1
|
Sankar S, Kalidass B, Indrakumar J, Kodiveri Muthukaliannan G. NSAID-encapsulated nanoparticles as a targeted therapeutic platform for modulating chronic inflammation and inhibiting cancer progression: a review. Inflammopharmacology 2025:10.1007/s10787-025-01760-8. [PMID: 40285986 DOI: 10.1007/s10787-025-01760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Recent advancements in nanotechnology have significantly advanced nanocarrier-mediated drug delivery systems, promoting therapeutic outcomes in mitigating chronic inflammation and cancer. Nanomaterials offer significant advantages over traditional small-molecule drugs, including a high surface-area-to-volume ratio, tunable structural features, and extended bloodstream circulation time. Chronic inflammation is a well-established mechanism for malignant initiation, progression, and metastasis, promoting the potent strategy for cancer prevention and therapy. Numerous studies revealed that nonsteroidal anti-inflammatory drugs (NSAIDs) have the therapeutic ability to manage disease progression via amolerating angiogenesis and inducing apoptosis. However, prolonged intake of NSAIDs is often limited by adverse side-effects and systemic toxicities. The encapsulation of NSAIDs in a nanocarrier have materialized as a dynamic approach to mitigate the limitations by improving pharmacokinetics and pharmacodynamics, reducing off-target effects, and enhancing the drug stability. This review encompasses recent progress in the development of NSAID-based nanotherapeutics, focusing on pivotal mechanisms underlying nanoparticle-mediated drug delivery, such as improved tumor-specific targeting and strategies to overcome drug resistance. The ability of these nano-cargoes to accommodate anti-inflammatory strategies with advanced drug delivery platforms is critically evaluated. This review also highlights the transformative potential of NSAID-encapsulated nanoparticles as a multifaceted therapeutic venue for addressing chronic inflammation and mitigating cancer progression.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Bharathi Kalidass
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Janani Indrakumar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India.
| |
Collapse
|
2
|
Noreen S, Maqbool I, Saleem A, Mahmood H, Rai N. Recent insights and applications of nanocarriers-based drug delivery systems for colonic drug delivery and cancer therapy: An updated review. Crit Rev Oncol Hematol 2025; 208:104646. [PMID: 39914570 DOI: 10.1016/j.critrevonc.2025.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/08/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignant tumor globally and is associated with high morbidity and mortality rates. The advancement of novel nanocarrier-based drug delivery systems has revolutionized therapeutic strategies for colonic drug delivery and cancer treatment. This review provides updated insights into various nanocarrier technologies, including quantum dots (QDs), polymeric nanoparticles (PNPs), magnetic and metallic nanoparticles, solid lipid nanoparticles (SLNs), and self-microemulsifying and self-nanoemulsifying drug delivery systems (SMEDDS/SNEDDS). These nanocarriers offer enhanced drug stability, controlled release, and targeted delivery, particularly for CRC treatment, resulting in up to 70 % improved therapeutic efficacy and a significant reduction in systemic toxicity as reported in preclinical studies. The review comprehensively discusses the structural composition, mechanisms of action, therapeutic potential, and imaging capabilities of these systems, with a focus on their applications in theranostics and targeted CRC therapy. For instance, polymeric nanoparticles have demonstrated a 50 % increase in bioavailability compared to conventional formulations, while QDs have enabled real-time imaging with high precision for tumor localization. Additionally, the toxicity profiles and challenges associated with these nanocarriers are critically evaluated. Despite significant progress in preclinical and clinical studies, the review highlights the need for optimizing biocompatibility, scalability, and regulatory standards to facilitate the clinical translation of these promising technologies. Emerging formulations such as graphene quantum dots and PEGylated nanoparticles have shown potential for achieving dual therapeutic and diagnostic applications with fewer adverse effects. Overall, nanocarrier-based systems hold great potential for personalized and more effective treatments in colon-targeted therapies.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan; Centre for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Austria.
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Anum Saleem
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Hassan Mahmood
- Humanities Department, COMSATS University Islamabad, Lahore Campus, Punjab, Pakistan
| | - Nadia Rai
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
3
|
Silva MLS. Lectin-modified drug delivery systems - Recent applications in the oncology field. Int J Pharm 2024; 665:124685. [PMID: 39260750 DOI: 10.1016/j.ijpharm.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Chemotherapy with cytotoxic drugs remains the core treatment for cancer but, due to the difficulty to find general and usable biochemical differences between cancer cells and normal cells, many of these drugs are associated with lack of specificity, resulting in side effects and collateral cytotoxicity that impair patients' adherence to therapy. Novel cancer treatments in which the cytotoxic effect is maximized while adverse effects are reduced can be implemented by developing targeted therapies that exploit the specific features of cancer cells, such as the typical expression of aberrant glycans. Modification of drug delivery systems with lectins is one of the strategies to implement targeted chemotherapies, as lectins are able to specifically recognize and bind to cancer-associated glycans expressed at the surface of cancer cells, guiding the drug treatment towards these cells and not affecting healthy ones. In this paper, recent advances on the development of lectin-modified drug delivery systems for targeted cancer treatments are thoroughly reviewed, with a focus on their properties and performance in diverse applications, as well as their main advantages and limitations. The synthesis and analytical characterization of the cited lectin-modified drug delivery systems is also briefly described. A comparison with free-drug treatments and with antibody-modified drug delivery systems is presented, emphasizing the advantages of lectin-modified drug delivery systems. Main constraints and potential challenges of lectin-modified drug delivery systems, including key difficulties for clinical translation of these systems, and the required developments in this area, are also signalled.
Collapse
Affiliation(s)
- Maria Luísa S Silva
- Centro de Estudos Globais, Universidade Aberta, Rua da Escola Politécnica 147, 1269-001 Lisboa, Portugal.
| |
Collapse
|
4
|
Abed H, Radha R, Anjum S, Paul V, AlSawaftah N, Pitt WG, Ashammakhi N, Husseini GA. Targeted Cancer Therapy-on-A-Chip. Adv Healthc Mater 2024; 13:e2400833. [PMID: 39101627 PMCID: PMC11582519 DOI: 10.1002/adhm.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Indexed: 08/06/2024]
Abstract
Targeted cancer therapy (TCT) is gaining increased interest because it reduces the risks of adverse side effects by specifically treating tumor cells. TCT testing has traditionally been performed using two-dimensional (2D) cell culture and animal studies. Organ-on-a-chip (OoC) platforms have been developed to recapitulate cancer in vitro, as cancer-on-a-chip (CoC), and used for chemotherapeutics development and testing. This review explores the use of CoCs to both develop and test TCTs, with a focus on three main aspects, the use of CoCs to identify target biomarkers for TCT development, the use of CoCs to test free, un-encapsulated TCTs, and the use of CoCs to test encapsulated TCTs. Despite current challenges such as system scaling, and testing externally triggered TCTs, TCToC shows a promising future to serve as a supportive, pre-clinical platform to expedite TCT development and bench-to-bedside translation.
Collapse
Affiliation(s)
- Heba Abed
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Remya Radha
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Shabana Anjum
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Vinod Paul
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - Nour AlSawaftah
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - William G. Pitt
- Department of Chemical EngineeringBrigham Young UniversityProvoUT84602USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMI48824USA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095‐1600USA
| | - Ghaleb A. Husseini
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| |
Collapse
|
5
|
Garbuzenko OB, Sapiezynski J, Girda E, Rodriguez-Rodriguez L, Minko T. Personalized Versus Precision Nanomedicine for Treatment of Ovarian Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307462. [PMID: 38342698 PMCID: PMC11316847 DOI: 10.1002/smll.202307462] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/22/2023] [Indexed: 02/13/2024]
Abstract
The response to treatment is substantially varied between individual patients with ovarian cancer. However, chemotherapy treatment plans rarely pay sufficient attention to the mentioned factors. Instead, standardized treatment protocols are usually employed for most ovarian cancer patients. Variations in an individual's sensitivity to drugs significantly limit the effectiveness of treatment in some patients and lead to severe toxicities in others. In the present investigation, a nanotechnology-based approach for personalized treatment of ovarian carcinoma (the most lethal type of gynecological cancer) constructed on the individual genetic profile of the patient's tumor is developed and validated. The expression of predefined genes and proteins is analyzed for each patient sample. Finally, a mixture of the complex nanocarrier-based targeted delivery system containing drug(s)/siRNA(s)/targeted peptide is selected from the pre-synthesized bank and tested in vivo on murine cancer model using cancer cells isolated from tumors of each patient. Based on the results of the present study, an innovative approach and protocol for personalized treatment of ovarian cancer are suggested and evaluated. The results of the present study clearly show the advantages and perspectives of the proposed individual treatment approach.
