to the low intrinsic repair capacity of cartilage. OA remains an incurable degenerative disease. In this context, several dietary supplements have shown promising results, notably in the relief of OA symptoms. In this study, we investigated the effects of collagen hydrolysates derived from fish skin (Promerim®30 and Promerim®60) and fish cartilage (Promerim®40) on the phenotype and metabolism of human articular chondrocytes (HACs). First, we demonstrated the safety of Promerim® hydrolysates on HACs cultured in monolayers. Then we showed that, Promerim® hydrolysates can increase the HAC viability and proliferation, while decreasing HAC SA-β-galactosidase activity. To evaluate the effect of Promerim® on a more relevant model of culture, HAC were cultured as organoids in the presence of Promerim® hydrolysates with or without IL-1β to mimic an OA environment. In such conditions, Promerim® hydrolysates led to a decrease in the transcript levels of some proteases that play a major role in the development of OA, such as Htra1 and metalloproteinase-1. Promerim® hydrolysates downregulated HtrA1 protein expression. In contrast, the treatment of cartilage organoids with Promerim® hydrolysates increased the neosynthesis of type I collagen (Promerim®30, 40 and 60) and type II collagen isoforms (Promerim®30 and 40), the latter being the major characteristic component of the cartilage extracellular matrix. Altogether, our results demonstrate that the use of Promerim® hydrolysates hold promise as complementary dietary supplements in combination with the current classical treatments or as a preventive therapy to delay the occurrence of OA in humans.
Collapse
|
32
|
Bourdon B, Contentin R, Cassé F, Maspimby C, Oddoux S, Noël A, Legendre F, Gruchy N, Galéra P. Marine Collagen Hydrolysates Downregulate the Synthesis of Pro-Catabolic and Pro-Inflammatory Markers of Osteoarthritis and Favor Collagen Production and Metabolic Activity in Equine Articular Chondrocyte Organoids. Int J Mol Sci 2021; 22:ijms22020580. [PMID: 33430111 PMCID: PMC7826754 DOI: 10.3390/ijms22020580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 01/07/2023] Open
Abstract
Articular cartilage experiences mechanical constraints leading to chondral defects that inevitably evolve into osteoarthritis (OA), because cartilage has poor intrinsic repair capacity. Although OA is an incurable degenerative disease, several dietary supplements may help improve OA outcomes. In this study, we investigated the effects of Dielen® hydrolyzed fish collagens from skin (Promerim®30 and Promerim®60) and cartilage (Promerim®40) to analyze the phenotype and metabolism of equine articular chondrocytes (eACs) cultured as organoids. Here, our findings demonstrated the absence of cytotoxicity and the beneficial effect of Promerim® hydrolysates on eAC metabolic activity under physioxia; further, Promerim®30 also delayed eAC senescence. To assess the effect of Promerim® in a cartilage-like tissue, eACs were cultured as organoids under hypoxia with or without BMP-2 and/or IL-1β. In some instances, alone or in the presence of IL-1β, Promerim®30 and Promerim®40 increased protein synthesis of collagen types I and II, while decreasing transcript levels of proteases involved in OA pathogenesis, namely Htra1, and the metalloproteinases Mmp1-3, Adamts5, and Cox2. Both Promerim® hydrolysates also decreased Htra1 protein amounts, particularly in inflammatory conditions. The effect of Promerim® was enhanced under inflammatory conditions, possibly due to a decrease in the synthesis of inflammation-associated molecules. Finally, Promerim® favored in vitro repair in a scratch wound assay through an increase in cell proliferation or migration. Altogether, these data show that Promerim®30 and 40 hold promise as dietary supplements to relieve OA symptoms in patients and to delay OA progression.
Collapse
Affiliation(s)
- Bastien Bourdon
- Normandie University, UNICAEN, BIOTARGEN, 14000 Caen, France; (B.B.); (R.C.); (F.C.); (C.M.); (F.L.); (N.G.)
