1
|
Huang X, Hou S, Li Y, Xu G, Xia N, Duan Z, Luo K, Tian B. Targeting lipid metabolism via nanomedicine: A prospective strategy for cancer therapy. Biomaterials 2025; 317:123022. [PMID: 39754967 DOI: 10.1016/j.biomaterials.2024.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025]
Abstract
Lipid metabolism has been increasingly recognized to play an influencing role in tumor initiation, progression, metastasis, and therapeutic drug resistance. Targeting lipid metabolic reprogramming represents a promising therapeutic strategy. Despite their structural complexity and poor targeting efficacy, lipid-metabolizing drugs, either used alone or in combination with chemotherapeutic agents, have been employed in clinical practice. The advent of nanotechnology offers new approaches to enhancing therapeutic effects, includingthe targeted delivery and integration of lipid metabolic reprogramming with chemotherapy, photodynamic therapy (PDT), and immunotherapy. The integrated nanoformulation, nanomedicine, could significantly advance the field of lipid metabolism therapy. In this review, we will briefly introduce the concept of cancer lipid metabolism reprogramming, then elaborate the latest advances in engineered nanomedicine for targeting lipid metabolism during cancer treatment, and finally provide our insights into future perspectives of nanomedicine for interference with lipid metabolism in the tumor microenvironment.
Collapse
Affiliation(s)
- Xing Huang
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shengzhong Hou
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Ning Xia
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Kui Luo
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Bole Tian
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Rosales-Barrios C, González-Sánchez ZI, Zuliani A, Jiménez-Vacas JM, Luque RM, Pozo D, Khiar N. PSMA-targeted delivery of docetaxel in prostate cancer using small-sized PDA-based micellar nanovectors. J Control Release 2025; 379:890-905. [PMID: 39864631 DOI: 10.1016/j.jconrel.2025.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
In this study, we present the first comparative analysis of active and passive drug delivery systems for docetaxel (DTX) in prostate cancer using supramolecular self-assembled micellar nanovectors. Specifically, we developed two novel micelles based on polydiacetylenic amphiphiles (PDA) for passive and active targeting. The active targeting micelles were designed with a prostate-specific membrane antigen (PSMA) ligand, ACUPA, to facilitate recognition by PSMA-positive cancer cells. These PDA-based micelles feature a well-defined structure with a hydrophobic PDA core and a surface functionalized with PEG, and for active targeting, ACUPA. Our micelles demonstrated excellent encapsulation capacity, significantly improving DTX solubility in water, a crucial factor for clinical drug use. In vitro studies confirmed the safety and cytotoxic profiles of both systems, with ACUPA-functionalized micelles showing notable internalization into PSMA-positive LNCaP cells, mediated through the PSMA-ACUPA interaction. In vivo imaging revealed preferential accumulation of ACUPA-functionalized nanomicelles in LNCaP xenograft tumors, suggesting enhanced retention via specific ACUPA-PSMA interactions and active uptake by LNCaP cells. Notably, Balb/c-Foxn1nu/nu early in vivo studies showed a marked reduction in tumor volume and tumor expression levels of proliferation, cell cycle progression, cell survival and anti-apoptotic markers with DTX-loaded micelles functionalized with ACUPA compared to those without ACUPA. Overall, our studies collect initial evidence regarding the feasibility of supramolecular self-assembly of ACUPA-PDA-based nanomicelles for PSMA-targeted drug chemotherapy delivery developments.
Collapse
Affiliation(s)
- Cristian Rosales-Barrios
- Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain
| | - Zaira I González-Sánchez
- Department of Integrative Pathophysiology and Therapies, Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad Pablo de Olavide-Universidad de Sevilla, Av. Americo Vespucio 24, Seville 41092, Spain; Department of Medical Biochemistry, Molecular Biology and Immunology University of Seville, Av. Sánchez Pizjuan s/n, 41009 Seville, Spain; Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra (PUCMM), Hwy. Duarte km 1.5, Santiago de los Caballeros, 822, Dominican Republic
| | - Alessio Zuliani
- Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain
| | - Juan M Jiménez-Vacas
- Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University Hospital Reina Sofía (HURS), Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av. Menéndez Pidal s/n, Córdoba 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus Rabanales, 14004 Córdoba, Spain
| | - Raul M Luque
- Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University Hospital Reina Sofía (HURS), Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av. Menéndez Pidal s/n, Córdoba 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus Rabanales, 14004 Córdoba, Spain
| | - David Pozo
- Department of Integrative Pathophysiology and Therapies, Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad Pablo de Olavide-Universidad de Sevilla, Av. Americo Vespucio 24, Seville 41092, Spain; Department of Medical Biochemistry, Molecular Biology and Immunology University of Seville, Av. Sánchez Pizjuan s/n, 41009 Seville, Spain
| | - Noureddine Khiar
- Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain.
| |
Collapse
|
3
|
Carvalho SM, Mansur AAP, Lobato ZIP, Leite MF, Mansur HS. Bioengineering chitosan-antibody/fluorescent quantum dot nanoconjugates for targeted immunotheranostics of non-hodgkin B-cell lymphomas. Int J Biol Macromol 2025; 294:139515. [PMID: 39761883 DOI: 10.1016/j.ijbiomac.2025.139515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
B-cell non-Hodgkin lymphoma (NHL) is the most common hematologic malignancy, capable of invading the brain, meninges, and nerve roots of the brain and spine, leading to high lethality. Herein, we designed and developed novel nanostructures for the first time by biofunctionalizing chitosan with two specific antibodies (i.e., anti-CD20, anti-CD19, and bispecific biopolymer-antibody) against NHL, conjugated with fluorescent nanoprobes. These bioengineered immunoconjugates formed water-dispersed hybrid colloidal nanostructures consisting of a photoluminescent ZnS-based quantum dots core and an antibody-modified chitosan macromolecular shell. The aim was to apply them simultaneously for the diagnosis, bioimaging, and immunotherapy of NHL cancers. The chitosan backbone was covalently functionalized with anti-CD20, anti-CD19, and both antibodies, resulting in biocompatible immunoconjugates through an eco-friendly aqueous process. Importantly, these biopolymer-antibody nanoimmunoconjugates exhibited bioaffinity for both antigenic membrane receptors, CD19 and CD20, which are overexpressed by NHL cancer cells. They served as fluorescent nanoprobes for bioimaging and specifically killing NHL cells, while remarkably preserving nonmalignant cells. Furthermore, biopsies from tumor tissues of a patient with NHL confirmed the effective anticancer potential for clinical applications in fluorescent ex vivo immunohistochemistry diagnosis of NHL cancers. It can be envisioned that these dual-antibody-modified biopolymer nanoarchitectures offer a new realm to be exploited in immunotheranostic applications for fighting cancer.
Collapse
Affiliation(s)
- Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Zélia I P Lobato
- Department of Preventive Veterinary Medicine School of Veterinary, Federal University of Minas Gerais, UFMG, Brazil
| | - M Fátima Leite
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais, UFMG, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil.
| |
Collapse
|
4
|
Yang Q, Yao L, Chen Z, Wang X, Jia F, Pang G, Huang M, Li J, Fan L. Exploring a new paradigm for serum-accessible component rules of natural medicines using machine learning and development and validation of a direct predictive model. Int J Pharm 2025; 671:125207. [PMID: 39826781 DOI: 10.1016/j.ijpharm.2025.125207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
In the field of pharmaceutical research, Lipinski's Rule of Five (RO5) was once widely regarded as the prevailing standard for the development of novel drugs. Despite the fact that an increasing number of recently approved drugs no longer adhere to this rule, it continues to serve as a valuable guiding principle in the field of drug discovery. The present study aims to establish a set of rules specifically for the serum-accessible components of natural medicines. A comprehensive literature review was conducted to collect data on serum-accessible components of natural medicines, and machine learning methods were then applied to analyse and screen molecular features distinguishing serum-accessible components from non-serum-accessible ones. The most critical rules for serum-accessible components of natural medicines were identified, and these were named the "Natural Medicine's Rule of 5 (NMRO5)." We then compared the molecular property distributions and predictive performance of NMRO5 with RO5. Then, we developed a predictive model capable of directly assessing the possibility of a molecule being serum-accessible. This model was validated using in vivo experiments on multiple natural medicines. Furthermore, we performed molecular modifications on serum-accessible components to "violate" NMRO5, conducting both forward and reverse validations to confirm the reliability of NMRO5. The results obtained revealed that NMRO5 is characterised by the following: higher TPSA, MaxEState, and PEOE VSA1 values, and lower LogP and MinEState values. This indicates that natural medicine components with these properties are more likely to be serum-accessible or remain in plasma rather than being rapidly eliminated. The investigation revealed significant disparities among the five molecular properties of NMRO5, and the predictive performance of eight models based on NMRO5 consistently outperformed those based on RO5. This finding suggests that NMRO5 provides a more reliable framework for determining whether a molecule is serum-accessible compared to RO5. Finally, we developed a direct predictive model for serum-accessible components, achieving an accuracy of 0.7257, an F1 score of 0.7223, and an AUC of 0.7553.
Collapse
Affiliation(s)
- Qi Yang
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Lihao Yao
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhiyang Chen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Xiaopeng Wang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Fang Jia
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Guiyuan Pang
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Meiyu Huang
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jiacheng Li
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China.
| | - Lili Fan
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
5
|
Pradhan A, Biswal S, Bhal S, Biswal BK, Kundu CN, Subuddhi U, Pati A, Hassan PA, Patel S. Amphiphilic Poly(ethylene glycol)-Cholesterol Conjugate: Stable Micellar Formulation for Efficient Loading and Effective Intracellular Delivery of Curcumin. ACS APPLIED BIO MATERIALS 2025; 8:1418-1436. [PMID: 39907519 DOI: 10.1021/acsabm.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A biodegradable and biocompatible micellar-based drug delivery system was developed using amphiphilic methoxy-poly(ethylene glycol)-cholesterol (C1) and poly(ethylene glycol)-S-S-cholesterol (C2) conjugates and applied to the tumoral release of the water-insoluble drug curcumin. These synthesized surfactants C1 and C2 were found to form stable micelles (CMC ∼ 6 μM) and an average hydrodynamic size of around 20-25 nm. The curcumin-encapsulated C1 micelle was formulated by a solvent evaporation method. A very high drug encapsulation efficiency (EE) of ∼88% and a drug loading (DL) capacity of ∼9% were determined for both the micelles. From the reduced rate of curcumin degradation and differential scanning calorimetry (DSC) analysis, the stability of the curcumin-loaded C1 micelle was found to be higher than that of the unloaded micelle, which confirmed a more compact structural arrangement in the presence of hydrophobic curcumin. A pH-sensitive release of curcumin (faster release with decrease in pH) was observed for the curcumin-loaded C1 micelle, attributed to the diffusion and relaxation/erosion of micellar aggregates. To achieve reduction environment-sensitive drug release, a disulfide (S-S) chemical linkage-incorporated mPEG-cholesterol conjugate (C2) was synthesized, which was found to show glutathione-responsive faster release of curcumin. The in vitro experiments carried out in SCC9 oral cancer cell lines showed that the blank C1 and C2 micelles were noncytotoxic at lower concentrations (<50 μM), while curcumin-loaded C1 and C2 micelles inhibited the proliferation and promoted the apoptosis. An increased in vitro cytotoxicity was observed for curcumin-loaded micelles compared to that of curcumin itself, demonstrating a better cell penetration efficacy of the micelle. These results were further supplemented by the in vivo anticancer analysis of the curcumin-loaded C1 and C2 micellar formulations using the mice xenograft model. Notably, curcumin-loaded C2 micelles showed a significantly stronger apoptotic effect in xenograft mice compared to curcumin-loaded C1 micelles, indicating the GSH environment-sensitive drug release and improved bioavailability. In conclusion, the mPEG-cholesterol C1 and C2 micellar system with the advantages of small size, high encapsulation efficiency, high drug loading, simple preparing technique, biocompatibility, and good in vitro and in vivo performance may have the potential to be used as a drug carrier for sustained and stimuli-responsive release of the hydrophobic drug curcumin.
