1
|
Stanciu MC, Nichifor M, Teacă CA. Bile Acid Sequestrants Based on Natural and Synthetic Gels. Gels 2023; 9:500. [PMID: 37367171 DOI: 10.3390/gels9060500] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Bile acid sequestrants (BASs) are non-systemic therapeutic agents used for the management of hypercholesterolemia. They are generally safe and not associated with serious systemic adverse effects. Usually, BASs are cationic polymeric gels that have the ability to bind bile salts in the small intestine and eliminate them by excretion of the non-absorbable polymer-bile salt complex. This review gives a general presentation of bile acids and the characteristics and mechanisms of action of BASs. The chemical structures and methods of synthesis are shown for commercial BASs of first- (cholestyramine, colextran, and colestipol) and second-generation (colesevelam and colestilan) and potential BASs. The latter are based on either synthetic polymers such as poly((meth)acrylates/acrylamides), poly(alkylamines), poly(allylamines) and vinyl benzyl amino polymers or biopolymers, such as cellulose, dextran, pullulan, methylan, and poly(cyclodextrins). A separate section is dedicated to molecular imprinting polymers (MIPs) because of their great selectivity and affinity for the template molecules used in the imprinting technique. Focus is given to the understanding of the relationships between the chemical structure of these cross-linked polymers and their potential to bind bile salts. The synthetic pathways used in obtaining BASs and their in vitro and in vivo hypolipidemic activities are also introduced.
Collapse
Affiliation(s)
- Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marieta Nichifor
- Natural Polymers, Bioactive and Biocompatible Materials Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
2
|
Islam MS, Sharif A, Kwan N, Tam KC. Bile Acid Sequestrants for Hypercholesterolemia Treatment Using Sustainable Biopolymers: Recent Advances and Future Perspectives. Mol Pharm 2022; 19:1248-1272. [PMID: 35333534 DOI: 10.1021/acs.molpharmaceut.2c00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile acids, the endogenous steroid nucleus containing signaling molecules, are responsible for the regulation of multiple metabolic processes, including lipoprotein and glucose metabolism to maintain homeostasis. Within our body, they are directly produced from their immediate precursors, cholesterol C (low-density lipoprotein C, LDL-C), through the enzymatic catabolic process mediated by 7-α-hydroxylase (CYP7A1). Bile acid sequestrants (BASs) or amphiphilic resins that are nonabsorbable to the human body (being complex high molecular weight polymers/electrolytes) are one of the classes of drugs used to treat hypercholesterolemia (a high plasma cholesterol level) or dyslipidemia (lipid abnormalities in the body); thus, they have been used clinically for more than 50 years with strong safety profiles as demonstrated by the Lipid Research Council-Cardiovascular Primary Prevention Trial (LRC-CPPT). They reduce plasma LDL-C and can slightly increase high-density lipoprotein C (HDL-C) levels, whereas many of the recent clinical studies have demonstrated that they can reduce glucose levels in patients with type 2 diabetes mellitus (T2DM). However, due to higher daily dosage requirements, lower efficacy in LDL-C reduction, and concomitant drug malabsorption, research to develop an "ideal" BAS from sustainable or natural sources with better LDL-C lowering efficacy and glucose regulations and lower side effects is being pursued. This Review discusses some recent developments and their corresponding efficacies as bile removal or LDL-C reduction of natural biopolymer (polysaccharide)-based compounds.
Collapse
Affiliation(s)
- Muhammad Shahidul Islam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Anjiya Sharif
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Nathania Kwan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Kam C Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Kheraldine H, Rachid O, Habib AM, Al Moustafa AE, Benter IF, Akhtar S. Emerging innate biological properties of nano-drug delivery systems: A focus on PAMAM dendrimers and their clinical potential. Adv Drug Deliv Rev 2021; 178:113908. [PMID: 34390777 DOI: 10.1016/j.addr.2021.113908] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
Drug delivery systems or vectors are usually needed to improve the bioavailability and effectiveness of a drug through improving its pharmacokinetics/pharmacodynamics at an organ, tissue or cellular level. However, emerging technologies with sensitive readouts as well as a greater understanding of physiological/biological systems have revealed that polymeric drug delivery systems are not biologically inert but can have innate or intrinsic biological actions. In this article, we review the emerging multiple innate biological/toxicological properties of naked polyamidoamine (PAMAM) dendrimer delivery systems in the absence of any drug cargo and discuss their correlation with the defined physicochemical properties of PAMAMs in terms of molecular size (generation), architecture, surface charge and chemistry. Further, we assess whether any of the reported intrinsic biological actions of PAMAMs such as their antimicrobial activity or their ability to sequester glucose and modulate key protein interactions or cell signaling pathways, can be exploited clinically such as in the treatment of diabetes and its complications.