- Dielen Laboratory, 50110 Tourlaville, France; (S.O.); (A.N.)
| | - Romain Contentin
- Normandie University, UNICAEN, BIOTARGEN, 14000 Caen, France; (B.B.); (R.C.); (F.C.); (C.M.); (F.L.); (N.G.)
| | - Frédéric Cassé
- Normandie University, UNICAEN, BIOTARGEN, 14000 Caen, France; (B.B.); (R.C.); (F.C.); (C.M.); (F.L.); (N.G.)
| | - Chloé Maspimby
- Normandie University, UNICAEN, BIOTARGEN, 14000 Caen, France; (B.B.); (R.C.); (F.C.); (C.M.); (F.L.); (N.G.)
| | - Sarah Oddoux
- Dielen Laboratory, 50110 Tourlaville, France; (S.O.); (A.N.)
| | - Antoine Noël
- Dielen Laboratory, 50110 Tourlaville, France; (S.O.); (A.N.)
| | - Florence Legendre
- Normandie University, UNICAEN, BIOTARGEN, 14000 Caen, France; (B.B.); (R.C.); (F.C.); (C.M.); (F.L.); (N.G.)
| | - Nicolas Gruchy
- Normandie University, UNICAEN, BIOTARGEN, 14000 Caen, France; (B.B.); (R.C.); (F.C.); (C.M.); (F.L.); (N.G.)
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Caen University Hospital, 14000 Caen, France
| | - Philippe Galéra
- Normandie University, UNICAEN, BIOTARGEN, 14000 Caen, France; (B.B.); (R.C.); (F.C.); (C.M.); (F.L.); (N.G.)
- Correspondence:
| |
Collapse
|
33
|
Ma M, Liang X, Wang X, Zhang L, Cheng S, Guo X, Zhang F, Wen Y. The molecular mechanism study of COMP involved in the articular cartilage damage of Kashin-Beck disease. Bone Joint Res 2020; 9:578-586. [PMID: 33005397 PMCID: PMC7502256 DOI: 10.1302/2046-3758.99.bjr-2019-0247.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aims Kashin-Beck disease (KBD) is a kind of chronic osteochondropathy, thought to be caused by environmental risk factors such as T-2 toxin. However, the exact aetiology of KBD remains unclear. In this study, we explored the functional relevance and biological mechanism of cartilage oligosaccharide matrix protein (COMP) in the articular cartilage damage of KBD. Methods The articular cartilage specimens were collected from five KBD patients and five control subjects for cell culture. The messenger RNA (mRNA) and protein expression levels were detected by quantitative reverse transcription PCR (qRT-PCR) and western blot. The survival rate of C28/I2 chondrocyte cell line was detected by MTT assay after T-2 toxin intervention. The cell viability and mRNA expression levels of apoptosis related genes between COMP-overexpression groups and control groups were examined after cell transfection. Results The mRNA and protein expression levels of COMP were significantly lower in KBD chondrocytes than control chondrocytes. After the T-2 toxin intervention, the COMP mRNA expression of C28/I2 chondrocyte reduced and the protein level of COMP in three intervention groups was significantly lower than in the control group. MTT assay showed that the survival rate of COMP overexpression KBD chondrocytes were notably higher than in the blank control group. The mRNA expression levels of Survivin, SOX9, Caspase-3, and type II collagen were also significantly different among COMP overexpression, negative control, and blank control groups. Conclusion Our study results confirmed the functional relevance of COMP with KBD. COMP may play an important role in the excessive chondrocytes apoptosis of KBD patients.Cite this article: Bone Joint Res 2020;9(9):578-586.
Collapse
Affiliation(s)
- Mei Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiao Liang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lu Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Anti-inflammatory capacity of Apremilast in human chondrocytes is dependent on SOX-9. Inflamm Res 2020; 69:1123-1132. [DOI: 10.1007/s00011-020-01392-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/28/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
|
35
|
Kim SA, Sur YJ, Cho ML, Go EJ, Kim YH, Shetty AA, Kim SJ. Atelocollagen promotes chondrogenic differentiation of human adipose-derived mesenchymal stem cells. Sci Rep 2020; 10:10678. [PMID: 32606308 PMCID: PMC7327030 DOI: 10.1038/s41598-020-67836-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Effective engineering approaches for cartilage regeneration involve a combination of cells and biomaterial scaffolds. Multipotent mesenchymal stem cells (MSCs) are important sources for cartilage regeneration. Atelocollagen provides a suitable substrate for MSC attachment and enhancing chondrogenic differentiation. Here, we assessed the chondrogenic potential of adipose tissue derived human MSCs (hMSCs) mixed with atelocollagen gel. We observed cell attachment, viability, and microstructures by electron microscopy over 21 days. The levels of Sox9, type II collagen, aggrecan, type I collagen, Runx2, type X collagen, ALP, Osterix, and MMP13 were measured by RT-qPCR. Cartilage matrix-related proteins were assessed by enzyme-linked immunosorbent assay (ELISA), histology, and immunohistochemistry. hMSCs of all groups exhibited well-maintained cell survival, distribution and morphology. Abundant type II collagen fibers developed on day 21; while Sox9, type II collagen, and aggrecan expression increased over time in the atelocollagen group. However, type I collagen, RUNX2, type X collagen (CoL10A1), Osterix, and ALP were not expressed. These results corroborated the protein expression detected by ELISA. Further, histological analysis revealed lacunae-like structures, while staining demonstrated glycosaminoglycan accumulation. Cumulatively, these results indicate that atelocollagen scaffolds improve hMSC chondrogenic differentiation and are a potential approach for cartilage regeneration.
