1
|
Deng C, Xiao Y, Zhao X, Li H, Chen Y, Ai K, Jiang T, Wei J, Chen X, Lei G, Zeng C. Sequential Targeting Chondroitin Sulfate-Bilirubin Nanomedicine Attenuates Osteoarthritis via Reprogramming Lipid Metabolism in M1 Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411911. [PMID: 39792653 PMCID: PMC11884591 DOI: 10.1002/advs.202411911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The infiltration and excessive polarization of M1 macrophages contribute to the induction and persistence of low-grade inflammation in joint-related degenerative diseases such as osteoarthritis (OA). The lipid metabolism dysregulation promotes M1 macrophage polarization by coordinating the compensatory pathways of the inflammatory and oxidative stress responses. Here, a self-assembling, licofelone-loaded nanoparticle (termed LCF-CSBN), comprising chondroitin sulfate and bilirubin joined by an ethylenediamine linker, is developed to selectively reprogram lipid metabolism in macrophage activation. LCF-CSBN is internalized by M1 macrophages via CD44-mediated endocytosis and targets the Golgi apparatus accompanied with the reactive oxygen species-responsive release of licofelone (LCF, dual inhibitor of arachidonic acid metabolism). LCF-CSBN effectively promotes M1 to M2 macrophage transition by reprogramming the Golgi apparatus-related sphingolipid metabolism and arachidonic acid metabolism. Intra-articularly injected LCF-CSBN retains in the joint for up to 28 days and accumulates into M1 macrophages. Moreover, LCF-CSBN can effectively attenuate joint inflammation, oxidative stress, and cartilage degeneration in OA model rats. These findings indicate the promising potential of lipid-metabolism-reprogramming LCF-CSBN in the targeted therapy of OA.
Collapse
Affiliation(s)
- Caifeng Deng
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yongbing Xiao
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xuan Zhao
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Hui Li
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yuxiao Chen
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410008China
| | - Ting Jiang
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Jie Wei
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
2
|
Alobaid MA, Richards SJ, Alexander MR, Gibson MI, Ghaemmaghami AM. Monosaccharide coating modulate the intracellular trafficking of gold nanoparticles in dendritic cells. Mater Today Bio 2024; 29:101371. [PMID: 39698001 PMCID: PMC11652954 DOI: 10.1016/j.mtbio.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Dendritic cells (DCs) have emerged as a promising target for drug delivery and immune modulation due to their pivotal role in initiating the adaptive immune response. Gold nanoparticles (AuNPs) have garnered interest as a platform for targeted drug delivery due to their biocompatibility, low toxicity and precise control over size, morphology and surface functionalization. Our investigation aimed to elucidate the intracellular uptake and trafficking of AuNPs coated with different combinations of monosaccharides (mannose, galactose, and fucose) in DCs. We used 30 unique polymer-tethered monosaccharide combinations to coat 16 nm diameter spherical gold nanoparticles and investigated their effect on DCs phenotype, uptake, and intracellular trafficking. DCs internalized AuNPs coated with 100 % fucose, 100 % mannose, 90 % mannose +10 % galactose, and 80 % mannose +20 % galactose with highest efficiency. Flow cytometry analysis indicated that 100 % fucose-coated AuNPs showed increased lysosomal and endosomal contents compared to other conditions and uncoated AuNPs. Imaging flow cytometry further demonstrated that 100 % fucose-coated AuNPs had enhanced co-localization with lysosomes, while 100 % mannose-coated AuNPs exhibited higher co-localization with endosomes. Furthermore, our data showed that the uptake of carbohydrate-coated AuNPs predominantly occurred through receptor-mediated endocytosis, as evidenced by a marked reduction of uptake upon treatment of DCs with methyl-β-cyclodextrins, known to disrupt receptor-mediated endocytosis. These findings highlight the utility of carbohydrate coatings to enable more targeted delivery of nanoparticles and their payload to distinct intracellular compartments in immune cells with potential applications in drug delivery and immunotherapy.
Collapse
Affiliation(s)
- Meshal A. Alobaid
- Immunology & Immuno-bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Biology, Immunology, American International University, Al-Jahra, Saad Al Abdullah, Kuwait
| | - Sarah-Jane Richards
- Warwick Medical School, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | | | - Matthew I. Gibson
- Warwick Medical School, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Amir M. Ghaemmaghami
- Immunology & Immuno-bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
3
|
Peng Y, Yang Z, Sun H, Li J, Lan X, Liu S. Nanomaterials in Medicine: Understanding Cellular Uptake, Localization, and Retention for Enhanced Disease Diagnosis and Therapy. Aging Dis 2024; 16:AD.2024.0206-1. [PMID: 38421835 PMCID: PMC11745437 DOI: 10.14336/ad.2024.0206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Nanomaterials (NMs) have emerged as promising tools for disease diagnosis and therapy due to their unique physicochemical properties. To maximize the effectiveness and design of NMs-based medical applications, it is essential to comprehend the complex mechanisms of cellular uptake, subcellular localization, and cellular retention. This review illuminates the various pathways that NMs take to get from the extracellular environment to certain intracellular compartments by investigating the various mechanisms that underlie their interaction with cells. The cellular uptake of NMs involves complex interactions with cell membranes, encompassing endocytosis, phagocytosis, and other active transport mechanisms. Unique uptake patterns across cell types highlight the necessity for customized NMs designs. After internalization, NMs move through a variety of intracellular routes that affect where they are located subcellularly. Understanding these pathways is pivotal for enhancing the targeted delivery of therapeutic agents and imaging probes. Furthermore, the cellular retention of NMs plays a critical role in sustained therapeutic efficacy and long-term imaging capabilities. Factors influencing cellular retention include nanoparticle size, surface chemistry, and the cellular microenvironment. Strategies for prolonging cellular retention are discussed, including surface modifications and encapsulation techniques. In conclusion, a comprehensive understanding of the mechanisms governing cellular uptake, subcellular localization, and cellular retention of NMs is essential for advancing their application in disease diagnosis and therapy. This review provides insights into the intricate interplay between NMs and biological systems, offering a foundation for the rational design of next-generation nanomedicines.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Sun
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuwan Lan
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs 2023; 37:181-203. [PMID: 36729328 PMCID: PMC9893211 DOI: 10.1007/s40259-023-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Numerous toxins translocate to the cytosol in order to fulfil their function. This demonstrates the existence of routes for proteins from the extracellular space to the cytosol. Understanding these routes is relevant to multiple aspects related to therapeutic applications. These include the development of anti-toxin treatments, the potential use of toxins as shuttles for delivering macromolecular cargo to the cytosol or the use of drugs based on toxins. Compared with other strategies for delivery, such as chemicals as carriers for macromolecular delivery or physical methods like electroporation, toxin routes present paths into the cell that potentially cause less damage and can be specifically targeted. The efficiency of delivery via toxin routes is limited. However, low-delivery efficiencies can be entirely sufficient, if delivered cargoes possess an amplification effect or if very few molecules are sufficient for inducing the desired effects. This is known for example from RNA-based vaccines that have been developed during the coronavirus disease 2019 pandemic as well as for other approved RNA-based drugs, which elicited the desired effect despite their typically low delivery efficiencies. The different mechanisms by which toxins enter cells may have implications for their technological utility. We review the mechanistic principles of the translocation pathway of toxins from the extracellular space to the cytosol, the delivery efficiencies, and therapeutic strategies or applications that exploit toxin routes for intracellular delivery.
Collapse
|
5
|
Ding L, Liang M, Li C, Ji X, Zhang J, Xie W, Reis RL, Li FR, Gu S, Wang Y. Design Strategies of Tumor-Targeted Delivery Systems Based on 2D Nanomaterials. SMALL METHODS 2022; 6:e2200853. [PMID: 36161304 DOI: 10.1002/smtd.202200853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Conventional chemotherapy and radiotherapy are nonselective and nonspecific for cell killing, causing serious side effects and threatening the lives of patients. It is of great significance to develop more accurate tumor-targeting therapeutic strategies. Nanotechnology is in a leading position to provide new treatment options for cancer, and it has great potential for selective targeted therapy and controlled drug release. 2D nanomaterials (2D NMs) have broad application prospects in the field of tumor-targeted delivery systems due to their special structure-based functions and excellent optical, electrical, and thermal properties. This review emphasizes the design strategies of tumor-targeted delivery systems based on 2D NMs from three aspects: passive targeting, active targeting, and tumor-microenvironment targeting, in order to promote the rational application of 2D NMs in clinical practice.
