1
|
Lin S, Han S, Wang X, Wang X, Shi X, He Z, Sun M, Sun J. Oral Microto-Nano Genome-Editing System Enabling Targeted Delivery and Conditional Activation of CRISPR-Cas9 for Gene Therapy of Inflammatory Bowel Disease. ACS NANO 2024; 18:25657-25670. [PMID: 39215751 DOI: 10.1021/acsnano.4c07750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The potent CRISPR-Cas9 technology can correct genes in human mutated cells to achieve the treatment of multiple diseases, but it lacks safe and effective delivery systems. Herein, we proposed an oral microto-nano genome-editing system aiming at the enteric excessive level of TNF-α for specific gene therapy of inflammatory bowel disease (IBD). This editing system facilitated the assembly of Cas9/sgRNA ribonucleoprotein (RNP) into nanoclusters (NCs) through the bridging of disulfide bonds. RNP-NCs were subsequently encapsulated within inflammatory cell-targeted lipopolysaccharide-deleted outer membrane vesicles (dOMVs) sourced from Escherichia coli Nissle 1917, which were further shielded by an outer layer of calcium alginate microspheres (CAMs). By leveraging the protection effect of CAMs, the oral administration system withstood gastric acid degradation upon entry into the stomach, achieving targeted delivery to the intestines with high efficiency. As the pH gradually rose, the microscale CAMs swelled and disintegrated, releasing nanoscale RNP-NCs encapsulated in dOMVs into the intestines. These RNP-NCs@dOMVs could traverse the mucosal barrier and target inflammatory macrophages where conditionally activated Cas9/sgRNA RNPs effectively perform genomic editing of TNF-α within the nucleus. Such oral microto-nano genome-editing systems represent a promising translational platform for the treatment of IBD.
Collapse
Affiliation(s)
- Sicen Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shuwen Han
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang313000, China
| | - Xu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinyue Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China
| |
Collapse
|
2
|
Dume B, Licarete E, Banciu M. Advancing cancer treatments: The role of oligonucleotide-based therapies in driving progress. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102256. [PMID: 39045515 PMCID: PMC11264197 DOI: 10.1016/j.omtn.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Although recent advancements in cancer immunology have resulted in the approval of numerous immunotherapies, minimal progress has been observed in addressing hard-to-treat cancers. In this context, therapeutic oligonucleotides, including interfering RNAs, antisense oligonucleotides, aptamers, and DNAzymes, have gained a central role in cancer therapeutic approaches due to their capacity to regulate gene expression and protein function with reduced toxicity compared with conventional chemotherapeutics. Nevertheless, systemic administration of naked oligonucleotides faces many extra- and intracellular challenges that can be overcome by using effective delivery systems. Thus, viral and non-viral carriers can improve oligonucleotide stability and intracellular uptake, enhance tumor accumulation, and increase the probability of endosomal escape while minimizing other adverse effects. Therefore, gaining more insight into fundamental mechanisms of actions of various oligonucleotides and the challenges posed by naked oligonucleotide administration, this article provides a comprehensive review of the recent progress on oligonucleotide delivery systems and an overview of completed and ongoing cancer clinical trials that can shape future oncological treatments.
Collapse
Affiliation(s)
- Bogdan Dume
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Moffa S, Carradori S, Melfi F, Fontana A, Ciulla M, Di Profio P, Aschi M, Wolicki RD, Pilato S, Siani G. Fine-tuning of membrane permeability by reversible photoisomerization of aryl-azo derivatives of thymol embedded in lipid nanoparticles. Colloids Surf B Biointerfaces 2024; 241:114043. [PMID: 38901266 DOI: 10.1016/j.colsurfb.2024.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Responsiveness of liposomes to external stimuli, such as light, should allow a precise spatial and temporal control of release of therapeutic agents or ion transmembrane transport. Here, some aryl-azo derivatives of thymol are synthesized and embedded into liposomes from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine to obtain light-sensitive membranes whose photo-responsiveness, release behaviour, and permeability towards Cl- ions are investigated. The hybrid systems are in-depth characterized by dynamic light scattering, atomic force microscopy and Raman spectroscopy. In liposomal bilayer the selected guests undergo reversible photoinduced isomerization upon irradiation with UV and visible light, alternately. Non-irradiated hybrid liposomes retain entrapped 5(6)-carboxyfluorescein (CF), slowing its spontaneous leakage, whereas UV-irradiation promotes CF release, due to guest trans-to-cis isomerization. Photoisomerization also influences membrane permeability towards Cl- ions. Data processing, according to first-order kinetics, demonstrates that Cl- transmembrane transport is enhanced by switching the guest from trans to cis but restored by back-switching the guest from cis to trans upon illumination with blue light. Finally, the passage of Cl- ions across the bilayer can be fine-tuned by irradiation with light of longer λ and different light-exposure times. Fine-tuning the photo-induced structural response of the liposomal membrane upon isomerization is a promising step towards effective photo-dynamic therapy.
Collapse
Affiliation(s)
- Samanta Moffa
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Simone Carradori
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Francesco Melfi
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Antonella Fontana
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy; UdA-TechLab, Research Center, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Michele Ciulla
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy; UdA-TechLab, Research Center, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Pietro Di Profio
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Massimiliano Aschi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, via Vetoio, Coppito, L'Aquila 67100, Italy
| | - Rafal Damian Wolicki
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Serena Pilato
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy; UdA-TechLab, Research Center, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy.
| | - Gabriella Siani
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy; UdA-TechLab, Research Center, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy.
| |
Collapse
|
4
|
Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol 2024. [PMID: 38773733 DOI: 10.1111/bph.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology.
Collapse
Affiliation(s)
- Simon D Brown
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eftychia Klimi
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
5
|
Zhu Y, Ma J, Shen R, Lin J, Li S, Lu X, Stelzel JL, Kong J, Cheng L, Vuong I, Yao ZC, Wei C, Korinetz NM, Toh WH, Choy J, Reynolds RA, Shears MJ, Cho WJ, Livingston NK, Howard GP, Hu Y, Tzeng SY, Zack DJ, Green JJ, Zheng L, Doloff JC, Schneck JP, Reddy SK, Murphy SC, Mao HQ. Screening for lipid nanoparticles that modulate the immune activity of helper T cells towards enhanced antitumour activity. Nat Biomed Eng 2024; 8:544-560. [PMID: 38082180 PMCID: PMC11162325 DOI: 10.1038/s41551-023-01131-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 10/15/2023] [Indexed: 06/09/2024]
Abstract
Lipid nanoparticles (LNPs) can be designed to potentiate cancer immunotherapy by promoting their uptake by antigen-presenting cells, stimulating the maturation of these cells and modulating the activity of adjuvants. Here we report an LNP-screening method for the optimization of the type of helper lipid and of lipid-component ratios to enhance the delivery of tumour-antigen-encoding mRNA to dendritic cells and their immune-activation profile towards enhanced antitumour activity. The method involves screening for LNPs that enhance the maturation of bone-marrow-derived dendritic cells and antigen presentation in vitro, followed by assessing immune activation and tumour-growth suppression in a mouse model of melanoma after subcutaneous or intramuscular delivery of the LNPs. We found that the most potent antitumour activity, especially when combined with immune checkpoint inhibitors, resulted from a coordinated attack by T cells and NK cells, triggered by LNPs that elicited strong immune activity in both type-1 and type-2 T helper cells. Our findings highlight the importance of optimizing the LNP composition of mRNA-based cancer vaccines to tailor antigen-specific immune-activation profiles.
