1
|
Raja RK, Nguyen-Tri P, Balasubramani G, Alagarsamy A, Hazir S, Ladhari S, Saidi A, Pugazhendhi A, Samy AA. SARS-CoV-2 and its new variants: a comprehensive review on nanotechnological application insights into potential approaches. APPLIED NANOSCIENCE 2021; 13:65-93. [PMID: 34131555 PMCID: PMC8190993 DOI: 10.1007/s13204-021-01900-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2 (COVID-19) spreads and develops quickly worldwide as a new global crisis which has left deep socio-economic damage and massive human mortality. This virus accounts for the ongoing outbreak and forces an urgent need to improve antiviral therapeutics and targeted diagnosing tools. Researchers have been working to find a new drug to combat the virus since the outbreak started in late 2019, but there are currently no successful drugs to control the SARS-CoV-2, which makes the situation riskier. Very recently, new variant of SARS-CoV-2 is identified in many countries which make the situation very critical. No successful treatment has yet been shown although enormous international commitment to combat this pandemic and the start of different clinical trials. Nanomedicine has outstanding potential to solve several specific health issues, like viruses, which are regarded a significant medical issue. In this review, we presented an up-to-date drug design strategy against SARS-CoV-2, including the development of novel drugs and repurposed product potentials were useful, and successful drugs discovery is a constant requirement. The use of nanomaterials in treatment against SARS-CoV-2 and their use as carriers for the transport of the most frequently used antiviral therapeutics are discussed systematically here. We also addressed the possibilities of practical applications of nanoparticles to give the status of COVID-19 antiviral systems.
Collapse
Affiliation(s)
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Govindasamy Balasubramani
- Aquatic Animal Health and Environmental Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, 600028 India
| | - Arun Alagarsamy
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Selcuk Hazir
- Department of Biology, Faculty of Science and Arts, Adnan Menderes University, Aydin, Turkey
| | - Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Alireza Saidi
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve O, Montréal, QC H3A 3C2 Canada
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
2
|
Perini EA, Skopchenko M, Hong TT, Harianto R, Maître A, Rodríguez MRR, de Oliveira Santos N, Guo Y, Qin X, Zeituni CA, Starovoitova VN. Pre-feasibility Study for Establishing Radioisotope and Radiopharmaceutical Production Facilities in Developing Countries. Curr Radiopharm 2020; 12:187-200. [PMID: 30924426 DOI: 10.2174/1874471012666190328164253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND A significant number of developing countries have no facilities to produce medical radioisotopes and radiopharmaceuticals. OBJECTIVE In this paper we show that access to life-saving radioisotopes and radiopharmaceuticals and the geographical distribution of corresponding infrastructure is highly unbalanced worldwide. METHODS We discuss the main issues which need to be addressed in order to establish the production of radioisotopes and radiopharmaceuticals, which are especially important for developing countries as newcomers in the field. The data was gathered from several sources, including databases maintained by the International Atomic Energy Agency (IAEA), World Health Organization (WHO), and other international organizations; personal interactions with representatives in the nuclear medicine field from different regions of the world; and relevant literature. RESULTS Developing radioisotope and radiopharmaceutical production program and installing corresponding infrastructure requires significant investments, both man-power and financial. Support already exists to help developing countries establish their medical radioisotope production installations from several organizations, such as IAEA. CONCLUSION This work clearly shows that access to life-saving radioisotopes and the geographical distribution of corresponding infrastructure is highly unbalanced. Technology transfer is important as it not only immediately benefits patients, but also provides employment, economic activity and general prosperity in the region to where the technology transfer is implemented.