Collapse
Affiliation(s)
- Lin Ding
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Minli Liang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinting Ji
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Weifen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials Biodegradables and Biomimetics, University of Minho, Guimarães, 4805-017, Portugal
| | - Fu-Rong Li
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Shuo Gu
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| | - Yanli Wang
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| |
Collapse
|
6
|
Li H, Deng C, Tan Y, Dong J, Zhao Y, Wang X, Yang X, Luo J, Gao H, Huang Y, Zhang ZR, Gong T. Chondroitin sulfate-based prodrug nanoparticles enhance photodynamic immunotherapy via Golgi apparatus targeting. Acta Biomater 2022; 146:357-369. [PMID: 35577045 DOI: 10.1016/j.actbio.2022.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023]
Abstract
Photodynamic therapy (PDT) is an emerging therapeutic approach that can inhibit tumor growth by destroying local tumors and activating systemic antitumor immune responses. However, PDT can be ineffective because of photosensitizer aggregation, tumor-induced dendritic cells (DCS) dysfunction and PDT-mediated immunosuppression. Therefore, we designed chondroitin sulfate-based prodrug nanoparticles for the co-delivery of the photosensitizer chlorin e6 (Ce6) and retinoic acid (RA), which can reduce PDT-mediated immunosuppression by disrupting the Golgi apparatus and blocking the production of immunosuppressive cytokines. Moreover, CpG oligodeoxynucleotide was combined as immunoadjuvant to promote the maturation of DCs. As expected, the strategy of Golgi apparatus targeting immunotherapy combined PDT was confirmed to relieve PDT-induced immunosuppression, showed excellent PDT antitumor efficacy in B16F10-subcutaneous bearing mice model. Thus, our finding offers a promising approach for photodynamic immunotherapy of advanced cancers. STATEMENT OF SIGNIFICANCE: Golgi apparatus has been shown to be a potential target of immunosuppression for producing several immunosuppressive cytokines. In this work, a Golgi apparatus-targeted prodrug nanoparticle was developed to enhance the immune response in photodynamic immunotherapy. The nanoparticle can target and disrupt the Golgi apparatus in tumor cells, which reduced PDT-mediated immunosuppression by blocking the production of immunosuppressive cytokines. This work provides an effective strategy of PDT in combination with the Golgi apparatus-targeted nanovesicle for enhanced cancer therapy.
Collapse
Affiliation(s)
- Haohuan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China; Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Caifeng Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China; Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yulu Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Jianxia Dong
- Department of Clinical Pharmacy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuanhao Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Xingyue Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Jingwen Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
7
|
Vieira AM, Silvestre OF, Silva BF, Ferreira CJ, Lopes I, Gomes AC, Espiña B, Sárria MP. pH-sensitive nanoliposomes for passive and CXCR-4-mediated marine yessotoxin delivery for cancer therapy. Nanomedicine (Lond) 2022; 17:717-739. [PMID: 35481356 DOI: 10.2217/nnm-2022-0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Yessotoxin (YTX), a marine-derived drug, was encapsulated in PEGylated pH-sensitive nanoliposomes, covalently functionalized (strategy I) with SDF-1α and by nonspecific adsorption (strategy II), to actively target chemokine receptor CXCR-4. Methods: Cytotoxicity to normal human epithelial cells (HK-2) and prostate (PC-3) and breast (MCF-7) adenocarcinoma models, with different expression levels of CXCR-4, were tested. Results: Strategy II exerted the highest cytotoxicity toward cancer cells while protecting normal epithelia. Acid pH-induced fusion of nanoliposomes seemed to serve as a primary route of entry into MCF-7 cells but PC-3 data support an endocytic pathway for their internalization. Conclusion: This work describes an innovative hallmark in the current marine drug clinical pipeline, as the developed nanoliposomes are promising candidates in the design of groundbreaking marine flora-derived anticancer nanoagents.
Collapse
Affiliation(s)
- Ana Mg Vieira
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal.,Centre of Molecular & Environmental Biology (CBMA), University of Minho, Braga, 4710-057, Portugal
| | - Oscar F Silvestre
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| | - Bruno Fb Silva
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| | - Celso Jo Ferreira
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal.,Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
| | - Ivo Lopes
- Centre of Molecular & Environmental Biology (CBMA), University of Minho, Braga, 4710-057, Portugal
| | - Andreia C Gomes
- Centre of Molecular & Environmental Biology (CBMA), University of Minho, Braga, 4710-057, Portugal.,Institute of Science & Innovation for Biosustainability (IB-S), University of Minho, Braga, 4710-057, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| | - Marisa P Sárria
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| |
Collapse
|
8
|
Rodríguez-Massó SR, Erickson MA, Banks WA, Ulrich H, Martins AH. The Bradykinin B2 Receptor Agonist (NG291) Causes Rapid Onset of Transient Blood-Brain Barrier Disruption Without Evidence of Early Brain Injury. Front Neurosci 2021; 15:791709. [PMID: 34975388 PMCID: PMC8715084 DOI: 10.3389/fnins.2021.791709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The blood-brain barrier (BBB) describes the brain's highly specialized capillaries, which form a dynamic interface that maintains central nervous system (CNS) homeostasis. The BBB supports the CNS, in part, by preventing the entry of potentially harmful circulating molecules into the brain. However, this specialized function is challenging for the development of CNS therapeutics. Several strategies to facilitate drug delivery into the brain parenchyma via disruption of the BBB have been proposed. Bradykinin has proven effective in disrupting mechanisms across the blood-tumor barrier. Unfortunately, bradykinin has limited therapeutic value because of its short half-life and the undesirable biological activity elicited by its active metabolites. Objective: To evaluate NG291, a stable bradykinin analog, with selective agonist activity on the bradykinin-B2 receptor and its ability to disrupt the BBB transiently. Methods: Sprague Dawley rats and CD-1 mice were subjected to NG291 treatment (either 50 or 100 μg/kg, intravenously). Time and dose-dependent BBB disruption were evaluated by histological analysis of Evans blue (EB) extravasation. Transcellular and paracellular BBB leakage were assessed by infiltration of 99mTc-albumin (66.5 KDa) and 14C-sucrose (340 Da) radiolabeled probes into the brains of CD-1 mice treated with NG291. NG291 influence on P-glycoprotein (P-gp) efflux pump activity was evaluated by quantifying the brain accumulation of 3H-verapamil, a known P-gp substrate, in CD-1 mice. Results: NG291-mediated BBB disruption was localized, dose-dependent, and reversible as measured by EB extravasation. 99mTc-albumin leakage was significantly increased by 50 μg/kg of NG291, whereas 100 μg/kg of NG291 significantly augmented both 14C-sucrose and 99mTc-albumin leakage. NG291 enhanced P-gp efflux transporter activity and was unable to increase brain uptake of the P-gp substrate pralidoxime. NG291 did not evoke significant short-term neurotoxicity, as it did not increase brain water content, the number of Fluoro-Jade C positive cells, or astrocyte activation. Conclusion: Our findings strongly suggest that NG291 increases BBB permeability by two different mechanisms in a dose-dependent manner and increases P-gp efflux transport. This increased permeability may facilitate the penetration into the brain of therapeutic candidates that are not P-gp substrates.
Collapse
Affiliation(s)
- Sergio R. Rodríguez-Massó
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, PR, United States
| | - Michelle A. Erickson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Antonio Henrique Martins
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, PR, United States
| |
Collapse
|
9
|
An Integrative Pan-Cancer Analysis of the Oncogenic Role of COPB2 in Human Tumors. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7405322. [PMID: 34676262 PMCID: PMC8526247 DOI: 10.1155/2021/7405322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023]
Abstract
Several studies have suggested that coatomer protein complex subunit beta 2 (COPB2) may act as an oncogene in various cancer types. However, no systematic pan-cancer analysis has been performed to date. Therefore, the present study analyzed the potential oncogenic role of COPB2 using TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus) datasets. The majority of the cancer types overexpressed the COPB2 protein, and its expression significantly correlated with tumor prognosis. In certain tumors, such as those found in breast and ovarian tissues, phosphorylated S859 exhibited high expression. It was found that mutations of the COPB2 protein in kidney and endometrial cancers exhibited a significant impact on patient prognosis. It is interesting to note that COPB2 expression correlated with the number of cancer-associated fibroblasts in certain tumors, such as cervical and endocervical cancers and colon adenocarcinomas. In addition, COPB2 was involved in the transport of substances and correlated with chemotherapy sensitivity. This is considered the first pan-tumor study, which provided a relatively comprehensive understanding of the mechanism by which COPB2 promotes cancer growth.