Collapse
Affiliation(s)
- Yining Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jingyao Ma
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ruochen Shen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jinghan Lin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuyi Li
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoya Lu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica L Stelzel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiayuan Kong
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Leonardo Cheng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivan Vuong
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhi-Cheng Yao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Christine Wei
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole M Korinetz
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Wu Han Toh
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Choy
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rebekah A Reynolds
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Melanie J Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Won June Cho
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Natalie K Livingston
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gregory P Howard
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yizong Hu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald J Zack
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua C Doloff
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan P Schneck
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sashank K Reddy
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA.
- Department of Microbiology, University of Washington, Seattle, WA, USA.
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Steffes VM, Zhang Z, Ewert KK, Safinya CR. Cryo-TEM Reveals the Influence of Multivalent Charge and PEGylation on Shape Transitions in Fluid Lipid Assemblies: From Vesicles to Discs, Rods, and Spheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18424-18436. [PMID: 38051205 PMCID: PMC10799670 DOI: 10.1021/acs.langmuir.3c02664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Lipids, and cationic lipids in particular are of interest as delivery vectors for hydrophobic drugs such as the cancer therapeutic paclitaxel, and the structures of lipid assemblies affect their efficacy. We investigated the effect of incorporating the multivalent cationic lipid MVL5 (+5e) and poly(ethylene glycol)-lipids (PEG-lipids), alone and in combination, on the structure of fluid-phase lipid assemblies of the charge-neutral lipid 1,2-dioleoyl-sn-glycero-phosphocholine (DOPC). This allowed us to elucidate lipid-assembly structure correlations in sonicated formulations with high charge density, which are not accessible with univalent lipids such as the well-studied DOTAP (+1e). Cryogenic transmission electron microscopy (cryo-TEM) allowed us to determine the structure of the lipid assemblies, revealing diverse combinations of vesicles and disc-shaped, worm-like, and spherical micelles. Remarkably, MVL5 forms an essentially pure phase of disc micelles at 50 mol % MVL5. At a higher (75 mol %) content of MVL5, short- and intermediate-length worm-like micellar rods were observed, and in ternary mixtures with PEG-lipid, longer and highly flexible worm-like micelles formed. Independent of their length, the worm-like micelles coexisted with spherical micelles. In stark contrast, DOTAP forms mixtures of vesicles, disc micelles, and spherical micelles at all studied compositions, even when combined with PEG-lipids. The observed similarities and differences in the effects of charge (multivalent versus univalent) and high curvature (multivalent charge versus PEG-lipid) on the assembly structure provide insights into parameters that control the size of fluid lipid nanodiscs, relevant for future applications.
Collapse
Affiliation(s)
- Victoria M. Steffes
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Chemistry and Biochemistry Department, University of California, Santa Barbara, California 93106, USA
| | - Zhening Zhang
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
- Present Address: Biochemistry and Molecular Biophysics Department, Columbia University Medical Center, New York, NY 10032, USA
| | - Kai K. Ewert
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R. Safinya
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
7
|
Kasina V, Wahane A, Liu CH, Yang L, Nieh MP, Slack FJ, Bahal R. Next-generation poly-L-histidine formulations for miRNA mimic delivery. Mol Ther Methods Clin Dev 2023; 29:271-283. [PMID: 37123088 PMCID: PMC10133875 DOI: 10.1016/j.omtm.2023.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Many diseases, especially cancer, are caused by the abnormal expression of non-coding microRNAs (miRNAs), which regulate gene expression, leading to the development of miRNA-based therapeutics. Synthetic miRNA inhibitors have shown promising efficacy in blocking the activity of aberrant miRNAs that are upregulated in disease-specific pathologies. On the other hand, miRNAs that aid in preventing certain diseases and are reduced in expression in the disease state need different strategies. To tackle this, miRNA mimics, which mimic the activity of endogenous miRNAs, can be delivered for those miRNAs downregulated in different disease states. However, the delivery of miRNA mimics remains a challenge. Here, we report a cationic polylactic-co-glycolic acid (PLGA)-poly-L-histidine delivery system to deliver miRNA mimics. We chose miR-34a mimics as a proof of concept for miRNA delivery. miR-34a-loaded PLGA-poly-L-histidine nanoparticles (NPs) were formulated and biophysically characterized to analyze the structural properties of miRNA mimic-loaded NPs. In vitro efficacy was determined by investigating miR-34a and downstream target levels and performing cell viability and apoptosis assays. We confirmed in vivo efficacy through prolonged survival of miR-34a NP-treated A549-derived xenograft mice treated intratumorally. The results of these studies establish PLGA-poly-L-histidine NPs as an effective delivery system for miRNA mimics for treating diseases characterized by downregulated miRNAs.
Collapse
Affiliation(s)
- Vishal Kasina
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Aniket Wahane
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Chung-Hao Liu
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Frank J. Slack
- Department of Pathology, HMS Initiative for RNA Medicine, BIDMC Cancer Center, Harvard Medical School, Boston, MA 02215, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
8
|
Gupta R, Salave S, Rana D, Karunakaran B, Butreddy A, Benival D, Kommineni N. Versatility of Liposomes for Antisense Oligonucleotide Delivery: A Special Focus on Various Therapeutic Areas. Pharmaceutics 2023; 15:1435. [PMID: 37242677 PMCID: PMC10222274 DOI: 10.3390/pharmaceutics15051435] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Nucleic acid therapeutics, specifically antisense oligonucleotides (ASOs), can effectively modulate gene expression and protein function, leading to long-lasting curative effects. The hydrophilic nature and large size of oligonucleotides present translational challenges, which have led to the exploration of various chemical modifications and delivery systems. The present review provides insights into the potential role of liposomes as a drug delivery system for ASOs. The potential benefits of liposomes as an ASO carrier, along with their method of preparation, characterization, routes of administration, and stability aspects, have been thoroughly discussed. A novel perspective in terms of therapeutic applications of liposomal ASO delivery in several diseases such as cancer, respiratory disease, ophthalmic delivery, infectious diseases, gastrointestinal disease, neuronal disorders, hematological malignancies, myotonic dystrophy, and neuronal disorders remains the major highlights of this review.