Collapse
Affiliation(s)
- Aiswarya Pradhan
- Department of Chemistry, National Institute of Technology, Rourkela 769 008, India
| | - Stuti Biswal
- Department of Life Sciences, National Institute of Technology, Rourkela 769 008, India
| | - Subhasmita Bhal
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, India
| | - Bijesh K Biswal
- Department of Life Sciences, National Institute of Technology, Rourkela 769 008, India
| | - Chanakya Nath Kundu
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, India
| | - Usharani Subuddhi
- Department of Chemistry, National Institute of Technology, Rourkela 769 008, India
| | - Anita Pati
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, India
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sabita Patel
- Department of Chemistry, National Institute of Technology, Rourkela 769 008, India
| |
Collapse
|
6
|
Yuan H, Jiang M, Fang H, Tian H. Recent advances in poly(amino acids), polypeptides, and their derivatives in drug delivery. NANOSCALE 2025; 17:3549-3584. [PMID: 39745097 DOI: 10.1039/d4nr04481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Poly(amino acids), polypeptides, and their derivatives have demonstrated significant potential as biodegradable biomaterials in the field of drug delivery. As degradable drug carriers, they can effectively load or conjugate drug molecules including small molecule drugs, nucleic acids, peptides, and protein-based drugs, enhancing the stability and targeting of the drugs in vivo. This strategy ultimately facilitates precise drug delivery and controlled release, thereby improving therapeutic efficacy and reducing side effects within the body. This review systematically describes the structural characteristics and preparation methods of poly(amino acids) and polypeptides, summarizes the advantages of poly(amino acids), polypeptides, and their derivatives in drug delivery, and detailedly introduces the latest advancements in this area. The review also discusses current challenges and opportunities associated with poly(amino acids), peptides, and their derivatives, and offers insights into the future directions for these biodegradable materials. This review aims to provide valuable references for scientific research and clinical translation of biodegradable biomaterials based on poly(amino acids) and peptides.
Collapse
Affiliation(s)
- Huilin Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
7
|
Li Y, Fu B, Jiang W. Emerging Roles of Nanozyme in Tumor Metabolism Regulation: Mechanisms, Applications, and Future Directions. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39936939 DOI: 10.1021/acsami.4c20417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Nanozymes, nanomaterials with intrinsic enzyme activity, have garnered significant attention in recent years due to their catalytic abilities comparable to natural enzymes, cost-effectiveness, high catalytic activities, and stability against environmental fluctuations. As functional analogs of natural enzymes, nanozymes participate in various critical metabolic processes, including glucose metabolism, lactate metabolism, and the maintenance of redox homeostasis, all of which are essential for normal cellular functions. However, disruptions in these metabolic pathways frequently promote tumorigenesis and progression, making them potential therapeutic targets. While several therapies targeting tumor metabolism are currently in clinical or preclinical stages, their efficacy requires further enhancement. Consequently, nanozymes that target tumor metabolism are regarded as a promising therapeutic strategy. Despite extensive studies investigating the application of nanozymes in tumor metabolism, relevant reviews are relatively scarce. This article first introduces the physicochemical properties and biological behaviors of nanozymes. Subsequently, we analyze the role of nanozymes in tumor metabolism and explore their potential applications in tumor therapy. In conclusion, this review aims to foster innovative research in related fields and advance the development of nanozyme-based strategies for cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yikai Li
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130000, China
| | - Bowen Fu
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130000, China
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450002, China
| |
Collapse
|
8
|
Yang C, Wang W, Gao Y, Yin L, Pan K, Chen D, Yang F, Xing N. Sonodynamic Therapy by Reactive Oxygen Species Generation-Responsive Pseudo-Semiconducting Polymer Nanoparticles Combined with a Fibroblast Growth Factor Receptor Inhibitor for Enhancing Immunotherapy in Bladder Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9125-9139. [PMID: 39883874 DOI: 10.1021/acsami.4c20545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Sonodynamic therapy, a treatment modality recently widely used, is capable of disrupting the tumor microenvironment by inducing immunogenic cell death (ICD) and enhancing antitumor immunity during immunotherapy. Erdafitinib, an inhibitor of the fibroblast growth factor receptor, has demonstrated potential benefits for treating bladder cancer. However, Erdafitinib shows effectiveness in only a small number of patients, and the majority of patients responding positively to the medication have "immune-cold" tumors. To increase the therapeutic efficacy of Erdafitinib, we have herein developed a biodegradable pseudoconjugate polymer (PSP) with sonodynamic capabilities. Erdafitinib could be efficiently encapsulated in nanoparticles (NP-PE) prepared through the self-assembly of PSP with an oxidation-sensitive polymer (P1). Under ultrasound conditions, NP-PE effectively induced cytotoxicity by producing reactive oxygen species and further triggering ICD. Compared with Erdafitinib, NP-PE inhibited the expression of FGFR3 to a higher extent. In animal models with bladder cancer, NP-PE inhibited tumor growth, stimulated antitumor immunity, and synergized with antiprogrammed cell death-ligand 1 (aPD-L1), offering a novel approach for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Chao Yang
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenkuan Wang
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yunhao Gao
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lu Yin
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kehao Pan
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dong Chen
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Feiya Yang
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Nianzeng Xing
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
9
|
Martin-Aubert S, Avrillon K, Tournier N, Bordat A, Tran VL, Ibrahim N, Kereselidze D, Jego B, Potiron L, Tsapis N, Nicolas J, Boissenot T, Truillet C. Successful repositioning of mertansine for improved chemotherapy by combining a polymer prodrug approach and PET imaging. J Control Release 2025; 378:803-813. [PMID: 39719212 DOI: 10.1016/j.jconrel.2024.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Mertansine (DM1), a potent tumor-killing maytansinoid, requires conjugation to antibodies or incorporation into nanocarriers due to its high toxicity. However, these carriers often result in undesirable biodistribution, leading to rapid and long-term accumulation in the kidneys or liver and potentially increased toxicity. To overcome this limitation, we used the hydrophilic, biocompatible, and stealth properties of polyacrylamide (PAAm) as a scaffold to develop water-soluble PAAm-DM1 polymer prodrugs, leveraging PAAm's previous success in delivering paclitaxel via subcutaneous administration. To monitor distribution and predict efficacy, we have imparted Positron Emission Tomography (PET) imaging capabilities to well-defined PAAm-DM1 polymer prodrugs. Our studies demonstrated the same tumor accumulation and the same distribution of PAAm-DM1 in the main organs such as liver, kidneys muscle, regardless of delivery route (subcutaneous or intravenous). Interestingly, tumor accumulation of PAAm-DM1 was primarily driven by passive accumulation, as indicated by PET imaging, without significantly altering treatment efficacy. This suggests complex mechanisms, possibly involving immune system interactions by influencing notably the metabolism and clearance. To enhance therapeutic outcomes, we combined the polymer prodrug with immunotherapy, specifically anti-CTLA4. Our findings highlight the promising potential of PAAm-DM1, offering a novel formulation strategy for DM1 in cancer therapy.
Collapse
Affiliation(s)
- Soizic Martin-Aubert
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France..
| | - Kevin Avrillon
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Nicolas Tournier
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France..
| | | | - Vu Long Tran
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Nada Ibrahim
- Imescia, Université Paris-Saclay, 91400 Saclay, France
| | - Dimitri Kereselidze
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Benoit Jego
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France..
| | - Léa Potiron
- Imescia, Université Paris-Saclay, 91400 Saclay, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| | | | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France..
| |
Collapse
|
10
|
Huang Z, Tian K, Xue Y, Luo F. A promising role of noble metal NPs@MOFs in chondrosarcoma management. NANOSCALE 2025; 17:2961-2984. [PMID: 39718125 DOI: 10.1039/d4nr03878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Chondrosarcoma, a challenging and malignant neoplasm originating from cartilage cells, poses significant diagnostic and therapeutic hurdles due to its resistance to conventional treatments and the complexity of its diagnosis. Noble metal nanoparticle-embedded metal-organic frameworks (NPs@MOFs) stand out as a novel approach for the diagnosis and treatment of chondrosarcoma. This review delves into the properties and applications of NPs@MOFs, focusing on their classification by noble metal type and their role in enhancing photothermal therapy (PTT), photodynamic therapy (PDT), targeted drug delivery and chondrosarcoma diagnosis. Despite promising in vitro and in vivo results, challenges such as understanding the mechanisms of action and clinical translation remain, and the therapeutic effect of PTT and PDT on deep chondrosarcoma seems unsatisfactory. Future exploration, such as combined therapy and multiple MOF therapy, could unlock the full potential of noble metal NPs@MOFs in revolutionizing chondrosarcoma management, offering insights into the prospect of these materials in chondrosarcoma management.
Collapse
Affiliation(s)
- Ziheng Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yiyuan Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
11
|
Sagar B, Gupta S, Verma SK, Reddy YVM, Shukla S. Navigating cancer therapy: Harnessing the power of peptide-drug conjugates as precision delivery vehicles. Eur J Med Chem 2025; 283:117131. [PMID: 39647418 DOI: 10.1016/j.ejmech.2024.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Cancer treatment is a formidable challenge due to the adverse effects associated with non-selective therapies like chemotherapy and radiotherapy. This review article primarily centers on the application of Peptide-Drug Conjugates (PDCs) for delivering cancer treatment. PDCs represent a promising class of precision medicines, harnessing the unique attributes of peptides in conjunction with non-peptide components. The covalent linking of peptides and drugs through specialized connectors characterizes PDCs. These constructs play a pivotal role in delivering drugs directly to tumor sites with high precision. PDCs encompass three pivotal components: a targeting ligand, a cytotoxic ligand, and a carefully chosen linker. The selection of these elements is crucial to maximize the efficiency of PDCs. PDCs offer a multitude of advantages over conventional drug molecules, including enhanced specificity, reduced off-target effects, and an improved therapeutic profile. The peptide component within PDCs can be customized to specifically adhere to disease-specific receptors or biomarkers, facilitating targeted drug delivery and accumulation in afflicted cells or tissues. This targeted approach enables the controlled release of therapeutic payloads at the localized site, resulting in heightened effectiveness and minimized systemic toxicity. Diverse linker strategies are employed to ensure the stable connection between the peptide and non-peptide components, ensuring controlled drug release at the desired location of action. The peptides utilized in these treatments encompass cell-penetrating peptides, peptides designed to target tumor cells, and those aimed at the nucleus of cancer cells. While certain clinical trials have been conducted, and some PDCs are currently in use for cancer treatment, it's essential to acknowledge that PDCs have their limitations, such as low stability in plasma, fast elimination and limited oral bioavailability. Ongoing research endeavors seek to surmount these challenges and further establish PDCs as potent agents for cancer treatment. This review sheds light on recent advancements in the design, delivery, and applications of PDCs, while also highlighting the prevailing challenges and charting a path for future research directions.
Collapse
Affiliation(s)
- Bulbul Sagar
- Department of Chemistry, Indian Institute of Technology, Delhi, 110016, New Delhi, India
| | - Sarthak Gupta
- Department of Chemistry, Indian Institute of Technology, Delhi, 110016, New Delhi, India
| | - Sarvesh Kumar Verma
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India
| | | | - Shefali Shukla
- Sri Venkateswara College, University of Delhi, New Delhi, India.
| |
Collapse
|
12
|
Bian X, Zhou L, Luo Z, Liu G, Hang Z, Li H, Li F, Wen Y. Emerging Delivery Systems for Enabling Precision Nucleic Acid Therapeutics. ACS NANO 2025; 19:4039-4083. [PMID: 39834294 DOI: 10.1021/acsnano.4c11858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and limitations in delivering them specifically to target tissues. To overcome these obstacles, researchers have developed various innovative delivery systems, including viral vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers, exosomes, antibody oligonucleotide conjugates, and DNA nanostructure-based delivery systems. These systems enhance the therapeutic efficacy of nucleic acid drugs by improving their stability, targeting specificity, and half-life in vivo. In this review, we systematically discuss different types of nucleic acid drugs, analyze the major barriers encountered in their delivery, and summarize the current research progress in emerging delivery systems. We also highlight the latest advancements in the application of these systems for treating genetic diseases, infectious diseases, cancer, brain diseases, and wound healing. This review aims to provide a comprehensive overview of nucleic acid drug delivery systems' current status and future directions by integrating the latest advancements in nanotechnology, biomaterials science, and gene editing technologies, emphasizing their transformative potential in precision medicine.