Collapse
|
10
|
Zhang M, Xu N, Xu W, Ling G, Zhang P. Potential therapies and diagnosis based on Golgi-targeted nano drug delivery systems. Pharmacol Res 2021; 175:105861. [PMID: 34464677 DOI: 10.1016/j.phrs.2021.105861] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
With the rapid development of nanotechnology, organelle-targeted nano drug delivery systems (NDDSs) have emerged as a potential method which can transport drugs specifically to the subcellular compartments like nucleus, mitochondrion, lysosome, endoplasmic reticulum (ER) and Golgi apparatus (GA). GA not only plays a key role in receiving, modifying, packaging and transporting proteins and lipids, but also contributes to a set of cellular processes. Golgi-targeted NDDSs can alter the morphology of GA and will become a promising strategy with high specificity, low-dose administration and decreased occurrence of side effects. In this review, Golgi-targeted NDDSs and their applications in disease therapies and diagnosis such as cancer, metastasis, fibrosis and neurological diseases are introduced. Meanwhile, modifications of NDDSs to achieve targeting strategies, Golgi-disturbing agents to change the morphology of GA, special endocytosis to achieve endosomal/lysosomal escape strategies are also involved.
Collapse
Affiliation(s)
- Manyue Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Na Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wenxin Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
11
|
Zhang HT, Yu M, Niu YJ, Liu WZ, Pang WH, Ding J, Wang JC. Polyarginine-Mediated siRNA Delivery: A Mechanistic Study of Intracellular Trafficking of PCL-R15/siRNA Nanoplexes. Mol Pharm 2020; 17:1685-1696. [PMID: 32191042 DOI: 10.1021/acs.molpharmaceut.0c00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
As a cell-penetrating peptide, polyarginine is widely used in drug delivery systems based on its membrane permeation ability. Previously, we developed the mPEG-PLA-b-polyarginine(R15) triblock copolymer, which exhibited a high siRNA delivery efficiency both in vitro and in vivo. As a continued effort, here the amphiphilic diblock polymer PCL-R15 was synthesized as a simplified model to further elucidate the structure-activity relationship of arginine-based amphiphilic polymers as siRNA delivery systems, and the cellular trafficking mechanisms of the PCL-R15/siRNA nanoplexes were investigated to understand the interaction patterns between the nanoplexes and cells. Compared to the R15/siRNA complexes, the introduction of PCL moiety was found to result in the stronger interactions with cells and the enhanced transfection efficiency after the formation of condensed nanoplexes. Caveolae-mediated endocytosis and clathrin-mediated endocytosis were major routes for the internalization of PCL-R15/siRNA nanoplexes. The intracellular release of siRNA from nanoplexes was confirmed by fluorescence resonance energy transfer assay. It was also noticed that the internalized PCL-R15/siRNA nanoplexes were transported through digestive routes and trapped in lysosomes, which may be the bottleneck for efficient siRNA delivery of PCL-R15/siRNA nanoplexes. This study investigated the relationship between the polymer structure of PCL-R15 and the cellular interaction patterns, which may render implications on the rational design of polyarginine-based siRNA delivery systems.
Collapse
Affiliation(s)
- Hai-Tao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, P. R. China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, P. R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changshen Road, Hengyang, Hunan 421001, P. R. China
| | - Minzhi Yu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, P. R. China
| | - Yu-Jie Niu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, P. R. China
| | - Wei-Zhong Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, P. R. China
| | - Wen-Hao Pang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, P. R. China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, P. R. China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, P. R. China
| |
Collapse
|
12
|
Li H, Zhang P, Luo J, Hu D, Huang Y, Zhang ZR, Fu Y, Gong T. Chondroitin Sulfate-Linked Prodrug Nanoparticles Target the Golgi Apparatus for Cancer Metastasis Treatment. ACS NANO 2019; 13:9386-9396. [PMID: 31375027 DOI: 10.1021/acsnano.9b04166] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metastasis is a multistep biological process regulated by multiple signaling pathways. The integrity of the Golgi apparatus plays an important role in these signaling pathways. Inspired by the mechanism and our previous finding about accumulation of chondroitin sulfate in Golgi apparatus in hepatic stellate cells, we developed a Golgi apparatus-targeting prodrug nanoparticle system by synthesizing retinoic acid (RA)-conjugated chondroitin sulfate (CS) (CS-RA). The prodrug nanoparticles appeared to accumulate in the Golgi apparatus in cancer cells and realized RA release under an acidic environment. We confirmed that CS-RA exhibited successful inhibition of multiple metastasis-associated proteins expression in vitro and in vivo by disruption of the Golgi apparatus structure. Following loading with paclitaxel (PTX), the CS-RA based nanoformulation (PTX-CS-RA) inhibited migration, invasion, and angiogenesis in vitro and suppressed tumor growth and metastasis in 4T1-Luc bearing mice. This multistep targeted nanoparticle system potentially enhanced the effect of antimetastasis combined with chemotherapy.
Collapse
Affiliation(s)
- Haohuan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Pei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Jingwen Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Danrong Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
13
|
Motevalli SM, Eltahan AS, Liu L, Magrini A, Rosato N, Guo W, Bottini M, Liang XJ. Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-018-0079-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
14
|
Luginbuehl V, Meier N, Kovar K, Rohrer J. Intracellular drug delivery: Potential usefulness of engineered Shiga toxin subunit B for targeted cancer therapy. Biotechnol Adv 2018; 36:613-623. [PMID: 29432805 DOI: 10.1016/j.biotechadv.2018.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
A treasure trove of intracellular cancer drug targets remains hidden behind cell membranes. However, engineered pathogen-derived toxins such as Shiga toxins can deliver small or macromolecular drugs to specific intracellular organelles. After binding to ganglioglobotriaosylceramide (Gb3, CD77), the non-toxic subunit B (StxB) of the Shiga-holotoxin is endocytosed and delivers its payload by a unique retrograde trafficking pathway via the endoplasmic reticulum to the cytosol. This review provides an overview of biomedical applications of StxB-based drug delivery systems in targeted cancer diagnosis and therapy. Biotechnological production of the Stx-material is discussed from the perspective of developing efficacious and safe therapeutics.
Collapse
Affiliation(s)
- Vera Luginbuehl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grueental, P.O.X. 335, CH-8820 Waedenswil, Switzerland
| | - Nicolas Meier
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grueental, P.O.X. 335, CH-8820 Waedenswil, Switzerland
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grueental, P.O.X. 335, CH-8820 Waedenswil, Switzerland
| | - Jack Rohrer
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grueental, P.O.X. 335, CH-8820 Waedenswil, Switzerland.
| |
Collapse
|
15
|
Downregulation of vimentin expression increased drug resistance in ovarian cancer cells. Oncotarget 2018; 7:45876-45888. [PMID: 27322682 PMCID: PMC5216767 DOI: 10.18632/oncotarget.9970] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/30/2016] [Indexed: 01/02/2023] Open
Abstract
Cisplatin and other platinum-based drugs have been widely used in the treatment of ovarian cancer, but most patients acquire the drug resistance that greatly compromises the efficacy of drugs. Understanding the mechanism of drug resistance is important for finding new therapeutic approaches. In the present study, we found that the expression of vimentin was downregulated in drug-resistant ovarian cancer cell lines A2780-DR and HO-8910 as compared to their respective control cells. Overexpression of vimentin in A2780-DR cells markedly increased their sensitivity to cisplatin, whereas knockdown of vimentin in A2780, HO-8910-PM and HO-8910 cells increased the resistance to cisplatin, demonstrating that vimentin silencing enhanced cisplatin resistance in ovarian cancer cells. Quantitative proteomic analysis identified 95 differentially expressed proteins between the vimentin silenced A2780 cells (A2780-VIM-KN) and the control cells, in which downregulation of endocytic proteins and the upregulation of exocytotic proteins CHMP2B and PDZK1 were proposed to contribute the decreased cisplatin accumulation in vimentin knockdown cells. Silencing of vimentin induced upregulation of cancer stem cell markers and both A2780-DR and A2780-VIM-KN cells were more facile to form spheroids than control cells under serum-free culture condition. Our results also revealed that vimentin knockdown increased the 14-3-3 mediated retention of Cdc25C in the cytoplasm, leading to inactivation of Cdk1 and the prolonged G2 phase arrest that allowed the longer period of time for cells to repair cisplatin-damaged DNA. Taken together, we demonstrated that vimentin silencing enhanced cells' resistance to cisplatin via prolonged G2 arrest and increased exocytosis, suggesting that vimentin is a potential target for treatment of drug resistant ovarian cancer.