Collapse
Affiliation(s)
- Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
9
|
Sufian MA, Ilies MA. Lipid-based nucleic acid therapeutics with in vivo efficacy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1856. [PMID: 36180107 PMCID: PMC10023279 DOI: 10.1002/wnan.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 03/09/2023]
Abstract
Synthetic vectors for therapeutic nucleic acid delivery are currently competing significantly with their viral counter parts due to their reduced immunogenicity, large payload capacity, and ease of manufacture under GMP-compliant norms. The approval of Onpattro, a lipid-based siRNA therapeutic, and the proven clinical success of two lipid-based COVID-19 vaccines from Pfizer-BioNTech, and Moderna heralded the specific advantages of lipid-based systems among all other synthetic nucleic acid carriers. Lipid-based systems with diverse payloads-plasmid DNA (pDNA), antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA), small activating RNA (saRNA), and messenger RNA (mRNA)-are now becoming a mature technology, with growing impact in the clinic. Research over four decades identified the key factors determining the therapeutic success of these multi-component systems. Here, we discuss the main nucleic acid-based technologies, presenting their mechanism of action, delivery barriers facing them, the structural properties of the payload as well as the component lipids that regulate physicochemical properties, pharmacokinetics and biodistribution, efficacy, and toxicity of the resultant nanoparticles. We further detail on the formulation parameters, evolution of the manufacturing techniques that generate reproducible and scalable outputs, and key manufacturing aspects that enable control over physicochemical properties of the resultant particles. Preclinical applications of some of these formulations that were successfully translated from in vitro studies to animal models are subsequently discussed. Finally, clinical success and failure of these systems starting from 1993 to present are highlighted, in a holistic literature review focused on lipid-based nucleic acid delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Md Abu Sufian
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Marc A. Ilies
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
10
|
Xu H, Chang J, Wu H, Wang H, Xie W, Li Y, Li X, Zhang Y, Fan L. Carbon Dots with Guanidinium and Amino Acid Functional Groups for Targeted Small Interfering RNA Delivery toward Tumor Gene Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207204. [PMID: 36840641 DOI: 10.1002/smll.202207204] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Small interfering RNA (siRNA)-based gene therapy represents a promising strategy for tumor treatment. Novel gene vectors that can achieve targeted delivery of siRNA to the tumor cells without causing any side effects are urgently needed. To this end, the large amino acid mimicking carbon dots with guanidinium functionalization (LAAM GUA-CDs) are designed and synthesized by choosing arginine and dopamine hydrochloride as precursors. LAAM GUA-CDs can load siRNA through the multiple hydrogen bonds between their guanidinium groups and phosphate groups in siRNA. Meanwhile, the amino acid groups at the edges of LAAM GUA-CDs endow them the capacity to target tumors. After loading siBcl-2 as a therapeutic agent, LAAM GUA-CDs/siBcl-2 has a high tumor inhibition rate of up to 68%, which is twice more than that of commercial Lipofectamine 2000. Furthermore, LAAM GUA-CDs do not cause side effect during antitumor treatment owing to their high tumor-targeting ability, thus providing a versatile strategy for tumor-targeted siRNA delivery and cancer therapy.
Collapse
Affiliation(s)
- Huimin Xu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jianqiao Chang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hao Wu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China
| | - Haoyu Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wenjing Xie
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
11
|
Amir S, Arathi A, Reshma S, Mohanan PV. Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review. Int J Biol Macromol 2023; 235:123784. [PMID: 36822284 DOI: 10.1016/j.ijbiomac.2023.123784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Microfluidics is a revolutionary technology that has promising applications in the biomedical field.Integrating microfluidic technology with the traditional assays unravels the innumerable possibilities for translational biomedical research. Microfluidics has the potential to build up a novel platform for diagnosis and therapy through precise manipulation of fluids and enhanced throughput functions. The developments in microfluidics-based devices for diagnostics have evolved in the last decade and have been established for their rapid, effective, accurate and economic advantages. The efficiency and sensitivity of such devices to detect disease-specific macromolecules like proteins and nucleic acids have made crucial impacts in disease diagnosis. The disease modelling using microfluidic systems provides a more prominent replication of the in vivo microenvironment and can be a better alternative for the existing disease models. These models can replicate critical microphysiology like the dynamic microenvironment, cellular interactions, and biophysical and biochemical cues. Microfluidics also provides a promising system for high throughput drug screening and delivery applications. However, microfluidics-based diagnostics still encounter related challenges in the reliability, real-time monitoring and reproducibility that circumvents this technology from being impacted in the healthcare industry. This review highlights the recent microfluidics developments for modelling and diagnosing common diseases, including cancer, neurological, cardiovascular, respiratory and autoimmune disorders, and its applications in drug development.
Collapse
Affiliation(s)
- S Amir
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - S Reshma
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
12
|
Nanomedicine based strategies for oligonucleotide traversion across the blood-brain barrier. J Control Release 2023; 354:554-571. [PMID: 36649742 DOI: 10.1016/j.jconrel.2023.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Neurological disorders are considered the most prominent cause of disability worldwide. The major hurdle in the management of neurological disorders is the existence of the blood-brain barrier (BBB), which hinders the entry of several therapeutic moieties. In recent years, oligonucleotides have gained tremendous attention for their target specificity, diminished dose and adverse effects, thereby halting disease progression. However, enzymatic degradation, rapid clearance, limited circulation and availability at the bio-active site, etc., limit its clinical translation. Nanomedicine has opened up a breadth of opportunities in the delivery of oligonucleotides across the BBB. This review addresses the pitfalls associated with oligonucleotide delivery in traversing the BBB via nanotherapeutics for the management of brain disorders. Regulatory perspectives pertaining to hastening the clinical translation of oligonucleotide-loaded nanocarriers for brain delivery have been highlighted.
Collapse
|
13
|
Partoazar A, Kianvash N, Goudarzi R. New concepts in wound targeting through liposome-based nanocarriers (LBNs). J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Li Y, Jiang X, Luo T, Xia J, Lee MJ, Weichselbaum RR, Lin W. TLR3 agonist nanoscale coordination polymer synergizes with immune checkpoint blockade for immunotherapy of cancer. Biomaterials 2022; 290:121831. [DOI: 10.1016/j.biomaterials.2022.121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
|
15
|
Thakur S, Sinhari A, Jain P, Jadhav HR. A perspective on oligonucleotide therapy: Approaches to patient customization. Front Pharmacol 2022; 13:1006304. [PMID: 36339619 PMCID: PMC9626821 DOI: 10.3389/fphar.2022.1006304] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/05/2022] [Indexed: 09/12/2023] Open
Abstract
It is estimated that the human genome encodes 15% of proteins that are considered to be disease-modifying. Only 2% of these proteins possess a druggable site that the approved clinical candidates target. Due to this disparity, there is an immense need to develop therapeutics that may better mitigate the disease or disorders aroused by non-druggable and druggable proteins or enzymes. The recent surge in approved oligonucleotide therapeutics (OT) indicates the imminent potential of these therapies. Oligonucleotide-based therapeutics are of intermediate size with much-improved selectivity towards the target and fewer off-target effects than small molecules. The OTs include Antisense RNAs, MicroRNA (MIR), small interfering RNA (siRNA), and aptamers, which are currently being explored for their use in neurodegenerative disorders, cancer, and even orphan diseases. The present review is a congregated effort to present the past and present of OTs and the current efforts to make OTs for plausible future therapeutics. The review provides updated literature on the challenges and bottlenecks of OT and recent advancements in OT drug delivery. Further, this review deliberates on a newly emerging approach to personalized treatment for patients with rare and fatal diseases with OT.