Collapse
Affiliation(s)
- Xiaochun Bian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhiwei Luo
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guotao Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongci Hang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haohao Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengyong Li
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
13
|
Zhu J, Zhao L, An W, Miao Q. Recent advances and design strategies for organic afterglow agents to enhance autofluorescence-free imaging performance. Chem Soc Rev 2025; 54:1429-1452. [PMID: 39714452 DOI: 10.1039/d4cs01060d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Long-lasting afterglow luminescence imaging that detects photons slowly being released from chemical defects has emerged, eliminating the need for real-time photoexcitation and enabling autofluorescence-free in vivo imaging with high signal-to-background ratios (SBRs). Organic afterglow nano-systems are notable for their tunability and design versatility. However, challenges such as unsatisfactory afterglow intensity, short emission wavelengths, limited activatable strategies, and shallow tissue penetration depth hinder their widespread biomedical applications and clinical translation. Such contradiction between promising prospects and insufficient properties has spurred researchers' efforts to improve afterglow performance. In this review, we briefly outline the general composition and mechanisms of organic afterglow luminescence, with a focus on design strategies and an in-depth understanding of the structure-property relationship to advance afterglow luminescence imaging. Furthermore, pending issues and future perspectives are discussed.
Collapse
Affiliation(s)
- Jieli Zhu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Liangyou Zhao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Weihao An
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Qingqing Miao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Yamane S, Yusri AHB, Chen P, van der Vlies AJ, Mabrouk AB, Fetzer I, Hasegawa U. Surface Coating of ZIF-8 Nanoparticles with Polyacrylic Acid: A Facile Approach to Enhance Chemical Stability for Biomedical Applications. Macromol Biosci 2025; 25:e2400382. [PMID: 39489718 PMCID: PMC11827546 DOI: 10.1002/mabi.202400382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Nanoparticles of zeolitic imidazole framework-8 (ZIF-8 NPs), which are the subclass of metal-organic frameworks consisting of Zn ion and 2-methylimidazole, have been identified as promising drug carriers since their large microporous structure is suited for encapsulating hydrophobic drug molecules. However, one of the limitations of ZIF-8 NPs is their low stability in physiological solutions, especially in the presence of water and phosphate anions. These molecules can interact with the coordinatively unsaturated Zn sites at the external surface to induce the degradation of ZIF-8 NPs. In this study, herein a facile approach is reported to enhance the chemical stability of ZIF-8 NPs by surface coating with polyacrylic acid (PAA). The PAA-coated ZIF-8 (PAA-ZIF-8) NPs are prepared by mixing ZIF-8 NPs and PAA in water. PAA coating inhibits the degradation of ZIF-8 NPs in water as well as phosphate-buffered saline over 6 days, which seems to be due to the coordination of carboxyl groups of PAA to the reactive Zn sites. Furthermore, the PAA-ZIF-8 NPs loaded with the anticancer drug doxorubicin (Dox) show cytotoxicity in human colon cancer cells. These results clearly show the feasibility of the PAA coating approach to improve the chemical stability of ZIF-8 NPs without impairing their drug delivery capability.
Collapse
Affiliation(s)
- Setsuko Yamane
- Department of Materials Science and EngineeringThe Pennsylvania State UniversitySteidle Building, 80 Pollock RoadUniversity ParkPA16802USA
- National Institute of Technology (KOSEN)Numazu College3600 OokaNumazuShizuoka410–8501Japan
| | - Abdul Hadi Bin Yusri
- Department of Materials Science and EngineeringThe Pennsylvania State UniversitySteidle Building, 80 Pollock RoadUniversity ParkPA16802USA
| | - Po‐yu Chen
- Department of Materials Science and EngineeringThe Pennsylvania State UniversitySteidle Building, 80 Pollock RoadUniversity ParkPA16802USA
| | - André J. van der Vlies
- Department of Materials Science and EngineeringThe Pennsylvania State UniversitySteidle Building, 80 Pollock RoadUniversity ParkPA16802USA
| | - Amira Ben Mabrouk
- Department of Materials Science and EngineeringThe Pennsylvania State UniversitySteidle Building, 80 Pollock RoadUniversity ParkPA16802USA
| | - Isabelle Fetzer
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Urara Hasegawa
- Department of Materials Science and EngineeringThe Pennsylvania State UniversitySteidle Building, 80 Pollock RoadUniversity ParkPA16802USA
| |
Collapse
|
15
|
Mansur AAP, Carvalho SM, Lobato ZIP, Leite MF, Krambrock K, Mansur HS. Bioengineering stimuli-responsive organic-inorganic nanoarchitetures based on carboxymethylcellulose-poly-l-lysine nanoplexes: Unlocking the potential for bioimaging and multimodal chemodynamic-magnetothermal therapy of brain cancer cells. Int J Biol Macromol 2025; 290:138985. [PMID: 39706409 DOI: 10.1016/j.ijbiomac.2024.138985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Regrettably, glioblastoma multiforme (GBM) remains the deadliest form of brain cancer, where the early diagnosis plays a pivotal role in the patient's therapy and prognosis. Hence, we report for the first time the design, synthesis, and characterization of new hybrid organic-inorganic stimuli-responsive nanoplexes (NPX) for bioimaging and killing brain cancer cells (GBM, U-87). These nanoplexes were built through coupling two nanoconjugates, produced using a facile, sustainable, green aqueous colloidal process ("bottom-up"). One nanocomponent was based on cationic epsilon-poly-l-lysine polypeptide (εPL) conjugated with ZnS quantum dots (QDs) acting as chemical ligand and cell-penetrating peptide (CPP) for bioimaging of cancer cells (QD@εPL). The second nanocomponent was based on anionic carboxymethylcellulose (CMC) polysaccharide surrounding superparamagnetic magnetite "nanozymes" (MNZ) behaving as a capping macromolecular shell (MNZ@CMC) for killing cancer cells through chemodynamic therapy (CDT) and magnetohyperthermia (MHT). The results demonstrated the effective production of supramolecular aqueous colloidal nanoplexes (QD@εPL_MNZ@CMC, NPX) integrated into single nanoplatforms, mainly electrostatically stabilized by εPL/CMC biomolecules with anticancer activity against U-87 cells using 2D and 3D spheroid models. They displayed nanotheranostics (i.e., diagnosis and therapy) behavior credited to the photonic activity of QD@εPL with luminescent intracellular bioimaging, amalgamated with a dual-mode killing effect of GBM cancer cells through CDT by nanozyme-induced biocatalysis and as "nanoheaters" by magnetically-responsive hyperthermia therapy.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Zélia I P Lobato
- Department of Preventive Veterinary Medicine School of Veterinary, Federal University of Minas Gerais, UFMG, Brazil
| | - M Fátima Leite
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais - UFMG, Brazil
| | - Klaus Krambrock
- Departament of Physics, Federal University of Minas Gerais - UFMG, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil.
| |
Collapse
|
16
|
Tang L, Yang X, He L, Zhu C, Chen Q. Preclinical advance in nanoliposome-mediated photothermal therapy in liver cancer. Lipids Health Dis 2025; 24:31. [PMID: 39891269 PMCID: PMC11783920 DOI: 10.1186/s12944-024-02429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/31/2024] [Indexed: 02/03/2025] Open
Abstract
Liver cancer is a highly lethal malignant tumor with a high incidence worldwide. Therefore, its treatment has long been a focus of medical research. Although traditional treatment methods such as surgery, radiotherapy, and chemotherapy have increased the survival rate of patients, their efficacy remains unsatisfactory owing to the nonspecific distribution of drugs, high toxicity, and drug resistance of tumor tissues. In recent years, the application of nanotechnology in the medical field has opened a new avenue for the treatment of liver cancer. Among these treatment methods, photothermal therapy (PTT) based on nanoliposomes has attracted wide attention owing to its unique targeting and high efficiency. This article reviews the latest preclinical research progress of nanoliposome-based PTT for liver cancer and its metastasis, discusses the preclinical challenges in this field, and proposes directions for improvement, with the aim of improving the effectiveness of liver cancer treatment.
Collapse
Affiliation(s)
- Lixuan Tang
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiao Yang
- The department of oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Liwen He
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chaogeng Zhu
- The department of hepatobiliary pancreatic hernia surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Qingshan Chen
- The department of hepatobiliary pancreatic hernia surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
17
|
Zhang R, Shen Y, Zhou X, Li J, Zhao H, Zhang Z, Zhao J, Jin H, Guo S, Ding H, Nie G, Zhang Z, Wang Y, Yan X, Fan K. Hypoxia-tropic delivery of nanozymes targeting transferrin receptor 1 for nasopharyngeal carcinoma radiotherapy sensitization. Nat Commun 2025; 16:890. [PMID: 39837820 PMCID: PMC11751138 DOI: 10.1038/s41467-025-56134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC), a malignancy highly prevalent in East and Southeast Asia, is primarily treated with radiotherapy (RT). However, hypoxia-induced radioresistance presents a significant challenge. Nanozymes, nanomaterials with catalase-like activity, have emerged as a promising strategy for radiosensitization by converting elevated hydrogen peroxide in the tumor microenvironment into oxygen. Despite their potential, effectively targeting hypoxic lesions has been difficult. Here, we identify transferrin receptor 1 (TfR1) as an upregulated target in NPC, with its expression levels positively correlated with hypoxia. Human heavy-chain ferritin, a specific ligand of TfR1, selectively recognizes hypoxic NPC lesions in preclinical models. Based on these findings, we design a hypoxia-targeted nanozyme by loading platinum nanoparticles into ferritin. This nanozyme exhibits enhanced catalase-like activity and effectively alleviates tumor hypoxia in NPC xenografts. When combined with RT, a single injection of the nanozyme significantly inhibits tumor growth and prolongs mouse survival, outperforming sodium glycididazole, a clinically used radiosensitizer. In summary, our findings highlight TfR1 as an accessible cell surface target in hypoxic NPC lesions. The nanozyme targeting TfR1 holds promise for enhancing the therapeutic effectiveness of RT in NPC through an in situ oxygen-generation mechanism.