Collapse
Affiliation(s)
- Seon Ae Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Joon Sur
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Jeong Go
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yun Hwan Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Asode Ananthram Shetty
- The Institute of Medical Sciences, Faculty of Health and Wellbeing, Canterbury Christ Church University, Kent, UK
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Lauretta G, Ravalli S, Szychlinska MA, Castorina A, Maugeri G, D'Amico AG, D'Agata V, Musumeci G. Current knowledge of pituitary adenylate cyclase activating polypeptide (PACAP) in articular cartilage. Histol Histopathol 2020; 35:1251-1262. [PMID: 32542641 DOI: 10.14670/hh-18-233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is an evolutionally well conserved neuropeptide, mainly expressed by neuronal and peripheral cells. It proves to be an interesting object of study both for its trophic functions during the development of several tissues and for its protective effects against oxidative stress, hypoxia, inflammation and apoptosis in different degenerative diseases. This brief review summarises the recent findings concerning the role of PACAP in the articular cartilage. PACAP and its receptors are expressed during chondrogenesis and are shown to activate the pathways involved in regulating cartilage development. Moreover, this neuropeptide proves to be chondroprotective against those stressors that determine cartilage degeneration and contribute to the onset of osteoarthritis (OA), the most common form of degenerative joint disease. Indeed, the degenerated cartilage exhibits low levels of PACAP, suggesting that its endogenous levels in adult cartilage may play an essential role in maintaining physiological properties. Thanks to its peculiar characteristics, exogenous administration of PACAP could be suggested as a potential tool to slow down the progression of OA and for cartilage regeneration approaches.
Collapse
Affiliation(s)
- Giovanni Lauretta
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Alessandro Castorina
- School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Agata Grazia D'Amico
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy. .,Research Center on Motor Activities (CRAM), University of Catania, Catania, Italy.,Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
37
|
Nesfatin-1 suppresses interleukin-1β-induced inflammation, apoptosis, and cartilage matrix destruction in chondrocytes and ameliorates osteoarthritis in rats. Aging (Albany NY) 2020; 12:1760-1777. [PMID: 32003758 PMCID: PMC7053635 DOI: 10.18632/aging.102711] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease, related to the overexpression of matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), inflammation, and chondrocyte apoptosis. Nesfatin-1 is an adipokine, which plays an important role in the development of OA, especially in obese people. In the present study, cartilage degradation and apoptosis observed in OA patients was evaluated. Furthermore, the anti-inflammatory and anti-apoptotic effects of nesfatin-1, and its underlying in vitro and in vivo mechanisms were investigated. The results showed that nesfatin-1 increased significantly the expression of collagen type II alpha 1 chain (Col2a1), and reduced the expression of MMPs, ADAMTS5, cyclooxygenase (COX)-2, caspase-3, nitric oxide (NO), inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), interleukin (IL)-6, and chondrocyte apoptosis rate, which may be induced by IL-1β in rat chondrocytes. Furthermore, nesfatin-1 treatment prevented cartilage degeneration in the rat OA model. It was found that nesfatin-1 suppressed the IL-1β-induced activation of NF-κB, the mitogen-activated protein kinase (MAPK), and the Bax/Bcl-2 signal pathway in chondrocytes. These results suggest that in vivo nesfatin-1 could play a protective role in the development of OA and can be potentially used for its treatment.