Collapse
Affiliation(s)
- Shikha Thakur
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, RJ, India
| | - Apurba Sinhari
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, RJ, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Hemant R. Jadhav
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, RJ, India
| |
Collapse
|
16
|
Eliason S, Hong L, Sweat Y, Chalkley C, Cao H, Liu Q, Qi H, Xu H, Zhan F, Amendt BA. Extracellular vesicle expansion of PMIS-miR-210 expression inhibits colorectal tumour growth via apoptosis and an XIST/NME1 regulatory mechanism. Clin Transl Med 2022; 12:e1037. [PMID: 36116139 PMCID: PMC9482803 DOI: 10.1002/ctm2.1037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has a high mortality rate, and therapeutic approaches to treat these cancers are varied and depend on the metabolic state of the tumour. Profiles of CRC tumours have identified several biomarkers, including microRNAs. microRNA-210 (miR-210) levels are directly correlated with CRC survival. miR-210 expression is higher in metastatic colon cancer cells versus non-metastatic and normal colon epithelium. Therefore, efficient methods to inhibit miR-210 expression in CRC may provide new advances in treatments. METHODS Expression of miRs was determined in several metastatic and non-metastatic cell lines. miR-210 expression was inhibited using PMIS-miR-210 in transduced cells, which were transplanted into xenograft mice. In separate experiments, CRC tumours were allowed to grow in xenograft mice and treated with therapeutic injections of PMIS-miR-210. Molecular and biochemical experiments identified several new pathways targeted by miR-210 inhibition. RESULTS miR-210 inhibition can significantly reduce tumour growth of implanted colon cancer cells in xenograft mouse models. The direct administration of PMIS-miR-210 to existing tumours can inhibit tumour growth in both NSG and Foxn1nu/j mouse models and is more efficacious than capecitabine treatments. Tumour cells further transfer the PMIS-miR-210 inhibitor to neighbouring cells by extracellular vesicles to inhibit miR-210 throughout the tumour. miR-210 inhibition activates the cleaved caspase 3 apoptotic pathway to reduce tumour formation. We demonstrate that the long non-coding transcript XIST is regulated by miR-210 correlating with decreased XIST expression in CRC tumours. XIST acts as a competing endogenous RNA for miR-210, which reduces XIST levels and miR-210 inhibition increases XIST transcripts in the nucleus and cytoplasm. The increased expression of NME1 is associated with H3K4me3 and H3K27ac modifications in the NME1 proximal promoter by XIST. CONCLUSION Direct application of the PMIS-miR-210 inhibitor to growing tumours may be an effective colorectal cancer therapeutic.
Collapse
Affiliation(s)
- Steven Eliason
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Liu Hong
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| | - Yan Sweat
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Camille Chalkley
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Huojun Cao
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| | - Qi Liu
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Hank Qi
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Hongwei Xu
- Department of Internal MedicineUniversity of Arkansas for Medical ScienceLittle RockArkansasUSA
| | - Fenghuang Zhan
- Department of Internal MedicineUniversity of Arkansas for Medical ScienceLittle RockArkansasUSA
| | - Brad A. Amendt
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| |
Collapse
|
17
|
Zhu Y, Shen R, Vuong I, Reynolds RA, Shears MJ, Yao ZC, Hu Y, Cho WJ, Kong J, Reddy SK, Murphy SC, Mao HQ. Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expression. Nat Commun 2022; 13:4282. [PMID: 35879315 PMCID: PMC9310361 DOI: 10.1038/s41467-022-31993-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Lipid nanoparticles hold great potential as an effective non-viral vector for nucleic acid-based gene therapy. Plasmid DNA delivery can result in extended transgene expression compared to mRNA-based technologies, yet there is a lack of systematic investigation into lipid nanoparticle compositions for plasmid DNA delivery. Here, we report a multi-step screening platform to identify optimized plasmid DNA lipid nanoparticles for liver-targeted transgene expression. To achieve this, we analyze the role of different helper lipids and component ratios in plasmid DNA lipid nanoparticle-mediated gene delivery in vitro and in vivo. Compared to mRNA LNPs and in vivo-jetPEI/DNA nanoparticles, the identified plasmid DNA lipid nanoparticles successfully deliver transgenes and mediate prolonged expression in the liver following intravenous administration in mice. By addressing different physiological barriers in a stepwise manner, this screening platform can efficiently down select effective lipid nanoparticle candidates from a lipid nanoparticle library of over 1000 formulations. In addition, we substantially extend the duration of plasmid DNA nanoparticle-mediated transgene expression using a DNA/siRNA co-delivery approach that targets transcription factors regulating inflammatory response pathways. This lipid nanoparticle-based co-delivery strategy further highlights the unique advantages of an extended transgene expression profile using plasmid DNA delivery and offers new opportunities for DNA-based gene medicine applications. Plasmid DNA offers extended transgene expression duration compared to mRNA technologies. Here, using a multi-step screening platform, the authors report the best performing nanoparticle formulations for liver-targeted plasmid DNA expression in vivo.
Collapse
Affiliation(s)
- Yining Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruochen Shen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivan Vuong
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebekah A Reynolds
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Melanie J Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Zhi-Cheng Yao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yizong Hu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Won June Cho
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jiayuan Kong
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sashank K Reddy
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA. .,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA. .,Department of Microbiology, University of Washington, Seattle, WA, USA. .,Seattle Malaria Clinical Trials Center, Fred Hutch Cancer Research Center, Seattle, WA, USA.
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA. .,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
18
|
Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis 2022; 13:644. [PMID: 35871216 PMCID: PMC9308039 DOI: 10.1038/s41419-022-05075-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/21/2023]
Abstract
The growing understanding of RNA functions and their crucial roles in diseases promotes the application of various RNAs to selectively function on hitherto "undruggable" proteins, transcripts and genes, thus potentially broadening the therapeutic targets. Several RNA-based medications have been approved for clinical use, while others are still under investigation or preclinical trials. Various techniques have been explored to promote RNA intracellular trafficking and metabolic stability, despite significant challenges in developing RNA-based therapeutics. In this review, the mechanisms of action, challenges, solutions, and clinical application of RNA-based therapeutics have been comprehensively summarized.