Collapse
Affiliation(s)
- Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanfang Shen
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaoying Zhou
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Jianru Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hanqing Zhao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zixia Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Shuanshuan Guo
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Hui Ding
- Shenzhen Key Laboratory of nanozymes and Translational Cancer Research, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Guohui Nie
- Shenzhen Key Laboratory of nanozymes and Translational Cancer Research, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Ying Wang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
| |
Collapse
|
18
|
Zhang P, Mukwaya V, Guan Q, Xiong S, Tian Z, Levi-Kalisman Y, Raviv U, Xu Y, Han J, Dou H. Dextran-based nanodrugs with mitochondrial targeting/glutathione depleting synergy for enhanced photodynamic therapy. Carbohydr Polym 2025; 348:122854. [PMID: 39562123 DOI: 10.1016/j.carbpol.2024.122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
The efficacy of photodynamic therapy (PDT) for malignant tumors is significantly impeded by the short diffusion distance of reactive oxygen species (ROS) and the ROS-consuming glutathione (GSH) overexpressed in tumor cells. Therefore, enhanced PDT can be achieved by the construction of biomacromolecule-based nanodrugs that can specifically target ROS-sensitive mitochondria and deplete intracellular GSH. Herein, we synthesized the dextran-based nano-assemblies by a Graft copolymerization Induced Self-Assembly (GISA) method, in which methyl acrylate and diallyl disulfide (DADS) were copolymerized from a mixed dextran/amino dextran backbone in an aqueous medium. Notably, the disulfide bond-containing DADS served as both GSH-depleting agent and GSH-responsive crosslinker. In order to develop a nanodrug with mitochondrial targeting/GSH depleting synergy, we further conjugated a mitochondria-targeting ligand onto the amino dextran corona, and developed a "loading-post-assembly" strategy to load a hydrophobic photosensitizer protoporphyrin IX or even multi-drugs into the hydrophobic core of the nano-assemblies. Cell and animal studies illustrated that the nanodrug could accumulate in the mitochondria of tumor cells to generate ROS in situ and thus eliminate tumors. Taken together, our work presents the dextran-based nanodrug as an efficient platform to achieve mitochondria-targeting PDT with an enhanced efficiency by simultaneously depleting intracellular GSH.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qixiao Guan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuhan Xiong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengtao Tian
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yichun Xu
- Shanghai Biochip Co. Ltd., National Engineering Center for Biochip at Shanghai, 151 Libing Road, Shanghai 201203, China
| | - Junsong Han
- Shanghai Biochip Co. Ltd., National Engineering Center for Biochip at Shanghai, 151 Libing Road, Shanghai 201203, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
19
|
Lu M, Liu Y, Zhu J, Shang J, Bai L, Jin Z, Li W, Hu Y, Zheng X, Qian J. Mapping the intellectual structure and emerging trends on nanomaterials in colorectal cancer: a bibliometric analysis from 2003 to 2024. Front Oncol 2025; 14:1514581. [PMID: 39845318 PMCID: PMC11750690 DOI: 10.3389/fonc.2024.1514581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background Colorectal cancer (CRC) is one of thes most prevalent malignant tumors worldwide. Current therapeutic strategies for CRC have limitations, while nanomaterials show significant potential for diagnosing and treating CRC. This study utilizes bibliometric analysis to evaluate the current status and trends in this field. Methods Research on nanomaterials in CRC from 2003 to 2024 was retrieved from the Web of Science Core Collection (WOSCC). Tools such as CiteSpace, VOSviewer, RStudio, GraphPad Prism, and Excel were used to analyze trends and hotspots, covering publication trends, countries, institutions, authors, journals, co-citation analysis, and keywords. Visual maps were created to forecast future developments. Results The analysis includes 3,683 publications by 17,261 authors from 3,721 institutions across 100 countries/regions, published in 840 journals. Global publications have steadily increased, particularly since 2018. China leads in publication volume and citations, with six of the top ten research institutions and seven of the ten most cited authors, while the United States excels in citation impact and academic centrality. Both countries currently dominate the field, underscoring the urgent need for enhanced international collaboration. Ramezani M and Abnous K lead in publication volume and H-index, while Siegel RL is highly cited. The International Journal of Nanomedicine has the highest publication volume, while the Journal of Controlled Release is the most cited. In addition to "colorectal cancer" and "nanoparticles," the most common keyword is "drug delivery." Emerging research areas such as "metal-organic frameworks (MOFs)" and "green synthesis" are gaining attention as leading hotspots. Conclusion This study offers an in-depth analysis of the application of nanomaterials in CRC, promoting interdisciplinary collaboration and advancing scientific progress in this field.
Collapse
Affiliation(s)
- Man Lu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yi Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jin Zhu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiarong Shang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lu Bai
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichao Jin
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenting Li
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Hu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Zheng
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Qian
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
20
|
Kedar P, Saraf A, Maheshwari R, Sharma M. Advances in Dendritic Systems and Dendronized Nanoparticles: Paradigm Shifts in Cancer Targeted Therapy and Diagnostics. Mol Pharm 2025; 22:28-57. [PMID: 39707984 DOI: 10.1021/acs.molpharmaceut.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Cancer has emerged as a global health crisis, claiming millions of lives annually. Dendrimers and dendronized nanoparticles, a novel class of nanoscale molecules with highly branched three-dimensional macromolecular structures, have gained significant attention in cancer treatment and diagnosis due to their unique properties. These dendritic macromolecules offer a precisely controlled branching architecture, enabling functionalization with specific targeting molecules to enhance the selective delivery of therapeutic agents to tumor cells while minimizing systemic toxicity. Through surface modifications and the incorporation of various components, dendrimers demonstrate remarkable adaptability as nanocarriers for biomedical imaging and theranostic applications. Surface functionalization strategies, including PEGylation and ligand attachment (e.g., folic acid, RGD peptide, lactobionic acid), further enhance biocompatibility and facilitate targeted tumor cell imaging. Leveraging their improved biocompatibility and target specificity, dendritic nanosystems offer heightened sensitivity and precision in cancer diagnostics. Notably, the encapsulation of metal nanoparticles within dendrimers, such as gold nanoparticles, has shown promise in enhancing tumor imaging capabilities. Ongoing advancements in nanotechnology are poised to increase the sophistication and complexity of dendrimer-based systems, highlighting their potential as nanocarriers in drug delivery platforms, with a growing number of clinical trials on the horizon. This review provides a comprehensive overview of the potential and future prospects of dendrimers and dendrimer-based nanocarriers in targeted cancer therapy and diagnosis, exploring their ability to enhance biocompatibility, reduce toxicity, and improve therapeutic outcomes across various malignancies.
Collapse
Affiliation(s)
- Pawan Kedar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| | - Apeksha Saraf
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Hyderabad 509301, India
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
21
|
Virzì NF, Alvarez-Lorenzo C, Concheiro A, Consoli V, Salerno L, Vanella L, Pittalà V, Diaz-Rodriguez P. Heme oxygenase 1 inhibitor discovery and formulation into nanostructured lipid carriers as potent and selective treatment against triple negative metastatic breast cancer. Int J Pharm 2025; 668:124997. [PMID: 39586511 DOI: 10.1016/j.ijpharm.2024.124997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Heme oxygenase-1 (HO-1) has been identified as a potential new target in anticancer therapy, being overexpressed in different tumors and crucial for cell proliferation. Advances in the development of specific HO-1 inhibitors should support the understanding of controlling HO-1 activity as antitumoral strategies, opening the path for future therapeutic applications. In the present study, small series of new HO-1 inhibitors were synthesized by joining a butylimidazolic pharmacophore together with a hydrophobic moiety spaced by a 2-oxybenzamide central linker. The most active and selective HO-1 inhibitor, VP 21-04, 2-(4-(1H-imidazol-1-yl)butoxy)-N-benzyl-5-iodobenzamide (7b) was identified. This ligand showed strong cytotoxic activity against melanoma and breast cancer cell lines. Encapsulation of VP 21-04 in nanostructured lipid carriers (NLC 21-04) was performed to exploit its therapeutic potential by passive-targeting delivery ameliorating water-solubility and toxicity. Interestingly, NLC 21-04 showed a marked antiproliferative effect in both cancer cell lines, and an improved safety profile with a wider therapeutic window when compared to the free drug. Finally, NLC 21-04 showed a marked tumor growth reduction while being safe in an in ovo tumor model, highlighting the therapeutic potential of the developed nanoparticles against triple negative metastatic breast cancer.
Collapse
Affiliation(s)
- Nicola Filippo Virzì
- Department of Drug and Health Science, University of Catania, Catania 95125, Italy; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, Catania 95125, Italy
| | - Loredana Salerno
- Department of Drug and Health Science, University of Catania, Catania 95125, Italy
| | - Luca Vanella
- Department of Drug and Health Science, University of Catania, Catania 95125, Italy
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, Catania 95125, Italy; Department of Molecular Medicine, Arabian Gulf University, Manama 329, Bahrain.
| | - Patricia Diaz-Rodriguez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
22
|
Sawhney G, Bhardwaj AR, Sanu K, Bhattacharya D, Singh M, Dhanjal DS, Ayub A, Wani AK, Suman S, Singh R, Chopra C. Nanotechnology at the forefront of liver cancer diagnosis. NANOPHOTOTHERAPY 2025:575-593. [DOI: 10.1016/b978-0-443-13937-6.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Cai Y, Wang W, Jiao Q, Hu T, Ren Y, Su X, Li Z, Feng M, Liu X, Wang Y. Nanotechnology for the Diagnosis and Treatment of Liver Cancer. Int J Nanomedicine 2024; 19:13805-13821. [PMID: 39735328 PMCID: PMC11681781 DOI: 10.2147/ijn.s490661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024] Open
Abstract
Liver cancer has become a major global health challenge due to its high incidence, high rate of late diagnosis and limited treatment options. Although there are many clinical treatments available for liver cancer, the cure rate is still very low, and now researchers have begun to explore new aspects of liver cancer treatment, and nanotechnology has shown great potential for improving diagnostic accuracy and therapeutic efficacy and is therefore a promising treatment option. In diagnosis, nanomaterials such as gold nanoparticles, magnetic nanoparticles, and silver nanoparticles can realize highly sensitive and specific detection of liver cancer biomarkers, supporting diagnosis and real-time monitoring of the disease process. In terms of treatment, nanocarriers can realize precise targeted delivery of drugs, improve the bioavailability of liver cancer therapeutic drugs and reduce systemic toxic side effects. In addition, advanced technologies such as nanoparticle-based photothermal therapy and photodynamic therapy provide innovative solutions to overcome drug resistance and local tumor ablation. Therefore, in this paper, we will introduce nanotechnology for hepatocellular carcinoma in terms of tumor marker detection, targeted drug delivery, and synergistic PDT/CDT therapy.
Collapse
Affiliation(s)
- Yuxuan Cai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Qinlian Jiao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Tangbin Hu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yidan Ren
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, People’s Republic of China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, People’s Republic of China
| | - Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
24
|
Tiwari A, Tiwari V, Sharma A, Marrisetti AL, Kumar M, Rochani A, Kaushik D, Mittal V, Jyothi S R, Ali H, Hussain MS, Gupta G. Unlocking the potential: integrating phytoconstituents and nanotechnology in skin cancer therapy - A comprehensive review. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024:jcim-2024-0338. [PMID: 39668578 DOI: 10.1515/jcim-2024-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Skin carcinoma, which includes basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, is influenced by various factors such as genetic predisposition, chemical exposures, immune system imbalances, and ultraviolet (UV) radiation. This review delves into the mechanisms behind the development of these cancers, exploring the therapeutic potential of microbial, plant derived compounds and nanoparticles in advancing skin cancer treatments. Special attention is given to the cytotoxic effects of anti-neoplastic agents from microbial sources on different cancer cell lines, particularly melanoma. Additionally, the review highlights the role of phytochemicals - such as quercetin, resveratrol, and curcumin alongside vitamins, terpenoids, and sulforaphane, in management of skin cancers through mechanisms like apoptosis induction and cell cycle regulation. Recent advancements in nanotechnology-based drug delivery systems, including NP and microemulsion formulations, are also discussed for their enhanced ability to specifically target cancer cells. The diverse roles of NPs in skin cancer therapy, especially in terms of targeted drug delivery and immune modulation, are reviewed. These innovative NPs formulations have showed improved skin penetration and tumor-specific delivery, reduced systemic toxicity and enhanced therapeutic effectiveness.