Collapse
|
38
|
A case of localized tracheobronchial relapsing polychondritis with positive matrilin-1 staining. BMC Rheumatol 2020; 4:1. [PMID: 32016169 PMCID: PMC6988282 DOI: 10.1186/s41927-019-0103-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/30/2019] [Indexed: 11/24/2022] Open
Abstract
Background Relapsing polychondritis (RPC) is a rare progressive autoimmune disease characterized by inflammation in the cartilage of multiple organs. Tracheobronchial involvement appears in nearly half of RPC patients during the course of their disease and represents the main cause of death. Localized tracheobronchial RPC is much rarer, and the pathogenesis remains unclear. Matrilin-1 is a non-collagenous cartilage matrix protein and has been suggested to be a potent autoantigen that induces the airway disease of RPC in animal models. However, the expression of matrilin-1 in tracheobronchial tissue in human remains unclear. Therefore, we examined the expression of matrilin-1 in the tracheal and auricular tissues in a localized tracheobronchial RPC patient. Case presentation A 62-year-old man with systemic sclerosis presented with cough and dyspnea on exertion. The lung function test showed an expiratory flow limitation and chest computed tomography showed diffuse thickness from the trachea to the bronchiole. No other tests showed abnormal findings. To evaluate further, bronchoscopy was performed and endobronchial ultrasonography showed thickness in the fourth-marginal echo layer suggesting inflammation of the cartilage. However, the tracheal biopsy showed no specific findings. The subsequent surgical tracheal biopsies showed inflammatory cell infiltration with destruction of the cartilage. Neither auricular nor nasal deformity, except for a tracheobronchial lesion, was detected. Biopsy from the left auricular cartilage also did not show any inflammatory changes. Finally, we diagnosed the patient with localized tracheobronchial RPC. To address the hypothesis that autoimmunity against matrilin-1 is involved in the pathogenesis of localized tracheobronchial RPC, we evaluated the expression level of matrilin-1 in a tracheal and auricular specimen from this patient. Immunohistochemical staining with anti-matrilin-1 antibody showed matrilin-1 in the tracheal but not in the auricular cartilage. Conclusions We first demonstrated the expression of matrilin-1 in tracheal but not in auricular cartilage in a localized tracheobronchial RPC patient. This result supports the possibility that matrilin-1 is involved in the pathogenesis of localized tracheobronchial RPC. However, this is only one case report and further observations will be needed to confirm this result.
Collapse
|
39
|
Jeon JH, Yun BG, Lim MJ, Kim SJ, Lim MH, Lim JY, Park SH, Kim SW. Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model. Tissue Eng Regen Med 2020; 17:81-90. [PMID: 31983036 DOI: 10.1007/s13770-019-00231-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cell-based therapies have been studied for articular cartilage regeneration. Articular cartilage defects have little treatments because articular cartilage was limited regenerative capacity. Damaged articular cartilage is difficult to obtain a successful therapeutic effect. In additionally these articular cartilage defects often cause osteoarthritis. Chondrocyte implantation is a widely available therapy used for regeneration of articular cartilage because this tissue has poor repair capacity after injury. Human nasal septum-drived chondrocytes (hNCs) from the septum show greater proliferation ability and chondrogenic capacity than human articular chondrocytes (hACs), even across different donors with different ages. Moreover, the chondrogenic properties of hNCs can be maintained after extensive culture expansion. METHODS In this study, 2 dimensional (2D) monolayer cultured hNCs (hNCs-2D) and 3 dimensional (3D) spheroids cultured hNCs (hNCs-3D) were examined for chondrogenic capacity in vitro by PCR and immunofluorescence staining for chondrogenic marker, cell survival during cultured and for cartilage regeneration ability in vivo in a rat osteochondral defect model. RESULTS hNCs-3D showed higher viability and more uniform morphology than 3D spheroids cultured hACs (hACs-3D) in culture. hNCs-3D also showed greater expression levels of the chondrocyte-specific marker Type II collagen (COL2A1) and sex-determining region Y (SRY)-box 9 (SOX9) than hNCs-2D. hNCs-3D also expressed chondrogenic markers in collagen. Specially, in the osteochondral defect model, implantation of hNCs-3D led to greater chondrogenic repair of focal cartilage defects in rats than implantation of hNCs-2D. CONCLUSION These data suggest that hNCs-3D are valuable therapeutic agents for repair and regeneration of cartilage defects.
Collapse
Affiliation(s)
- Jung Ho Jeon
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Byeong Gon Yun
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Min Jae Lim
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seok Jung Kim
- Orthopedic Department, Uijeongbu St. Mary's Hospital, 271 Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Mi Hyun Lim
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jung Yeon Lim
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sun Hwa Park
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea.