Collapse
Affiliation(s)
- Olga B. Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, Piscataway, NJ USA 08854
| | - Justin Sapiezynski
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, Piscataway, NJ USA 08854
| | - Eugenia Girda
- Department of Gynecology Oncology, Robert Wood Johnson School of Medicine, Rutgers the State University of New Jersey, New Brunswick, NJ USA 08901
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA 08901
| | - Lorna Rodriguez-Rodriguez
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, Piscataway, NJ USA 08854
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA 08901
| |
Collapse
|
6
|
Fazelzadeh Haghighi M, Jafari Khamirani H, Fallahi J, Monfared AA, Ashrafi Dehkordi K, Tabei SMB. Novel insight into FCSK-congenital disorder of glycosylation through a CRISPR-generated cell model. Mol Genet Genomic Med 2024; 12:e2445. [PMID: 38722107 PMCID: PMC11080630 DOI: 10.1002/mgg3.2445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND FCSK-congenital disorder of glycosylation (FCSK-CDG) is a recently discovered rare autosomal recessive genetic disorder with defective fucosylation due to mutations in the fucokinase encoding gene, FCSK. Despite the essential role of fucokinase in the fucose salvage pathway and severe multisystem manifestations of FCSK-CDG patients, it is not elucidated which cells or which types of fucosylation are affected by its deficiency. METHODS In this study, CRISPR/Cas9 was employed to construct an FCSK-CDG cell model and explore the molecular mechanisms of the disease by lectin flow cytometry and real-time PCR analyses. RESULTS Comparison of cellular fucosylation by lectin flow cytometry in the created CRISPR/Cas9 FCSK knockout and the same unedited cell lines showed no significant change in the amount of cell surface fucosylated glycans, which is consistent with the only documented previous study on different cell types. It suggests a probable effect of this disease on secretory glycoproteins. Investigating O-fucosylation by analysis of the NOTCH3 gene expression as a potential target revealed a significant decrease in the FCSK knockout cells compared with the same unedited ones, proving the effect of fucokinase deficiency on EGF-like repeats O-fucosylation. CONCLUSION This study expands insight into the FCSK-CDG molecular mechanism; to the best of our knowledge, it is the first research conducted to reveal a gene whose expression level alters due to this disease.
Collapse
Affiliation(s)
- Maryam Fazelzadeh Haghighi
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | | | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Ali Arabi Monfared
- Central Research LaboratoryShiraz University of Medical SciencesShirazIran
| | - Korosh Ashrafi Dehkordi
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical GeneticsShiraz University of Medical SciencesShirazIran
- Maternal‐Fetal Medicine Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
7
|
Sharma JR, Dubey A, Yadav UCS. Cigarette smoke-induced galectin-3 as a diagnostic biomarker and therapeutic target in lung tissue remodeling. Life Sci 2024; 339:122433. [PMID: 38237765 DOI: 10.1016/j.lfs.2024.122433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Galectin-3 (Gal-3), a multifunctional carbohydrate-binding lectin, has emerged as a key player in various biological processes including inflammation, cancer, cardiovascular diseases and fibrotic disorders, however it remains unclear if Gal-3 is a bystander or drives lung tissue remodeling (LTR). Persistent exposure to cigarette smoke (CS) is the leading cause of oxidative and inflammatory damage to the lung tissues. CS-induced pathological increase in Gal-3 expression has been implicated in the pathogenesis of various respiratory conditions, such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. We and others have reported that CS induces Gal-3 synthesis and secretion, which modulates the pathological signaling pathways in lung epithelial cells implicating Gal-3 as a novel diagnostic marker and a factor driving LTR in CS-exposed lungs. Therefore, pharmacological interventions targeting Gal-3 and its upstream and downstream signaling pathways can help combat CS-induced LTR. Excitingly, preclinical models have demonstrated the efficacy of interventions such as Gal-3 expression inhibition, Gal-3 receptor blockade, and signaling pathways modulation open up promising avenues for future therapeutic interventions. Furthermore, targeting extracellular vesicles-mediated Gal-3 release and the potential of microRNA-based therapy are emerging as novel therapeutic approaches in CS-induced LTR and have been discussed in this article.
Collapse
Affiliation(s)
- Jiten R Sharma
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupama Dubey
- Special Center for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; Special Center for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
8
|
Ghosh P, Patari N, Manisha C, Basavan D, Petchiappan V, Justin A. Reversal mechanism of multidrug-resistant cancer cells by lectin as chemo-adjuvant and targeted therapy- a systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155205. [PMID: 37980807 DOI: 10.1016/j.phymed.2023.155205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Cancer is characterized as the leading cause of death, and the susceptibility of cancer cells to develop resistance due to long-term exposure to complementary chemotherapeutic treatment is referred to as multidrug resistance cancer cells (MDRC), which is a significant obstacle in the treatment of malignancies. Since complementary medicine lost its effectiveness, the development of potential alternative and novel therapeutic approaches has been elevated to a top priority in recent years. In this context, a bioactive protein lectin from plant and animal sources exhibits an invaluable source of anticancer agents with vast therapeutic potential. PURPOSE This manuscript's primary purpose is to enlighten the evidence-based (from 1986 to 2022) possible molecular mechanism of alternative treatment approaches using lectins over the complementary medicines used for cancer treatment. METHODS The PRISMA rules have been followed properly and qualitative and quantitative data are synthesized systematically. Articles were identified based on Clinical and preclinical reports published on lectin that investigated the in-depth cellular mechanisms, of reverse drug integrative oncology, as a nano-carried targeted delivery. Articles were systematically screened from 1986 to 2022 and selected based on electronic database searches, Medline (PubMed), Google Scholar, Web of Science, Encyclopaedias, Scopus, and ClinicalTrials.gov database. RESULTS The search turned up 4,212 publications from 38 different nations, of which 170 reference articles were used in our analysis, in 16 combination therapy and their mode of action, and 27 clinical trial studies including dosage and mechanism of action were included. Reports from the 30 lectins belonging to 28 different families have been included. The reversal mechanism of lectin and alternative therapy against MDRC is critically screened and according to a few clinical and preclinical reports, lectin can suppress the overexpressing genes like P-53, EGFR, and P-gp, MRP, and ABC transporter proteins associated with intracellular transportation of drugs. Since, the drug efflux mechanism leads to MDRC, in this phenomenon, lectin plays a key role in reversing the efflux mechanism. Few preclinical reports have mentioned that lectin shows synergism in combination with complementary medicine and as a nano drug carrier helps to deliver to the targeted site. CONCLUSION We have discussed the alternative therapy using lectin and an in-depth insight into the reversal drug resistance mechanisms to combat MDRC cancer, enhance the efficacy, reduce toxicity and adverse events, and ensure targeted delivery, and their application in the field of cancer diagnosis and prognosis has been discussed. However, further investigation is necessary in drug development and clinical trials which could be helpful to elaborate the reversal mechanism and unlock newer treatment modalities in MDRC cancer.
Collapse
Affiliation(s)
- Puja Ghosh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643 001, India
| | - Niloy Patari
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, USA
| | - Chennu Manisha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643 001, India
| | - Duraiswamy Basavan
- Department of Pharmacognosy, JSS College of Pharmacy, Najwal, Vijaypur, Jammu 184 120, India
| | - Velammal Petchiappan
- Department of General Medicine, PSG Institute of Medical Sciences & Research, Coimbatore, Tamil Nadu 641 004, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643 001, India.
| |
Collapse
|
9
|
Adekiya TA, Owoseni O. Emerging frontiers in nanomedicine targeted therapy for prostate cancer. Cancer Treat Res Commun 2023; 37:100778. [PMID: 37992539 DOI: 10.1016/j.ctarc.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Prostate cancer is a prevalent cancer in men, often treated with chemotherapy. However, it tumor cells are clinically grows slowly and is heterogeneous, leading to treatment resistance and recurrence. Nanomedicines, through targeted delivery using nanocarriers, can enhance drug accumulation at the tumor site, sustain drug release, and counteract drug resistance. In addition, combination therapy using nanomedicines can target multiple cancer pathways, improving effectiveness and addressing tumor heterogeneity. The application of nanomedicine in prostate cancer treatment would be an important strategy in controlling tumor dynamic process as well as improve survival. Thus, this review highlights therapeutic nanoparticles as a solution for prostate cancer chemotherapy, exploring targeting strategies and approaches to combat drug resistance.