Collapse
Affiliation(s)
- Yiran Zhu
- grid.13402.340000 0004 1759 700XLaboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| | - Liyuan Zhu
- grid.13402.340000 0004 1759 700XLaboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| | - Xian Wang
- grid.13402.340000 0004 1759 700XDepartment of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| | - Hongchuan Jin
- grid.13402.340000 0004 1759 700XLaboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| |
Collapse
|
19
|
Nanomaterial-Based Drug Delivery System Targeting Lymph Nodes. Pharmaceutics 2022; 14:pharmaceutics14071372. [PMID: 35890268 PMCID: PMC9325242 DOI: 10.3390/pharmaceutics14071372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays an indispensable role in humoral balance, lipid metabolism, and immune regulation. The lymph nodes (LNs) are known as the primary sites of tumor metastasis and the metastatic LNs largely affected the prognosis of the patiens. A well-designed lymphatic-targeted system favors disease treatment as well as vaccination efficacy. In recent years, development of nanotechnologies and emerging biomaterials have gained increasing attention in developing lymph-node-targeted drug-delivery systems. By mimicking the endogenous macromolecules or lipid conjugates, lymph-node-targeted nanocarries hold potential for disease diagnosis and tumor therapy. This review gives an introduction to the physiological functions of LNs and the roles of LNs in diseases, followed by a review of typical lymph-node-targeted nanomaterial-based drug-delivery systems (e.g., liposomes, micelles, inorganic nanomaterials, hydrogel, and nanocapsules). Future perspectives and conclusions concerned with lymph-node-targeted drug-delivery systems are also provided.
Collapse
|
20
|
Blevins HM, Xu Y, Biby S, Zhang S. The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front Aging Neurosci 2022; 14:879021. [PMID: 35754962 PMCID: PMC9226403 DOI: 10.3389/fnagi.2022.879021] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The NLRP3 inflammasome is a multiprotein complex that plays a pivotal role in regulating the innate immune system and inflammatory signaling. Upon activation by PAMPs and DAMPs, NLRP3 oligomerizes and activates caspase-1 which initiates the processing and release of pro-inflammatory cytokines IL-1β and IL-18. NLRP3 is the most extensively studied inflammasome to date due to its array of activators and aberrant activation in several inflammatory diseases. Studies using small molecules and biologics targeting the NLRP3 inflammasome pathway have shown positive outcomes in treating various disease pathologies by blocking chronic inflammation. In this review, we discuss the recent advances in understanding the NLRP3 mechanism, its role in disease pathology, and provide a broad review of therapeutics discovered to target the NLRP3 pathway and their challenges.
Collapse
Affiliation(s)
| | | | | | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
21
|
Garcia CR, Rad AT, Saeedinejad F, Manojkumar A, Roy D, Rodrigo H, Chew SA, Rahman Z, Nieh MP, Roy U. Effect of drug-to-lipid ratio on nanodisc-based tenofovir drug delivery to the brain for HIV-1 infection. Nanomedicine (Lond) 2022; 17:959-978. [PMID: 35642549 PMCID: PMC9583757 DOI: 10.2217/nnm-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Combination antiretroviral therapy has significantly advanced HIV-1 infection treatment. However, HIV-1 remains persistent in the brain; the inaccessibility of the blood–brain barrier allows for persistent HIV-1 infections and neuroinflammation. Nanotechnology-based drug carriers such as nanodiscoidal bicelles can provide a solution to combat this challenge. Methods This study investigated the safety and extended release of a combination antiretroviral therapy drug (tenofovir)-loaded nanodiscs for HIV-1 treatment in the brain both in vitro and in vivo. Result The nanodiscs entrapped the drug in their interior hydrophobic core and released the payload at the desired location and in a controlled release pattern. The study also included a comparative pharmacokinetic analysis of nanodisc formulations in in vitro and in vivo models. Conclusion The study provides potential applications of nanodiscs for HIV-1 therapy development.
Collapse
Affiliation(s)
- Caroline R Garcia
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Armin T Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Polymer Program, Institute of Materials Sciences, University of Connecticut, Storrs, CT 06269, USA.,Encapsulate, University of Connecticut Technology Incubation Program, Farmington, CT 06032, USA
| | - Farnoosh Saeedinejad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Polymer Program, Institute of Materials Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Arvind Manojkumar
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Deepa Roy
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Hansapani Rodrigo
- Department of Mathematical & Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Sue Anne Chew
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Ziyaur Rahman
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Mu-Ping Nieh
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Polymer Program, Institute of Materials Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Upal Roy
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
22
|
Size-tunable PEG-grafted copolymers as a polymeric nanoruler for passive targeting muscle tissues. J Control Release 2022; 347:607-614. [PMID: 35613686 DOI: 10.1016/j.jconrel.2022.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022]
Abstract
Muscle-targeted drug delivery is a major challenge in nanomedicine. The extravasation of nanomedicines (or nanoparticles) from the bloodstream into muscle tissues is hindered by the continuous endothelium, the so-called blood-muscle barrier. This study aimed to evaluate the optimal size of macromolecular drugs for extravasation (or passive targeting) into muscle tissues. We constructed a size-tunable polymeric delivery platform as a polymeric nanoruler by grafting poly(ethylene glycol)s (PEGs) onto the poly(aspartic acid) (PAsp) backbone. A series of PEG-grafted copolymers (gPEGs) with a narrow size distribution between 11 and 32 nm in hydrodynamic diameter (DH) were prepared by changing the molecular weight of the PEGs. Biodistribution analyses revealed that accumulation amounts of gPEGs in the muscle tissues of normal mice tended to decrease above their size of ~15 nm (or ~ 11 nm for the heart). The gPEGs accumulated in the skeletal muscles of Duchenne muscular dystrophy model mice (mdx mice) at a 2-3-fold higher level than in the skeletal muscles of normal mice. At the same time, there was a reduced accumulation of gPEGs in the spleen and liver. Intravital confocal laser scanning microscopy and immunohistochemical analysis showed extravasation and locally enhanced accumulation of gPEGs in the skeletal muscle of mdx mice. This study outlined the pivotal role of macromolecular drug size in muscle-targeted drug delivery and demonstrated the enhanced permeability of 11-32 nm-sized macromolecular drugs in mdx mice.
Collapse
|
23
|
In Vitro CRISPR/Cas9 Transfection and Gene-Editing Mediated by Multivalent Cationic Liposome-DNA Complexes. Pharmaceutics 2022; 14:pharmaceutics14051087. [PMID: 35631673 PMCID: PMC9143451 DOI: 10.3390/pharmaceutics14051087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease 9 (Cas9) gene-editing offers exciting new therapeutic possibilities for disease treatment with a genetic etiology such as cancer, cardiovascular, neuronal, and immune disorders. However, its clinical translation is being hampered by the lack of safe, versatile, and effective nonviral delivery systems. Herein we report on the preparation and application of two cationic liposome−DNA systems (i.e., lipoplexes) for CRISPR/Cas9 gene delivery. For that purpose, two types of cationic lipids are used (DOTAP, monovalent, and MVL5, multivalent with +5e nominal charge), along with three types of helper lipids (DOPC, DOPE, and monoolein (GMO)). We demonstrated that plasmids encoding Cas9 and single-guide RNA (sgRNA), which are typically hard to transfect due to their large size (>9 kb), can be successfully transfected into HEK 293T cells via MVL5-based lipoplexes. In contrast, DOTAP-based lipoplexes resulted in very low transfection rates. MVL5-based lipoplexes presented the ability to escape from lysosomes, which may explain the superior transfection efficiency. Regarding gene editing, MVL5-based lipoplexes achieved promising GFP knockout levels, reaching rates of knockout superior to 35% for charge ratios (+/−) of 10. Despite the knockout efficiency being comparable to that of Lipofectamine 3000® commercial reagent, the non-specific gene knockout is more pronounced in MVL5-based formulations, probably resulting from the considerable cytotoxicity of these formulations. Altogether, these results show that multivalent lipid-based lipoplexes are promising CRISPR/Cas9 plasmid delivery vehicles, which by further optimization and functionalization may become suitable in vivo delivery systems.