Collapse
|
4
|
Filippov SK, Domnina N, Vol'eva V. Future and the past of polymeric antioxidants. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sergey K. Filippov
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering Åbo Akademi University Turku Finland
- Department of Chemistry and Chemical Technology Al‐Farabi Kazakh National University Almaty Kazakhstan
| | - Nina Domnina
- Department of Macromolecular Compounds Chemistry St. Petersburg State University, Institute of Chemistry St. Petersburg Russia
| | - Violetta Vol'eva
- Department of Antioxidant Chemistry Emanuel Institute of Biochemical Physics of Russian Academy of Sciences Moscow Russia
| |
Collapse
|
5
|
Jiang X, Zhou T, Bai R, Xie Y. Hydroxypyridinone-Based Iron Chelators with Broad-Ranging Biological Activities. J Med Chem 2020; 63:14470-14501. [PMID: 33023291 DOI: 10.1021/acs.jmedchem.0c01480] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron plays an essential role in all living cells because of its unique chemical properties. It is also the most abundant trace element in mammals. However, when iron is present in excess or inappropriately located, it becomes toxic. Excess iron can become involved in free radical formation, resulting in oxidative stress and cellular damage. Iron chelators are used to treat serious pathological disorders associated with systemic iron overload. Hydroxypyridinones stand out for their outstanding chelation properties, including high selectivity for Fe3+ in the biological environment, ease of derivatization, and good biocompatibility. Herein, we overview the potential for multifunctional hydroxypyridinone-based chelators to be used as therapeutic agents against a wide range of diseases associated either with systemic or local elevated iron levels.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Yuanyuan Xie
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P.R. China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| |
Collapse
|
6
|
Chen S, Peng Z, Wang Y, Wu J, An R, Miao R, Zhao M, Peng S. Development and activity evaluation of Arg-Gly-Asp-containing antithrombotic conjugate. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Van Steenberge PHM, Sedlacek O, Hernández-Ortiz JC, Verbraeken B, Reyniers MF, Hoogenboom R, D'hooge DR. Visualization and design of the functional group distribution during statistical copolymerization. Nat Commun 2019; 10:3641. [PMID: 31409782 PMCID: PMC6692376 DOI: 10.1038/s41467-019-11368-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 07/11/2019] [Indexed: 11/09/2022] Open
Abstract
Even though functional copolymers with a low percentage of functional comonomer units (up to 20 mol%) are widely used, for instance for the development of polymer therapeutics and hydrogels, insights in the functional group distribution over the actual chains are lacking and the average composition is conventionally used to describe the functionalization degree. Here we report the visualization of the monomer distribution over the different polymer chains by a synergetic combination of experimental and theoretical analysis aiming at the construction of functionality-chain length distributions (FUNC-CLDs). A successful design of the chemical structure of the comonomer pair, the initial functional comonomer amount (13 mol%), and the temperature (100 °C) is performed to tune the FUNC-CLD of copoly(2-oxazoline)s toward high functionalization degree for both low (100) and high (400) target degrees of polymerization. The proposed research strategy is generic and extendable to a broad range of copolymerization chemistries, including reversible deactivation radical polymerization.
Collapse
Affiliation(s)
- Paul H M Van Steenberge
- Ghent University, Laboratory for Chemical Technology (LCT), Technologiepark 125, B-9052, Gent, Belgium
| | - Ondrej Sedlacek
- Ghent University, Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4, 9000, Gent, Belgium
| | - Julio C Hernández-Ortiz
- Ghent University, Laboratory for Chemical Technology (LCT), Technologiepark 125, B-9052, Gent, Belgium
| | - Bart Verbraeken
- Ghent University, Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4, 9000, Gent, Belgium
| | - Marie-Françoise Reyniers
- Ghent University, Laboratory for Chemical Technology (LCT), Technologiepark 125, B-9052, Gent, Belgium
| | - Richard Hoogenboom
- Ghent University, Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4, 9000, Gent, Belgium.
| | - Dagmar R D'hooge
- Ghent University, Laboratory for Chemical Technology (LCT), Technologiepark 125, B-9052, Gent, Belgium. .,Ghent University, Centre for Textile Science and Engineering, Technologiepark 70a, B-9052, Gent, Belgium.
| |
Collapse
|
8
|
Ang MTC, Gumbau-Brisa R, Allan DS, McDonald R, Ferguson MJ, Holbein BE, Bierenstiel M. DIBI, a 3-hydroxypyridin-4-one chelator iron-binding polymer with enhanced antimicrobial activity. MEDCHEMCOMM 2018; 9:1206-1212. [PMID: 30109009 PMCID: PMC6071711 DOI: 10.1039/c8md00192h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
Abstract
Depriving microorganisms of bioavailable iron is a promising strategy for new anti-infective agents. The new, highly water-soluble, low molecular weight co-polymer DIBI was developed to selectively bind iron(iii) ions as a tris chelate and acts as a standalone anti-infective. Minimum inhibitory concentration (MIC) studies show DIBI is effective against representative reference strains for Gram-positive and Gram-negative bacteria S. aureus and A. baumannii, and the fungus C. albicans. Compared to the small molecule iron chelators, deferiprone and deferoxamine, DIBI outclassed these by factors of 100 to 1000 for inhibition of initial growth. DIBI and a series of related co-polymers (Mw of 2-9 kDa) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization of a chelating 3-hydroxypyridin-4-one (HPO) methacrylamide monomer and N-vinylpyrrolidone (NVP). Full incorporation of the HPO monomer into the co-polymers from the reaction solution was determined by 1H NMR spectroscopy and ranged from 4.6 to 25.6 mol%. UV-vis spectroscopy showed that all the HPO in DIBI binds readily to iron(iii) in a tris chelate mode to the maximum theoretical iron(iii) binding capacity of the co-polymer. Chemical characterization including single crystal X-ray diffraction analyses of the O-benzyl protected and the functional HPO monomer are discussed. By design, DIBI is highly water soluble; the highest mass fraction in water tested was 70% w/w, without the need of organic co-solvents.