Collapse
|
16
|
Shuvaev VV, Kiseleva RY, Arguiri E, Villa CH, Muro S, Christofidou-Solomidou M, Stan RV, Muzykantov VR. Targeting superoxide dismutase to endothelial caveolae profoundly alleviates inflammation caused by endotoxin. J Control Release 2017; 272:1-8. [PMID: 29292038 DOI: 10.1016/j.jconrel.2017.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/16/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory mediators binding to Toll-Like receptors (TLR) induce an influx of superoxide anion in the ensuing endosomes. In endothelial cells, endosomal surplus of superoxide causes pro-inflammatory activation and TLR4 agonists act preferentially via caveolae-derived endosomes. To test the hypothesis that SOD delivery to caveolae may specifically inhibit this pathological pathway, we conjugated SOD with antibodies (Ab/SOD, size ~10nm) to plasmalemmal vesicle-associated protein (Plvap) that is specifically localized to endothelial caveolae in vivo and compared its effects to non-caveolar target CD31/PECAM-1. Plvap Ab/SOD bound to endothelial cells in culture with much lower efficacy than CD31 Ab/SOD, yet blocked the effects of LPS signaling with higher efficiency than CD31 Ab/SOD. Disruption of cholesterol-rich membrane domains by filipin inhibits Plvap Ab/SOD endocytosis and LPS signaling, implicating the caveolae-dependent pathway(s) in both processes. Both Ab/SOD conjugates targeted to Plvap and CD31 accumulated in the lungs after IV injection in mice, but the former more profoundly inhibited LPS-induced pulmonary inflammation and elevation of plasma level of interferon-beta and -gamma and interleukin-27. Taken together, these results indicate that targeted delivery of SOD to specific cellular compartments may offer effective, mechanistically precise interception of pro-inflammatory signaling mediated by reactive oxygen species.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Pharmacology, Center for Translational Targeted Therapeutics, Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Raisa Yu Kiseleva
- Department of Pharmacology, Center for Translational Targeted Therapeutics, Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Evguenia Arguiri
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Carlos H Villa
- Department of Pharmacology, Center for Translational Targeted Therapeutics, Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Melpo Christofidou-Solomidou
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Radu V Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Vladimir R Muzykantov
- Department of Pharmacology, Center for Translational Targeted Therapeutics, Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
17
|
Long-term regulation of gene expression in muscle cells by systemically delivered siRNA. J Control Release 2017; 256:101-113. [DOI: 10.1016/j.jconrel.2017.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022]
|
18
|
Gou Y, Zhang Y, Zhang Z, Wang J, Zhou Z, Liang H, Yang F. Design of an Anticancer Copper(II) Prodrug Based on the Lys199 Residue of the Active Targeting Human Serum Albumin Nanoparticle Carrier. Mol Pharm 2017; 14:1861-1873. [PMID: 28471669 DOI: 10.1021/acs.molpharmaceut.6b01074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We not only modified the types and numbers of coordinated ligands in a metal agent to enhance its anticancer activity, but we also designed a metal prodrug based on the N-donor residues of the human serum albumin (HSA) IIA subdomain to improve its delivery efficiency and selectivity in vivo. However, there may be a conflict in simultaneously achieving the two goals because Lys199 and His242 in the IIA subdomain of HSA can replace its two coordinated ligands, which will decrease its anticancer activity relative to the original metal agent. Thus, to improve the delivery efficiency of the metal agent and simultaneously avoid decreasing its anticancer activity in vivo, we decided to develop an anticancer metal prodrug by regulating its pharmacophore ligand so that it would not be displaced by the Lys199 residue of the folic acid (FA)-functionalized HSA nanoparticle (NP) carrier. To this end, we first synthesized two (E)-N'-(5-chloro-2-hydroxybenzylidene)benzohydrazide Schiff base (HL) Cu(II) compounds by designing a second ligand with a different coordinating atom with Cu2+/Cu(L)(QL)(Br) [C1, QL = quinolone] and Cu(L)(DMF)(Br) [C2, DMF = N,N-dimethylformamide]. As revealed by the structures of the two HSA complexes, the Cu compounds bind to the hydrophobic cavity in the HSA IIA subdomain. The QL ligand of C1 is replaced by Lys199, which coordinates with Cu2+, whereas the DMF ligand of C2 is kept intact and His242 is replaced with Br- of C2 and coordinates with Cu2+. The cytotoxicity of the Cu compounds was enhanced by the FA-HSA NPs in the Bel-7402 cells approximately 2-4-fold; however, they raise the cytotoxicity levels in the normal cells in vitro, and the FA-HSA NPs did not. Importantly, the in vivo data showed that FA-HSA-C2 NPs increased selectivity and the capacity to inhibit tumor growth and were less toxic than HSA-C2 NPs and C2. Moreover, C2/HSA-C2 NPs/FA-HSA-C2 NPs induced Bel-7402 cell death by potentially multiple mechanisms.
Collapse
Affiliation(s)
- Yi Gou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi, China.,School of Pharmacy, Nantong University , Nantong, Jiangsu, China
| | - Yao Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi, China
| | - Jun Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi, China
| | - Zuping Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Pharmaceutical Biotechnology, Guangxi Normal University , Guilin, Guangxi, China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi, China
| | - Feng Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi, China
| |
Collapse
|
19
|
Battistella C, Klok HA. Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Claudia Battistella
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| |
Collapse
|
20
|
Fumoto S, Nishida K. Methods for Evaluating the Stimuli-Responsive Delivery of Nucleic Acid and Gene Medicines. Chem Pharm Bull (Tokyo) 2017; 65:642-648. [DOI: 10.1248/cpb.c17-00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
21
|
Tan JKY, Sellers DL, Pham B, Pun SH, Horner PJ. Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System. Front Mol Neurosci 2016; 9:108. [PMID: 27847462 PMCID: PMC5088201 DOI: 10.3389/fnmol.2016.00108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
With an increased prevalence and understanding of central nervous system (CNS) injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the CNS and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the CNS are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for CNS applications and will ultimately bring non-viral vectors closer to clinical application.
Collapse
Affiliation(s)
- James-Kevin Y Tan
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Drew L Sellers
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Binhan Pham
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Philip J Horner
- Center for Neuroregenerative Medicine, Houston Methodist Research Institute Houston, TX, USA
| |
Collapse
|
22
|
Shorter SA, Gollings AS, Gorringe-Pattrick MAM, Coakley JE, Dyer PDR, Richardson SCW. The potential of toxin-based drug delivery systems for enhanced nucleic acid therapeutic delivery. Expert Opin Drug Deliv 2016; 14:685-696. [DOI: 10.1080/17425247.2016.1227781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Membrane associated cancer-oocyte neoantigen SAS1B/ovastacin is a candidate immunotherapeutic target for uterine tumors. Oncotarget 2016; 6:30194-211. [PMID: 26327203 PMCID: PMC4745790 DOI: 10.18632/oncotarget.4734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/07/2015] [Indexed: 11/25/2022] Open
Abstract
The metalloproteinase SAS1B [ovastacin, ASTL, astacin-like] was immunolocalized on the oolemma of ovulated human oocytes and in normal ovaries within the pool of growing oocytes where SAS1B protein was restricted to follicular stages spanning the primary-secondary follicle transition through ovulation. Gene-specific PCR and immunohistochemical studies revealed ASTL messages and SAS1B protein in both endometrioid [74%] and malignant mixed Mullerian tumors (MMMT) [87%] of the uterus. A MMMT-derived cell line, SNU539, expressed cell surface SAS1B that, after binding polyclonal antibodies, internalized into EEA1/LAMP1-positive early and late endosomes. Treatment of SNU539 cells with anti-SAS1B polyclonal antibodies caused growth arrest in the presence of active complement. A saporin-immunotoxin directed to SAS1B induced growth arrest and cell death. The oocyte restricted expression pattern of SAS1B among adult organs, cell-surface accessibility, internalization into the endocytic pathway, and tumor cell growth arrest induced by antibody-toxin conjugates suggest therapeutic approaches that would selectively target tumors while limiting adverse drug effects in healthy cells. The SAS1B metalloproteinase is proposed as a prototype cancer-oocyte tumor surface neoantigen for development of targeted immunotherapeutics with limited on-target/off tumor effects predicted to be restricted to the population of growing oocytes.