Collapse
|
24
|
Zhang YN, Hou X, Piao J, Yuan W, Zhou BN, Zhao X, Hao Z, Zhuang Y, Xu L, Dong Y, Liu D. Delivery and Controllable Release of Anti-Sense DNA Based on Frame-Guided Assembly Strategy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Vetter VC, Wagner E. Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes. J Control Release 2022; 346:110-135. [PMID: 35436520 DOI: 10.1016/j.jconrel.2022.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
The current medical reality of cancer gene therapy is reflected by more than ten approved products on the global market, including oncolytic and other viral vectors and CAR T-cells as ex vivo gene-modified cell therapeutics. The development of synthetic antitumoral nucleic acid therapeutics has been proceeding at a lower but steady pace, fueled by a plethora of alternative nucleic acid platforms (from various antisense oligonucleotides, siRNA, microRNA, lncRNA, sgRNA, to larger mRNA and DNA) and several classes of physical and chemical delivery technologies. This review summarizes the challenges and strategies for tumor-targeted nucleic acid delivery. Focusing primarily on polyplexes (polycation complexes) as nanocarriers, delivery options across multiple barriers into tumor cells are illustrated.
Collapse
Affiliation(s)
- Victoria C Vetter
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität, Munich 81377, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany.
| |
Collapse
|
26
|
Xu Z, Wang Q, Zhong H, Jiang Y, Shi X, Yuan B, Yu N, Zhang S, Yuan X, Guo S, Yang Y. Carrier strategies boost the application of CRISPR/Cas system in gene therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210081. [PMID: 37323878 PMCID: PMC10190933 DOI: 10.1002/exp.20210081] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023]
Abstract
Emerging clustered regularly interspaced short palindromic repeat/associated protein (CRISPR/Cas) genome editing technology shows great potential in gene therapy. However, proteins and nucleic acids suffer from enzymatic degradation in the physiological environment and low permeability into cells. Exploiting carriers to protect the CRISPR system from degradation, enhance its targeting of specific tissues and cells, and reduce its immunogenicity is essential to stimulate its clinical applications. Here, the authors review the state-of-the-art CRISPR delivery systems and their applications, and describe strategies to improve the safety and efficacy of CRISPR mediated genome editing, categorized by three types of cargo formats, that is, Cas: single-guide RNA ribonucleoprotein, Cas mRNA and single-guide RNA, and Cas plasmid expressing CRISPR/Cas systems. The authors hope this review will help develop safe and efficient nanomaterial-based carriers for CRISPR tools.
Collapse
Affiliation(s)
- Zunkai Xu
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation CenterChengduChina
| | - Haiping Zhong
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Yaoyao Jiang
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Xiaoguang Shi
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Bo Yuan
- School of MedicineNankai UniversityTianjinChina
- Tianjin Key Laboratory of Ophthalmology and Visual ScienceTianjin Eye InstituteTianjin Eye HospitalTianjinChina
| | - Na Yu
- Translational Medicine CenterKey Laboratory of Molecular Target & Clinical PharmacologySchool of Pharmaceutical Sciences and The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of EducationDalian Minzu UniversityDalianChina
| | - Xiaoyong Yuan
- Tianjin Key Laboratory of Ophthalmology and Visual ScienceTianjin Eye InstituteTianjin Eye HospitalTianjinChina
- Clinical College of OphthalmologyTianjin Medical UniversityTianjinChina
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation CenterChengduChina
| |
Collapse
|
27
|
Zhang Y, Yang N, Huang X, Zhu Y, Gao S, Liu Z, Cao F, Wang Y. Melatonin Engineered Adipose-Derived Biomimetic Nanovesicles Regulate Mitochondrial Functions and Promote Myocardial Repair in Myocardial Infarction. Front Cardiovasc Med 2022; 9:789203. [PMID: 35402545 PMCID: PMC8985816 DOI: 10.3389/fcvm.2022.789203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction (MI), one type of ischemic heart disease, is a major cause of disability and mortality worldwide. Currently, extracellular vesicles (EVs) derived from adipose-derived stem cells (ADSC) have been proven to be a potentially promising therapeutic treatment for MI. However, the inconvenience of isolation, the low productivity, and the high cost of EVs greatly limits their application in clinic. In this study, we constructed novel biomimetic ADSC-derived nanovesicles (ADSC NVs) to achieve cell-free therapy for MI. Here, we firstly developed a novel Mel@NVs delivery system consisting of engineered ADSC NVs with melatonin (Mel). Then, the characterization and properties of Mel@NVs were performed. The effect of Mel@NVs on cellular oxidative stress and myocardial infarction repair was conducted. The results showed that Mel@NVs treatment under ischemia mimic condition reduced cell apoptosis from 42.59 ± 2.69% to 13.88 ± 1.77%. Moreover, this novel engineered Mel@NVs could ameliorate excessive ROS generation, promote microvessel formation, and attenuate cardiac fibrosis, which further alleviates mitochondrial dysfunction and finally enhance myocardial repair. Hence, the engineered NVs show a potential strategy for MI therapy.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital and Medical School of Chinese People's Liberation Army, Beijing, China
| | - Ning Yang
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital and Medical School of Chinese People's Liberation Army, Beijing, China
| | - Xu Huang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yan Zhu
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital and Medical School of Chinese People's Liberation Army, Beijing, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Shan Gao
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital and Medical School of Chinese People's Liberation Army, Beijing, China
| | - Zhongyang Liu
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital and Medical School of Chinese People's Liberation Army, Beijing, China
- Feng Cao
| | - Yabin Wang
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital and Medical School of Chinese People's Liberation Army, Beijing, China
- *Correspondence: Yabin Wang
| |
Collapse
|
28
|
Honcharenko D, Rocha CSJ, Lundin KE, Maity J, Milton S, Tedebark U, Murtola M, Honcharenko M, Slaitas A, Smith CIE, Zain R, Strömberg R. 2'- O-( N-(Aminoethyl)carbamoyl)methyl Modification Allows for Lower Phosphorothioate Content in Splice-Switching Oligonucleotides with Retained Activity. Nucleic Acid Ther 2022; 32:221-233. [PMID: 35238623 PMCID: PMC9221157 DOI: 10.1089/nat.2021.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
2′-O-(N-(Aminoethyl)carbamoyl)methyl (2′-O-AECM)-modified oligonucleotides (ONs) and their mixmers with 2′-O-methyl oligonucleotides (2′-OMe ONs) with phosphodiester linkers as well as with partial and full phosphorothioate (PS) inclusion were synthesized and functionally evaluated as splice-switching oligonucleotides in several different reporter cell lines originating from different tissues. This was enabled by first preparing the AECM-modified A, C, G and U, which required a different strategy for each building block. The AECM modification has previously been shown to provide high resistance to enzymatic degradation, even without PS linkages. It is therefore particularly interesting and unprecedented that the 2′-O-AECM ONs are shown to have efficient splice-switching activity even without inclusion of PS linkages and found to be as effective as 2′-OMe PS ONs. Importantly, the PS linkages can be partially included, without any significant reduction in splice-switching efficacy. This suggests that AECM modification has the potential to be used in balancing the PS content of ONs. Furthermore, conjugation of 2′-O-AECM ONs to an endosomal escape peptide significantly increased splice-switching suggesting that this effect could possibly be due to an increase in uptake of ON to the site of action.