Collapse
Affiliation(s)
- Efrain Araujo Perini
- Institute of Energy and Nuclear Research (IPEN), Av. Prof. Lineu Prestes 2242, Cidade Universitaria., 05508-000, Sao Paulo, SP, Brazil
| | - Mikhail Skopchenko
- National Nuclear Center, Institute of Radiation Safety and Ecology, 23 Building, 2 Krasnoarmeyskaya Street, 071100, Kurchatov, Kazakhstan
| | - Tran Thu Hong
- Nuclear Research Institute, 01 Nguyen Tu Luc St., Ward 9, Dalat City, Lam Dong, Vietnam
| | - Rahmat Harianto
- Nuclear Energy Regulatory Agency (BAPETEN), North Petojo, Jl. Gajah Mada 8, RT.1/RW.2, Krukut, Tamansari, Daerah Khusus Ibukota 11120, Jakarta, Indonesia
| | - Alexis Maître
- INVAP S.E., Avenida Comandante Luis Piedrabuena 4950, R8403CPV, Bariloche, Argentina
| | | | - Nathalia de Oliveira Santos
- Eckert & Ziegler Brasil Isotope Solution, Rua Miguel Nelsom Bechara, 480, Jardim Pereira Leite, ZIP 02712-130, Sao Paulo - SP, Brazil
| | | | | | - Carlos A Zeituni
- Institute of Energy and Nuclear Research (IPEN), Av. Prof. Lineu Prestes 2242, Cidade Universitaria., 05508-000, Sao Paulo, SP, Brazil
| | | |
Collapse
|
3
|
Sandland J, Malatesti N, Boyle R. Porphyrins and related macrocycles: Combining photosensitization with radio- or optical-imaging for next generation theranostic agents. Photodiagnosis Photodyn Ther 2018; 23:281-294. [DOI: 10.1016/j.pdpdt.2018.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/22/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|
4
|
Wang X, Wang X, Guo Z. Metal-involved theranostics: An emerging strategy for fighting Alzheimer’s disease. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Upponi JR, Jerajani K, Nagesha DK, Kulkarni P, Sridhar S, Ferris C, Torchilin VP. Polymeric micelles: Theranostic co-delivery system for poorly water-soluble drugs and contrast agents. Biomaterials 2018; 170:26-36. [PMID: 29649747 DOI: 10.1016/j.biomaterials.2018.03.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/21/2018] [Accepted: 03/31/2018] [Indexed: 11/15/2022]
Abstract
Interest in theranostic agents has continued to grow because of their promise for simultaneous cancer detection and therapy. A platform-based nanosized combination agent suitable for the enhanced diagnosis and treatment of cancer was prepared using polymeric polyethylene glycol-phosphatidylethanolamine-based micelles loaded with both, poorly soluble chemotherapeutic agent paclitaxel and hydrophobic superparamagnetic iron oxide nanoparticles (SPION), a Magnetic Resonance Imaging contrast agent. The co-loaded paclitaxel and SPION did not affect each other's functional properties in vitro. In vivo, the resulting paclitaxel-SPION-co-loaded PEG-PE micelles retained their Magnetic Resonance contrast properties and apoptotic activity in breast and melanoma tumor mouse models. Such theranostic systems are likely to play a significant role in the combined diagnosis and therapy that leads to a more personalized and effective form of treatment.
Collapse
Affiliation(s)
- Jaydev R Upponi
- Center for Pharmaceutical Biotechnology & Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA 02115, USA
| | - Kaushal Jerajani
- Center for Pharmaceutical Biotechnology & Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA 02115, USA
| | - Dattatri K Nagesha
- Electronic Materials Research Institute, Department of Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Srinivas Sridhar
- Electronic Materials Research Institute, Department of Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Craig Ferris
- Center for Translational NeuroImaging, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology & Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Chakravarty R, Hong H, Cai W. Image-Guided Drug Delivery with Single-Photon Emission Computed Tomography: A Review of Literature. Curr Drug Targets 2016; 16:592-609. [PMID: 25182469 DOI: 10.2174/1389450115666140902125657] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 12/18/2022]
Abstract
Tremendous resources are being invested all over the world for prevention, diagnosis, and treatment of various types of cancer. Successful cancer management depends on accurate diagnosis of the disease along with precise therapeutic protocol. The conventional systemic drug delivery approaches generally cannot completely remove the competent cancer cells without surpassing the toxicity limits to normal tissues. Therefore, development of efficient drug delivery systems holds prime importance in medicine and healthcare. Also, molecular imaging can play an increasingly important and revolutionizing role in disease management. Synergistic use of molecular imaging and targeted drug delivery approaches provides unique opportunities in a relatively new area called 'image-guided drug delivery' (IGDD). Single-photon emission computed tomography (SPECT) is the most widely used nuclear imaging modality in clinical context and is increasingly being used to guide targeted therapeutics. The innovations in material science have fueled the development of efficient drug carriers based on, polymers, liposomes, micelles, dendrimers, microparticles, nanoparticles, etc. Efficient utilization of these drug carriers along with SPECT imaging technology have the potential to transform patient care by personalizing therapy to the individual patient, lessening the invasiveness of conventional treatment procedures and rapidly monitoring the therapeutic efficacy. SPECT-IGDD is not only effective for the treatment of cancer but might also find utility in the management of several other diseases. Herein, we provide a concise overview of the latest advances in SPECT-IGDD procedures and discuss the challenges and opportunities for advancement of the field.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | | | |
Collapse
|
7
|
Chakravarty R, Goel S, Hong H, Chen F, Valdovinos HF, Hernandez R, Barnhart TE, Cai W. Hollow mesoporous silica nanoparticles for tumor vasculature targeting and PET image-guided drug delivery. Nanomedicine (Lond) 2016; 10:1233-46. [PMID: 25955122 DOI: 10.2217/nnm.14.226] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIM Development of multifunctional and well-dispersed hollow mesoporous silica nanoparticles (HMSNs) for tumor vasculature targeted drug delivery and PET imaging. MATERIALS & METHODS Amine functionalized HMSNs (150-250 nm) were conjugated with a macrocyclic chelator, (S)-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triaceticacid (NOTA), PEGylated and loaded with antiangiogenesis drug, Sunitinib. Cyclo(Arg-Gly-Asp-D-Tyr-Lys) (cRGDyK) peptide was attached to the nanoconjugate and radiolabeled with (64)Cu for PET imaging. RESULTS (64)Cu-NOTA-HMSN-PEG-cRGDyK exhibited integrin-specific uptake both in vitro and in vivo. PET results indicated approximately 8% ID/g uptake of targeted nanoconjugates in U87MG tumors, which correlated well with ex vivo and histological analyses. Enhanced tumor-targeted delivery of sunitinib was also observed. CONCLUSION We successfully developed tumor vasculature targeted HMSNs for PET imaging and image-guided drug delivery.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Department of Radiology, University of Wisconsin-Madison, WI 53792-3252, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive Imaging of Nanomedicines and Nanotheranostics: Principles, Progress, and Prospects. Chem Rev 2015; 115:10907-37. [PMID: 26166537 DOI: 10.1021/cr500314d] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sijumon Kunjachan
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Josef Ehling
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Gert Storm
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Fabian Kiessling
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany.,Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
9
|
Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chem Rev 2014; 115:327-94. [DOI: 10.1021/cr300213b] [Citation(s) in RCA: 916] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eun-Kyung Lim
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
- BioNanotechnology
Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Taekhoon Kim
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
- Electronic
Materials Laboratory, Samsung Advanced Institute of Technology, Mt. 14-1,
Nongseo-Ri, Giheung-Eup, Yongin-Si, Gyeonggi-Do 449-712, Korea
| | - Soonmyung Paik
- Severance
Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-749, Korea
- Division
of Pathology, NSABP Foundation, Pittsburgh, Pennsylvania 15212, United States
| | - Seungjoo Haam
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - Yong-Min Huh
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
| | - Kwangyeol Lee
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| |
Collapse
|
10
|
Bodio E, Boujtita M, Julienne K, Le Saec P, Gouin SG, Hamon J, Renault E, Deniaud D. Synthesis and Characterization of a Stable Copper(I) Complex for Radiopharmaceutical Applications. Chempluschem 2014. [DOI: 10.1002/cplu.201402031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Chakravarty R, Hong H, Cai W. Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm 2014; 11:3777-97. [PMID: 24865108 PMCID: PMC4218872 DOI: 10.1021/mp500173s] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Positron
emission tomography (PET) is an important modality in
the field of molecular imaging, which is gradually impacting patient
care by providing safe, fast, and reliable techniques that help to
alter the course of patient care by revealing invasive, de facto procedures
to be unnecessary or rendering them obsolete. Also, PET provides a
key connection between the molecular mechanisms involved in the pathophysiology
of disease and the according targeted therapies. Recently, PET imaging
is also gaining ground in the field of drug delivery. Current drug
delivery research is focused on developing novel drug delivery systems
with emphasis on precise targeting, accurate dose delivery, and minimal
toxicity in order to achieve maximum therapeutic efficacy. At the
intersection between PET imaging and controlled drug delivery, interest
has grown in combining both these paradigms into clinically effective
formulations. PET image-guided drug delivery has great potential to
revolutionize patient care by in vivo assessment
of drug biodistribution and accumulation at the target site and real-time
monitoring of the therapeutic outcome. The expected end point of this
approach is to provide fundamental support for the optimization of
innovative diagnostic and therapeutic strategies that could contribute
to emerging concepts in the field of “personalized medicine”.
This review focuses on the recent developments in PET image-guided
drug delivery and discusses intriguing opportunities for future development.