Collapse
Affiliation(s)
- Tayo Alex Adekiya
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, United States.
| | - Oluwanifemi Owoseni
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, United States
| |
Collapse
|
10
|
Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh‐Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023; 12:18797-18825. [PMID: 37668041 PMCID: PMC10557914 DOI: 10.1002/cam4.6502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of PharmaceuticsPandaveswar School of PharmacyPandaveswarIndia
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, PharmacyJabalpurIndia
| | - Afzal Hussain
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and BiotechnologyGomal UniversityDera Ismail KhanPakistan
| | - Prashant Kumar
- Teerthanker Mahaveer College of PharmacyTeerthanker Mahaveer UniversityMoradabadIndia
- Department of Pharmaceutics, Amity Institute of PharmacyAmity University Madhya Pradesh (AUMP)GwaliorIndia
| | - Farzad Taghizadeh‐Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of MedicineIran University of Medical SciencesTehranIran
- Clinical Oncology DepartmentIran University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Ghaemi A, Vakili-Azghandi M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Oral non-viral gene delivery platforms for therapeutic applications. Int J Pharm 2023; 642:123198. [PMID: 37406949 DOI: 10.1016/j.ijpharm.2023.123198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Since gene therapy can regulate gene and protein expression directly, it has a great potential to prevent or treat a variety of genetic or acquired diseases through vaccines such as viral infections, cystic fibrosis, and cancer. Owing to their high efficacy, in vivo gene therapy trials are usually conducted intravenously, which is usually costly and invasive. There are several advantages to oral drug administration over intravenous injections, such as better patient compliance, ease of use, and lower cost. However, gene therapy is successful if the oligonucleotides can cross the cell membrane easily and reach the nucleus after the endosomal escape. In order to accomplish this task and deliver the cargo to the intended location, appropriate delivery systems should be introduced. This review summarizes oral delivery systems developed for effective gene delivery, vaccination, and treatment of various diseases. Studies have also shown that oral delivery approaches are potentially applicable to treat various diseases, especially inflammatory bowel disease, stomach, and colorectal cancers. Also, the current review provides an update overview on the development of non-viral and oral gene delivery techniques for gene therapy and vaccination purposes.
Collapse
Affiliation(s)
- Asma Ghaemi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoume Vakili-Azghandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Zhang D, He J, Zhou M. Radiation-assisted strategies provide new perspectives to improve the nanoparticle delivery to tumor. Adv Drug Deliv Rev 2023; 193:114642. [PMID: 36529190 DOI: 10.1016/j.addr.2022.114642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
Nanoparticles (NPs), with advantages in tumor targeting, have been extensively developed for anticancer treatment. However, the delivery efficacy of NPs tends to be heterogeneous in clinical research. Surprisingly, a traditional cancer treatment, radiotherapy (radiation), has been observed with the potential to improve the delivery of NPs by influencing the features of the tumor microenvironment, which provides new perspectives to overcome the barriers in the NPs delivery. Since the effect of radiation can also be enhanced by versatile NPs, these findings of radiation-assisted NPs delivery suggest innovative strategies combining radiotherapy with nanotherapeutics. This review summarizes the research on the delivery and therapeutic efficacy of NPs that are improved by radiation, focusing on relative mechanisms and existing challenges and opportunities.
Collapse
Affiliation(s)
- Dongxiao Zhang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Jian He
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
13
|
Niosomes Functionalized with a Synthetic Carbohydrate Binding Agent for Mannose-Targeted Doxorubicin Delivery. Pharmaceutics 2023; 15:pharmaceutics15010235. [PMID: 36678863 PMCID: PMC9863333 DOI: 10.3390/pharmaceutics15010235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Niosomes are a potential tool for the development of active targeted drug delivery systems (DDS) for cancer therapy because of their excellent behaviour in encapsulating antitumorals and the possibility to easily functionalise their surface with targeting agents. Recently, some of us developed a synthetic carbohydrate binding agent (CBA) able to target the mannosidic residues of high-mannose-type glycans overexpressed on the surface of several cancer cell lines, promoting their apoptosis. In this article, we modified the structure of this mannose receptor to obtain an amphiphilic analogue suitable for the functionalization of doxorubicin-based niosomes. Several niosomal formulations and preparation methods were investigated deeply to finally obtain functionalized niosomes suitable for parental administration, which were stable for over six months and able to encapsulate up to 85% of doxorubicin (DOXO). In vitro studies, carried out towards triple-negative cancer cells (MDA-MB231), overexpressing high-mannose-type glycans, showed a cytotoxic activity comparable to that of DOXO but with an appreciable increment in apoptosis given by the CBA. Moreover, niosomal formulation was observed to reduce doxorubicin-induced cytotoxicity towards normal cell lines of rat cardiomyocytes (H9C2). This study is propaedeutic to further in vivo investigations that can aim to shed light on the antitumoral activity and pharmacokinetics of the developed active targeted DDS.
Collapse
|
14
|
Hamdy NM, Eskander G, Basalious EB. Insights on the Dynamic Innovative Tumor Targeted-Nanoparticles-Based Drug Delivery Systems Activation Techniques. Int J Nanomedicine 2022; 17:6131-6155. [PMID: 36514378 PMCID: PMC9741821 DOI: 10.2147/ijn.s386037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Anti-cancer conventional chemotherapeutic drugs novel formula progress, nowadays, uses nano technology for targeted drug delivery, specifically tailored to overcome therapeutic agents' delivery challenges. Polymer drug delivery systems (DDS) play a crucial role in minimizing off-target side effects arising when using standard cytotoxic drugs. Using nano-formula for targeted localized action, permits using larger effective cytotoxic doses on a single special spot, that can seriously cause harm if it was administered systemically. Therefore, various nanoparticles (NPs) specifically have attached groups for targeting capabilities, not seen in bulk materials, which then need activation. In this review, we will present a simple innovative, illustrative, in a cartoon-way, enumeration of NP anti-cancer drug targeting delivery system activation-types. Area(s) covered in this review are the mechanisms of various NP activation techniques.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Georgette Eskander
- Faculty of Pharmacy, Ain Shams University, Postgraduate Student, Cairo, Egypt
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
15
|
Gastrointestinal Tract Stabilized Protein Delivery Using Disulfide Thermostable Exoshell System. Int J Mol Sci 2022; 23:ijms23179856. [PMID: 36077259 PMCID: PMC9456531 DOI: 10.3390/ijms23179856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Thermostable exoshells (tES) are engineered proteinaceous nanoparticles used for the rapid encapsulation of therapeutic proteins/enzymes, whereby the nanoplatform protects the payload from proteases and other denaturants. Given the significance of oral delivery as the preferred model for drug administration, we structurally improved the stability of tES through multiple inter-subunit disulfide linkages that were initially absent in the parent molecule. The disulfide-linked tES, as compared to tES, significantly stabilized the activity of encapsulated horseradish peroxidase (HRP) at acidic pH and against the primary human digestive enzymes, pepsin, and trypsin. Furthermore, the disulfide-linked tES (DS-tES) exhibited significant intestinal permeability as evaluated using Caco2 cells. In vivo bioluminescence assay showed that encapsulated Renilla luciferase (rluc) was ~3 times more stable in mice compared to the free enzyme. DS-tES collected mice feces had ~100 times more active enzyme in comparison to the control (free enzyme) after 24 h of oral administration, demonstrating strong intestinal stability. Taken together, the in vitro and in vivo results demonstrate the potential of DS-tES for intraluminal and systemic oral drug delivery applications.
Collapse
|
16
|
Dommes OA, Okatova OV, Zhuravskaya ON, Panarin EF, Pavlov GM. Molecular Hydrodynamics and Conformations of Poly(methacryloylamino galactose) in Aqueous Solutions. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Whang CH, Hong J, Kim D, Ryu H, Jung W, Son Y, Keum H, Kim J, Shin H, Moon E, Noh I, Lee HS, Jon S. Systematic Screening and Therapeutic Evaluation of Glyconanoparticles with Differential Cancer Affinities for Targeted Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203993. [PMID: 35639412 DOI: 10.1002/adma.202203993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Cancer-targeting ligands used for nanomedicines have been limited mostly to antibodies, peptides, aptamers, and small molecules thus far. Here, a library of glycocalyx-mimicking nanoparticles as a platform to enable screening and identification of cancer-targeting nanomedicines is reported. Specifically, a library of 31 artificial glycopolymers composed of either homogeneous or heterogeneous display of five different sugar moieties (β-glucose, β-galactose, α-mannose, β-N-acetyl glucosamine, and β-N-acetyl galactosamine) is converted to a library of glyconanoparticles (GlyNPs). GlyNPs optimal for targeting CT26, DU145, A549, and PC3 tumors are systematically screened and identified. The cypate-conjugated GlyNP displaying α-mannose and β-N-acetyl glucosamine show selective targeting and potent photothermal therapeutic efficacy against A549 human lung tumors. The docetaxel-contained GlyNP displaying β-glucose, β-galactose, and α-mannose demonstrate targeted chemotherapy against DU145 human prostate tumors. The results presented herein collectively demonstrate that the GlyNP library is a versatile platform enabling the identification of cancer-targeting glyconanoparticles and suggest its potential applicability for targeting various diseased cells beyond cancer.