| |
Collapse
|
40
|
Zhao Z, Fan C, Chen F, Sun Y, Xia Y, Ji A, Wang DA. Progress in Articular Cartilage Tissue Engineering: A Review on Therapeutic Cells and Macromolecular Scaffolds. Macromol Biosci 2019; 20:e1900278. [PMID: 31800166 DOI: 10.1002/mabi.201900278] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Repair and regeneration of articular cartilage lesions have always been a major challenge in the medical field due to its peculiar structure (e.g., sparsely distributed chondrocytes, no blood supply, no nerves). Articular cartilage tissue engineering is considered as one promising strategy to achieve reconstruction of cartilage. With this perspective, the articular cartilage tissue engineering has been widely studied. Here, the recent progress of articular cartilage tissue engineering is reviewed. The ad hoc therapeutic cells and growth factors for cartilage regeneration are summarized and discussed. Various types of bio/macromolecular scaffolds together with their pros and cons are also reviewed and elaborated.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Traumatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changjiang Fan
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China.,Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, P. R. China
| | - Feng Chen
- Department of Traumatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yutai Sun
- School of Information Engineering, Shandong Vocational College of Science & Technology, Weifang, 261053, P. R. China
| | - Yujun Xia
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Aiyu Ji
- Department of Traumatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| |
Collapse
|
41
|
Mieloch AA, Richter M, Trzeciak T, Giersig M, Rybka JD. Osteoarthritis Severely Decreases the Elasticity and Hardness of Knee Joint Cartilage: A Nanoindentation Study. J Clin Med 2019; 8:jcm8111865. [PMID: 31684201 PMCID: PMC6912408 DOI: 10.3390/jcm8111865] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/19/2023] Open
Abstract
The nanoindentation method was applied to determine the elastic modulus and hardness of knee articular cartilage. Cartilage samples from both high weight bearing (HWB) and low weight bearing (LWB) femoral condyles were collected from patients diagnosed with osteoarthritis (OA). The mean elastic modulus of HWB cartilage was 4.46 ± 4.44 MPa in comparison to that of the LWB region (9.81 ± 8.88 MPa, p < 0.001). Similarly, the hardness was significantly lower in HWB tissue (0.317 ± 0.397 MPa) than in LWB cartilage (0.455 ± 0.434 MPa, p < 0.001). When adjusted to patients’ ages, the mean elastic modulus and hardness were both significantly lower in the age group over 70 years (p < 0.001). A statistically significant difference in mechanical parameters was also found in grade 3 and 4 OA. This study provides an insight into the nanomechanical properties of the knee articular cartilage and provides a starting point for personalized cartilage grafts that are compatible with the mechanical properties of the native tissue.
Collapse
Affiliation(s)
- Adam Aron Mieloch
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland.
| | - Magdalena Richter
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 28 czerwca 1956r. Street No. 135/147, 61-545 Poznan, Poland.
| | - Michael Giersig
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
- Department of Physics, Institute of Experimental Physics, Freie Universität, Arnimallee 14, 14195 Berlin, Germany.
| | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
| |
Collapse
|
42
|
Onaciu A, Munteanu RA, Moldovan AI, Moldovan CS, Berindan-Neagoe I. Hydrogels Based Drug Delivery Synthesis, Characterization and Administration. Pharmaceutics 2019; 11:E432. [PMID: 31450869 PMCID: PMC6781314 DOI: 10.3390/pharmaceutics11090432] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Hydrogels represent 3D polymeric networks specially designed for various medical applications. Due to their porous structure, they are able to swollen and to entrap large amounts of therapeutic agents and other molecules. In addition, their biocompatibility and biodegradability properties, together with a controlled release profile, make hydrogels a potential drug delivery system. In vivo studies have demonstrated their effectiveness as curing platforms for various diseases and affections. In addition, the results of the clinical trials are very encouraging and promising for the use of hydrogels as future target therapy strategies.
Collapse
Affiliation(s)
- Anca Onaciu
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Marinescu 23/Pasteur 4-6 Street, 400337 Cluj-Napoca, Romania
| | - Raluca Andrada Munteanu
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Marinescu 23/Pasteur 4-6 Street, 400337 Cluj-Napoca, Romania
| | - Alin Iulian Moldovan
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Marinescu 23/Pasteur 4-6 Street, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Pasteur 6 Street, 400349 Cluj-Napoca, Romania
| | - Cristian Silviu Moldovan
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Marinescu 23/Pasteur 4-6 Street, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Pasteur 6 Street, 400349 Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Marinescu 23/Pasteur 4-6 Street, 400337 Cluj-Napoca, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania.