Collapse
|
24
|
Panarella A, Bexiga MG, Galea G, O’ Neill ED, Salvati A, Dawson KA, Simpson JC. A systematic High-Content Screening microscopy approach reveals key roles for Rab33b, OATL1 and Myo6 in nanoparticle trafficking in HeLa cells. Sci Rep 2016; 6:28865. [PMID: 27374232 PMCID: PMC4931513 DOI: 10.1038/srep28865] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/06/2016] [Indexed: 12/24/2022] Open
Abstract
Synthetic nanoparticles are promising tools for imaging and drug delivery; however the molecular details of cellular internalization and trafficking await full characterization. Current knowledge suggests that following endocytosis most nanoparticles pass from endosomes to lysosomes. In order to design effective drug delivery strategies that can use the endocytic pathway, or by-pass lysosomal accumulation, a comprehensive understanding of nanoparticle uptake and trafficking mechanisms is therefore fundamental. Here we describe and apply an RNA interference-based high-content screening microscopy strategy to assess the intracellular trafficking of fluorescently-labeled polystyrene nanoparticles in HeLa cells. We screened a total of 408 genes involved in cytoskeleton and membrane function, revealing roles for myosin VI, Rab33b and OATL1 in this process. This work provides the first systematic large-scale quantitative assessment of the proteins responsible for nanoparticle trafficking in cells, paving the way for subsequent genome-wide studies.
Collapse
Affiliation(s)
- Angela Panarella
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mariana G. Bexiga
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - George Galea
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elaine D. O’ Neill
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anna Salvati
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth A. Dawson
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jeremy C. Simpson
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
25
|
Fan W, Xia D, Zhu Q, Hu L, Gan Y. Intracellular transport of nanocarriers across the intestinal epithelium. Drug Discov Today 2016; 21:856-63. [DOI: 10.1016/j.drudis.2016.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
|
26
|
Yang J, Qin N, Zhang H, Yang R, Xiang B, Wei Q. Cellular uptake of exogenous calcineurin B is dependent on TLR4/MD2/CD14 complexes, and CnB is an endogenous ligand of TLR4. Sci Rep 2016; 6:24346. [PMID: 27090571 PMCID: PMC4835703 DOI: 10.1038/srep24346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
Our previous research showed that recombinant calcineurin B (rhCnB) stimulates cytokine secretion by immune cells, probably through TLR4. Exogenous CnB can be incorporated into many different tumour cells in vitro, but the mode of uptake and receptors required remain unknown. Here, we report that exogenous CnB is taken up by cells in a time- and concentration-dependent manner via clathrin-dependent receptor-mediated internalization. Our findings further confirm that uptake is mediated by the TLR4/MD2 complex together with the co-receptor CD14. The MST results revealed a high affinity between CnB and the TLR4 receptor complex. No binding was detected between CnB and LPS. CnB inhibited the uptake of LPS, and LPS also inhibited the uptake of CnB. These results indicate that the uptake of exogenous CnB did not occur through LPS and that CnB was not a chaperone of LPS. Thus, we conclude that TLR4 receptor complexes were required for the recognition and internalization of exogenous CnB. CnB could be a potential endogenous ligand of TLR4 and function as an agonist of TLR4. These properties of CnB support its potential for development as an anti-cancer drug.
Collapse
Affiliation(s)
- Jinju Yang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, 100875, P. R. of China
| | - Nannan Qin
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, 100875, P. R. of China
| | - Hongwei Zhang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, 100875, P. R. of China
| | - Rui Yang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, 100875, P. R. of China
| | - Benqiong Xiang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, 100875, P. R. of China
| | - Qun Wei
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, 100875, P. R. of China
| |
Collapse
|
27
|
Walker WA, Tarannum M, Vivero-Escoto JL. Cellular Endocytosis and Trafficking of Cholera Toxin B-Modified Mesoporous Silica Nanoparticles. J Mater Chem B 2016; 4:1254-1262. [PMID: 27134749 PMCID: PMC4847754 DOI: 10.1039/c5tb02079d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, mesoporous silica nanoparticles (MSNs) were functionalized with Cholera toxin subunit B (CTxB) protein to influence their intracellular trafficking pathways. The CTxB-MSN carrier was synthesized, and its chemical and structural properties were characterized. Endocytic pathway inhibition assays showed that the uptake of CTxB-MSNs in human cervical cancer (HeLa) cells was partially facilitated by both chlatrin- and caveolae-mediated endocytosis mechanisms. Laser scanning confocal microscopy (LSCM) experiments demonstrated that CTxB-MSNs were taken up by the cells and partially trafficked through the trans-Golgi network into to the endoplasmic reticulum in a retrograde fashion. The delivery abilities of CTxB-MSNs were evaluated using propidium iodide, an impermeable cell membrane dye. LSCM images depicted the release of propidium iodide in the endoplasmic reticulum and cell nucleus of HeLa cells.
Collapse
Affiliation(s)
- William A. Walker
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A
| | - Mubin Tarannum
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A
| | - Juan L. Vivero-Escoto
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A
| |
Collapse
|
28
|
Incorporation of lapatinib into human serum albumin nanoparticles with enhanced anti-tumor effects in HER2-positive breast cancer. Colloids Surf B Biointerfaces 2015; 136:817-27. [DOI: 10.1016/j.colsurfb.2015.10.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/09/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022]
|
29
|
Kim SW, Khang D. Multiple cues on the physiochemical, mesenchymal, and intracellular trafficking interactions with nanocarriers to maximize tumor target efficiency. Int J Nanomedicine 2015; 10:3989-4008. [PMID: 26124658 PMCID: PMC4476429 DOI: 10.2147/ijn.s83951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Over the past 60 years, numerous medical strategies have been employed to overcome neoplasms. In fact, with the exception of lung, bronchial, and pancreatic cancers, the 5-year survival rate of most cancers currently exceeds 70%. However, the quality of life of patients during chemotherapy remains unsatisfactory despite the increase in survival rate. The side effects of current chemotherapies stem from poor target efficiency at tumor sites due to the uncontrolled biodistribution of anticancer agents (ie, conventional or current approved nanodrugs). This review discusses the effective physiochemical factors for determining biodistribution of nanocarriers and, ultimately, increasing tumor-targeting probability by avoiding the reticuloendothelial system. Second, stem cell-conjugated nanotherapeutics was addressed to maximize the tumor searching ability and to inhibit tumor growth. Lastly, physicochemical material properties of anticancer nanodrugs were discussed for targeting cellular organelles with modulation of drug-release time. A better understanding of suggested topics will increase the tumor-targeting ability of anticancer drugs and, ultimately, promote the quality of life of cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Sang-Woo Kim
- Nanomedicine Laboratory, Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - Dongwoo Khang
- Nanomedicine Laboratory, Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
30
|
Brayden DJ, Cryan SA, Dawson KA, O'Brien PJ, Simpson JC. High-content analysis for drug delivery and nanoparticle applications. Drug Discov Today 2015; 20:942-57. [PMID: 25908578 DOI: 10.1016/j.drudis.2015.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 04/13/2015] [Indexed: 12/16/2022]
Abstract
High-content analysis (HCA) provides quantitative multiparametric cellular fluorescence data. From its origins in discovery toxicology, it is now addressing fundamental questions in drug delivery. Nanoparticles (NPs), polymers, and intestinal permeation enhancers are being harnessed in drug delivery systems to modulate plasma membrane properties and the intracellular environment. Identifying comparative mechanistic cytotoxicity on sublethal events is crucial to expedite the development of such systems. NP uptake and intracellular routing pathways are also being dissected using chemical and genetic perturbations, with the potential to assess the intracellular fate of targeted and untargeted particles in vitro. As we discuss here, HCA is set to make a major impact in preclinical delivery research by elucidating the intracellular pathways of NPs and the in vitro mechanistic-based toxicology of formulation constituents.
Collapse
Affiliation(s)
- David J Brayden
- University College Dublin (UCD) School of Veterinary Medicine, Dublin 2, Ireland; UCD Conway Institute, Dublin 2, Ireland.
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland
| | - Kenneth A Dawson
- UCD Centre for Bionano Interactions, School of Chemistry and Chemical Biology, Belfield, Dublin 4, Ireland
| | - Peter J O'Brien
- University College Dublin (UCD) School of Veterinary Medicine, Dublin 2, Ireland
| | - Jeremy C Simpson
- UCD School of Biology and Environmental Sciences, Belfield, Dublin 4, Ireland; UCD Conway Institute, Dublin 2, Ireland
| |
Collapse
|
31
|
Peters T, Grunewald C, Blaickner M, Ziegner M, Schütz C, Iffland D, Hampel G, Nawroth T, Langguth P. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy. Radiat Oncol 2015; 10:52. [PMID: 25889824 PMCID: PMC4349485 DOI: 10.1186/s13014-015-0342-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/29/2015] [Indexed: 11/21/2022] Open
Abstract
Background Neutron capture therapy for glioblastoma has focused mainly on the use of 10B as neutron capture isotope. However, 157Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. Methods Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with 157Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. Results The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. Conclusions Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of the Auger and conversion electrons produced in 157Gd capture, the proximity of Gd-atoms to cellular DNA is a crucial factor for infliction of lethal damage. Furthermore, Gd-containing liposomes may be used as MRI contrast agents for diagnostic purposes and surveillance of tumor targeting, thus enabling a theranostic approach for tumor therapy.