Collapse
Affiliation(s)
- Chang-Hee Whang
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jungwoo Hong
- Department of Chemistry, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Dohyeon Kim
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Hong Ryu
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Wonsik Jung
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Youngju Son
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Hyeongseop Keum
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jinjoo Kim
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Hocheol Shin
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Eugene Moon
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Ilkoo Noh
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Hee-Seung Lee
- Department of Chemistry, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| |
Collapse
|
18
|
Shrestha S, Banstola A, Jeong JH, Seo JH, Yook S. Targeting Cancer Stem Cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles. J Control Release 2022; 348:518-536. [PMID: 35709876 DOI: 10.1016/j.jconrel.2022.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are the subpopulation of cells present within a tumor with the properties of self-renewing, differentiating, and proliferating. Owing to the presence of ATP-binding cassette drug pumps and increased expression of anti-apoptotic proteins, the conventional chemotherapeutic agents have failed to eliminate CSCs resulting in relapse and resistance of cancer. Therefore, to obtain long-lasting clinical responses and avoid the recurrence of cancer, it is crucial to develop an efficient strategy targeting CSCs by either employing a differentiation therapy or specifically delivering drugs to CSCs. Several intracellular and extracellular cancer specific biomarkers are overexpressed by CSCs and are utilized as targets for the development of new approaches in the diagnosis and treatment of CSCs. Moreover, several nanostructured particles, alone or in combination with current treatment approaches, have been used to improve the detection, imaging, and targeting of CSCs, thus addressing the limitations of cancer therapies. Targeting CSC surface markers, stemness-related signaling pathways, and tumor microenvironmental signals has improved the detection and eradication of CSCs and, therefore, tumor diagnosis and treatment. This review summarizes a variety of promising nanoparticles targeting the surface biomarkers of CSCs for the detection and eradication of tumor-initiating stem cells, used in combination with other treatment regimens.
Collapse
Affiliation(s)
- Samjhana Shrestha
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Asmita Banstola
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| |
Collapse
|
19
|
Mokrus M, Menzel H. Thermoresponsive Glycopolypeptide Containing Block Copolymers, Particle Formation, and Lectin Interaction. Macromol Biosci 2022; 22:e2100518. [PMID: 35358360 DOI: 10.1002/mabi.202100518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Indexed: 01/01/2023]
Abstract
Amphiphilic block copolymers with a thermoresponsive poly(N-isopropylacrylamide) block and a glycopeptide block are synthesized and particle formation as well as interaction of the glyco-corona with lectins is investigated. The synthetic route comprises the preparation of block copolymers by N-carboxyanhydride polymerization and subsequent deprotection to obtain pH- and thermoresponsive poly(l-glutamic acid)-b-poly(N-isopropylacrylamide) (pGA-b-pNIPAM), which is then further modified with different amino sugars by a versatile coupling method with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholin-4-ium chloride (DMT-MM). The glycosylated pGA-b-pNIPAM block copolymers are investigated with regard to cloud point temperatures (Tcp ), particle size, and stability. The morphology of the particles is visualized using cryo-SEM. Zeta potential measurements are indicating that the saccharide moieties are located on the surface of the particles. This assumption is further substantiated by quantitative lectin interaction assays with nonaggregated and aggregated glycosylated pGA-b-pNIPAM. The interaction of the model lectin ConA with the block copolymers is independent of the degree of substitution in the nonaggregated state at room temperature. However, at 37 °C, when particles of pGA-b-pNIPAM are present, the interaction becomes stronger with increasing degree of substitution. This interaction with lectins can be used for targeting saccharide-modified particles in drug delivery.
Collapse
Affiliation(s)
- Mandy Mokrus
- Institute for Technical Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig, 38106, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig, 38106, Germany
| |
Collapse
|
20
|
Rehman MU, Khan A, Imtiyaz Z, Ali S, Makeen HA, Rashid S, Arafah A. Current Nano-therapeutic Approaches Ameliorating Inflammation in Cancer Progression. Semin Cancer Biol 2022; 86:886-908. [DOI: 10.1016/j.semcancer.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
21
|
Ahmed MN, Jahan R, Nissapatorn V, Wilairatana P, Rahmatullah M. Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomed Pharmacother 2022; 146:112507. [PMID: 34891122 PMCID: PMC8648558 DOI: 10.1016/j.biopha.2021.112507] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Lectins or clusters of carbohydrate-binding proteins of non-immune origin are distributed chiefly in the Plantae. Lectins have potent anti-infectivity properties for several RNA viruses including SARS-CoV-2. The primary purpose of this review is to review the ability of lectins mediated potential biotherapeutic and bioprophylactic strategy against coronavirus causing COVID-19. Lectins have binding affinity to the glycans of SARS-COV-2 Spike glycoprotein that has N-glycosylation sites. Apart from this, the complement lectin pathway is a "first line host defense" against the viral infection that is activated by mannose-binding lectins. Mannose-binding lectins deficiency in serum influences innate immunity of the host and facilitates infectious diseases including COVID-19. Our accumulated evidence obtained from scientific databases particularly PubMed and Google Scholar databases indicate that mannose-specific/mannose-binding lectins (MBL) have potent efficacies like anti-infectivity, complement cascade induction, immunoadjuvants, DC-SIGN antagonists, or glycomimetic approach, which can prove useful in the strategy of COVID-19 combat along with the glycobiological aspects of SARS-CoV-2 infections and antiviral immunity. For example, plant-derived mannose-specific lectins BanLac, FRIL, Lentil, and GRFT from red algae can inhibit and neutralize SARS-CoV-2 infectivity, as confirmed with in-vitro, in-vivo, and in-silico assessments. Furthermore, Bangladesh has a noteworthy resource of antiviral medicinal plants as well as plant lectins. Intensifying research on the antiviral plant lectins, adopting a glyco-biotechnological approach, and with deeper insights into the "glycovirological" aspects may result in the designing of alternative and potent blueprints against the 21st century's biological pandemic of SARS-CoV-2 causing COVID-19.
Collapse
Affiliation(s)
- Md Nasir Ahmed
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh; Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhaka, Bangladesh.
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh.
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh.
| |
Collapse
|
22
|
Alginate Modification and Lectin-Conjugation Approach to Synthesize the Mucoadhesive Matrix. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alginates are natural anionic polyelectrolytes investigated in various biomedical applications, such as drug delivery, tissue engineering, and 3D bioprinting. Functionalization of alginates is one possible way to provide a broad range of requirements for those applications. A range of techniques, including esterification, amidation, acetylation, phosphorylation, sulfation, graft copolymerization, and oxidation and reduction, have been implemented for this purpose. The rationale behind these investigations is often the combination of such modified alginates with different molecules. Particularly promising are lectin conjugate macromolecules for lectin-mediated drug delivery, which enhance the bioavailability of active ingredients on a specific site. Most interesting for such application are alginate derivatives, because these macromolecules are more resistant to acidic and enzymatic degradation. This review will report recent progress in alginate modification and conjugation, focusing on alginate-lectin conjugation, which is proposed as a matrix for mucoadhesive drug delivery and provides a new perspective for future studies with these conjugation methods.
Collapse
|
23
|
The Two Sweet Sides of Janus Lectin Drive Crosslinking of Liposomes to Cancer Cells and Material Uptake. Toxins (Basel) 2021; 13:toxins13110792. [PMID: 34822576 PMCID: PMC8620536 DOI: 10.3390/toxins13110792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
A chimeric, bispecific Janus lectin has recently been engineered with different, rationally oriented recognition sites. It can bind simultaneously to sialylated and fucosylated glycoconjugates. Because of its multivalent architecture, this lectin reaches nanomolar avidities for sialic acid and fucose. The lectin was designed to detect hypersialylation—a dysregulation in physiological glycosylation patterns, which promotes the tumor growth and progression of several cancer types. In this study, the characteristic properties of this bispecific Janus lectin were investigated on human cells by flow cytometry and confocal microscopy in order to understand the fundamentals of its interactions. We evaluated its potential in targeted drug delivery, precisely leading to the cellular uptake of liposomal content in human epithelial cancer cells. We successfully demonstrated that Janus lectin mediates crosslinking of glyco-decorated giant unilamellar vesicles (GUVs) and H1299 lung epithelial cells. Strikingly, the Janus lectin induced the internalization of liposomal lipids and also of complete GUVs. Our findings serve as a solid proof of concept for lectin-mediated targeted drug delivery using glyco-decorated liposomes as possible drug carriers to cells of interest. The use of Janus lectin for tumor recognition certainly broadens the possibilities for engineering diverse tailor-made lectin constructs, specifically targeting extracellular structures of high significance in pathological conditions.