Collapse
Affiliation(s)
- M Trisha C Ang
- Chelation Partners Inc. , 1411 Oxford St. Suite 369 , Halifax , Nova Scotia B3H 3Z1 , Canada
- Department of Chemistry , Cape Breton University , 1250 Grand Lake Rd , Sydney , Nova Scotia B1P 6L2 , Canada . ; Tel: +1 (902) 563 1391
| | - Roger Gumbau-Brisa
- Chelation Partners Inc. , 1411 Oxford St. Suite 369 , Halifax , Nova Scotia B3H 3Z1 , Canada
- Department of Chemistry , Cape Breton University , 1250 Grand Lake Rd , Sydney , Nova Scotia B1P 6L2 , Canada . ; Tel: +1 (902) 563 1391
| | - David S Allan
- Chelation Partners Inc. , 1411 Oxford St. Suite 369 , Halifax , Nova Scotia B3H 3Z1 , Canada
| | - Robert McDonald
- X-Ray Crystallography Laboratory , Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Michael J Ferguson
- X-Ray Crystallography Laboratory , Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Bruce E Holbein
- Chelation Partners Inc. , 1411 Oxford St. Suite 369 , Halifax , Nova Scotia B3H 3Z1 , Canada
- Department of Microbiology and Immunology , Dalhousie University , 5859 College St. , Halifax , Nova Scotia B3H 1X5 , Canada
| | - Matthias Bierenstiel
- Department of Chemistry , Cape Breton University , 1250 Grand Lake Rd , Sydney , Nova Scotia B1P 6L2 , Canada . ; Tel: +1 (902) 563 1391
| |
Collapse
|
9
|
Matus MF, Ludueña M, Vilos C, Palomo I, Mariscal MM. Atomic-level characterization and cilostazol affinity of poly(lactic acid) nanoparticles conjugated with differentially charged hydrophilic molecules. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1328-1338. [PMID: 29977668 PMCID: PMC6009487 DOI: 10.3762/bjnano.9.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Nanotherapeutics is a promising field for numerous diseases and represents the forefront of modern medicine. In the present work, full atomistic computer simulations were applied to study poly(lactic acid) (PLA) nanoparticles conjugated with polyethylene glycol (PEG). The formation of this complex system was simulated using the reactive polarizable force field (ReaxFF). A full picture of the morphology, charge and functional group distribution is given. We found that all terminal groups (carboxylic acid, methoxy and amino) are randomly distributed at the surface of the nanoparticles. The surface design of NPs requires that the charged groups must surround the surface region for an optimal functionalization/charge distribution, which is a key factor in determining physicochemical interactions with different biological molecules inside the organism. Another important point that was investigated was the encapsulation of drugs in these nanocarriers and the prediction of the polymer-drug interactions, which provided a better insight into structural features that could affect the effectiveness of drug loading. We employed blind docking to predict NP-drug affinity testing on an antiaggregant compound, cilostazol. The results suggest that the combination of molecular dynamics ReaxFF simulations and blind docking techniques can be used as an explorative tool prior to experiments, which is useful for rational design of new drug delivery systems.
Collapse
Affiliation(s)
- María Francisca Matus
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - Martín Ludueña
- INFIQC, CONICET, Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, XUA5000 Córdoba, Argentina
| | - Cristian Vilos
- Laboratory of Nanomedicine and Targeted Delivery, Center for Integrative Medicine and Innovative Science (CIMIS), Faculty of Medicine & Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - Marcelo M Mariscal
- INFIQC, CONICET, Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, XUA5000 Córdoba, Argentina
| |
Collapse
|
10
|
Crosslinked poly(vinyl alcohol) hydrogel microspheres containing dispersed fenofibrate nanocrystals as an oral sustained delivery system. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Uppu DSSM, Konai MM, Sarkar P, Samaddar S, Fensterseifer ICM, Farias-Junior C, Krishnamoorthy P, Shome BR, Franco OL, Haldar J. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria. PLoS One 2017; 12:e0183263. [PMID: 28837596 PMCID: PMC5570306 DOI: 10.1371/journal.pone.0183263] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections.
Collapse
Affiliation(s)
- Divakara S. S. M. Uppu
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Mohini M. Konai
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Paramita Sarkar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Sandip Samaddar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Isabel C. M. Fensterseifer
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia UC, Brası´lia, Brazil
- Molecular Pathology Post-Graduate Program, University of Brasília, Brasília, Brazil
| | | | - Paramanandam Krishnamoorthy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | - Bibek R. Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia UC, Brası´lia, Brazil
- Molecular Pathology Post-Graduate Program, University of Brasília, Brasília, Brazil
- S-inova Biotech, Pos-Graduação em Biotecnoloia, Universidade Catolica Dom Bosco, Campo Grande, Brazil
| | - Jayanta Haldar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
12
|
Mendonça PV, Matos A, Sousa AF, Serra AC, Simões S, Coelho JFJ. Increasing the Bile Acid Sequestration Performance of Cationic Hydrogels by Using an Advanced/Controlled Polymerization Technique. Pharm Res 2017. [PMID: 28623473 DOI: 10.1007/s11095-017-2204-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE To investigate the influence of the polymerization technique and the content of hydroxyl groups on the performance of new bile acid sequestrants based on PAMPMTA-co-PHEA (PAMPTMA: poly((3-acrylamidopropyl)trimethylammonium chloride); PHEA: poly(2-hydroxyethyl acrylate)) hydrogels. METHODS PAMPMTA-co-PHEA hydrogels were prepared using either free radical polymerization or supplemental activator and reducing agent atom transfer radical polymerization. The chemical structure and composition of the hydrogels was confirmed by both FTIR and ssNMR. The binding of sodium cholate as the model bile salt was evaluated in simulated intestinal fluid using HPLC. The degradation of the polymers was evaluated in vitro in solutions mimicking the gastrointestinal tract environment. RESULTS The binding showed that an increase of the amount of HEA in the hydrogel lead to a decrease of the binding capacity. In addition, it was demonstrated for the first time that the hydrogels produced by SARA ATRP presented a higher binding capacity than similar ones produced by FRP. Finally, it was observed that copolymers of PAMPTMA-co-PHEA showed no sign of degradation in solutions mimicking both the stomach and the intestine environment. CONCLUSIONS The use of an advanced polymerization technique, such as the SARA ATRP, could be beneficial for the preparation of BAS with enhanced performance.
Collapse
Affiliation(s)
- Patrícia V Mendonça
- CEMUC, Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - André Matos
- CEMUC, Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Andreia F Sousa
- CICECO - Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Arménio C Serra
- CEMUC, Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Sérgio Simões
- Bluepharma, Indústria Farmacêutica, SA, São Martinho do Bispo, 3045-016, Coimbra, Portugal
| | - Jorge F J Coelho
- CEMUC, Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal.
| |
Collapse
|
13
|
Zhu C, Xiao J, Tang M, Feng H, Chen W, Du M. Platinum covalent shell cross-linked micelles designed to deliver doxorubicin for synergistic combination cancer therapy. Int J Nanomedicine 2017; 12:3697-3710. [PMID: 28553108 PMCID: PMC5439721 DOI: 10.2147/ijn.s130938] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The preparation of polymer therapeutics capable of controlled release of multiple chemotherapeutic drugs has remained a tough problem in synergistic combination cancer therapy. Herein, a novel dual-drug co-delivery system carrying doxorubicin (DOX) and platinum(IV) (Pt[IV]) was developed. An amphiphilic diblock copolymer, PCL-b-P(OEGMA-co-AzPMA), was synthesized and used as a nanoscale drug carrier in which DOX and Pt(IV) could be packaged together. The copolymers were shell cross-linked by Pt(IV) prodrug via a click reaction. Studies on the in vitro drug release and cellular uptake of the dual-drug co-delivery system showed that the micelles were effectively taken up by the cells and simultaneously released drugs in the cells. Futhermore, the co-delivery polymer nanoparticles caused much higher cell death in HeLa and A357 tumor cells than either the free drugs or single-drug-loaded micelles at the same dosage, exhibiting a synergistic combination of DOX and Pt(IV). The results obtained with the shell cross-linked micelles based on an anticancer drug used as a cross-linking linkage suggested a promising application of the micelles for multidrug delivery in combination cancer therapy.