Collapse
Affiliation(s)
- Abhishek Tiwari
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, Noida, Uttar Pradesh, India
- Amity University Uttar Pradesh, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Varsha Tiwari
- Department of Pharmacognosy Chemistry, Amity Institute of Pharmacy, Lucknow Campus, Lucknow, India
- Amity University Uttar Pradesh, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Ajay Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, India
| | - Arya Lakshmi Marrisetti
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Ankit Rochani
- Wegmans School of Pharmacy, St John Fisher University, Rochester, NY, USA
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| |
Collapse
|
25
|
Tian S, Chen M. Global research progress of nanomedicine and colorectal cancer: a bibliometrics and visualization analysis. Front Oncol 2024; 14:1460201. [PMID: 39711965 PMCID: PMC11660184 DOI: 10.3389/fonc.2024.1460201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024] Open
Abstract
Background Surgery and chemoradiotherapy are the main clinical treatment methods for colorectal cancer (CRC), but the prognosis is poor. The emergence of nanomedicine brings bright light to the treatment of CRC. However, there has not been a comprehensive and systematic analysis of CRC and nanomedicine by bibliometrics. Methods We searched the Web of Science Core Collection database (WOSCC) for relevant literature published from 2011 to 2024. We used VOSviewer and Citespace to analyze countries, institutions, authors, keywords, highly cited references, and co-cited references. Results 3105 pieces of literatures were included in the research analysis, and PEOPLES R CHINA and the USA took the leading position in the number of papers published and had academic influence. The Chinese Academy of Sciences posted the most papers. The most prolific scholar was Abnous Khalil. The level of economic development is inversely proportional to the number of cases and deaths of colorectal cancer. Nanoparticles (NPs), the nanomedical drug delivery system (NDDS) is a hot topic in the field. Photodynamic therapy (PDT), immunogenic cell death (ICD), tumor microenvironment (TEM), folic acid, and pH are the cutting edge of the field. Conclusion This paper introduces the research hotspot, emphasis, and frontier of CRC and nanomedicine, and points out the direction for this field.
Collapse
Affiliation(s)
| | - Min Chen
- Proctology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Zhang Y, Xiang S, Wu Y, Yang C, Tang D, Chen Z, Huang Z. Novel co-delivery nanomedicine for photodynamic enlarged immunotherapy by cascade immune activation and efficient Immunosuppression reversion. Bioorg Chem 2024; 153:107978. [PMID: 39577155 DOI: 10.1016/j.bioorg.2024.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Photodynamic therapy (PDT) combined with immunotherapy has become a promising antitumor strategy. However, precise regulation of the activation of antitumor immunity and effective reversion of immunosuppressive tumor microenvironment (TME) remains challenging. In this paper, a novel co-delivery nanomedicine is developed to solve these issues for photodynamic amplified immunotherapy. Specifically, the glycolysis inhibitor (Lon) is coupled with PD1/PDL1 blocker (BMS-1) by thioketal linkage to form smartly responsive prodrug LTB, which could further encapsulate photosensitizer chlorine e6 (Ce6) to construct a co-delivery nanoplatform (LTB-6 NPs) by self-assembly. Of note, LTB-6 NPs possess favorable stability, uniform morphology and improved cellular uptake. More importantly, LTB-6 NPs are capable of inhibiting glycolysis and blocking PD1/PDL1, which could greatly improve the immunosuppressive TME to promote immune activation. LTB-6 NPs-mediated PDT not only inhibits tumor proliferation but also induces ICD response to activate immunological cascade. In vivo experiments indicate that intravenously injected LTB-6 NPs remarkably suppresses the tumor growth while leads to a minimized side effect. This research provides a multi-synergized strategy for developing effective photodynamic nanoplatforms in tumor treatment.
Collapse
Affiliation(s)
- Yimei Zhang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Shiyi Xiang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yayi Wu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Can Yang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Dianyong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhongzhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zheng Huang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
| |
Collapse
|
27
|
Tamtaji OR, Ostadian A, Homayoonfal M, Nejati M, Mahjoubin-Tehran M, Nabavizadeh F, Ghelichi E, Mohammadzadeh B, Karimi M, Rahimian N, Mirzaei H. Cerium(IV) oxide:silver/graphene oxide (CeO2:Ag/GO) nanoparticles modulate gene expression and inhibit colorectal cancer cell growth: a pathway-centric therapeutic approach. Cancer Nanotechnol 2024; 15:62. [DOI: 10.1186/s12645-024-00300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/18/2024] [Indexed: 01/06/2025] Open
|
28
|
Rahchamandi SYR, Mirhadi E, Gheybi F, Kazemi-Beydokhti A, Jaafari MR, Mostafavi E, Kesharwani P, Sahebkar A, Alavizadeh SH. Engineering carbon-based nanomaterials for the delivery of platinum compounds: An innovative cancer disarming frontier. ENVIRONMENTAL RESEARCH 2024; 262:119933. [PMID: 39278586 DOI: 10.1016/j.envres.2024.119933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Carbon-based nanomaterials have been frequently used as one of the most advanced and fascinating nanocarriers for drug delivery applications due to their unique physicochemical properties. Varying types of carbon nanomaterials (CNMs) including carbon nanotubes, graphene, graphene oxides, carbon nanohorns, fullerenes, carbon nanodots, and carbon nanodiamonds are promising candidates for designing novel systems to deliver platinum compounds. CNMs modification with various moieties renders vast bio-applications in the area of targeted and organelle-specific cancer therapy. This review featured an updated and concise summarizations of various types of CNMs, their synthesis, advantages and disadvantages including potential bio-toxicity for biomedical applications. The therapeutic utility of CNMs and their efficacy have been noticed and for the first time, this review addressed CNMs-focused applications on the delivery of platinum-derivatives to the cancer site. Collectively, the contents of this review will assist researchers to focus on the possible fabrication, bio-functionalization and designing methods of CNMs to the further development of their future biomedical implementations.
Collapse
Affiliation(s)
- Seyedeh Yasaman Rahnamaei Rahchamandi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Kazemi-Beydokhti
- Department of Chemical Engineering, School of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Li L, Hu R, Zhang X, Liu G, Liu W, Wang H, Wang B, Guo L, Ma S, Yan L, Zhang B, Zhang C, Diao H. Carboxylesterase-activatable multi-in-one nanoplatform for near-infrared fluorescence imaging guided chemo/photodynamic/sonodynamic therapy toward cervical cancer. Int J Biol Macromol 2024; 283:137899. [PMID: 39571850 DOI: 10.1016/j.ijbiomac.2024.137899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Traditional tumor treatment faces great challenge owning to inherent drawbacks. Activatable prodrugs with multi-modality therapeutic capacity are highly desired. In this consideration, a responsiveness-released multi-in-one nanoplatform, PLGA-PEG@HC, toward cervical cancer therapy was innovatively developed. Among the nanoplatform, HC was constructed by incorporating chlorambucil, a classic chemotherapy drug into a near-infrared photo- and sono-sensitizer, HCH via ester linker, which can be specifically hydrolyzed by carboxylesterase (CES). HC is scarcely fluorescent and toxic due to the caging of HCH and chlorambucil, thus achieving low background signal and minimal side effects. However, once selectively hydrolyzed by tumor enriched CES, ester bond will be broken. Consequently, HCH and chlorambucil are released so as to achieve near-infrared fluorescence imaging and synergistic photodynamic/sonodynamic/chemo therapy. PLGA-PEG packaging ensures the biocompatibility of HC. The as-obtained nanoplatform, with diameter of 97 nm, achieves tumor targeting capacity via EPR. In vitro and in vivo applications have demonstrated that PLGA-PEG@HC can accumulate in tumor tissues, exhibit CES-activatable near-infrared fluorescence imaging and efficient tumor suppression capacity. Compared with the reported combinational therapy materials which are complex in compositions, PLGA-PEG@HC is simple in formulation but demonstrates near-infrared fluorescence traced and considerable therapy efficacy toward tumors, which may accelerate the clinical translation.
Collapse
Affiliation(s)
- Lihong Li
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, PR China.
| | - Rongrong Hu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xinyu Zhang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Guangyang Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Wen Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, PR China
| | - Haojiang Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China
| | - Bin Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lixia Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Sufang Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lili Yan
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China
| | - Boye Zhang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Chengwu Zhang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Haipeng Diao
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, PR China.
| |
Collapse
|
30
|
Yu N, Chen X, Li J, Kang X, Wang Z, Zhang R, Qin J, Li Y, Zheng Q, Feng G, Deng L, Zhang T, Wang W, Liu W, Wang J, Feng Q, Lv J, Zhou Z, Xiao Z, Bi N, Li Y, Wang X. Conversion chemoradiotherapy combined with nab-paclitaxel plus cisplatin in patients with locally advanced borderline-resectable or unresectable esophageal squamous cell carcinoma: a phase i/ii prospective cohort study. Strahlenther Onkol 2024; 200:1038-1046. [PMID: 39134689 PMCID: PMC11588946 DOI: 10.1007/s00066-024-02286-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/24/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND To evaluate the efficacy and safety of nab-paclitaxel plus cisplatin as the regimen of conversional chemoradiotherapy (cCRT) in locally advanced borderline resectable or unresectable esophageal squamous cell carcinoma (ESCC). METHODS Patients with locally advanced ESCC (cT3‑4, Nany, M0‑1, M1 was limited to lymph node metastasis in the supraclavicular area) were enrolled. All the patients received the cCRT of nab-paclitaxel plus cisplatin. After the cCRT, those resectable patients received esophagectomy; those unresectable patients continued to receive the definitive chemoradiotherapy (dCRT). The locoregional control (LRC), overall survival (OS), event-free survival (EFS), distant metastasis free survival (DMFS), pathological complete response (pCR), R0 resection rate, adverse events (AEs) and postoperative complications were calculated. RESULTS 45 patients with ESCC treated from October 2019 to May 2021 were finally included. The median follow-up time was 30.3 months. The LRC, OS, EFS, DMFS at 1 and 2 years were 81.5%, 86.6%, 64.3%, 73.2 and 72.4%, 68.8%, 44.8%, 52.7% respectively. 21 patients (46.7%) received conversional chemoradiotherapy plus surgery (cCRT+S). The pCR rate and R0 resection rate were 47.6 and 84.0%. The LRC rate at 1 and 2 years were 95.0%, 87.1% in cCRT+S patitents and 69.3%, 58.7% in dCRT patients respectively (HR, 5.14; 95%CI, 1.10-23.94; P = 0.021). The toxicities during chemoradiotherapy were tolerated, and the most common grade 3-4 toxicitiy was radiation esophagitis (15.6%). The most common postoperative complication was pleural effusion (38.1%) and no grade ≥ IIIb complications were observed. CONCLUSION nab-paclitaxel plus cisplatin are safe as the regimen of conversional chemoradiotherapy of ESCC.