Collapse
|
24
|
Erden Y. Sour black mulberry (Morus nigra L.) causes cell death by decreasing mutant p53 expression in HT-29 human colon cancer cells. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Majumder J, Minko T. Targeted Nanotherapeutics for Respiratory Diseases: Cancer, Fibrosis, and Coronavirus. ADVANCED THERAPEUTICS 2021; 4:2000203. [PMID: 33173809 PMCID: PMC7646027 DOI: 10.1002/adtp.202000203] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/27/2020] [Indexed: 12/13/2022]
Abstract
Systemic delivery of therapeutics for treatment of lung diseases has several limitations including poor organ distribution of delivered payload with relatively low accumulation of active substances in the lungs and severe adverse side effects. In contrast, nanocarrier based therapeutics provide a broad range of opportunities due to their ability to encapsulate substances with different aqueous solubility, transport distinct types of cargo, target therapeutics specifically to the deceased organ, cell, or cellular organelle limiting adverse side effects and increasing the efficacy of therapy. Moreover, many nanotherapeutics can be delivered by inhalation locally to the lungs avoiding systemic circulation. In addition, nanoscale based delivery systems can be multifunctional, simultaneously carrying out several tasks including diagnostics, treatment and suppression of cellular resistance to the treatment. Nanoscale delivery systems improve the clinical efficacy of conventional therapeutics allowing new approaches for the treatment of respiratory diseases which are difficult to treat or possess intrinsic or acquired resistance to treatment. The present review summarizes recent advances in the development of nanocarrier based therapeutics for local and targeted delivery of drugs, nucleic acids and imaging agents for diagnostics and treatment of various diseases such as cancer, cystic fibrosis, and coronavirus.
Collapse
Affiliation(s)
- Joydeb Majumder
- Department of PharmaceuticsErnest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Tamara Minko
- Department of PharmaceuticsErnest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| |
Collapse
|
26
|
Ventura G, Calvano CD, Losito I, Viola A, Cinquepalmi V, Cataldi TRI. In vitro reactions of a cyanocobalamin-cisplatin conjugate with nucleoside monophosphates. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8945. [PMID: 32910479 DOI: 10.1002/rcm.8945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Cisplatin (CP) is a widely used anticancer drug characterized by toxic side effects that could be alleviated using novel delivery systems including CP prodrugs. The in vitro incubation of a putative prodrug, obtained from cyanocobalamin (CNCbl) and cis-diamminemonochloroplatinum(II) (mCP), with nucleoside monophosphates (NMPs) was investigated. METHODS The in vitro reactions between the putative prodrug CNCbl-mCP and the NMPs of adenosine (AMP), guanosine (GMP), cytidine (CMP) and uridine (UMP) were carried out in slightly acidic water-methanol solutions at 37°C for 24 h. Each sample was examined using reversed-phase liquid chromatography coupled with electrospray ionization in positive ion mode and tandem mass spectrometry (RPLC/ESI-MS/MS) by collision-induced dissociation in a linear ion-trap mass spectrometer. RESULTS Seven adducts were recognized as formed by substitution reactions of the chloride ligand in planar CP. Comparison between observed and theoretical isotopic patterns together with MS/MS fragmentation pathways revealed the presence of single or multiple binding sites depending on the NMP involved. The CNCbl-mCP conjugate was found to interact with N7 or O4 atoms of GMP and UMP, respectively, generating single adducts, while two isomeric adducts were observed for CMP. Finally, AMP gave rise to three isomeric adducts. CONCLUSIONS In agreement with literature data relevant to the interaction between CP and NMPs, the most reactive nucleotides were AMP and GMP. The present RPLC/ESI-MS/MS approach is very promising for investigation of the reactions of CP conjugates with ribonucleotides not only in vitro but also in vivo.
Collapse
Affiliation(s)
- Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Cosima Damiana Calvano
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Andrea Viola
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Valeria Cinquepalmi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| |
Collapse
|
27
|
Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell 2020; 181:151-167. [PMID: 32243788 DOI: 10.1016/j.cell.2020.02.001] [Citation(s) in RCA: 582] [Impact Index Per Article: 116.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022]
Abstract
Off-target effects of systemically administered drugs have been a major hurdle in designing therapies with desired efficacy and acceptable toxicity. Developing targeting strategies to enable site-specific drug delivery holds promise in reducing off-target effects, decreasing unwanted toxicities, and thereby enhancing a drug's therapeutic efficacy. Over the past three decades, a large body of literature has focused on understanding the biological barriers that hinder tissue-specific drug delivery and strategies to overcome them. These efforts have led to several targeting strategies that modulate drug delivery in both the preclinical and clinical settings, including small molecule-, nucleic acid-, peptide-, antibody-, and cell-based strategies. Here, we discuss key advances and emerging concepts for tissue-specific drug delivery approaches and their clinical translation.
Collapse
Affiliation(s)
- Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Anvay Ukidve
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Jayoung Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020; 7:193. [PMID: 32974385 DOI: 10.3389/fmolb.2020.00193/bibtex] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 05/26/2023] Open
Abstract
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.
Collapse
Affiliation(s)
- Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020; 7:193. [PMID: 32974385 PMCID: PMC7468194 DOI: 10.3389/fmolb.2020.00193] [Citation(s) in RCA: 602] [Impact Index Per Article: 120.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.
Collapse
Affiliation(s)
- Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Entezar-Almahdi E, Mohammadi-Samani S, Tayebi L, Farjadian F. Recent Advances in Designing 5-Fluorouracil Delivery Systems: A Stepping Stone in the Safe Treatment of Colorectal Cancer. Int J Nanomedicine 2020; 15:5445-5458. [PMID: 32801699 PMCID: PMC7398750 DOI: 10.2147/ijn.s257700] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/29/2020] [Indexed: 12/31/2022] Open
Abstract
5-Fluorouracil (5-FU) has become one of the most widely employed antimetabolite chemotherapeutic agents in recent decades. It is considered a first line antineoplastic agent for the treatment of colorectal cancer. Unfortunately, chemotherapy with 5-FU has several limitations, including its short half-life, high cytotoxicity and low bioavailability. In order to overcome the drawbacks of 5-FU and enhance its therapeutic efficiency, many scientific groups have focused on designing a new delivery system to successfully deliver 5-FU to tumor sites. We provide a comprehensive review on different strategies to design effective delivery systems, including nanoformulations, drug-conjugate formulations and other strategies for the delivery of 5-FU to colorectal cancer. Furthermore, co-delivery of 5-FU with other therapeutics is discussed. This review critically highlights the recent innovations in and literature on various types of carrier system for 5-FU.
Collapse
Affiliation(s)
- Elaheh Entezar-Almahdi
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University, School of Dentistry, Milwaukee, WI, USA
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
31
|
Pietrzyk-Brzezinska AJ, Bujacz A. H-type lectins - Structural characteristics and their applications in diagnostics, analytics and drug delivery. Int J Biol Macromol 2020; 152:735-747. [PMID: 32119947 DOI: 10.1016/j.ijbiomac.2020.02.320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Lectins are ubiquitous carbohydrate-binding proteins that interact with sugar moieties in a highly specific manner. H-type lectins represent a new group of lectins that were identified in invertebrates. These lectins share structural homology and bind mainly to N-acetylgalactosamine (GalNAc). Recent structural studies on the H-type lectins provided a detailed description of the GalNAc-lectin interaction that is already exploited in a number of biomedical applications. Two members of the H-type lectin family, Helix pomatia agglutinin (HPA) and Helix aspersa agglutinin (HAA), have already been extensively used in many diagnostic tests due their ability to specifically recognize GalNAc. This ability is especially important because aberrant glycosylation patterns of proteins expressed by cancer cells contain GalNAc. In addition, H-type lectins were utilized in diagnostics of other non-cancer diseases and represent great potential as components of drug delivery systems. Here, we present an overview of the H-type lectins and their applications in diagnostics, analytics and drug delivery.