Collapse
Affiliation(s)
- Caiying Zhu
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Jingjing Xiao
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Ming Tang
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo Medical Center, Li Huli Hospital, Ningbo
| | - Hua Feng
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Wulian Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Ming Du
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital, Shanghai Medical College, Fudan University, Shanghai
| |
Collapse
|
14
|
Kiew LV, Cheah HY, Voon SH, Gallon E, Movellan J, Ng KH, Alpugan S, Lee HB, Dumoulin F, Vicent MJ, Chung LY. Near-infrared activatable phthalocyanine-poly-L-glutamic acid conjugate: increased cellular uptake and light–dark toxicity ratio toward an effective photodynamic cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1447-1458. [DOI: 10.1016/j.nano.2017.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/23/2016] [Accepted: 02/05/2017] [Indexed: 12/31/2022]
|
15
|
Synthesis and characterization of new shellac–hydroxypropylmethylcellulose composite for pharmaceutical applications. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-1903-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Requejo-Aguilar R, Alastrue-Agudo A, Cases-Villar M, Lopez-Mocholi E, England R, Vicent MJ, Moreno-Manzano V. Combined polymer-curcumin conjugate and ependymal progenitor/stem cell treatment enhances spinal cord injury functional recovery. Biomaterials 2016; 113:18-30. [PMID: 27810639 DOI: 10.1016/j.biomaterials.2016.10.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/27/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) suffers from a lack of effective therapeutic strategies. Animal models of acute SCI have provided evidence that transplantation of ependymal stem/progenitor cells of the spinal cord (epSPCs) induces functional recovery, while systemic administration of the anti-inflammatory curcumin provides neuroprotection. However, functional recovery from chronic stage SCI requires additional enhancements in available therapeutic strategies. Herein, we report on a combination treatment for SCI using epSPCs and a pH-responsive polymer-curcumin conjugate. The incorporation of curcumin in a pH-responsive polymeric carrier mainchain, a polyacetal (PA), enhances blood bioavailability, stability, and provides a means for highly localized delivery. We find that PA-curcumin enhances neuroprotection, increases axonal growth, and can improve functional recovery in acute SCI. However, when combined with epSPCs, PA-curcumin also enhances functional recovery in a rodent model of chronic SCI. This suggests that combination therapy may be an exciting new therapeutic option for the treatment of chronic SCI in humans.
Collapse
Affiliation(s)
- Raquel Requejo-Aguilar
- Neuronal and Tissue Regeneration Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Ana Alastrue-Agudo
- Neuronal and Tissue Regeneration Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Marta Cases-Villar
- Neuronal and Tissue Regeneration Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Eric Lopez-Mocholi
- Neuronal and Tissue Regeneration Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Richard England
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - María J Vicent
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center, Valencia, Spain.
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Príncipe Felipe Research Center, Valencia, Spain; Universidad Católica de Valencia, Valencia, Spain.
| |
Collapse
|
17
|
Geyik C, Guler E, Gumus ZP, Barlas FB, Akbulut H, Demirkol DO, Timur S, Yagci Y. Bioconjugation and Applications of Amino Functional Fluorescence Polymers. Macromol Biosci 2016; 17. [PMID: 27689764 DOI: 10.1002/mabi.201600232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/04/2016] [Indexed: 12/11/2022]
Abstract
Synthesis and novel applications of biofunctional polymers for diagnosis and therapy are promising area involving various research domains. Herein, three fluorescent polymers, poly(p-phenylene-co-thiophene), poly(p-phenylene), and polythiophene with amino groups (PPT-NH2 , PPP-NH2 , and PT-NH2 , respectively) are synthesized and investigated for cancer cell targeted imaging, drug delivery, and radiotherapy. Polymers are conjugated to anti-HER2 antibody for targeted imaging studies in nontoxic concentrations. Three cell lines (A549, Vero, and HeLa) with different expression levels of HER2 are used. In a model of HER2 expressing cell line (A549), radiotherapy experiments are carried out and results show that all three polymers increase the efficacy of radiotherapy. This effect is even more increased when conjugated to anti-HER2. In the second part of this work, one of the selected polymers (PT-NH2 ) is conjugated with a drug model; methotrexate via pH responsive hydrazone linkage and a drug carrier property of PT-NH2 is demonstrated on neuroblastoma (SH-SY5Y) cell model. Our results indicate that, PPT-NH2 , PPP-NH2 , and PT-NH2 have a great potential as biomaterials for various bioapplications in cancer research.