Collapse
Affiliation(s)
- Tanja Peters
- Institute of Pharmacy and Biochemistry, Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55128, Mainz, Germany.
| | - Catrin Grunewald
- Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann Weg 6, D-55128, Mainz, Germany.
| | - Matthias Blaickner
- AIT Austrian Institute of Technology, Health & Environment Department, Biomedical Systems, Donau-City-Strasse 1/2, A-1220, Vienna, Austria.
| | - Markus Ziegner
- AIT Austrian Institute of Technology, Health & Environment Department, Biomedical Systems, Donau-City-Strasse 1/2, A-1220, Vienna, Austria.
| | - Christian Schütz
- Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann Weg 6, D-55128, Mainz, Germany.
| | - Dorothee Iffland
- Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann Weg 6, D-55128, Mainz, Germany.
| | - Gabriele Hampel
- Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann Weg 6, D-55128, Mainz, Germany.
| | - Thomas Nawroth
- Institute of Pharmacy and Biochemistry, Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55128, Mainz, Germany.
| | - Peter Langguth
- Institute of Pharmacy and Biochemistry, Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55128, Mainz, Germany.
| |
Collapse
|
32
|
Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 2014; 190:485-99. [PMID: 24984011 PMCID: PMC4153400 DOI: 10.1016/j.jconrel.2014.06.038] [Citation(s) in RCA: 541] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 12/27/2022]
Abstract
Collaborative efforts from the fields of biology, materials science, and engineering are leading to exciting progress in the development of nanomedicines. Since the targets of many therapeutic agents are localized in subcellular compartments, modulation of nanoparticle-cell interactions for efficient cellular uptake through the plasma membrane and the development of nanomedicines for precise delivery to subcellular compartments remain formidable challenges. Cellular internalization routes determine the post-internalization fate and intracellular localization of nanoparticles. This review highlights the cellular uptake routes most relevant to the field of non-targeted nanomedicine and presents an account of ligand-targeted nanoparticles for receptor-mediated cellular internalization as a strategy for modulating the cellular uptake of nanoparticles. Ligand-targeted nanoparticles have been the main impetus behind the progress of nanomedicines towards the clinic. This strategy has already resulted in remarkable progress towards effective oral delivery of nanomedicines that can overcome the intestinal epithelial barrier. A detailed overview of the recent developments in subcellular targeting as a novel platform for next-generation organelle-specific nanomedicines is also provided. Each section of the review includes prospects, potential, and concrete expectations from the field of targeted nanomedicines and strategies to meet those expectations.
Collapse
Affiliation(s)
- Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Won Il Choi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Cristian Vilos
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA; Universidad Andres Bello, Facultad de Medicina, Center for Integrative Medicine and Innovative Science (CIMIS), Echaurren 183, Santiago, Chile
| | - Archana Swami
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Jinjun Shi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA; King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
33
|
Saha A, Basiruddin SK, Maity AR, Jana NR. Synthesis of nanobioconjugates with a controlled average number of biomolecules between 1 and 100 per nanoparticle and observation of multivalency dependent interaction with proteins and cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13917-13924. [PMID: 24117157 DOI: 10.1021/la402699a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Multivalency of nanoparticle and associated cooperative binding with biological interface is an important aspect in the development of nanoparticle based bioimaging probes. However, the preparation of such a nanobioconjugate with a controlled number of biomolecules per nanoparticle, typically between 1 and 100, is challenging. Here we report a generalized two-step bioconjugation method to prepare nanobioconjugates with a varied average number of biomolecules between 1 to 100 per nanoparticle that can be applied to different nanoparticles and biomolecules. Following this approach we have successfully synthesized quantum dot (QD) based bioconjugates with controlled average numbers of glucose or folate and found their number-dependent interaction with proteins and cells. We propose a method for exploiting the nanoparticle multivalency effect toward various biological interactions and preparing such nanobioconjugates for best performance.
Collapse
Affiliation(s)
- Arindam Saha
- Centre for Advanced Materials, Indian Association for the Cultivation of Science , Kolkata-700032, India
| | | | | | | |
Collapse
|
34
|
Côrte-Real L, Matos AP, Alho I, Morais TS, Tomaz AI, Garcia MH, Santos I, Bicho MP, Marques F. Cellular uptake mechanisms of an antitumor ruthenium compound: the endosomal/lysosomal system as a target for anticancer metal-based drugs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1122-30. [PMID: 23790186 DOI: 10.1017/s143192761300175x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Previous studies have described promising antitumor activity of an organometallic Ru(II) complex, η⁵-cyclopentadienyl(2,2'-bipyridyl)(triphenylphosphane) Ruthenium(II) triflate ([η⁵-C₅H₅)Ru(2,2'-bipyridyl)(PPh₃)][CF₃SO₃]) herein designated as TM34. Its broad spectrum of activity against a panel of human tumor cell lines and high antiproliferative efficiency prompted us to focus on its mode of action. We present herein results obtained with two human tumor cell lines A2780 and MDAMB231 on the compound distribution within the cell, the mechanism of its activity, and its cellular targets. The prospective metallodrug TM34 revealed: (a) fast antiproliferative effects even at short incubation times for both cell lines; (b) preferential localization at the cell membrane and cytosol; (c) cellular activity by a temperature-dependent process, probably macropinocytosis; (d) inhibition of a lysosomal enzyme, acid phosphatase, in a dose-dependent mode; and (e) disruption and vesiculation of the Golgi apparatus, which suggest the involvement of the endosomal/lysosomal system in its mode of action. These results are essential to elucidate the basis for the cytotoxic activity and mechanism of action of this Ru(II)(η⁵-cyclopentadienyl) complex.
Collapse
Affiliation(s)
- Leonor Côrte-Real
- Unidade de Ciências Químicas e Radiofarmacêuticas, Instituto Superior Técnico, Polo de Loures-Campus Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Viewing Golgi structure and function from a different perspective--insights from electron tomography. Methods Cell Biol 2013; 118:259-79. [PMID: 24295312 DOI: 10.1016/b978-0-12-417164-0.00016-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Historically, ultrastructural investigations, which have focused on elucidating the biological idiosyncrasies of the Golgi apparatus, have tended towards oversimplified or fallacious hypotheses when postulating how the Golgi apparatus reorganizes itself both structurally and functionally to fulfill the plethora of cellular processes underpinned by this complex organelle. Key questions are still unanswered with regard to how changes in Golgi architecture correlate so reproducibly to changes in its functional priorities under different physiological conditions or experimental perturbations. This fact alone serves to highlight how the technical limitations associated with conventional two-dimensional imaging approaches employed in the past failed to adequately capture the extraordinary complexity of the Golgi's three-dimensional (3D) structure-now a hallmark of this challenging organelle. Consequently, this has hampered progress towards developing a clear understanding of how changes in its structure and function typically occur in parallel. In this chapter, we highlight but a few of the significant new insights regarding variations in the Golgi's structure-function relationships that have been afforded over recent years through advanced electron microscopic techniques for 3D image reconstruction, commonly referred to as electron tomography.
Collapse
|
36
|
Panariti A, Miserocchi G, Rivolta I. The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol Sci Appl 2012; 5:87-100. [PMID: 24198499 DOI: 10.2147/nsa.s25515] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nanoparticles (NPs) are materials with overall dimensions in the nanoscale range. They have unique physicochemical properties, and have emerged as important players in current research in modern medicine. In the last few decades, several types of NPs and microparticles have been synthesized and proposed for use as contrast agents for diagnostics and imaging and for drug delivery; for example, in cancer therapy. Yet specific targeting that will improve their delivery still represents an unsolved challenge. The mechanism by which NPs enter the cell has important implications not only for their fate but also for their impact on biological systems. Several papers in the literature discuss the potential risks related to NP exposure, and more recently the concept that even sublethal doses of NPs may elicit a cell response has been proposed. In this review, we intend to present an overall view of cell mechanisms that may be perturbed by cell-NP interaction. Published data, in fact, emphasize that NPs should no longer be viewed only as simple carriers for biomedical applications, but that they can also play an active role in mediating biological effects.