Collapse
Affiliation(s)
- Nuo Yu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Xiankai Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 PanjiayuanNanli, Chaoyang District, 100021, Beijing, China
| | - Jiao Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Xiaozheng Kang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 PanjiayuanNanli, Chaoyang District, 100021, Beijing, China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 PanjiayuanNanli, Chaoyang District, 100021, Beijing, China
| | - Ruixiang Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 PanjiayuanNanli, Chaoyang District, 100021, Beijing, China
| | - Jianjun Qin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 PanjiayuanNanli, Chaoyang District, 100021, Beijing, China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 PanjiayuanNanli, Chaoyang District, 100021, Beijing, China
| | - Qingfeng Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 PanjiayuanNanli, Chaoyang District, 100021, Beijing, China
| | - Guojie Feng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Lei Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Tao Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Wenqing Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Wenyang Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Jianyang Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Qinfu Feng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Jima Lv
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Zongmei Zhou
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Zefen Xiao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Yin Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 PanjiayuanNanli, Chaoyang District, 100021, Beijing, China
| | - Xin Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China.
| |
Collapse
|
31
|
Dutta B, Barick KC, Hassan PA, Tyagi AK. Recent progress and current status of surface engineered magnetic nanostructures in cancer theranostics. Adv Colloid Interface Sci 2024; 334:103320. [PMID: 39515063 DOI: 10.1016/j.cis.2024.103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Cancer theranostic is the combination of diagnosis and therapeutic modalities for cancer treatment. It realizes a more flexible, precise and non-invasive treatment of patients. In this aspect, magnetic nanostructures (MNSs) have gained paramount importance and revolutionized the cancer management due to their unique physicochemical properties and inherent magnetic characteristics. MNSs have amazing theranostic ability starting from drug delivery to magnetic hyperthermia and magnetic resonance imaging to multimodal imaging in association with radioisotopes or fluorescent probes. Precise regulation over the synthetic process and their consequent surface functionalization makes them even more fascinating. The ultimate goal is to develop a platform that combines multiple diagnostic and therapeutic functionalities based on MNSs. This perspective has provided an overview of the state-of-art of theranostic applications of MNSs. Special emphasis has been dedicated towards the importance of synthetic approaches of MNSs as well as their subsequent surface engineering and integration with biological/therapeutic molecules that decide the final outcomes of the efficacy of MNSs in theranostic applications. Moreover, the recent advancements, opportunities and allied challenges towards clinical applications of MNSs in cancer management have been demonstrated.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - A K Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
32
|
Hou R, Ye T, Qin Y, Qiu L, Lyu J, Tan F, Yang Y, Zhao S, Liu N, Li F. Strong Affinity between Astatine and Silver: An Available Approach to Anchoring 211At in Nanocarrier for Locoregional Oncotherapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23624-23631. [PMID: 39475623 DOI: 10.1021/acs.langmuir.4c02150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Recently, 211At-related endoradiotherapy has emerged as an important oncotherapy strategy. Conjugating 211At with a nanocarrier provides a vital candidate for radionuclide therapy of various malignant tumors. In this study, we proposed utilizing the intrinsically high affinity of heavy halogens and sulfhydryl compounds for metallic silver to achieve highly efficient conjugation between 211At and Ag-based nanoparticles in a simple way. 211At@Ag-PEG-FA was obtained via a one-pot assembly of 211At, Ag, and SH-PEG-FA in extremely high radiolabeling yield (>95%) within 15 min and maintained excellent stability in simulated physiochemical media. Additionally, the prepared 211At@Ag-PEG-FA demonstrated specific binding to the breast cancer cell line (4T1), with a high endocytosis rate and low reflux, leading to significant cell growth inhibition. 211At@Ag-PEG-FA exhibits an excellent antitumor effect that completely suppressed tumor growth during the first week, effectively prolonging the median survival of mice to 44 days, relative to 18 days in the control group. All of the mice exhibited minimal side effects from 211At@Ag-PEG-FA in the experiment, indicating its acceptable biosafety. Our work shows that the strong affinity of Ag can be utilized to produce radioactivated nanomedicines with excellent stability and high efficiency, which also provides some valuable insights for the 211At radiolabeling of general compounds.
Collapse
Affiliation(s)
- Ruitong Hou
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Tianzhen Ye
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Yilin Qin
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Long Qiu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Jie Lyu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Fuyuan Tan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Songji Zhao
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
33
|
Lu X, Yu Z, Wang J, Tian A, Wu T, Cheng Y, Han Q, Li F, Xia W. The unexpected PD-L1 suppression function of celery-derived extracellular vesicles improves lung cancer chemotherapy efficacy. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:697-713. [PMID: 39811730 PMCID: PMC11725424 DOI: 10.20517/evcna.2023.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025]
Abstract
Aim: The article explores celery-derived extracellular vesicles (CDEVs), characterized by high cellular uptake, low immunogenicity, and high stability, as a therapeutic strategy for antitumor nanomedicines. Methods: The methods employed in this study include in vitro cell experiments such as co-culture, Western Blot, and flow cytometry. In vivo experiments were conducted in C57BL/6 tumor-bearing mice subcutaneously injected with Lewis lung carcinoma (LLC) cells. The experiments encompassed parameters such as survival rate, body weight, tumor size, flow cytometry, immunohistochemistry, and spectral live imaging system. Results: Our study revealed that CDEVs could be used as drugs to effectively downregulate the phosphorylated signal transducer and activator of transcription 3 (p-STAT3)/programmed cell death ligand 1 (PD-L1) axis in lung cancer cells. In co-culture experiments, CDEVs were observed to impede the expression of PD-L1, thereby interfering with the interaction between PD-L1 and programmed death 1 (PD-1) and subsequently preventing the suppression of T cells. In in vivo distribution experiments, CDEVs loaded with paclitaxel (PTX) demonstrated better tumor targeting capabilities. Remarkably, following CDEVs-PTX treatment, CD8+ T cell levels in mice were increased, presumably leading to improved antitumor effects. Conclusion: CDEVs not only serve as drug carriers but also function as drugs themselves; as such, through a single administration of CDEVs, it is possible to combine immunotherapy and chemotherapy to achieve better effects between the two, providing a more comprehensive and effective cancer treatment strategy that promises to improve treatment outcomes and reduce the adverse effects of therapy.
Collapse
Affiliation(s)
- Xin Lu
- Authors contributed equally
| | | | | | | | | | | | | | | | - Weiliang Xia
- Correspondence to: Prof. Weiliang Xia, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China. E-mail:
| |
Collapse
|
34
|
Wiklander OPB, Mamand DR, Mohammad DK, Zheng W, Jawad Wiklander R, Sych T, Zickler AM, Liang X, Sharma H, Lavado A, Bost J, Roudi S, Corso G, Lennaárd AJ, Abedi-Valugerdi M, Mäger I, Alici E, Sezgin E, Nordin JZ, Gupta D, Görgens A, El Andaloussi S. Antibody-displaying extracellular vesicles for targeted cancer therapy. Nat Biomed Eng 2024; 8:1453-1468. [PMID: 38769158 PMCID: PMC11584392 DOI: 10.1038/s41551-024-01214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024]
Abstract
Extracellular vesicles (EVs) function as natural delivery vectors and mediators of biological signals across tissues. Here, by leveraging these functionalities, we show that EVs decorated with an antibody-binding moiety specific for the fragment crystallizable (Fc) domain can be used as a modular delivery system for targeted cancer therapy. The Fc-EVs can be decorated with different types of immunoglobulin G antibody and thus be targeted to virtually any tissue of interest. Following optimization of the engineered EVs by screening Fc-binding and EV-sorting moieties, we show the targeting of EVs to cancer cells displaying the human epidermal receptor 2 or the programmed-death ligand 1, as well as lower tumour burden and extended survival of mice with subcutaneous melanoma tumours when systemically injected with EVs displaying an antibody for the programmed-death ligand 1 and loaded with the chemotherapeutic doxorubicin. EVs with Fc-binding domains may be adapted to display other Fc-fused proteins, bispecific antibodies and antibody-drug conjugates.
Collapse
Affiliation(s)
- Oscar P B Wiklander
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden.
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden.
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden.
| | - Doste R Mamand
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
| | - Dara K Mohammad
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Erbil, Iraq
| | - Wenyi Zheng
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Rim Jawad Wiklander
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Antje M Zickler
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Xiuming Liang
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | | | | | - Jeremy Bost
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Samantha Roudi
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Giulia Corso
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Angus J Lennaárd
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Manuchehr Abedi-Valugerdi
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Evren Alici
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Joel Z Nordin
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Clinical Immunology and Transfusion Medicine (KITM), Karolinska University Hospital, Stockholm, Sweden
| | - Dhanu Gupta
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - André Görgens
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden.
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden.
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden.
| |
Collapse
|
35
|
Shi S, Zhong H, Zhang Y, Mei Q. Targeted delivery of nano-radiosensitizers for tumor radiotherapy. Coord Chem Rev 2024; 518:216101. [DOI: 10.1016/j.ccr.2024.216101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
36
|
Abdellatif AAH, Mostafa MAH, Konno H, Younis MA. Exploring the green synthesis of silver nanoparticles using natural extracts and their potential for cancer treatment. 3 Biotech 2024; 14:274. [PMID: 39450421 PMCID: PMC11496425 DOI: 10.1007/s13205-024-04118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Silver nanoparticles (AgNPs) have attracted increasing attention in nanomedicine, with versatile applications in drug delivery, antimicrobial treatments, and cancer therapies. While chemical synthesis remains a common approach for AgNP production, ensuring environmental sustainability requires a shift toward eco-friendly, "green" synthesis techniques. This article underscores the promising role of plant extracts in the green synthesis of AgNPs, highlighting the importance of their natural sources and diverse bioactive compounds. Various characterization methods for these nanomaterials are also reviewed. Furthermore, the anticancer potential of green AgNPs (Gr-AgNPs) is examined, focusing on their mechanisms of action and the challenges to their clinical implementation. Finally, future directions in the field are discussed.
Collapse
Affiliation(s)
- Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452 Al Qassim, Saudi Arabia
| | - Mahmoud A. H. Mostafa
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, 41477 Al Madinah, Al Munawarah Saudi Arabia
- Departmentof Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524 Egypt
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Yamagata University, Yonezawa, Yamagata 982-8510 Japan
| | - Mahmoud A. Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526 Egypt
| |
Collapse
|
37
|
Ifijen IH, Christopher AT, Lekan OK, Aworinde OR, Faderin E, Obembe O, Abdulsalam Akanji TF, Igboanugo JC, Udogu U, Ogidi GO, Iorkula TH, Osayawe OJK. Advancements in tantalum based nanoparticles for integrated imaging and photothermal therapy in cancer management. RSC Adv 2024; 14:33681-33740. [PMID: 39450067 PMCID: PMC11498270 DOI: 10.1039/d4ra05732e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Tantalum-based nanoparticles (TaNPs) have emerged as promising tools in cancer management, owing to their unique properties that facilitate innovative imaging and photothermal therapy applications. This review provides a comprehensive overview of recent advancements in TaNPs, emphasizing their potential in oncology. Key features include excellent biocompatibility, efficient photothermal conversion, and the ability to integrate multifunctional capabilities, such as targeted drug delivery and enhanced imaging. Despite these advantages, challenges remain in establishing long-term biocompatibility, optimizing therapeutic efficacy through surface modifications, and advancing imaging techniques for real-time monitoring. Strategic approaches to address these challenges include surface modifications like PEGylation to improve biocompatibility, precise control over size and shape for effective photothermal therapy, and the development of biodegradable TaNPs for safe elimination from the body. Furthermore, integrating advanced imaging modalities-such as photoacoustic imaging, magnetic resonance imaging (MRI), and computed tomography (CT)-enable real-time tracking of TaNPs in vivo, which is crucial for clinical applications. Personalized medicine strategies that leverage biomarkers and genetic profiling also hold promise for tailoring TaNP-based therapies to individual patient profiles, thereby enhancing treatment efficacy and minimizing side effects. In conclusion, TaNPs represent a significant advancement in nanomedicine, poised to transform cancer treatment paradigms while expanding into various biomedical applications.