Collapse
Affiliation(s)
- Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland.
| | - Anna Bujacz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland
| |
Collapse
|
32
|
Tiwari A, Saraf S, Jain A, Panda PK, Verma A, Jain SK. Basics to advances in nanotherapy of colorectal cancer. Drug Deliv Transl Res 2020; 10:319-338. [PMID: 31701486 DOI: 10.1007/s13346-019-00680-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer existing across the globe. It begins with the formation of polyps leading to the development of metastasis, especially in advanced stage patients, who necessitate intensive chemotherapy that usually results in a poor response and high morbidity owing to multidrug resistance and severe untoward effects to the non-cancerous cells. Advancements in the targeted drug delivery permit the targeting of tumor cells without affecting the non-tumor cells. Various nanocarriers such as liposomes, polymeric nanoparticles, carbon nanotubes, micelles, and nanogels, etc. are being developed and explored for effective delivery of cytotoxic drugs to the target site thereby enhancing the drug distribution and bioavailability, simultaneously subduing the side effects. Moreover, immunotherapy for CRC is being explored for last few decades. Few clinical trials have even potentially benefited patients suffering from CRC, still immunotherapy persists merely an experimental alternative. Assessment of the ongoing and completed trials is to be warranted for effective treatment of CRC. Scientists are paying efforts to develop novel carrier systems that may enhance the targeting potential of low therapeutic index chemo- and immune-therapeutics. Several preclinical studies have revealed the superior efficacy of nanotherapy in CRC as compared to conventional approaches. Clinical trials are being recruited to ascertain the safety and efficacy of CRC therapies. The present review discourses in a nutshell the molecular interventions including the genetics, signaling pathways involved in CRC, and advances in various strategies explored for the treatment of CRC with a special emphasis on nanocarriers based drug targeting.
Collapse
Affiliation(s)
- Ankita Tiwari
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Shivani Saraf
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Ankit Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
- Institute of Pharmaceutical Research, GLA University, NH-2, Mathura-Delhi Road, Mathura, 281 406 (U.P.), India
| | - Pritish K Panda
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Amit Verma
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Sanjay K Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India.
| |
Collapse
|
33
|
Korani M, Korani S, Zendehdel E, Nikpoor AR, Jaafari MR, Orafai HM, Johnston TP, Sahebkar A. Enhancing the Therapeutic Efficacy of Bortezomib in Cancer Therapy Using Polymeric Nanostructures. Curr Pharm Des 2020; 25:4883-4892. [DOI: 10.2174/1381612825666191106150018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
:
Bortezomib (VELCADE®) is a boronate peptide and first-in-class proteasome inhibitor serving an
important role in degenerating several intracellular proteins. It is a reversible inhibitor of the 26S proteasome,
with antitumor activity and antiproliferative properties. This agent principally exerts its antineoplastic effects by
inhibiting key players in the nuclear factor κB (NFκB) pathway involved in cell proliferation, apoptosis, and
angiogenesis. This medication is used in the management of multiple myeloma. However, more recently, it has
been used as a therapeutic option for mantle cell lymphoma. While promising, bortezomib has limited clinical
applications due to its adverse effects (e.g., hematotoxicity and peripheral neuropathy) and low effectiveness in
solid tumors resulting from its poor penetration into such masses and suboptimal pharmacokinetic parameters.
Other limitations to bortezomib include its low chemical stability and bioavailability, which can be overcome by
using nanoparticles for its delivery. Nanoparticle delivery systems can facilitate the targeted delivery of chemotherapeutic
agents in high doses to the target site, while sparing healthy tissues. Therefore, this drug delivery
system has provided a solution to circumvent the limitations faced with the delivery of traditional cancer chemotherapeutic
agents. Our aim in this review was to describe polymer-based nanocarriers that can be used for the
delivery of bortezomib in cancer chemotherapy.
Collapse
Affiliation(s)
- Mitra Korani
- Nanotechnology Research Center, Buali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Zendehdel
- Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amin Reza Nikpoor
- Department of Pharmaceutics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein M. Orafai
- Department of Pharmaceutics, Faculty of Pharmacy, University of Ahl Al Bayt, Karbala, Iraq
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri- Kansas City, Kansas City, Missouri, United States
| | | |
Collapse
|
34
|
Asgari S, Pourjavadi A, Licht TR, Boisen A, Ajalloueian F. Polymeric carriers for enhanced delivery of probiotics. Adv Drug Deliv Rev 2020; 161-162:1-21. [PMID: 32702378 DOI: 10.1016/j.addr.2020.07.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Probiotics are live microorganisms (usually bacteria), which are defined by their ability to confer health benefits to the host, if administered adequately. Probiotics are not only used as health supplements but have also been applied in various attempts to prevent and treat gastrointestinal (GI) and non-gastrointestinal diseases such as diarrhea, colon cancer, obesity, diabetes, and inflammation. One of the challenges in the use of probiotics is putative loss of viability by the time of administration. It can be due to procedures that the probiotic products go through during fabrication, storage, or administration. Biocompatible and biodegradable polymers with specific moieties or pH/enzyme sensitivity have shown great potential as carriers of the bacteria for 1) better viability, 2) longer storage times, 3) preservation from the aggressive environment in the stomach and 4) topographically targeted delivery of probiotics. In this review, we focus on polymeric carriers and the procedures applied for encapsulation of the probiotics into them. At the end, some novel methods for specific probiotic delivery, possibilities to improve the targeted delivery of probiotics and some challenges are discussed.
Collapse
|
35
|
Gerson-Gurwitz A, Worby CA, Lee KY, Khaliullin R, Bouffard J, Cheerambathur D, Oegema K, Cram EJ, Dixon JE, Desai A. Ancestral roles of the Fam20C family of secreted protein kinases revealed in C. elegans. J Cell Biol 2019; 218:3795-3811. [PMID: 31541016 PMCID: PMC6829671 DOI: 10.1083/jcb.201807041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/11/2019] [Accepted: 08/25/2019] [Indexed: 01/05/2023] Open
Abstract
Gerson-Gurwitz et al. show that FAMK-1, the sole Fam20-like secreted protein kinase in C. elegans, contributes to embryonic development and fertility, acts in the late secretory pathway, phosphorylates lectins, and is important in embryonic and tissue contexts where cells are subjected to mechanical strain. Fam20C is a secreted protein kinase mutated in Raine syndrome, a human skeletal disorder. In vertebrates, bone and enamel proteins are major Fam20C substrates. However, Fam20 kinases are conserved in invertebrates lacking bone and enamel, suggesting other ancestral functions. We show that FAMK-1, the Caenorhabditis elegans Fam20C orthologue, contributes to fertility, embryogenesis, and development. These functions are not fulfilled when FAMK-1 is retained in the early secretory pathway. During embryogenesis, FAMK-1 maintains intercellular partitions and prevents multinucleation; notably, temperature elevation or lowering cortical stiffness reduces requirement for FAMK-1 in these contexts. FAMK-1 is expressed in multiple adult tissues that undergo repeated mechanical strain, and selective expression in the spermatheca restores fertility. Informatic, biochemical, and functional analysis implicate lectins as FAMK-1 substrates. These findings suggest that FAMK-1 phosphorylation of substrates, including lectins, in the late secretory pathway is important in embryonic and tissue contexts where cells are subjected to mechanical strain.
Collapse
Affiliation(s)
- Adina Gerson-Gurwitz
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA.,Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Carolyn A Worby
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA.,Department of Pharmacology, University of California, San Diego, La Jolla, CA
| | - Kian-Yong Lee
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA.,Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Renat Khaliullin
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA.,Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Jeff Bouffard
- Department of Bioengineering, Northeastern University, Boston, MA
| | - Dhanya Cheerambathur
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA.,Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA.,Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA
| | - Jack E Dixon
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA .,Department of Pharmacology, University of California, San Diego, La Jolla, CA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA .,Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
36
|
Bajracharya R, Song JG, Back SY, Han HK. Recent Advancements in Non-Invasive Formulations for Protein Drug Delivery. Comput Struct Biotechnol J 2019; 17:1290-1308. [PMID: 31921395 PMCID: PMC6944732 DOI: 10.1016/j.csbj.2019.09.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/14/2023] Open
Abstract
Advancements in biotechnology and protein engineering expand the availability of various therapeutic proteins including vaccines, antibodies, hormones, and growth factors. In addition, protein drugs hold many therapeutic advantages over small synthetic drugs in terms of high specificity and activity. This has led to further R&D investment in protein-based drug products and an increased number of drug approvals for therapeutic proteins. However, there are many biological and biopharmaceutical obstacles inherent to protein drugs including physicochemical and enzymatic destabilization, which limit their development and clinical application. Therefore, effective formulations of therapeutic proteins are needed to overcome the various physicochemical and biological barriers. In current medical practice, protein drugs are predominantly available in injectable formulations, which have disadvantages including pain, the possibility of infection, high cost, and low patient compliance. Consequently, non-invasive drug delivery systems for therapeutic proteins have gained great attention in the research and development of biomedicines. Therefore, this review covers the various formulation approaches to optimizing the delivery properties of protein drugs with an emphasis on improving bioavailability and patient compliance. It provides a comprehensive update on recent advancements in nanotechnologies with regard to non-invasive protein drug delivery systems, which is also categorized by the route of administrations including oral, nasal, transdermal, pulmonary, ocular, and rectal delivery systems.