Collapse
Affiliation(s)
- Dmytro Honcharenko
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cristina S J Rocha
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Jyotirmoy Maity
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Stefan Milton
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ulf Tedebark
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Merita Murtola
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | | | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden.,Department of Clinical Genetics, Center for Rare Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
29
|
Pierce JB, Zhou H, Simion V, Feinberg MW. Long Noncoding RNAs as Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:161-175. [PMID: 35220570 DOI: 10.1007/978-3-030-92034-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical regulators of cellular functions including maintenance of cellular homeostasis as well as the onset and progression of disease. LncRNAs often exhibit cell-, tissue-, and disease-specific expression patterns, making them desirable therapeutic targets. LncRNAs are commonly targeted using oligonucleotide therapeutics, and advances in oligonucleotide chemistry including C2 ribose sugar modifications such as 2'-fluoro, 2'-O-methyl, and 2-O-methoxyethyl modifications; 2'4'-constrained nucleotides such as locked nucleic acids and constrained 2'-O-ethyl (cEt) nucleotides; and phosphorothioate bonds have dramatically improved efficacy of oligonucleotide therapies. Novel delivery platforms such as viral vectors and nanoparticles have also improved pharmacokinetic properties of oligonucleotides targeting lncRNAs. Accumulating pre-clinical studies have utilized these strategies to therapeutically target lncRNAs and alter progression of many different disease states including Snhg12 and Chast in cardiovascular disease, Mirt2 and HOTTIP in sepsis and autoimmune disease, and Malat1 and HOXB-AS3 in cancer. Emerging oligonucleotide conjugation methods including the use of peptide nucleic acids hold promise to facilitate targeting to specific tissue types. Here, we review recent advances in lncRNA therapeutics and provide examples of how lncRNAs have been successfully targeted in pre-clinical models of disease. Finally, we detail remaining challenges facing the lncRNA field and how advances in delivery platforms and oligonucleotide chemistry might help overcome these barriers to catalyze the translation of pre-clinical studies to successful pharmaceutical development.
Collapse
Affiliation(s)
- Jacob B Pierce
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Haoyang Zhou
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Viorel Simion
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Su FY, Zhao QH, Dahotre SN, Gamboa L, Bawage SS, Silva Trenkle AD, Zamat A, Phuengkham H, Ahmed R, Santangelo PJ, Kwong GA. In vivo mRNA delivery to virus-specific T cells by light-induced ligand exchange of MHC class I antigen-presenting nanoparticles. SCIENCE ADVANCES 2022; 8:eabm7950. [PMID: 35196075 PMCID: PMC8865765 DOI: 10.1126/sciadv.abm7950] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/25/2022] [Indexed: 05/06/2023]
Abstract
Simultaneous delivery of mRNA to multiple populations of antigen (Ag)-specific CD8+ T cells is challenging given the diversity of peptide epitopes and polymorphism of class I major histocompatibility complexes (MHCI). We developed Ag-presenting nanoparticles (APNs) for mRNA delivery using pMHCI molecules that were refolded with photocleavable peptides to allow rapid ligand exchange by UV light and site-specifically conjugated with a lipid tail for postinsertion into preformed mRNA lipid nanoparticles. Across different TCR transgenic mouse models (P14, OT-1, and Pmel), UV-exchanged APNs bound and transfected their cognate Ag-specific CD8+ T cells equivalent to APNs produced using conventionally refolded pMHCI molecules. In mice infected with PR8 influenza, multiplexed delivery of UV-exchanged APNs against three immunodominant epitopes led to ~50% transfection of a VHH mRNA reporter in cognate Ag-specific CD8+ T cells. Our data show that UV-mediated peptide exchange can be used to rapidly produce APNs for mRNA delivery to multiple populations of Ag-specific T cells in vivo.
Collapse
Affiliation(s)
- Fang-Yi Su
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Qingyang Henry Zhao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Shreyas N. Dahotre
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Lena Gamboa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Swapnil Subhash Bawage
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Aaron D. Silva Trenkle
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Ali Zamat
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Hathaichanok Phuengkham
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Philip J. Santangelo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Gabriel A. Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Georgia ImmunoEngineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
31
|
Aliahmad P, Miyake-Stoner SJ, Geall AJ, Wang NS. Next generation self-replicating RNA vectors for vaccines and immunotherapies. Cancer Gene Ther 2022:10.1038/s41417-022-00435-8. [PMID: 35194198 PMCID: PMC8861484 DOI: 10.1038/s41417-022-00435-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 01/06/2023]
Abstract
RNA technology has recently come to the forefront of innovative medicines and is being explored for a wide range of therapies, including prophylactic and therapeutic vaccines, biotherapeutic protein expression and gene therapy. In addition to conventional mRNA platforms now approved for prophylactic SARS-CoV2 vaccines, synthetic self-replicating RNA vaccines are currently being evaluated in the clinic for infectious disease and oncology. The prototypical srRNA vectors in clinical development are derived from alphaviruses, specifically Venezuelan Equine Encephalitis Virus (VEEV). While non-VEEV alphaviral strains have been explored as single cycle viral particles, their use as synthetic vectors largely remains under-utilized in clinical applications. Here we describe the potential commonalities and differences in synthetic alphaviral srRNA vectors in host cell interactions, immunogenicity, cellular delivery, and cargo expression. Thus, unlike the current thinking that VEEV-based srRNA is a one-size-fits-all platform, we argue that a new drug development approach leveraging panels of customizable, synthetic srRNA vectors will be required for clinical success.