- The Oncology Institute "Prof Dr Ion Chiricuța", Republicii 34-36 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
43
|
Lian C, Wang X, Qiu X, Wu Z, Gao B, Liu L, Liang G, Zhou H, Yang X, Peng Y, Liang A, Xu C, Huang D, Su P. Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1-SMAD1 interaction. Bone Res 2019; 7:8. [PMID: 30854241 PMCID: PMC6403405 DOI: 10.1038/s41413-019-0046-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 12/01/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022] Open
Abstract
Hypertrophic differentiation is not only the terminal process of endochondral ossification in the growth plate but is also an important pathological change in osteoarthritic cartilage. Collagen type II (COL2A1) was previously considered to be only a structural component of the cartilage matrix, but recently, it has been revealed to be an extracellular signaling molecule that can significantly suppress chondrocyte hypertrophy. However, the mechanisms by which COL2A1 regulates hypertrophic differentiation remain unclear. In our study, a Col2a1 p.Gly1170Ser mutant mouse model was constructed, and Col2a1 loss was demonstrated in homozygotes. Loss of Col2a1 was found to accelerate chondrocyte hypertrophy through the bone morphogenetic protein (BMP)-SMAD1 pathway. Upon interacting with COL2A1, integrin β1 (ITGB1), the major receptor for COL2A1, competed with BMP receptors for binding to SMAD1 and then inhibited SMAD1 activation and nuclear import. COL2A1 could also activate ITGB1-induced ERK1/2 phosphorylation and, through ERK1/2-SMAD1 interaction, it further repressed SMAD1 activation, thus inhibiting BMP-SMAD1-mediated chondrocyte hypertrophy. Moreover, COL2A1 expression was downregulated, while chondrocyte hypertrophic markers and BMP-SMAD1 signaling activity were upregulated in degenerative human articular cartilage. Our study reveals novel mechanisms for the inhibition of chondrocyte hypertrophy by COL2A1 and suggests that the degradation and decrease in COL2A1 might initiate and promote osteoarthritis progression. A signaling feedback loop that contributes to cartilage degeneration may offer a fruitful target for the treatment of osteoarthritis. During the early stages of this disorder, cartilage-forming chondrocytes undergo a process of expansion known as hypertrophy, after which they die and are replaced by calcium. Researchers led by Peiqiang Su and Dongsheng Huang of Sun Yat-sen University have demonstrated that COL2A1, an important structural protein, represents an important safeguard against hypertrophy. COL2A1 helps maintain chondrocytes in their normal, healthy state, but Su and Huang showed that signaling factors produced during cartilage repair can reduce COL2A1 levels. This in turn accelerates hypertrophy, promoting further depletion of COL2A1 and ultimately leading to full-blown osteoarthritis. Drugs that break this cycle and preserve COL2A1 could thus help protect endangered joints before the damage becomes severe.
Collapse
Affiliation(s)
- Chengjie Lian
- 1Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China.,2Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xudong Wang
- 2Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xianjian Qiu
- 2Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Zizhao Wu
- 3Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Bo Gao
- 2Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Lei Liu
- 4Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Guoyan Liang
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medicine Science, Guangzhou, Guangdong China
| | - Hang Zhou
- 1Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xiaoming Yang
- 1Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Yan Peng
- 2Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Anjing Liang
- 2Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Caixia Xu
- 6Research Centre for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Dongsheng Huang
- 2Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Peiqiang Su
- 1Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| |
Collapse
|
44
|
Kaviani A, Zebarjad SM, Javadpour S, Ayatollahi M, Bazargan-Lari R. Fabrication and characterization of low-cost freeze-gelated chitosan/collagen/hydroxyapatite hydrogel nanocomposite scaffold. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2018.1562477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alireza Kaviani
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
| | - Seyed Mojtaba Zebarjad
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
| | - Sirus Javadpour
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
| | - Maryam Ayatollahi
- Bone and Joint Disease Research Center, Shiraz University Of Medical Science, Shiraz, Iran
| | - Reza Bazargan-Lari
- Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
45
|
Zykwinska A, Marquis M, Godin M, Marchand L, Sinquin C, Garnier C, Jonchère C, Chédeville C, Le Visage C, Guicheux J, Colliec-Jouault S, Cuenot S. Microcarriers Based on Glycosaminoglycan-Like Marine Exopolysaccharide for TGF-β1 Long-Term Protection. Mar Drugs 2019; 17:md17010065. [PMID: 30669426 PMCID: PMC6356637 DOI: 10.3390/md17010065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
Articular cartilage is an avascular, non-innervated connective tissue with limited ability to regenerate. Articular degenerative processes arising from trauma, inflammation or due to aging are thus irreversible and may induce the loss of the joint function. To repair cartilaginous defects, tissue engineering approaches are under intense development. Association of cells and signalling proteins, such as growth factors, with biocompatible hydrogel matrix may lead to the regeneration of the healthy tissue. One current strategy to enhance both growth factor bioactivity and bioavailability is based on the delivery of these signalling proteins in microcarriers. In this context, the aim of the present study was to develop microcarriers by encapsulating Transforming Growth Factor-β1 (TGF-β1) into microparticles based on marine exopolysaccharide (EPS), namely GY785 EPS, for further applications in cartilage engineering. Using a capillary microfluidic approach, two microcarriers were prepared. The growth factor was either encapsulated directly within the microparticles based on slightly sulphated derivative or complexed firstly with the highly sulphated derivative before being incorporated within the microparticles. TGF-β1 release, studied under in vitro model conditions, revealed that the majority of the growth factor was retained inside the microparticles. Bioactivity of released TGF-β1 was particularly enhanced in the presence of highly sulphated derivative. It comes out from this study that GY785 EPS based microcarriers may constitute TGF-β1 reservoirs spatially retaining the growth factor for a variety of tissue engineering applications and in particular cartilage regeneration, where the growth factor needs to remain in the target location long enough to induce robust regenerative responses.