Collapse
|
37
|
Ahmad A, Khan F, Mishra RK, Khan R. Precision Cancer Nanotherapy: Evolving Role of Multifunctional Nanoparticles for Cancer Active Targeting. J Med Chem 2019; 62:10475-10496. [DOI: 10.1021/acs.jmedchem.9b00511] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anas Ahmad
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Farheen Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Rakesh Kumar Mishra
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Rehan Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| |
Collapse
|
38
|
Liu Y, Chen D, Li J, Xia D, Yu M, Tao J, Zhang X, Li L, Gan Y. NPC1L1-Targeted Cholesterol-Grafted Poly(β-Amino Ester)/pDNA Complexes for Oral Gene Delivery. Adv Healthc Mater 2019; 8:e1800934. [PMID: 30773830 DOI: 10.1002/adhm.201800934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/15/2019] [Indexed: 12/12/2022]
Abstract
Gene vectors for oral delivery encounter harsh conditions throughout the gastrointestinal tract, and the continuous peristaltic activity can quickly remove the vectors, leading to inefficient intestinal permeation. Therefore, vectors have demanding property requirements, such as stability under various pH and, more importantly, efficient uptake in different intestinal segments. In this study, a functional polymer, cholesterol-grafted poly(β-amino ester) (poly[hexamethylene diacrylate-β-(5-amino-1-pentanol)] (CH-PHP)), is synthesized and electrostatically interacted with plasmid DNA to form a CH-PHP/DNA complex (CPNC). This complex is designed to target the Niemann-Pick C1-like receptor, a cholesterol receptor, to improve oral gene delivery efficacy. With the presence of cholesterol, CH-PHP shows mitigated cytotoxicity, enhanced enzyme resistance, and improved gene condensing ability. CPNC further contributes to ≈43.1- and 2.3-fold increases in luciferase expression in Caco-2 cells compared with PNC and Lipo 2000/DNA complexes, respectively. In addition, the in vivo transfection efficacy of CPNC is ≈4.1-, 2.1-, and 1.6-fold higher than that of Lipo 2000/DNA complexes in rat duodenum, jejunum, and ileum, respectively. Therefore, CPNC may be a promising delivery vector for gene delivery, and using a cholesterol-specific endocytic pathway can be a novel approach to achieve efficient oral gene transfection.
Collapse
Affiliation(s)
- Yuan Liu
- Department of ChemistryShanghai University Shanghai 200444 P. R. China
- Shanghai Institute of Materia MedicaChinese Academy of Sciences No. 501 Haike Road Shanghai 201203 P. R. China
| | - Dan Chen
- Shanghai Institute of Materia MedicaChinese Academy of Sciences No. 501 Haike Road Shanghai 201203 P. R. China
| | - Jialin Li
- Shanghai Institute of Materia MedicaChinese Academy of Sciences No. 501 Haike Road Shanghai 201203 P. R. China
- School of PharmacyShanghai University of Traditional Chinese Medicine Shanghai 201203 P. R. China
| | - Dengning Xia
- Shanghai Institute of Materia MedicaChinese Academy of Sciences No. 501 Haike Road Shanghai 201203 P. R. China
| | - Miaorong Yu
- Shanghai Institute of Materia MedicaChinese Academy of Sciences No. 501 Haike Road Shanghai 201203 P. R. China
| | - Jinsong Tao
- Shanghai Institute of Materia MedicaChinese Academy of Sciences No. 501 Haike Road Shanghai 201203 P. R. China
| | - Xinxin Zhang
- Shanghai Institute of Materia MedicaChinese Academy of Sciences No. 501 Haike Road Shanghai 201203 P. R. China
| | - Li Li
- Department of ChemistryShanghai University Shanghai 200444 P. R. China
| | - Yong Gan
- Shanghai Institute of Materia MedicaChinese Academy of Sciences No. 501 Haike Road Shanghai 201203 P. R. China
| |
Collapse
|
39
|
Giri TK. Breaking the Barrier of Cancer Through Liposome Loaded with Phytochemicals. Curr Drug Deliv 2018; 16:3-17. [DOI: 10.2174/1567201815666180918112139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/20/2018] [Accepted: 09/11/2018] [Indexed: 11/22/2022]
Abstract
Currently, the most important cause of death is cancer. To treat the cancer there are a number of drugs existing in the market but no drug is found to be completely safe and effective. The toxicity of the drugs is the key problem in the cancer chemotherapy. However, plants and plant derived bioactive molecule have proved safe and effective in the treatment of cancers. Phytochemicals that are found in fruits, vegetables, herbs, and plant extract have been usually used for treating cancer. It has been established that several herbal drug have a strong anticancer activity. However, their poor bioavailability, solubility, and stability have severely restricted their use. These problems can be overcome by incorporating the herbal drug in nanolipolomal vesicles. In last few decades, researcher have used herbal drug loaded nanoliposome for the treatment and management of a variety of cancers. Presently, a number of liposomal formulations are on the market for the treatment of cancer and many more are in pipe line. This review discusses about the tumor microenvironment, targeting mechanism of bioactive phytochemicals to the tumor tissue, background of nanoliposome, and the potential therapeutic applications of different bioactive phytochemicals loaded nanoliposome in cancer therapy.
Collapse
Affiliation(s)
- Tapan Kumar Giri
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| |
Collapse
|
40
|
Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. Int J Biol Macromol 2018; 114:64-76. [DOI: 10.1016/j.ijbiomac.2018.03.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 12/27/2022]
|
41
|
Qiao Y, Wan J, Zhou L, Ma W, Yang Y, Luo W, Yu Z, Wang H. Stimuli‐responsive nanotherapeutics for precision drug delivery and cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1527. [DOI: 10.1002/wnan.1527] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/16/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Yiting Qiao
- The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi‐Organ Transplantation, Ministry of Public Health, School of Medicine Zhejiang University Hangzhou P.R. China
| | - Jianqin Wan
- The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi‐Organ Transplantation, Ministry of Public Health, School of Medicine Zhejiang University Hangzhou P.R. China
- Department of Chemical Engineering Zhejiang University Hangzhou P.R. China
| | - Liqian Zhou
- The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi‐Organ Transplantation, Ministry of Public Health, School of Medicine Zhejiang University Hangzhou P.R. China
| | - Wen Ma
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou P.R. China
| | - Yuanyuan Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou P.R. China
| | - Weixuan Luo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou P.R. China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou P.R. China
| | - Hangxiang Wang
- The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi‐Organ Transplantation, Ministry of Public Health, School of Medicine Zhejiang University Hangzhou P.R. China
| |
Collapse
|
42
|
Vineethkumar TV, Shyla G, George S. Smallest lectin-like peptide identified from the skin secretion of an endemic frog, Hydrophylax bahuvistara. ACTA BIOLOGICA HUNGARICA 2018; 69:110-113. [PMID: 29575918 DOI: 10.1556/018.68.2018.1.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lectins are sugar-binding proteins and considered as attractive candidates for drug delivery and targeting. Here, we report the identification of the smallest lectin-like peptide (odorranalectin HYba) from the skin secretion of Hydrophylax bahuvistara which is being the shortest lectin-like peptide identified so far from the frog skin secretion, with 15 amino acid residues. The peptide is the first report from an Indian frog and lacks antimicrobial activity but strongly agglutinate intact human erythrocytes. The sequences at the L-fucose recognizing region is conserved as in other lectins reported from frog skin secretion and could be exploited for specificity and drug targeting properties.
Collapse
Affiliation(s)
| | - Gopal Shyla
- Chemical and Environmental Biology group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Sanil George
- Chemical and Environmental Biology group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| |
Collapse
|
43
|
Malekzad H, Mirshekari H, Sahandi Zangabad P, Moosavi Basri SM, Baniasadi F, Sharifi Aghdam M, Karimi M, Hamblin MR. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. Crit Rev Biotechnol 2018; 38:47-67. [PMID: 28434263 PMCID: PMC5654697 DOI: 10.1080/07388551.2017.1312267] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.