Collapse
Affiliation(s)
- Alice Panariti
- Department of Experimental Medicine, University of Milano Bicocca, Monza, Italy
| | | | | |
Collapse
|
37
|
Duncan R, Richardson SCW. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm 2012; 9:2380-402. [PMID: 22844998 DOI: 10.1021/mp300293n] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
More than 40 nanomedicines are already in routine clinical use with a growing number following in preclinical and clinical development. The therapeutic objectives are often enhanced disease-specific targeting (with simultaneously reduced access to sites of toxicity) and, especially in the case of macromolecular biotech drugs, improving access to intracellular pharmacological target receptors. Successful navigation of the endocytic pathways is usually a prerequisite to achieve these goals. Thus a comprehensive understanding of endocytosis and intracellular trafficking pathways in both the target and bystander normal cell type(s) is essential to enable optimal nanomedicine design. It is becoming evident that endocytic pathways can become disregulated in disease and this, together with the potential changes induced during exposure to the nanocarrier itself, has the potential to significantly impact nanomedicine performance in terms of safety and efficacy. Here we overview the endomembrane trafficking pathways, discuss the methods used to determine and quantitate the intracellular fate of nanomedicines, and review the current status of lysosomotropic and endosomotropic delivery. Based on the lessons learned during more than 3 decades of clinical development, the need to use endocytosis-relevant clinical biomarkers to better select those patients most likely to benefit from nanomedicine therapy is also discussed.
Collapse
Affiliation(s)
- Ruth Duncan
- School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK.
| | | |
Collapse
|
38
|
Liu S, Storrie B. Are Rab proteins the link between Golgi organization and membrane trafficking? Cell Mol Life Sci 2012; 69:4093-106. [PMID: 22581368 DOI: 10.1007/s00018-012-1021-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 11/25/2022]
Abstract
The fundamental separation of Golgi function between subcompartments termed cisternae is conserved across all eukaryotes. Likewise, Rab proteins, small GTPases of the Ras superfamily, are putative common coordinators of Golgi organization and protein transport. However, despite sequence conservation, e.g., Rab6 and Ypt6 are conserved proteins between humans and yeast, the fundamental organization of the organelle can vary profoundly. In the yeast Saccharomyces cerevisiae, the Golgi cisternae are physically separated from one another, while in mammalian cells, the cisternae are stacked one upon the other. Moreover, in mammalian cells, many Golgi stacks are typically linked together to generate a ribbon structure. Do evolutionarily conserved Rab proteins regulate secretory membrane trafficking and diverse Golgi organization in a common manner? In mammalian cells, some Golgi-associated Rab proteins function in coordination of protein transport and maintenance of Golgi organization. These include Rab6, Rab33B, Rab1, Rab2, Rab18, and Rab43. In yeast, these include Ypt1, Ypt32, and Ypt6. Here, based on evidence from both yeast and mammalian cells, we speculate on the essential role of Rab proteins in Golgi organization and protein transport.
Collapse
Affiliation(s)
- Shijie Liu
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
39
|
Li Y, Wang J, Wientjes MG, Au JLS. Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv Drug Deliv Rev 2012; 64:29-39. [PMID: 21569804 PMCID: PMC3378679 DOI: 10.1016/j.addr.2011.04.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/17/2011] [Accepted: 04/22/2011] [Indexed: 10/18/2022]
Abstract
Advances in molecular medicines have led to identification of promising targets on cellular and molecular levels. These targets are located in extracellular and intracellular compartments. The latter include cytosol, nucleus, mitochondrion, Golgi apparatus and endoplasmic reticulum. This report gives an overview on the barriers to delivering nanomedicines to various target sites within a solid tumor, the experimental approaches to overcome such barriers, and the potential utility of nanotechnology.
Collapse
Affiliation(s)
- Yinghuan Li
- Division of Pharmaceutics, College of Pharmacy, the Ohio State University, 500 W 12th Ave, Columbus, OH 43210, USA
- Division of Pharmaceutics, College of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, PR China
| | - Jie Wang
- Optimum Therapeutics LLC, OSU Science Tech Village, Columbus, OH 43212, USA
| | - M. Guillaume Wientjes
- Division of Pharmaceutics, College of Pharmacy, the Ohio State University, 500 W 12th Ave, Columbus, OH 43210, USA
| | - Jessie L.-S. Au
- Division of Pharmaceutics, College of Pharmacy, the Ohio State University, 500 W 12th Ave, Columbus, OH 43210, USA
- Optimum Therapeutics LLC, OSU Science Tech Village, Columbus, OH 43212, USA
| |
Collapse
|
40
|
A subclass of acylated anti-inflammatory mediators usurp Toll-like receptor 2 to inhibit neutrophil recruitment through peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U S A 2011; 108:16357-62. [PMID: 21930915 DOI: 10.1073/pnas.1100702108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Toll-like receptors are host sentinel receptors that signal the presence of infectious nonself and initiate protective immunity. One of the primary immune defense mechanisms is the recruitment of neutrophils from the bloodstream into the infected tissue. Although neutrophils are important in host defense, they can also be responsible for damaging pathologies associated with excessive inflammation. Here, we report that the di-acylated TLR2 ligand lipoteichoic acid can directly inhibit neutrophil recruitment in vivo. This discovery allowed us to test the concept that conventional proinflammatory TLR2 ligands can be made to act as inhibitors through specific structural modifications. Indeed, lipopeptide TLR2 ligands, when modified at their acyl chains to contain linoleate, lose their capacity to induce inflammation and yield ligands that can directly inhibit the in vivo neutrophil recruitment initiated by a wide range of proinflammatory stimuli. The inhibitory capacity of LTA and these modified ligands requires the expression of TLR2, but is independent of the TLR2 signaling adaptor, MyD88. Instead, this inhibitory effect requires functional activity of the fatty acid and nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ). Therefore, these data support a model in TLR2 biology where structural modifications of these ligands can profoundly influence host-microbial interactions. These inhibitory TLR2 ligands also have broader implications with respect to their potential use in various inflammatory disease settings.
Collapse
|
41
|
Price KA, Crouch PJ, Volitakis I, Paterson BM, Lim S, Donnelly PS, White AR. Mechanisms controlling the cellular accumulation of copper bis(thiosemicarbazonato) complexes. Inorg Chem 2011; 50:9594-605. [PMID: 21882803 DOI: 10.1021/ic201334q] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper (Cu) bis(thiosemicarbazonato) metal complexes [Cu(II)(btsc)s] have unique tumor-imaging and treatment properties and more recently have revealed potent neuroprotective actions in animal and cell models of neurodegeneration. However, despite the continued development of Cu(II)(btsc)s as potential therapeutics or diagnostic agents, little is known of the mechanisms involved in cell uptake, subcellular trafficking, and efflux of this family of compounds. Because of their high lipophilicity, it has been assumed that cellular accumulation is through passive diffusion, although this has not been analyzed in detail. The role of efflux pathways in cell homeostasis of the complexes is also largely unknown. In the present study, we investigated the cellular accumulation of the Cu(II)(btsc) complexes Cu(II)(gtsm) and Cu(II)(atsm) in human neuronal (M17) and glial (U87MG) cell lines under a range of conditions. Collectively, the data strongly suggested that Cu(II)(gtsm) and Cu(II)(atsm) may be taken into these cells by combined passive and facilitated (protein-carrier-mediated) mechanisms. This was supported by strong temperature-dependent changes to the uptake of the complexes and the influence of the cell surface protein on Cu accumulation. We found no evidence to support a role for copper-transporter 1 in accumulation of the compounds. Importantly, our findings also demonstrated that Cu from both Cu(II)(gtsm) and Cu(II)(atsm) was rapidly effluxed from the cells through active mechanisms. Whether this was in the form of released ionic Cu or as an intact metal complex is not known. However, this finding highlighted the difficulty of trying to determine the uptake mechanism of metal complexes when efflux is occurring concomitantly. These findings are the first detailed exploration of the cellular accumulation mechanisms of Cu(II)(btsc)s. The study delineates strategies to investigate the uptake and efflux mechanisms of metal complexes in cells, while highlighting specific difficulties and challenges that need to be considered before drawing definitive conclusions.