Collapse
Affiliation(s)
- Ikhazuagbe H Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| | - Awoyemi Taiwo Christopher
- Laboratory Department, Covenant University Medical Centre Canaan land, KM 10, Idiroko Road Ota Ogun State Nigeria
| | - Ogunnaike Korede Lekan
- Department of Chemistry, Wichita State University 1845 Fairmount, Box 150 Wichita KS 67260-0150 USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, 1 Hairpin Drive Edwardsville IL 62026-001 USA
| | | | | | - Juliet C Igboanugo
- Department of Health, Human Performance, and Recreation 155 Stadium Drive Arkansas 72701 USA
| | - Uzochukwu Udogu
- Department of Chemistry, Federal University of Technology Owerri Nigeria
| | | | - Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | |
Collapse
|
38
|
Zhou J, Ji M, Yang Y, Su W, Chen L, Liu Y, Fei Y, Ma J, Mi L. Two-photon photodynamic therapy with curcumin nanocomposite. Colloids Surf B Biointerfaces 2024; 245:114306. [PMID: 39395213 DOI: 10.1016/j.colsurfb.2024.114306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Two-photon photodynamic therapy (TP-PDT) offers an innovative approach to cancer treatment that utilizes near-infrared light to activate photosensitizers and generate reactive oxygen species (ROS) for targeted cancer cell elimination. TiO2-CUR-Sofast (TCS), which uses TiO2 nanoparticles and Sofast cationic polymer to modify curcumin (CUR), has demonstrated potential as a photosensitizer under visible light irradiation, addressing the limitations of CUR's narrow spectral range and low bioavailability. This study explores the utility of the two-photon technique to activate TCS within the infrared spectrum, aiming to enhance ROS production and penetration depth compared to traditional CUR. TCS exhibits a significantly higher ROS production at 900 nm excitation wavelength, approximately 6-7 times that of CUR, signifying a substantial increase in efficiency. In TP-PDT, TCS showed significant phototoxicity against HeLa and T24 cell lines compared to CUR. Furthermore, TCS's photodynamic efficacy is further confirmed by cell apoptosis and necrosis studies, where approximately 89 % of cells treated with TCS under 900 nm light irradiation were observed in an apoptosis/necrosis state. And the TP-PDT effect in deep tissue was simulated using pig skin. It shows that the two-photon excitation has a significant penetration depth advantage over the single-photon excitation. These results indicate that the two-photon PDT scheme of TCS has greater potential than the single-photon PDT scheme in the treatment of cancer, and provides an experimental foundation for the effective treatment of deep lesions.
Collapse
Affiliation(s)
- Jiacheng Zhou
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Mingmei Ji
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yuwei Yang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Wenhua Su
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Liwen Chen
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yuzhe Liu
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jiong Ma
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China; Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Lan Mi
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China; Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
39
|
Ji P, Wu P, Wang L, Wang Y, Guo X, Gao R, Guo Z, Zhou H, Liu Z, Liang Y, Lu F, Yang G, Ji G. Lysosome-Targeting Bacterial Outer Membrane Vesicles for Tumor Specific Degradation of PD-L1. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400770. [PMID: 38934533 DOI: 10.1002/smll.202400770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Increased expression of immune check point genes, such as PD-L1, is one of the main reasons for immunosuppression, especially for colon cancer. Development of novel therapeutic strategies is of great importance to improve the prognosis. In this study, outer membrane vesicles (OMV) derived from Gram-negative bacteria are engineered to immune checkpoint blockade nanosystem for efficient elicitation of anti-tumor immunity. Briefly, the OMVs are engineered with Lyp1-Traptavidin (S52G, R53D mutant of streptavidin) fusion protein displayed on the surface. The Lyp-1 endows the OMV with the capacity to target tumor tissues, while the Traptavidin ensures easy decoration of biotinylated anti-PD-L1 and biotinylated M6P (mannose 6-phosphate). The simultaneously anchored anti-PD-L1 and M6P (ligand for cation-independent mannose 6-phosphate receptor) on the engineered OMVs coordinately direct the membrane PD-L1 to lysosome for degradation, and thus unleash the anti-tumor immunity. With syngeneic tumor model, the engineered OMVs are confirmed to boost immunity, inhibit cancer growth, and thus prolong survival. Together, A proposed OMV-based modular nanosystem that enables assembly of biotinylated anti-PD-L1 and M6P on the surface for tumor-targeted immune checkpoint blockade.
Collapse
Affiliation(s)
- Panpan Ji
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Pengying Wu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Lantian Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yufei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Guo
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Ruiqi Gao
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhiyu Guo
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Haikun Zhou
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhaoyou Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yuan Liang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Fan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Military Medical Innovation Center, Fourth Military Medical University, Xi'an, 710032, China
| | - Gang Ji
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
40
|
Li M, Tang Q, Wan H, Zhu G, Yin D, Lei L, Li S. Functional inorganic nanoparticles in cancer: Biomarker detection, imaging, and therapy. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0231279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Cancer poses a major global public health challenge. Developing more effective early diagnosis methods and efficient treatment techniques is crucial to enhance early detection sensitivity and treatment outcomes. Nanomaterials offer sensitive, accurate, rapid, and straightforward approaches for cancer detection, diagnosis, and treatment. Inorganic nanoparticles are widely used in medicine because of their high stability, large specific surface area, unique surface properties, and unique quantum size effects. Functional inorganic nanoparticles involve modifying inorganic nanoparticles to enhance their physical properties, enrichment capabilities, and drug-loading efficiency and to minimize toxicity. This Review provides an overview of various types of inorganic nanoparticles and their functionalization characteristics. We then discuss the progress of functional inorganic nanoparticles in cancer biomarker detection and imaging. Furthermore, we discuss the application of functional inorganic nanoparticles in radiotherapy, chemotherapy, gene therapy, immunotherapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and combination therapy, highlighting their characteristics and advantages. Finally, the toxicity and potential challenges of functional inorganic nanoparticles are analyzed. The purpose of this Review is to explore the application of functional inorganic nanoparticles in diagnosing and treating cancers, while also presenting a new avenue for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Hua Wan
- Department of Otorhinolaryngology Head and Neck Surgery 2 , 331 Hospital of Zhuzhou, Zhuzhou 412002, Hunan,
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Danhui Yin
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 3 , Hangzhou 310015, Zhejiang,
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| |
Collapse
|
41
|
Um‐e‐Kalsoom, Wang S, Qu J, Liu L. Innovative optical imaging strategies for monitoring immunotherapy in the tumor microenvironments. Cancer Med 2024; 13:e70155. [PMID: 39387259 PMCID: PMC11465031 DOI: 10.1002/cam4.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a critical role in cancer progression and response to immunotherapy. Immunotherapy targeting the immune system has emerged as a promising treatment modality, but challenges in understanding the TME limit its efficacy. Optical imaging strategies offer noninvasive, real-time insights into the interactions between immune cells and the TME. OBJECTIVE This review assesses the progress of optical imaging technologies in monitoring immunotherapy within the TME and explores their potential applications in clinical trials and personalized cancer treatment. METHODS This is a comprehensive literature review based on the advances in optical imaging modalities including fluorescence imaging (FLI), bioluminescence imaging (BLI), and photoacoustic imaging (PAI). These modalities were analyzed for their capacity to provide high-resolution, real-time imaging of immune cell dynamics, tumor vasculature, and other critical components of the TME. RESULTS Optical imaging techniques have shown significant potential in tracking immune cell infiltration, assessing immune checkpoint inhibitors, and visualizing drug delivery within the TME. Technologies like FLI and BLI are pivotal in tracking immune responses in preclinical models, while PAI provides functional imaging with deeper tissue penetration. The integration of these modalities with immunotherapy holds promise for improving treatment monitoring and outcomes. CONCLUSION Optical imaging is a powerful tool for understanding the complexities of the TME and optimizing immunotherapy. Further advancements in imaging technologies, combined with nanomaterial-based approaches, could pave the way for enhanced diagnostic accuracy and therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Um‐e‐Kalsoom
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Shiqi Wang
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| |
Collapse
|
42
|
Helal IM, Kamal MA, Abd El-Aziz MK, El Tayebi HM. Epigenetic tuning of tumour-associated macrophages (TAMs): a potential approach in hepatocellular carcinoma (HCC) immunotherapy. Expert Rev Mol Med 2024; 26:e18. [PMID: 39320855 PMCID: PMC11440614 DOI: 10.1017/erm.2024.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/21/2024] [Accepted: 02/26/2024] [Indexed: 09/26/2024]
Abstract
Recent development in immunotherapy for cancer treatment has substantiated to be more effective than most of the other treatments. Immunity is the first line of defence of the body; nevertheless, cancerous cells can manipulate immunity compartments to play several roles in tumour progression. Tumour-associated macrophages (TAMs), one of the most dominant components in the tumour microenvironment, are recognized as anti-tumour suppressors. Unfortunately, the complete behaviour of TAMs is still unclear and understudied. TAM density is directly correlated with the progression and poor prognosis of hepatocellular carcinoma (HCC), therefore studying TAMs from different points of view passing by all the factors that may affect its existence, polarization, functions and repolarization are of great importance. Different epigenetic regulations were reported to have a direct relation with both HCC and TAMs. Here, this review discusses different epigenetic regulations that can affect TAMs in HCC whether positively or negatively.
Collapse
Affiliation(s)
- Israa M. Helal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Monica A. Kamal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Mostafa K. Abd El-Aziz
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| |
Collapse
|
43
|
Wang S, Huang W, Lin Q, Feng Y, Wei Q, Xu J, Wang R, Luo Z. Design and synthesis of a novel chiral photoacoustic probe and accurate imaging detection of hydrogen peroxide in vivo. Anal Bioanal Chem 2024; 416:5205-5214. [PMID: 39078455 DOI: 10.1007/s00216-024-05463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Nanocatalytic medicine, which aims to accurately target and effectively treat tumors through intratumoral in situ catalytic reactions triggered by tumor-specific environments or markers, is an emerging technology. However, the relative lack of catalytic activity of nanoenzymes in the tumor microenvironment (TME) has hampered their use in biomedical applications. Therefore, it is crucial to develop a highly sensitive probe that specifically responds to the TME or disease markers in the TME for precision diagnosis and treatment of diseases. In this work, a chiral photoacoustic (PA) nanoprobe (D/L-Ce@MoO3) based on the H2O2-catalyzed TME activation reaction was constructed in a one-step method using D-cysteine (D-Cys) or L-cysteine (L-Cys), polymolybdate, and cerium nitrate as raw materials. The designed and synthesized D/L-Ce@MoO3 chiral nanoprobe can perform in situ, non-invasive, and precise imaging of pharmacological acute liver injury. In vivo and in vitro experiments have shown that the D/L-Ce@MoO3 probe had chiral properties, the CD signal decreased upon reaction with H2O2, and the absorption and PA signals increased with increasing H2O2 concentration. This is because of the catalytic reaction between Ce ions doped in the nanoenzyme and the high expression of H2O2 caused by drug-induced liver injury to produce ·OH, which has a strong oxidizing property to kill tumor cells and destroy the Mo-S bond in the probe, thus converting the chiral probe into an achiral polyoxometalate (POM) with PA signal.
Collapse
Affiliation(s)
- Shulong Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Wenfang Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Qingyan Lin
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Yinyin Feng
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Qingmin Wei
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Jiayao Xu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China.
| | - Rong Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China.
| | - Zhihui Luo
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
44
|
Na GS, Joo JU, Lee JY, Yun Y, Kaang BK, Yang JS, Kim K, Kim DP. Full-cycle study on developing a novel structured micromixer and evaluating the nanoparticle products as mRNA delivery carriers. J Control Release 2024; 373:161-171. [PMID: 38996922 DOI: 10.1016/j.jconrel.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
Achieving precise control of nanoparticle size while maintaining consistency and high uniformity is of paramount importance for improving the efficacy of nanoparticle-based therapies and minimizing potential side effects. Although microfluidic technologies are widely used for reliable nanoparticle synthesis, they face challenges in meeting critical homogeneity requirements, mainly due to imperfect mixing efficiency. Furthermore, channel clogging during continuous operation presents a significant obstacle in terms of quality control, as it progressively impedes the mixing behavior necessary for consistent nanoparticle production for therapeutic delivery and complicates the scaling-up process. This study entailed the development of a 3D-printed novel micromixer embedded with hemispherical baffle microstructures, a dual vortex mixer (DVM), which integrates Dean vortices to generate two symmetrical counter-rotating intensified secondary flows. The DVM with a relatively large mixer volume showed rapid mixing characteristics even at a flow rate of several mL min-1 and produced highly uniform lipids, liposomes, and polymer nanoparticles in a size range (50-130 nm) and polydispersity index (PDI) values below 0.15. For the evaluation of products, SARS-CoV-2 Spike mRNA-loaded lipid nanoparticles were examined to verify protein expression in vitro and in vivo using firefly luciferase (FLuc) mRNA. This showed that the performance of the system is comparable to that of a commercial toroidal mixer. Moreover, the vigorous in-situ dispersion of nanoparticles by harnessing the power of vortex physically minimizes the occurrence of aggregation, ensuring consistent production performance without internal clogging of a half-day operation and facilitating quality control of the nanoparticles at desired scales.