The preclinical data reported to date are quite promising, and it
is evident that such strategies in cancer management hold promise
for clinically translatable advances that can positively impact the
overall diagnostic and therapeutic processes and result in enhanced
quality of life for cancer patients.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705-2275, United States
| | | | | |
Collapse
|
12
|
Li Y, Qian Y, Liu T, Zhang G, Hu J, Liu S. Asymmetrically functionalized β-cyclodextrin-based star copolymers for integrated gene delivery and magnetic resonance imaging contrast enhancement. Polym Chem 2014. [DOI: 10.1039/c3py01278f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Abstract
Current first-line treatments for most cancers feature a short-list of highly potent and often target-blind interventions, including chemotherapy, radiation, and surgical excision. These treatments wreak considerable havoc upon non-cancerous tissue and organs, resulting in deleterious and sometimes fatal side effects for the patient. In response, this past decade has witnessed the robust emergence of nanoparticles and, more relevantly, nanoparticle drug delivery systems (DDS), widely touted as the panacea of cancer therapeutics. While not a cure, nanoparticle DDS can successfully negotiate the clinical payoff between drug dosage and side effects by encompassing target-specific drug delivery strategies. The expanding library of nanoparticles includes lipoproteins, liposomes, dendrimers, polymers, metal and metal oxide nano-spheres and -rods, and carbon nanotubes, so do the modes of delivery. Importantly, however, the pharmaco-dynamics and –kinetics of these nano-complexes remain an urgent issue and a serious bottleneck in the transition from bench to bedside. This review addresses the rise of nanoparticle DDS platforms for cancer and explores concepts of gene/drug delivery and cytotoxicity in pre-clinical and clinical contexts.
Collapse
|
14
|
Shiraishi K. [Utilization of polymeric micelle magnetic resonance imaging (MRI) contrast agent for theranostic system]. YAKUGAKU ZASSHI 2013; 133:1277-85. [PMID: 24292172 DOI: 10.1248/yakushi.13-00222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.
Collapse
Affiliation(s)
- Kouichi Shiraishi
- Medical Engineering Laboratory, Research Center for Medical Science, The Jikei University School of Medicine
| |
Collapse
|
15
|
Lanza GM, Moonen C, Baker JR, Chang E, Cheng Z, Grodzinski P, Ferrara K, Hynynen K, Kelloff G, Lee YEK, Patri AK, Sept D, Schnitzer JE, Wood BJ, Zhang M, Zheng G, Farahani K. Assessing the barriers to image-guided drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:1-14. [PMID: 24339356 DOI: 10.1002/wnan.1247] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022]
Abstract
Imaging has become a cornerstone for medical diagnosis and the guidance of patient management. A new field called image-guided drug delivery (IGDD) now combines the vast potential of the radiological sciences with the delivery of treatment and promises to fulfill the vision of personalized medicine. Whether imaging is used to deliver focused energy to drug-laden particles for enhanced, local drug release around tumors, or it is invoked in the context of nanoparticle-based agents to quantify distinctive biomarkers that could risk stratify patients for improved targeted drug delivery efficiency, the overarching goal of IGDD is to use imaging to maximize effective therapy in diseased tissues and to minimize systemic drug exposure in order to reduce toxicities. Over the last several years, innumerable reports and reviews covering the gamut of IGDD technologies have been published, but inadequate attention has been directed toward identifying and addressing the barriers limiting clinical translation. In this consensus opinion, the opportunities and challenges impacting the clinical realization of IGDD-based personalized medicine were discussed as a panel and recommendations were proffered to accelerate the field forward.
Collapse
Affiliation(s)
- Gregory M Lanza
- Division of Cardiology, Washington University Medical School, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dewitte H, Geers B, Liang S, Himmelreich U, Demeester J, De Smedt SC, Lentacker I. Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and 19F-MRI tracking of dendritic cells. J Control Release 2013; 169:141-9. [DOI: 10.1016/j.jconrel.2013.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 12/30/2022]
|
17
|
Zhao Y, Lin LN, Lu Y, Gao HL, Chen SF, Yang P, Yu SH. Synthesis of tunable theranostic Fe3O4 @mesoporous silica nanospheres for biomedical applications. Adv Healthc Mater 2012. [PMID: 23184749 DOI: 10.1002/adhm.201200005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang Zhao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale Department of Chemistry, the National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | | | | | | | | | | | | |
Collapse
|
18
|
A facile preparation method of a PFC-containing nano-sized emulsion for theranostics of solid tumors. Int J Pharm 2011; 421:379-87. [DOI: 10.1016/j.ijpharm.2011.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/27/2011] [Accepted: 10/02/2011] [Indexed: 11/22/2022]
|
19
|
Arias JL. Advanced methodologies to formulate nanotheragnostic agents for combined drug delivery and imaging. Expert Opin Drug Deliv 2011; 8:1589-608. [DOI: 10.1517/17425247.2012.634794] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Smith D, Holley AC, McCormick CL. RAFT-synthesized copolymers and conjugates designed for therapeutic delivery of siRNA. Polym Chem 2011. [DOI: 10.1039/c1py00038a] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|