Collapse
Affiliation(s)
- Katherine Ann Price
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Duclos S, Clavarino G, Rousserie G, Goyette G, Boulais J, Camossetto V, Gatti E, LaBoissière S, Pierre P, Desjardins M. The endosomal proteome of macrophage and dendritic cells. Proteomics 2011; 11:854-64. [PMID: 21280226 DOI: 10.1002/pmic.201000577] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/08/2010] [Accepted: 11/29/2010] [Indexed: 01/13/2023]
Abstract
The essential roles of the endovacuolar system in health and disease call for the development of new tools allowing a better understanding of the complex molecular machinery involved in endocytic processes. We took advantage of the floating properties of small latex beads (sLB) on a discontinuous sucrose gradient to isolate highly purified endosomes following internalization of small latex beads in J774 macrophages and bone marrow-derived dendritic cells (DC). We particularly focused on the isolation of macrophages early endosomes and late endosomes/lysosomes (LE/LYS) as well as the isolation of LE/LYS from immature and lipopolysaccharide-activated (mature) DC. We subsequently performed a comparative analysis of their respective protein contents by MS. As expected, proteins already known to localize to the early endosomes were enriched in the earliest fraction of J774 endosomes, while proteins known to accumulate later in the process, such as hydrolases, were significantly enriched in the LE/LYS preparations. We next compared the LE/LYS protein contents of immature DC and mature DC, which are known to undergo massive reorganization leading to potent immune activation. The differences between the protein contents of endocytic organelles from macrophages and DC were underlined by focusing on previously poorly characterized biochemical pathways, which could have an unexpected but important role in the endosomal functions of these highly relevant immune cell types.
Collapse
Affiliation(s)
- Sophie Duclos
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Solomon M, D’Souza GGM. Approaches to Achieving Sub-cellular Targeting of Bioactives Using Pharmaceutical Nanocarriers. INTRACELLULAR DELIVERY 2011. [DOI: 10.1007/978-94-007-1248-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Kularatne SA, Venkatesh C, Santhapuram HKR, Wang K, Vaitilingam B, Henne WA, Low PS. Synthesis and biological analysis of prostate-specific membrane antigen-targeted anticancer prodrugs. J Med Chem 2010; 53:7767-77. [PMID: 20936874 DOI: 10.1021/jm100729b] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ligand-targeted therapeutics have increased in prominence because of their potential for improved potency and reduced toxicity. However, with the advent of personalized medicine, a need for greater versatility in ligand-targeted drug design has emerged, where each tumor-targeting ligand should be capable of delivering a variety of therapeutic agents to the same tumor, each therapeutic agent being selected for its activity on a specific patient's cancer. In this report, we describe the use of a prostate-specific membrane antigen (PSMA)-targeting ligand to deliver multiple unrelated cytotoxic drugs to human prostate cancer (LNCaP) cells. We demonstrate that the PSMA-specific ligand, 2-[3-(1, 3-dicarboxy propyl)ureido] pentanedioic acid, is capable of mediating the targeted killing of LNCaP cells with many different therapeutic warheads. These results suggest that flexibility can be designed into ligand-targeted therapeutics, enabling adaptation of a single targeting ligand for the treatment of patients with different sensitivities to different chemotherapies.
Collapse
Affiliation(s)
- Sumith A Kularatne
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | | | | | | | | | | | | |
Collapse
|
45
|
Premaletha K, Licy CD, Jose S, Saraladevi A, Shirwaikar A, Shirwaikar A. Formulation, characterization and optimization of hepatitis B surface antigen (HBsAg)-loaded chitosan microspheres for oral delivery. Pharm Dev Technol 2010; 17:251-8. [PMID: 21108582 DOI: 10.3109/10837450.2010.535824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Approximately 400 million persons worldwide have chronic hepatitis B. This is due to problems associated with vaccine delivery, stability and cost. Hence the present challenge in vaccinology is to develop safer, cheaper and easy-to-deliver forms of vaccines. A novel needle-free oral vaccine will be an ideal tool to fight this silent killer disease. OBJECTIVE The aim of this work was to prepare and evaluate chitosan-loaded HBsAg microspheres for oral delivery. MATERIALS AND METHODS Chitosan microspheres were prepared by emulsion solvent evaporation technique. To overcome the enzymatic and permeation barrier, protease inhibitors and permeation enhancers were also added. Studies were conducted to find the effect of stabilizer concentration, stirring speed, cross-linking agent and polymer concentration on microsphere size and entrapment efficiency. Formulations were characterized for their particle size, entrapment efficiency. They were also evaluated for the in vitro drug release, in vivo performances and the effect of different storage conditions. RESULTS HBsAg-loaded chitosan microspheres with bacitracin as protease inhibitor showed better protective levels of immunity after oral administration comparing with aprotinin as protease inhibitor. Stability at room temperature up to a period of four months reduces incomplete vaccine coverage and logistic requirements. CONCLUSION The study signifies the potential of the formulated chitosan microspheres for effective oral administration of HBsAg.
Collapse
Affiliation(s)
- K Premaletha
- Academy of Pharmaceutical Sciences, Pariyaram Medical College, Kannur, Kerala, India.
| | | | | | | | | | | |
Collapse
|
46
|
Structure, biological functions and applications of the AB5 toxins. Trends Biochem Sci 2010; 35:411-8. [PMID: 20202851 DOI: 10.1016/j.tibs.2010.02.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 02/07/2023]
Abstract
AB(5) toxins are important virulence factors for several major bacterial pathogens, including Bordetella pertussis, Vibrio cholerae, Shigella dysenteriae and at least two distinct pathotypes of Escherichia coli. The AB(5) toxins are so named because they comprise a catalytic A-subunit, which is responsible for disruption of essential host functions, and a pentameric B-subunit that binds to specific glycan receptors on the target cell surface. The molecular mechanisms by which the AB(5) toxins cause disease have been largely unravelled, including recent insights into a novel AB(5) toxin family, subtilase cytotoxin (SubAB). Furthermore, AB(5) toxins have become a valuable tool for studying fundamental cellular functions, and are now being investigated for potential applications in the clinical treatment of human diseases.
Collapse
|
47
|
Abstract
Hydrogel nanoparticles—also referred to as polymeric nanogels or macromolecular micelles—are emerging as promising drug carriers for therapeutic applications. These nanostructures hold versatility and properties suitable for the delivery of bioactive molecules, namely of biopharmaceuticals. This article reviews the latest developments in the use of self-assembled polymeric nanogels for drug delivery applications, including small molecular weight drugs, proteins, peptides, oligosaccharides, vaccines and nucleic acids. The materials and techniques used in the development of self-assembling nanogels are also described.
Collapse
|
48
|
A highly sensitive probe detecting low pH area of HeLa cells based on rhodamine B modified β-cyclodextrins. Bioorg Med Chem 2009; 17:6015-9. [DOI: 10.1016/j.bmc.2009.06.046] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 11/22/2022]
|
49
|
Matsui T, Asao H, Ki M, Sawada K, Kato K. Transgenic lettuce producing a candidate protein for vaccine against edema disease. Biosci Biotechnol Biochem 2009; 73:1628-34. [PMID: 19584542 DOI: 10.1271/bbb.90129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pig edema disease is a bacterial disease caused by Shiga toxin 2e-producing Escherichia coli belonging mainly to serotypes O138, O139, and O141. The B subunit of Shiga toxin 2e (Stx2eB) is a candidate protein for use in a vaccine against edema disease. We produced this protein in transgenic lettuce (Lactuca sativa), an edible plant that can be cultivated in a factory setting. In a transient expression system, we found that NtADH 5'-untranslated region (5'-UTR) functions as a translational enhancer in lettuce cells, and that Stx2eB accumulates most efficiently in the endoplasmic reticulum (ER) of lettuce cells. Stx2eB was produced in stable transgenic lettuce plants expressing a modified Stx2eB gene fused with the NtADH 5'-UTR and sequence encoding ER localization signals.
Collapse
Affiliation(s)
- Takeshi Matsui
- Advanced Technology Research Laboratories, Idemitsu Kosan Co, Ltd, Sodegaura, Chiba, Japan
| | | | | | | | | |
Collapse
|
50
|
Abstract
Retrograde transport, in which proteins and lipids are shuttled between endosomes and biosynthetic/secretory compartments such as the Golgi apparatus, is crucial for a diverse range of cellular functions. Mechanistic studies that explore the molecular machinery involved in this retrograde trafficking route are shedding light on the functions of transport proteins and are providing fresh insights into possible new therapeutic directions.
Collapse
Affiliation(s)
- Ludger Johannes
- CNRS UMR144, Centre de Recherche, Traffic, Signaling, and Delivery Laboratory, 75248 Paris Cedex 05, France.
| | | |
Collapse
|