Collapse
Affiliation(s)
- Gi-Su Na
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeong-Un Joo
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Joo Young Lee
- Research Center, ST Pharm, Ansan-si, Gyoenggi-do 15610, Republic of Korea
| | - Yejin Yun
- Research Center, ST Pharm, Ansan-si, Gyoenggi-do 15610, Republic of Korea
| | - Byung Kwon Kaang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Joo-Sung Yang
- Research Center, ST Pharm, Ansan-si, Gyoenggi-do 15610, Republic of Korea.
| | - Kyungjin Kim
- Research Center, ST Pharm, Ansan-si, Gyoenggi-do 15610, Republic of Korea.
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
45
|
Aparicio-Lopez CB, Timmerman S, Lorino G, Rogers T, Pyle M, Shrestha TB, Basel MT. Thermosensitive Liposomes for Gemcitabine Delivery to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:3048. [PMID: 39272906 PMCID: PMC11394165 DOI: 10.3390/cancers16173048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Treatment of pancreatic ductal adenocarcinoma with gemcitabine is limited by an increased desmoplasia, poor vascularization, and short plasma half-life. Heat-sensitive liposomes modified by polyethylene glycol (PEG; PEGylated liposomes) can increase plasma stability, reduce clearance, and decrease side effects. Nevertheless, translation of heat-sensitive liposomes to the clinic has been hindered by the low loading efficiency of gemcitabine and by the difficulty of inducing hyperthermia in vivo. This study was designed to investigate the effect of phospholipid content on the stability of liposomes at 37 °C and their release under hyperthermia conditions; this was accomplished by employing a two-stage heating approach. First the liposomes were heated at a fast rate, then they were transferred to a holding bath. Thermosensitive liposomes formulated with DPPC: DSPC: PEG2k (80:15:5, mole%) exhibited minimal release of carboxyfluorescein at 37 °C over 30 min, indicating stability under physiological conditions. However, upon exposure to hyperthermic conditions (43 °C and 45 °C), these liposomes demonstrated a rapid and significant release of their encapsulated content. The encapsulation efficiency for gemcitabine was calculated at 16.9%. Additionally, fluorescent analysis during the removal of unencapsulated gemcitabine revealed an increase in pH. In vitro tests with BxPC3 and KPC cell models showed that these thermosensitive liposomes induced a heat-dependent cytotoxic effect comparable to free gemcitabine at temperatures above 41 °C. This study highlights the effectiveness of the heating mechanism and cell models in understanding the current challenges in developing gemcitabine-loaded heat-sensitive liposomes.
Collapse
Affiliation(s)
- Cesar B Aparicio-Lopez
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Sarah Timmerman
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Gabriella Lorino
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Tatiana Rogers
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Marla Pyle
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Tej B Shrestha
- Nanotechnology Innovation Center of Kansas State (NICKS), Kansas State University, Manhattan, KS 66506, USA
| | - Matthew T Basel
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
46
|
Guo J, Zhao W, Xiao X, Liu S, Liu L, Zhang L, Li L, Li Z, Li Z, Xu M, Peng Q, Wang J, Wei Y, Jiang N. Reprogramming exosomes for immunity-remodeled photodynamic therapy against non-small cell lung cancer. Bioact Mater 2024; 39:206-223. [PMID: 38827172 PMCID: PMC11141154 DOI: 10.1016/j.bioactmat.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Traditional treatments against advanced non-small cell lung cancer (NSCLC) with high morbidity and mortality continue to be dissatisfactory. Given this situation, there is an urgent requirement for alternative modalities that provide lower invasiveness, superior clinical effectiveness, and minimal adverse effects. The combination of photodynamic therapy (PDT) and immunotherapy gradually become a promising approach for high-grade malignant NSCLC. Nevertheless, owing to the absence of precise drug delivery techniques as well as the hypoxic and immunosuppressive characteristics of the tumor microenvironment (TME), the efficacy of this combination therapy approach is less than ideal. In this study, we construct a novel nanoplatform that indocyanine green (ICG), a photosensitizer, loads into hollow manganese dioxide (MnO2) nanospheres (NPs) (ICG@MnO2), and then encapsulated in PD-L1 monoclonal antibodies (anti-PD-L1) reprogrammed exosomes (named ICG@MnO2@Exo-anti-PD-L1), to effectively modulate the TME to oppose NSCLC by the synergy of PDT and immunotherapy modalities. The ICG@MnO2@Exo-anti-PD-L1 NPs are precisely delivered to the tumor sites by targeting specially PD-L1 highly expressed cancer cells to controllably release anti-PD-L1 in the acidic TME, thereby activating T cell response. Subsequently, upon endocytic uptake by cancer cells, MnO2 catalyzes the conversion of H2O2 to O2, thereby alleviating tumor hypoxia. Meanwhile, ICG further utilizes O2 to produce singlet oxygen (1O2) to kill tumor cells under 808 nm near-infrared (NIR) irradiation. Furthermore, a high level of intratumoral H2O2 reduces MnO2 to Mn2+, which remodels the immune microenvironment by polarizing macrophages from M2 to M1, further driving T cells. Taken together, the current study suggests that the ICG@MnO2@Exo-anti-PD-L1 NPs could act as a novel drug delivery platform for achieving multimodal therapy in treating NSCLC.
Collapse
Affiliation(s)
- Jiao Guo
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Zhao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Xiao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Shanshan Liu
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liang Liu
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lu Li
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Zhenghang Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Li
- Traditional Chinese Medicine Hospital of Bijie City, Guizhou province, 551700, China
| | - Mengxia Xu
- Traditional Chinese Medicine Hospital of Bijie City, Guizhou province, 551700, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
- Bijie Municipal Health Bureau, Guizhou province, 551700, China
- Health Management Center, the Affiliated Hospital of Guizhou Medical University
| | - Jianwei Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxian Wei
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ning Jiang
- Department of Pathology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
47
|
Choudhury K, Sen P, Ghosh SS. SAHA potentiates the activity of repurposed drug promethazine loaded PLGA nanoparticles in triple-negative breast cancer cells. NANOTECHNOLOGY 2024; 35:465102. [PMID: 39146954 DOI: 10.1088/1361-6528/ad6fa6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Triple-negative breast cancer (TNBC) is considered the most aggressive form of breast cancer owing to the negative expression of targetable bioreceptors. Epithelial to mesenchymal transition (EMT) associated with metastatic abilities is its critical feature. As an attempt to target TNBC, nanotechnology was utilised to augment the effects of drug repurposing. Concerning that, a combination therapeutic module was structured with one of the aspects being a repurposed antihistamine, promethazine hydrochloride loaded PLGA nanoparticles. The as-synthesized nanoparticles were 217 nm in size and fluoresced at 522 nm, rendering them suitable for theranostic applications too. The second feature of the module was a common histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), used as a form of pre-treatment. Experimental studies demonstrated efficient cellular internalisation and significant innate anti-proliferative potential. The use of SAHA sensitised the cells to the drug loaded nanoparticle treatment. Mechanistic studies showed increase in ROS generation, mitochondrial dysfunction followed by apoptosis. Investigations into protein expression also revealed reduction of mesenchymal proteins like vimentin by 1.90 fold; while increase in epithelial marker like E-Cadherin by 1.42 fold, thus indicating an altered EMT dynamics. Further findings also provided better insight into the benefits of SAHA potentiated targeting of tumor spheroids that mimic solid tumors of TNBC. Thus, this study paves the avenue to a more rational translational validation of combining nanotherapeutics with drug repurposing.
Collapse
Affiliation(s)
- Konika Choudhury
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Plaboni Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
48
|
Prasad A, Bakr MM, ElMeshad AN. Surface-functionalised polymeric nanoparticles for breast cancer treatment: processes and advances. J Drug Target 2024; 32:770-784. [PMID: 38717907 DOI: 10.1080/1061186x.2024.2353359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The World Health Organization (WHO) reported that of all the non-communicable diseases, cancer is considered the second cause of death worldwide. This has driven the big pharma companies to prioritise anticancer products in their pipeline. In addition, research has focused on exploration of new anticancer molecules and design of suitable dosage forms to achieve effective drug delivery to the tumour site. Nanotechnology is a valuable tool to build nano delivery systems with controlled and targeted drug release properties. Nanoparticles can be fabricated by robust, scalable and economic techniques using various polymers. Moreover, specific functional groups can be introduced to the surface of nanoparticles enabling targeting to a specific tissue; besides, they exhibit versatile drug release patterns according to the rate of polymer degradation. This review outlines the processes and advances in surface functionalisation of nanoparticles employed for treatment of breast cancer. The therapeutic molecules, the polymers used to fabricate nanoparticles, the techniques used to prepare the nanoparticles have been reviewed with a focus on the processes employed to functionalise these nanoparticles with suitable ligands to target different types of breast cancer.
Collapse
Affiliation(s)
- Aprameya Prasad
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Mohamed Mofreh Bakr
- Department of Pharmaceutics, Egyptian Drug Authority, Formerly Known as National Organization for Drug Control and Research, Giza, Egypt
| | - Aliaa N ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Technology, The Egyptian Chinese University, Cairo, Egypt
| |
Collapse
|
49
|
Shukla RP, Tiwari P, Sardar A, Urandur S, Gautam S, Marwaha D, Tripathi AK, Rai N, Trivedi R, Mishra PR. Alendronate-functionalized porous nano-crystalsomes mitigate osteolysis and consequent inhibition of tumor growth in a tibia-induced metastasis model. J Control Release 2024; 372:331-346. [PMID: 38844176 DOI: 10.1016/j.jconrel.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Bone is one of the most prevalent sites of metastases in various epithelial malignancies, including breast cancer and this metastasis to bone often leads to severe skeletal complications in women due to its osteolytic nature. To address this, we devised a novel drug delivery approach using an Alendronate (ALN) functionalized self-assembled porous crystalsomes for concurrent targeting of Oleanolic acid (OA) and ALN (ALN + OA@NCs) to bone metastasis. Initially, the conjugation of both PEG-OA and OA-PEG-ALN with ALN and OA was achieved, and this conjugation was then self-assembled into porous crystalsomes (ALN + OA@NCs) by nanoemulsion crystallization. The reconstruction of a 3D single particle using transmission electron microscopy ensured the crystalline porous structure of ALN + OA@NCs, was well aligned with characteristic nanoparticle attributes including size distribution, polydispersity, and zeta potential. Further, ALN + OA@NCs showed enhanced efficacy in comparison to OA@NCs suggesting the cytotoxic roles of ALN towards cancer cells, followed by augmentation ROS generation (40.81%), mitochondrial membrane depolarization (57.20%), and induction of apoptosis (40.43%). We found that ALN + OA@NCs facilitated inhibiting osteoclastogenesis and bone resorption followed by inhibited osteolysis. In vivo activity of ALN + OA@NCs in the 4 T1 cell-induced tibia model rendered a reduced bone loss in the treated mice followed by restoring bone morphometric markers which were further corroborated bone-targeting effects of ALN + OA@NCs to reduce RANKL-stimulated osteoclastogenesis. Further, In vivo intravenous pharmacokinetics showed the improved therapeutic profile of the ALN + OA@NCs in comparison to the free drug, prolonging the levels of the drug in the systemic compartment by reducing the clearance culminating the higher accumulation at the tumor site. Our finding proposed that ALN + OA@NCs can effectively target and treat breast cancer metastasis to bone and its associated complications.
Collapse
Affiliation(s)
- Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anirban Sardar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandeep Urandur
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
50
|
Bokatyi AN, Dubashynskaya NV, Skorik YA. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr Polym 2024; 337:122145. [PMID: 38710553 DOI: 10.1016/j.carbpol.2024.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.
Collapse
Affiliation(s)
- Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|