Collapse
Affiliation(s)
- Caner Geyik
- Ege University Institute on Drug Abuse, Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Emine Guler
- Ege University Institute on Drug Abuse, Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey.,Ege University, Faculty of Science Department of Biochemistry, 35100, Bornova, Izmir, Turkey
| | - Zinar Pinar Gumus
- Ege University Institute on Drug Abuse, Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Firat Baris Barlas
- Ege University, Faculty of Science Department of Biochemistry, 35100, Bornova, Izmir, Turkey
| | - Huseyin Akbulut
- Istanbul Technical University, Department of Chemistry, Faculty of Science and Letters, 34469, Istanbul, Turkey
| | - Dilek Odaci Demirkol
- Ege University, Faculty of Science Department of Biochemistry, 35100, Bornova, Izmir, Turkey
| | - Suna Timur
- Ege University Institute on Drug Abuse, Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey.,Ege University, Faculty of Science Department of Biochemistry, 35100, Bornova, Izmir, Turkey
| | - Yusuf Yagci
- Istanbul Technical University, Department of Chemistry, Faculty of Science and Letters, 34469, Istanbul, Turkey.,Center of Excellence for Advanced Materials Research (CEAMR) and Chemistry Department Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
18
|
Yu F, Li J, Xie Y, Sleightholm RL, Oupický D. Polymeric chloroquine as an inhibitor of cancer cell migration and experimental lung metastasis. J Control Release 2016; 244:347-356. [PMID: 27473763 DOI: 10.1016/j.jconrel.2016.07.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 01/16/2023]
Abstract
Chloroquine (CQ) is a widely used antimalarial drug with emerging potential in anticancer therapies due to its apparent inhibitory effects on CXCR4 chemokine receptor, autophagy, and cholesterol metabolism. This study reports on polymeric CQ (pCQ) as a macromolecular drug with antimetastatic activity. The pCQ polymers were synthesized by copolymerization of methacryloylated hydroxy-CQ (HCQ) and N-(2-hydroxypropyl)methacrylamide (HPMA). The results show that pCQ is significantly more effective in inhibiting cancer cell migration and invasion when compared with the parent HCQ. The proposed mechanism of action at least partially relies on the ability of pCQ to inhibit cell migration mediated by the CXCR4/CXCL12 pathway. The pCQ also demonstrates superior inhibitory activity over HCQ when tested in a mouse model of experimental lung metastasis. Lastly, pCQ shows the ability to efficiently translocate to the cytoplasm while exhibiting lower cytotoxicity than HCQ. Overall, this study supports pCQ as a promising polymeric drug platform suitable for use in combination antimetastatic strategies and potential use in cytoplasmic drug delivery.
Collapse
Affiliation(s)
- Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Richard L Sleightholm
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
19
|
Kubo T, Figg CA, Swartz JL, Brooks WLA, Sumerlin BS. Multifunctional Homopolymers: Postpolymerization Modification via Sequential Nucleophilic Aromatic Substitution. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00181] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tomohiro Kubo
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - C. Adrian Figg
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Jeremy L. Swartz
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - William L. A. Brooks
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
20
|
Li J, Olaleye ED, Kong X, Zhou T, Ma Y, Jurach J, Al Rugaie O, Hider RC, Zhang G, Alsam S, Abbate V. Macromolecular iron-chelators via RAFT-polymerization for the inhibition of methicillin-resistant Staphylococcus aureus growth. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.01.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Mendonça PV, Moreno MJ, Serra AC, Simões S, Coelho JFJ. Synthesis of tailor-made bile acid sequestrants by supplemental activator and reducing agent atom transfer radical polymerization. RSC Adv 2016. [DOI: 10.1039/c6ra06087k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This work reports the synthesis of tailor-made polymeric bile acid sequestrants (BAS) by supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) using ecofriendly conditions.
Collapse
Affiliation(s)
- Patrícia V. Mendonça
- CEMUC
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Maria João Moreno
- CQC
- Department of Chemistry
- University of Coimbra
- 3004-535 Coimbra
- Portugal
| | - Arménio C. Serra
- CEMUC
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Sérgio Simões
- Bluepharma
- Indústria Farmacêutica
- SA
- 3045-016 Coimbra
- Portugal
| | - Jorge F. J. Coelho
- CEMUC
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| |
Collapse
|
22
|
Song Y, Zhao R, Hu Y, Hao F, Li N, Nie G, Tang H, Wang Y. Assessment of the Biological Effects of a Multifunctional Nano-Drug-Carrier and Its Encapsulated Drugs. J Proteome Res 2015; 14:5193-201. [PMID: 26531143 DOI: 10.1021/acs.jproteome.5b00513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polymer-nanoparticle-encapsulated doxorubicin (DOX) and paclitaxel (TAX) have the potential for novel therapeutic use against cancer in the clinic. However, the systemic biological effect of the nanoparticle material, namely, methoxypoly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA), and its encapsulated drugs have not been fully studied. We have applied NMR-based metabonomics methodology to characterize and analyze the systemic metabolic changes in mice after being exposed to mPEG-PLGA, mPEG-PLGA-encapsulated DOX and TAX (NP-D/T), and their free forms. The study revealed that mPEG-PLGA exposure only induces temporary and slight metabolic alternations and that there are detoxification effects of nanoparticle packed with D/T drugs on the heart when comparing with free-form D/T drugs. Both NP-D/T and their free forms induce a shift in energy metabolism, stimulate antioxidation pathways, and disturb the gut microbial activity of the host. However, mPEG-PLGA packaging can relieve the energy metabolism inhibition and decrease the activation of antioxidation pathways caused by D/T exposure. These findings provide a holistic insight into the biological effect of polymer nanoparticle and nanoparticle-encapsulated drugs. This study also furthers our understanding of the molecular mechanisms involved in the amelioration effects of mPEG-PLGA packaging on the toxicity of the incorporated drugs.
Collapse
Affiliation(s)
- Yipeng Song
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China
| | - Ruifang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences , Beijing, 100190, P. R. China
| | - Yili Hu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China
| | - Fuhua Hao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China
| | - Ning Li
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China
| | - Guangjun Nie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences , Beijing, 100190, P. R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Biospectroscopy and Metabolomics, School of Life Sciences, Fudan University , Shanghai, 200433, P. R. China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310058, P. R. China
| |
Collapse
|
23
|
Li J, Yu F, Chen Y, Oupický D. Polymeric drugs: Advances in the development of pharmacologically active polymers. J Control Release 2015; 219:369-382. [PMID: 26410809 DOI: 10.1016/j.jconrel.2015.09.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023]
Abstract
Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents.