Collapse
Affiliation(s)
- Hedieh Malekzad
- a Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG) , Iran University of Medical Sciences , Tehran , Iran
| | - Hamed Mirshekari
- b Department of Biotechnology , University of Kerala , Trivandrum , India
| | - Parham Sahandi Zangabad
- c Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS) , Tabriz , Iran
- d Department of Material Science and Engineering , Sharif University of technology , Tehran , Iran
- e Universal Scientific Education and Research Network (USERN) , Tehran, Iran
| | - S M Moosavi Basri
- f Bioenvironmental Research Center, Sharif University of Technology , Tehran , Iran
- g Civil & Environmental Engineering Department , Shahid Beheshti University , Tehran , Iran
| | - Fazel Baniasadi
- d Department of Material Science and Engineering , Sharif University of technology , Tehran , Iran
| | | | - Mahdi Karimi
- i Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
- j Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran , Iran
- k Applied Biotechnology Research Center, School of Medicine, Tehran Medical Sciences Branch, Islamic Azad University , Tehran , Iran
| | - Michael R Hamblin
- l Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA
- m Department of Dermatology , Harvard Medical School , Boston , MA , USA
- n Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
44
|
Naeem M, Oshi MA, Kim J, Lee J, Cao J, Nurhasni H, Im E, Jung Y, Yoo JW. pH-triggered surface charge-reversal nanoparticles alleviate experimental murine colitis via selective accumulation in inflamed colon regions. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:823-834. [PMID: 29353017 DOI: 10.1016/j.nano.2018.01.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/18/2017] [Accepted: 01/02/2018] [Indexed: 01/14/2023]
Abstract
In this study, we developed pH-triggered surface charge-reversal lipid nanoparticles (LNPs), loaded with budesonide, which could precisely deliver the drug to inflamed colon segments for the treatment of ulcerative colitis. Polyethyleneimine (PEI) was used to render LNPs cationic (PEI-LNPs), and Eudragit® S100 (ES) was coated on PEI-LNPs to obtain pH-triggered charge-reversal LNPs (ES-PEI-LNPs). ES coating avoided a burst drug release under acidic conditions mimicking the stomach and early small intestine environments and showed a sustained release in the colon. The surface charge of ES-PEI-LNPs switched from negative to positive under colonic conditions owing to pH-triggered removal of the ES coating. Bioimaging of the mouse gastrointestinal tract and confocal analysis of colon tissues revealed that ES-PEI-LNPs selectively accumulated in an inflamed colon. Furthermore, ES-PEI-LNPs mitigated experimental colitis in mice. These results suggest that the pH-triggered charge-reversal LNPs could be a promising drug carrier for ulcerative colitis therapy and other colon-targeted treatments.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Murtada A Oshi
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jihyun Kim
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jiafu Cao
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Hasan Nurhasni
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, South Korea.
| |
Collapse
|
45
|
Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. J Pharm Biomed Anal 2018; 147:185-210. [DOI: 10.1016/j.jpba.2017.07.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
46
|
Cyclodextrin-Based Nanosystems in Targeted Cancer Therapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-76162-6_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
47
|
|
48
|
Chaurasia S, Patel RR, Vure P, Mishra B. Potential of Cationic-Polymeric Nanoparticles for Oral Delivery of Naringenin: In Vitro and In Vivo Investigations. J Pharm Sci 2017; 107:706-716. [PMID: 29031951 DOI: 10.1016/j.xphs.2017.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 02/02/2023]
Abstract
The objective of the study was to improve the bioavailability and anticancer potential of naringenin (NRG) by developing a drug-loaded polymeric nanodelivery system. NRG-loaded eudragit E100 nanoparticle (NRG-EE100-NPs) system was developed and physicochemically characterized. In vivo pharmacokinetic and in vitro cytotoxicity abilities of the NRG-EE100-NPs were investigated. In vivo anticancer activity was evaluated in murine BALB/c mice-bearing colorectal tumor. The NRG-EE100-NPs had an optimum mean particle size (430.42 ± 5.78 nm), polydispersity index (0.283 ± 0.089) with percent entrapment efficiency (68.83 ± 3.45%). The NRG-EE100-NPs demonstrated significant higher bioavailability (∼96-fold; p <0.05) as well as cytotoxicity (∼16-fold; p <0.001) as compared to free NRG. Furthermore, NRG-EE100-NPs indicated significant tumor suppression (p <0.01) subsequently improvement in survival rate compared to free NRG in vivo. Thus, the physicochemical properties and colorectal cancer efficacy of NRG were improved by successful encapsulating in cationic-polymeric nanoparticle system.
Collapse
Affiliation(s)
- Sundeep Chaurasia
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, Uttar Pradesh, India; Formulation Research and Development, Complex Generics Division, Virchow Biotech Pvt. Ltd., Survey No. 172 Part, Gagillapur (V), Quthbullapur (M), Ranga Reddy (Dist.), Hyderabad 500 043, Telangana, India
| | - Ravi R Patel
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, Uttar Pradesh, India
| | - Prasad Vure
- Formulation Research and Development, Complex Generics Division, Virchow Biotech Pvt. Ltd., Survey No. 172 Part, Gagillapur (V), Quthbullapur (M), Ranga Reddy (Dist.), Hyderabad 500 043, Telangana, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, Uttar Pradesh, India.
| |
Collapse
|
49
|
García Calavia P, Chambrier I, Cook MJ, Haines AH, Field RA, Russell DA. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J Colloid Interface Sci 2017; 512:249-259. [PMID: 29073466 DOI: 10.1016/j.jcis.2017.10.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
Gold nanoparticles (AuNPs), which have been widely used for the delivery of photosensitizers for photodynamic therapy (PDT) of cancer, can be dispersed in aqueous solutions improving the delivery of the hydrophobic photosensitizer into the body. Furthermore, the large surface of AuNPs can be functionalized with a variety of ligands, including proteins, nucleic acids and carbohydrates, that allow selective targeting to cancer tissue. In this study, gold nanoparticles were functionalized with a mixed monolayer of a zinc phthalocyanine and a lactose derivative. For the first time, a carbohydrate was used with a dual purpose, as the stabilizing agent of the gold nanoparticles in aqueous solutions and as the targeting agent for breast cancer cells. The functionalization of the phthalocyanine-AuNPs with lactose led to the production of water-dispersible nanoparticles that are able to generate singlet oxygen and effect cell death upon irradiation. The targeting ability of lactose of the lactose-phthalocyanine functionalized AuNPs was studied in vitro towards the galectin-1 receptor on the surface of breast cancer cells. The targeting studies showed the exciting potential of lactose as a specific targeting agent for galactose-binding receptors overexpressed on breast cancer cells.
Collapse
Affiliation(s)
- Paula García Calavia
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Isabelle Chambrier
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Michael J Cook
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alan H Haines
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - David A Russell
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
50
|
Singh VK, Saini A, Chandra R. The Implications and Future Perspectives of Nanomedicine for Cancer Stem Cell Targeted Therapies. Front Mol Biosci 2017; 4:52. [PMID: 28785557 PMCID: PMC5520001 DOI: 10.3389/fmolb.2017.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) are believed to exhibit distinctive self-renewal, proliferation, and differentiation capabilities, and thus play a significant role in various aspects of cancer. CSCs have significant impacts on the progression of tumors, drug resistance, recurrence and metastasis in different types of malignancies. Due to their primary role, most researchers have focused on developing anti-CSC therapeutic strategies, and tremendous efforts have been put to explore methods for selective eradication of these therapeutically resistant CSCs. In recent years, many reports have shown the use of CSCs-specific approaches such as ATP-binding cassette (ABC) transporters, blockade of self-renewal and survival of CSCs, CSCs surface markers targeted drugs delivery and eradication of the tumor microenvironment. Also, various therapeutic agents such as small molecule drugs, nucleic acids, and antibodies are said to destroy CSCs selectively. Targeted drug delivery holds the key to the success of most of the anti-CSCs based drugs/therapies. The convention CSCs-specific therapeutic agents, suffer from various problems. For instance, limited water solubility, small circulation time and inconsistent stability of conventional therapeutic agents have significantly limited their efficacy. Recent advancement in the drug delivery technology has demonstrated that specially designed nanocarrier-based drug delivery approaches (nanomedicine) can be useful in delivering sufficient amount of drug molecules even in the most interiors of CSCs niches and thus can overcome the limitations associated with the conventional free drug delivery methods. The nanomedicine has also been promising in designing effective therapeutic regime against pump-mediated drug resistance (ATP-driven) and reduces detrimental effects on normal stem cells. Here we focus on the biological processes regulating CSCs' drug resistance and various strategies developed so far to deal with them. We also review the various nanomedicine approaches developed so far to overcome these CSCs related issues and their future perspectives.
Collapse
Affiliation(s)
- Vimal K. Singh
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological UniversityNew Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological UniversityNew Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of DelhiNew Delhi, India
| |
Collapse
|