Collapse
Affiliation(s)
- Agata Zykwinska
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, F-44311 Nantes, France.
| | - Mélanie Marquis
- INRA, UR1268 Biopolymères Interactions Assemblages, F-44300 Nantes, France.
| | - Mathilde Godin
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, F-44311 Nantes, France.
- INRA, UR1268 Biopolymères Interactions Assemblages, F-44300 Nantes, France.
| | - Laëtitia Marchand
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, F-44311 Nantes, France.
| | - Corinne Sinquin
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, F-44311 Nantes, France.
| | - Catherine Garnier
- INRA, UR1268 Biopolymères Interactions Assemblages, F-44300 Nantes, France.
| | - Camille Jonchère
- INRA, UR1268 Biopolymères Interactions Assemblages, F-44300 Nantes, France.
| | - Claire Chédeville
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France.
- UFR Odontologie, Université de Nantes, F-44042 Nantes, France.
| | - Catherine Le Visage
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France.
- UFR Odontologie, Université de Nantes, F-44042 Nantes, France.
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France.
- UFR Odontologie, Université de Nantes, F-44042 Nantes, France.
- CHU Nantes, PHU 4 OTONN, F-44093 Nantes, France.
| | - Sylvia Colliec-Jouault
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, F-44311 Nantes, France.
| | - Stéphane Cuenot
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes-CNRS, 44322 Nantes, France.
| |
Collapse
|
46
|
Cai H, Yao Y, Xu Y, Wang Q, Zou W, Liang J, Sun Y, Zhou C, Fan Y, Zhang X. A Col I and BCP ceramic bi-layer scaffold implant promotes regeneration in osteochondral defects. RSC Adv 2019; 9:3740-3748. [PMID: 35518063 PMCID: PMC9060255 DOI: 10.1039/c8ra09171d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022] Open
Abstract
Osteochondral defects occur in the superficial cartilage region, intermediate calcified cartilage, and subchondral bone. Due to the limited regenerative capacity and complex zonal structure, it is critically difficult to develop strategies for osteochondral defect repair that could meet clinical requirements. In this study, type I collagen (Col I) and BCP ceramics were used to fabricate a new bi-layer scaffold for regeneration in osteochondral defects. The in vitro studies showed that the bi-layer scaffold provided special functions for cell migration, proliferation and secretion due to the layered scaffold structure. The in vivo results demonstrated that the bi-layered scaffold could effectively promote the regeneration of both the cartilage and the subchondral bone, and the newly formed cartilage layer, with a similar structure and thickness to the natural cartilaginous layer, could seamlessly integrate with the surrounding natural cartilage and regenerate an interface layer to mimic the native osteochondral structure. A new bi-layer scaffold composed of Col I and BCP ceramic was prepared to regenerate osteochondral defect. The result demonstrated the bi-layer scaffold could effectively promote the regeneration of both the cartilage and the subchondral bone layer.![]()
Collapse
Affiliation(s)
- Hanxu Cai
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ya Yao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yang Xu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Wen Zou
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- Sichuan Testing Center for Biomaterials and Medical Devices
| | - Jie Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- Sichuan Testing Center for Biomaterials and Medical Devices
| | - Yong Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
47
|
|
48
|
Norris SCP, Delgado SM, Kasko AM. Mechanically robust photodegradable gelatin hydrogels for 3D cell culture and in situ mechanical modification. Polym Chem 2019. [DOI: 10.1039/c9py00308h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Highly conjugated, hydrophobically modified gelatin hydrogels were synthesized, polymerized and degraded with orthogonal wavelengths of light.