Collapse
Affiliation(s)
- Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yi Chen
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Department of Chemistry, University of Nebraska Lincoln, Lincoln, NE, USA; Department of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
24
|
Louzao I, Sui C, Winzer K, Fernandez-Trillo F, Alexander C. Cationic polymer mediated bacterial clustering: Cell-adhesive properties of homo- and copolymers. Eur J Pharm Biopharm 2015; 95:47-62. [DOI: 10.1016/j.ejpb.2015.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/15/2015] [Accepted: 05/26/2015] [Indexed: 11/16/2022]
|
25
|
Effects of PEG molecular weight on its interaction with albumin. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1687-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Polymer antidotes for toxin sequestration. Adv Drug Deliv Rev 2015; 90:81-100. [PMID: 26026975 DOI: 10.1016/j.addr.2015.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/09/2015] [Accepted: 05/21/2015] [Indexed: 12/24/2022]
Abstract
Toxins delivered by envenomation, secreted by microorganisms, or unintentionally ingested can pose an immediate threat to life. Rapid intervention coupled with the appropriate antidote is required to mitigate the threat. Many antidotes are biological products and their cost, methods of production, potential for eliciting immunogenic responses, the time needed to generate them, and stability issues contribute to their limited availability and effectiveness. These factors exacerbate a world-wide challenge for providing treatment. In this review we evaluate a number of polymer constructs that may serve as alternative antidotes. The range of toxins investigated includes those from sources such as plants, animals and bacteria. The development of polymeric heavy metal sequestrants for use as antidotes to heavy metal poisoning faces similar challenges, thus recent findings in this area have also been included. Two general strategies have emerged for the development of polymeric antidotes. In one, the polymer acts as a scaffold for the presentation of ligands with a known affinity for the toxin. A second strategy is to generate polymers with an intrinsic affinity, and in some cases selectivity, to a range of toxins. Importantly, in vivo efficacy has been demonstrated for each of these strategies, which suggests that these approaches hold promise as an alternative to biological or small molecule based treatments.
Collapse
|
27
|
Zhou YJ, Kong XL, Li JP, Ma YM, Hider RC, Zhou T. Novel 3-hydroxypyridin-4-one hexadentate ligand-based polymeric iron chelator: synthesis, characterization and antimicrobial evaluation. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00264h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel 3-hydroxypyridin-4-one hexadentate-based copolymeric iron chelator was prepared. The polymer was found to possess high iron affinity and appreciable inhibitory activity against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Ying-Jun Zhou
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- PR China
| | - Xiao-Le Kong
- Division of Pharmaceutical Science
- King's College London
- London
- UK
| | - Jun-Pei Li
- Division of Pharmaceutical Science
- King's College London
- London
- UK
| | - Yong-Min Ma
- College of Pharmaceutical Science
- Zhejiang Chinese Medical University
- Hangzhou
- PR China
| | - Robert C Hider
- Division of Pharmaceutical Science
- King's College London
- London
- UK
| | - Tao Zhou
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- PR China
| |
Collapse
|
28
|
Chen S, Wang Y, Li S, Wang Y, Zhao M, Zhu H, Wu J, Peng S. Poly-α,β-aspartyl-Arg-Gly-Asp-Phe: a novel polymeric nanomedicine. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00331d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High anti-thrombotic efficacy, action target and nano-structure of a novel nanomedicine were described.
Collapse
Affiliation(s)
- Shuangling Chen
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Beijing Laboratory of Biomedical Materials
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- College of Pharmaceutical Sciences of Capital Medical University
- Beijing 100069
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Beijing Laboratory of Biomedical Materials
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- College of Pharmaceutical Sciences of Capital Medical University
- Beijing 100069
| | - Shan Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Beijing Laboratory of Biomedical Materials
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- College of Pharmaceutical Sciences of Capital Medical University
- Beijing 100069
| | - Yaonan Wang
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Medical Experiment and Test Center of Capital Medical University
- Beijing 100069
- P. R. China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Beijing Laboratory of Biomedical Materials
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- College of Pharmaceutical Sciences of Capital Medical University
- Beijing 100069
| | - Haimei Zhu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Beijing Laboratory of Biomedical Materials
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- College of Pharmaceutical Sciences of Capital Medical University
- Beijing 100069
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Beijing Laboratory of Biomedical Materials
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- College of Pharmaceutical Sciences of Capital Medical University
- Beijing 100069
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Beijing Laboratory of Biomedical Materials
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- College of Pharmaceutical Sciences of Capital Medical University
- Beijing 100069
| |
Collapse
|
29
|
Newkome GR, Moorefield CN. From 1 → 3 dendritic designs to fractal supramacromolecular constructs: understanding the pathway to the Sierpiński gasket. Chem Soc Rev 2015; 44:3954-67. [DOI: 10.1039/c4cs00234b] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The potential to incorporate dendritic characteristics, such as self-similarity into new fractal-based materials is exemplified in the self-assembly of novel, polyterpyridine-based, building blocks.
Collapse
Affiliation(s)
- George R. Newkome
- The Departments of Polymer Science and Chemistry
- The University of Akron
- Akron
- USA
- The Maurice Morton Institute for Polymer Science
| | | |
Collapse
|
30
|
Duro-Castano A, Movellan J, Vicent MJ. Smart branched polymer drug conjugates as nano-sized drug delivery systems. Biomater Sci 2015; 3:1321-34. [DOI: 10.1039/c5bm00166h] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Branched polymers own special properties derived from their intrinsic characteristics. These properties make them ideal candidates to be used as carriers for an improved generation of polymer-drug conjugates.
Collapse
Affiliation(s)
- A. Duro-Castano
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| | - J. Movellan
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| | - M. J. Vicent
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| |
Collapse
|
31
|
Kinetic and thermodynamic evaluation of phosphate ions binding onto sevelamer hydrochloride. Int J Pharm 2014; 474:25-32. [DOI: 10.1016/j.ijpharm.2014.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/03/2014] [Indexed: 11/29/2022]
|
32
|
Mooney PD, Hadjivassiliou M, Sanders DS. Emerging drugs for coeliac disease. Expert Opin Emerg Drugs 2014; 19:533-44. [DOI: 10.1517/14728214.2014.959490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Duncan R. Polymer therapeutics: Top 10 selling pharmaceuticals — What next? J Control Release 2014; 190:371-80. [DOI: 10.1016/j.jconrel.2014.05.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/27/2014] [Accepted: 05/02/2014] [Indexed: 01/02/2023]
|
34
|
Zhou YJ, Zhang MX, Hider RC, Zhou T. In vitro antimicrobial activity of hydroxypyridinone hexadentate-based dendrimeric chelators alone and in combination with norfloxacin. FEMS Microbiol Lett 2014; 355:124-30. [PMID: 24813898 DOI: 10.1111/1574-6968.12465] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/11/2014] [Accepted: 05/06/2014] [Indexed: 11/27/2022] Open
Abstract
The antimicrobial activity of one 3-hydroxypyridin-4-one (HPO) hexadentate (1) and three HPO hexadentate-based dendrimeric chelators (2-4) was evaluated. They were found to exhibit marked inhibitory effect on the growth of two Gram-positive bacteria and two Gram-negative bacteria. The combination treatment of dendrimeric chelator 2 with norfloxacin against Staphyloccocus aureus and Escherichia coli showed a dramatic synergistic bactericidal effect. As the dendrimeric chelator has a large molecular weight, its combination with norfloxacin may find application in the treatment of external infections.
Collapse
Affiliation(s)
- Ying-Jun Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | | | | | | |
Collapse
|
35
|
Roy A, Bhattacharyya M, Ernsting MJ, May JP, Li SD. Recent progress in the development of polysaccharide conjugates of docetaxel and paclitaxel. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:349-68. [PMID: 24652678 DOI: 10.1002/wnan.1264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 11/07/2022]
Abstract
UNLABELLED Taxanes are one of the most potent and broadest spectrum chemotherapeutics used clinically, but also induce significant side effects. Different strategies have been developed to produce a safer taxane formulation. Development of polysaccharide drug conjugates has increased in the recent years because of the demonstrated biocompatibility, biodegradability, safety, and low cost of the biopolymers. This review focuses on polysaccharide-taxane conjugates and provides an overview on various conjugation strategies and their effect on the efficacy. Detailed analyses on the designing factors of an effective polysaccharide-drug conjugate are provided with a discussion on the future direction of this field. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Aniruddha Roy
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
36
|
On the edge of new technologies (advanced therapies, nanomedicines). DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 8:e1-e42. [PMID: 24103840 DOI: 10.1016/j.ddtec.2011.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
37
|
Dhal PK, Polomoscanik SC, Gianolio DA, Starremans PG, Busch M, Alving K, Chen B, Miller RJ. Well-Defined Aminooxy Terminated N-(2-Hydroxypropyl) Methacrylamide Macromers for Site Specific Bioconjugation of Glycoproteins. Bioconjug Chem 2013; 24:865-77. [DOI: 10.1021/bc300472e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Pradeep K. Dhal
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Steven C. Polomoscanik
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Diego A. Gianolio
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Patrick G. Starremans
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Michelle Busch
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Kim Alving
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Bo Chen
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Robert J. Miller
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Alvarez-Lorenzo C, Concheiro A. From Drug Dosage Forms to Intelligent Drug-delivery Systems: a Change of Paradigm. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849736800-00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The design of new drug-delivery systems (DDSs) able to regulate the moment and the rate at which the release should take place, and even to target the drug to specific tissues and cell compartments, has opened novel perspectives to improve the efficacy and safety of the therapeutic treatments. Ideally, the drug should only have access to its site of action and the release should follow the evolution of the disease or of certain biorhythms. The advances in the DDSs field are possible because of a better knowledge of the physiological functions and barriers to the drug access to the action site, but also due to the possibility of having “active” excipients that provide novel features. The joint work in a wide range of disciplines, comprising materials science, biomedical engineering and pharmaceutical technology, prompts the design and development of materials (lipids, polymers, hybrids) that can act as sensors of physiological parameters or external variables, and as actuators able to trigger or tune the release process. Such smart excipients lead to an advanced generation of DDSs designed as intelligent or stimuli-responsive. This chapter provides an overview of how the progress in DDSs is intimately linked to the evolution of the excipients, understood as a specific category of biomaterials. The phase transitions, the stimuli that can trigger them and the mechanisms behind the performance of the intelligent DDSs are analyzed as a whole, to serve as an introduction to the topics that are comprehensively discussed in the subsequent chapters of the book. A look to the future is also provided.
Collapse
Affiliation(s)
- C. Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela Spain
| | - A. Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela Spain
| |
Collapse
|
39
|
Mendonça PV, Serra AC, Silva CL, Simões S, Coelho JF. Polymeric bile acid sequestrants—Synthesis using conventional methods and new approaches based on “controlled”/living radical polymerization. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2012.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Kuan SL, Wu Y, Weil T. Precision Biopolymers from Protein Precursors for Biomedical Applications. Macromol Rapid Commun 2013; 34:380-92. [DOI: 10.1002/marc.201200662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/27/2012] [Indexed: 12/17/2022]
|
41
|
Duncan R, Vicent MJ. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev 2013; 65:60-70. [PMID: 22981753 DOI: 10.1016/j.addr.2012.08.012] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/16/2012] [Accepted: 08/22/2012] [Indexed: 02/07/2023]
Abstract
The term "polymer therapeutics" was coined to describe polymeric drugs, polymer conjugates of proteins, drugs and aptamers, together with those block copolymer micelles and multicomponent non-viral vectors which contain covalent linkages. These often complex, multicomponent constructs are actually "drugs" and "macromolecular prodrugs" in contrast to drug delivery systems that simply entrap (non-covalently) therapeutic agents. They have also been described as nanomedicines. First polymer-protein conjugates entered routine clinical use in 1990 and a growing number of polymeric drugs/sequestrants and PEGylated proteins/aptamers have since come into the market. Valuable lessons have been learnt over >3 decades of clinical development, especially in relation to critical product attributes governing safety and efficacy, the validated methods needed for product characterisation. Not least there has been improved understanding of polymer therapeutic-specific biomarkers that will in future enable improved selection of patients for therapy. Advances in synthetic polymer chemistry (including control of 3D architecture), the move towards greater use of biodegradable polymers, polymers delivering combination therapy, increased understanding of polymer therapeutic critical product attributes to guide pharmaceutical development, and advances in understanding of endocytosis and intracellular trafficking pathways in health and disease are opening new opportunities for design and clinical use of polymer-based therapeutics in the decades to come.