Collapse
Affiliation(s)
- Sam C. P. Norris
- Department of Bioengineering
- University of California Los Angeles
- Los Angeles
- USA
| | | | - Andrea M. Kasko
- Department of Bioengineering
- University of California Los Angeles
- Los Angeles
- USA
| |
Collapse
|
49
|
Fazal N, Latief N. Bombyx mori derived scaffolds and their use in cartilage regeneration: a systematic review. Osteoarthritis Cartilage 2018; 26:1583-1594. [PMID: 30059787 DOI: 10.1016/j.joca.2018.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 02/02/2023]
Abstract
For the last two decades, silk has been extensively used as scaffolds in tissue engineering because of its remarkable properties. Unfortunately, the aneural property of cartilage limits its regenerative potential which can be achieved using tissue engineering approach. A lot of research has been published searching for the optimization of silk fibroin (SF) and its blends in order to get the best cartilage mimicking properties. However, according to our best knowledge, there is no systematic review available regarding the use of Bombyx mori derived biomaterials limited to cartilage related studies. This systematic review highlights the in vitro and in vivo work done for the past 7 years on structural and functional properties of B. mori derived biomaterials together with different parameters for cartilage regeneration. PubMed database was searched focusing on in vitro and in vivo studies using the search thread "silk fibroin" and "cartilage". A total of 40 articles met the inclusion criteria. All the articles were deeply studied for cell types, scaffold types and animal models used along with study design and results. Five types of cells were used for in vitro while seven types of cells were used for in vivo studies. Three types of animal models were used for scaffold implantation purpose. Moreover, different types of scaffolds either seeded with cells or supplemented with various factors were explored and discussed in detail. Results suggest the suitability of silk as a better biomaterial because of its cartilage mimicking properties.
Collapse
Affiliation(s)
- N Fazal
- Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - N Latief
- Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan.
| |
Collapse
|
50
|
Wang Z, Li Z, Li Z, Wu B, Liu Y, Wu W. Cartilaginous extracellular matrix derived from decellularized chondrocyte sheets for the reconstruction of osteochondral defects in rabbits. Acta Biomater 2018; 81:129-145. [PMID: 30300711 DOI: 10.1016/j.actbio.2018.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022]
Abstract
Cartilaginous extracellular matrix (ECM) materials derived from decellularized native articular cartilage are widely used in cartilage regeneration. However, it is difficult for endogenous cells to migrate into ECM derived from native cartilage owing to its nonporous structure and dense nature. Moreover, current decellularization approaches frequently lead to architectural breakdown and potential loss of surface composition of ECM. To solve this problem, we aimed to establish a novel biological ECM scaffold from chondrocyte sheets for cartilage regeneration. We cultured chondrocytes harvested from the auricular cartilage of 4-week-old New Zealand rabbits and enabled them to form cell sheets. These sheets were decellularized using sodium dodecyl sulfate (SDS) with three different concentrations, namely, 1%, 5%, and 10%, followed by 1% Triton X-100 and deoxyribonuclease enzyme solution. In vitro microstructural examination and mechanical tests demonstrated that 1% SDS not only removed chondrocytes completely but also maintained the native architecture and composition of ECM, thus avoiding the use of high-concentration SDS. Application of decellularized chondrocyte sheets for osteochondral defects in rabbits resulted in substantial host remodeling and variant regeneration of osteochondral tissues. One percent SDS-treated decellularized chondrocyte sheets contributed to the superior reconstruction of osteochondral defects as compared with 5% and 10% SDS groups, which includes vascularized subchondral bone, articular cartilage with adequate thickness, and integration with host tissues. Furthermore, ECM from 1% SDS significantly increased the migrating potential of bone marrow mesenchymal stem cells (BMSCs) in vitro. RT-PCR and western blot also revealed that ECM increased the expression of SOX-9 in BMSCs, whereas it decreased COL-X expression. In conclusion, our results suggested that the chondrocyte sheets decellularized with 1% SDS preserved the integrity and bioactivity, which favored cell recruitment and enabled osteochondral regeneration in the knee joints of rabbits, thus offering a promising approach for articular cartilage reconstruction without cell transplantation. STATEMENT OF SIGNIFICANCE: Although biological extracellular matrix (ECM) derived from decellularized native cartilage has been widely used in cartilage regeneration, it is difficult for endogenous cells to migrate into ECM owing to its dense nature. Moreover, current decellularization approaches lead to architectural breakdown of ECM. This study established a novel biological ECM from decellularized chondrocyte sheets for cartilage regeneration. Our results suggested that cartilaginous ECM favored cell recruitment and enabled osteochondral regeneration in rabbits, thus offering a promising approach for articular cartilage reconstruction without cell transplantation. SDS 1% adequately decellularized the chondrocytes in cell sheets, whereas it maintained the native architecture and composition of ECM, thereby avoiding the use of high-concentration SDS and providing a new way to acquire cartilaginous ECM.
Collapse
|