Collapse
|
42
|
Mansur HS, Mansur AAP, Curti E, De Almeida MV. Functionalized-chitosan/quantum dot nano-hybrids for nanomedicine applications: towards biolabeling and biosorbing phosphate metabolites. J Mater Chem B 2013; 1:1696-1711. [DOI: 10.1039/c3tb00498h] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Barz M, Duro-Castano A, Vicent MJ. A versatile post-polymerization modification method for polyglutamic acid: synthesis of orthogonal reactive polyglutamates and their use in “click chemistry”. Polym Chem 2013. [DOI: 10.1039/c3py00189j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
England RM, Masiá E, Giménez V, Lucas R, Vicent MJ. Polyacetal-stilbene conjugates — The first examples of polymer therapeutics for the inhibition of HIF-1 in the treatment of solid tumours. J Control Release 2012; 164:314-22. [DOI: 10.1016/j.jconrel.2012.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/25/2012] [Accepted: 08/14/2012] [Indexed: 11/25/2022]
|
45
|
Hudson SP, Owens E, Hughes H, McLoughlin P. Enhancement and restriction of chain motion in polymer networks. Int J Pharm 2012; 430:34-41. [DOI: 10.1016/j.ijpharm.2012.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/10/2012] [Accepted: 03/12/2012] [Indexed: 11/16/2022]
|
46
|
Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 2012; 41:2971-3010. [PMID: 22388185 PMCID: PMC3684255 DOI: 10.1039/c2cs15344k] [Citation(s) in RCA: 1146] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development of targeted polymeric NPs and to highlight the challenges associated with the engineering of this novel class of therapeutics, including considerations of NP design optimization, development and biophysicochemical properties. Additionally, we highlight some recent examples from the literature, which demonstrate current trends and novel concepts in both the design and utility of targeted polymeric NPs (444 references).
Collapse
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zeyu Xiao
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro M. Valencia
- The David H. Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aleksandar F. Radovic-Moreno
- The David H. Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Casolaro M, Casolaro I, Lamponi S. Stimuli-responsive hydrogels for controlled pilocarpine ocular delivery. Eur J Pharm Biopharm 2012; 80:553-61. [DOI: 10.1016/j.ejpb.2011.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 11/27/2022]
|
48
|
Bricarello DA, Patel MA, Parikh AN. Inhibiting host-pathogen interactions using membrane-based nanostructures. Trends Biotechnol 2012; 30:323-30. [PMID: 22464596 DOI: 10.1016/j.tibtech.2012.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/28/2012] [Accepted: 03/02/2012] [Indexed: 12/24/2022]
Abstract
Virulent strains of bacteria and viruses recognize host cells by their plasma membrane receptors and often exploit the native translocation machinery to invade the cell. A promising therapeutic concept for early interruption of pathogen infection is to subvert this pathogenic trickery using exogenously introduced decoys that present high-affinity mimics of cellular receptors. This review highlights emerging applications of molecularly engineered lipid-bilayer-based nanostructures, namely (i) functionalized liposomes, (ii) supported colloidal bilayers or protocells and (iii) reconstituted lipoproteins, which display functional cellular receptors in optimized conformational and aggregative states. These decoys outcompete host cell receptors by preferentially binding to and neutralizing virulence factors of both bacteria and viruses, thereby promising a new approach to antipathogenic therapy.
Collapse
Affiliation(s)
- Daniel A Bricarello
- Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
49
|
Pinier M, Fuhrmann G, Galipeau HJ, Rivard N, Murray JA, David CS, Drasarova H, Tuckova L, Leroux JC, Verdu EF. The copolymer P(HEMA-co-SS) binds gluten and reduces immune response in gluten-sensitized mice and human tissues. Gastroenterology 2012; 142:316-25.e1-12. [PMID: 22079593 DOI: 10.1053/j.gastro.2011.10.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/27/2011] [Accepted: 10/30/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Copolymers of hydroxyethyl methacrylate and styrene sulfonate complex with isolated gliadin (the toxic fraction of gluten) and prevent damage to the intestinal barrier in HLA-HCD4/DQ8 mice. We studied the activity toward gluten and hordein digestion and biologic effects of poly(hydroxyethyl methacrylate-co-styrene sulfonate (P(HEMA-co-SS)). We also investigated the effect of gliadin complex formation in intestinal biopsy specimens from patients with celiac disease. METHODS We studied the ability of P(HEMA-co-SS) to reduce digestion of wheat gluten and barley hordein into immunotoxic peptides using liquid chromatography-mass spectrometry. The biodistribution and pharmacokinetic profile of orally administered P(HEMA-co-SS) was established in rodents using tritium-labeled polymer. We assessed the capacity of P(HEMA-co-SS) to prevent the immunologic and intestinal effects induced by a gluten-food mixture in gluten-sensitized HLA-HCD4/DQ8 mice after short-term and long-term administration. We measured the effects of gliadin complex formation on cytokine release ex vivo using intestinal biopsy specimens from patients with celiac disease. RESULTS P(HEMA-co-SS) reduced digestion of wheat gluten and barley hordein in vitro, thereby decreasing formation of toxic peptides associated with celiac disease. After oral administration to rodents, P(HEMA-co-SS) was predominantly excreted in feces, even in the presence of low-grade mucosal inflammation and increased intestinal permeability. In gluten-sensitized mice, P(HEMA-co-SS) reduced paracellular permeability, normalized anti-gliadin immunoglobulin A in intestinal washes, and modulated the systemic immune response to gluten in a food mixture. Furthermore, incubation of P(HEMA-co-SS) with mucosal biopsy specimens from patients with celiac disease showed that secretion of tumor necrosis factor-α was reduced in the presence of partially digested gliadin. CONCLUSIONS The copolymer P(HEMA-co-SS) reduced digestion of wheat gluten and barley hordein and attenuated the immune response to gluten in a food mixture in rodents. It might be developed to prevent or reduce gluten-induced disorders in humans.
Collapse
Affiliation(s)
- Maud Pinier
- Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dhal PK, Gianolio DA, Miller RJ. (Bio)polymeric Hydrogels as Therapeutic Agents. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2011. [DOI: 10.1080/10601325.2011.620418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|