Collapse
|
32
|
OUP accepted manuscript. Med Mycol 2022; 60:6576775. [DOI: 10.1093/mmy/myac030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 04/29/2022] [Indexed: 11/14/2022] Open
|
33
|
Wu L, Zhou W, Lin L, Chen A, Feng J, Qu X, Zhang H, Yue J. Delivery of therapeutic oligonucleotides in nanoscale. Bioact Mater 2022; 7:292-323. [PMID: 34466734 PMCID: PMC8379367 DOI: 10.1016/j.bioactmat.2021.05.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/28/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides (TOs) represent one of the most promising drug candidates in the targeted cancer treatment due to their high specificity and capability of modulating cellular pathways that are not readily druggable. However, efficiently delivering of TOs to cancer cellular targets is still the biggest challenge in promoting their clinical translations. Emerging as a significant drug delivery vector, nanoparticles (NPs) can not only protect TOs from nuclease degradation and enhance their tumor accumulation, but also can improve the cell uptake efficiency of TOs as well as the following endosomal escape to increase the therapeutic index. Furthermore, targeted and on-demand drug release of TOs can also be approached to minimize the risk of toxicity towards normal tissues using stimuli-responsive NPs. In the past decades, remarkable progresses have been made on the TOs delivery based on various NPs with specific purposes. In this review, we will first give a brief introduction on the basis of TOs as well as the action mechanisms of several typical TOs, and then describe the obstacles that prevent the clinical translation of TOs, followed by a comprehensive overview of the recent progresses on TOs delivery based on several various types of nanocarriers containing lipid-based nanoparticles, polymeric nanoparticles, gold nanoparticles, porous nanoparticles, DNA/RNA nanoassembly, extracellular vesicles, and imaging-guided drug delivery nanoparticles.
Collapse
Affiliation(s)
- Lei Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Wenhui Zhou
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Lihua Lin
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Anhong Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Jing Feng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Xiangmeng Qu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Jun Yue
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
34
|
Zhao Y, Shu R, Liu J. The development and improvement of ribonucleic acid therapy strategies. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:997-1013. [PMID: 34540356 PMCID: PMC8437697 DOI: 10.1016/j.omtn.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biological understanding of RNA has evolved since the discovery of catalytic RNAs in the early 1980s and the establishment of RNA interference (RNAi) in the 1990s. RNA is no longer seen as the simple mid-product between transcription and translation but as potential molecules to be developed as RNA therapeutic drugs. RNA-based therapeutic drugs have gained recognition because of their ability to regulate gene expression and perform cellular functions. Various nucleobase, backbone, and sugar-modified oligonucleotides have been synthesized, as natural oligonucleotides have some limitations such as poor low nuclease resistance, binding affinity, poor cellular uptake, and toxicity, which affect their use as RNA therapeutic drugs. In this review, we briefly discuss different RNA therapeutic drugs and their internal connections, including antisense oligonucleotides, small interfering RNAs (siRNAs) and microRNAs (miRNAs), aptamers, small activating RNAs (saRNAs), and RNA vaccines. We also discuss the important roles of RNA vaccines and their use in the fight against COVID-19. In addition, various chemical modifications and delivery systems used to improve the performance of RNA therapeutic drugs and overcome their limitations are discussed.
Collapse
Affiliation(s)
- Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding author: Rui Shu, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding author: Jiang Liu, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
35
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
36
|
Benli-Hoppe T, Göl Öztürk Ş, Öztürk Ö, Berger S, Wagner E, Yazdi M. Transferrin Receptor Targeted Polyplexes Completely Comprised of Sequence-Defined Components. Macromol Rapid Commun 2021; 43:e2100602. [PMID: 34713524 DOI: 10.1002/marc.202100602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/20/2021] [Indexed: 11/08/2022]
Abstract
Human transferrin protein (Tf) modified polyplexes have already displayed encouraging potential for receptor-mediated nucleic acid delivery into tumors. The use of a blood-derived targeting protein and polydisperse macromolecular cationic subunits however presents a practical challenge for pharmaceutical grade production. Here, Tf receptor (TfR) targeted small interfering RNA (siRNA) polyplexes are designed that are completely composed of synthetic, monodisperse, and sequence-defined subunits generated by solid-phase supported synthesis. An optimized cationizable lipo-oligoaminoamide (lipo-OAA) is used for siRNA core polyplex formation, and a retro-enantio peptide (reTfR) attached via a monodisperse polyethylene glycol (PEG) spacer via click chemistry is applied for targeting. Improved gene silencing is demonstrated in TfR-expressing KB and DU145 cells. Analogous plasmid DNA (pDNA) polyplexes are successfully used for receptor-mediated gene delivery in TfR-rich K562 cells and Neuro2a cells. Six lipo-OAAs differing in their lipidic domain and redox-sensitive attachment of lipid residues are tested in order to evaluate the impact of core polyplex stability on receptor-dependent gene transfer.
Collapse
Affiliation(s)
- Teoman Benli-Hoppe
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Şurhan Göl Öztürk
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Özgür Öztürk
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| |
Collapse
|
37
|
Levy ES, Yu J, Estevez A, Mao J, Liu L, Torres E, Leung D, Yen CW. A Systematic Approach for Liposome and Lipodisk Preclinical Formulation Development by Microfluidic Technology. AAPS JOURNAL 2021; 23:111. [PMID: 34651233 PMCID: PMC8516330 DOI: 10.1208/s12248-021-00651-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Lipid nanoparticles have transformed the drug delivery field enhancing the therapeutic drug performance of small molecules and biologics with several approved drug products. However, in industry, these more complex drug delivery systems such as liposomes require more material and time to develop. Here, we report a liposome and lipodisk decision tree with model compounds of diverse physicochemical properties to understand how to resourcefully optimize encapsulation efficiency (EE) for these lipid-based drug delivery systems. We have identified trends with physicochemical properties such as Log P, where higher Log P compounds such as curcumin were able to efficiently load into the lipid bilayer resulting in high EE with altering the drug/lipid (D/L) ratio. Moderate Log P compounds such as cyclosporine A and dexamethasone had significantly higher encapsulation in lipodisks, which contain higher amounts of PEG lipid compared to liposomes. The EE of negative Log P compounds, like acyclovir, remained low regardless of altering the D/L ratio and PEG concentrations. In this study, microfluidic techniques were employed to fabricate liposomes and lipodisks formulations allowing for a reproducible strategy for formulation development. Both liposome and lipodisk of curcumin demonstrated enhanced in vivo performance compared with a conventional formulation in the rat pharmacokinetic study. This combination of approaches with multiple model compounds and lipid-based drug delivery systems provides a systematic guidance to effective strategies to generate higher EE with minimal drug waste and expedite the process for preclinical development when applied to industry compounds.
Collapse
Affiliation(s)
- Elizabeth S Levy
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jesse Yu
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Alberto Estevez
- Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jialin Mao
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Liling Liu
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Elizabeth Torres
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Dennis Leung
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Chun-Wan Yen
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
38
|
Masoumi F, Saraiva SM, Bouzo BL, López-López R, Esteller M, Díaz-Lagares Á, de la Fuente M. Modulation of Colorectal Tumor Behavior via lncRNA TP53TG1-Lipidic Nanosystem. Pharmaceutics 2021; 13:pharmaceutics13091507. [PMID: 34575588 PMCID: PMC8470159 DOI: 10.3390/pharmaceutics13091507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 01/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are an emerging group of RNAs with a crucial role in cancer pathogenesis. In gastrointestinal cancers, TP53 target 1 (TP53TG1) is an epigenetically regulated lncRNA that represents a promising therapeutic target due to its tumor suppressor properties regulating the p53-mediated DNA damage and the intracellular localization of the oncogenic YBX1 protein. However, to translate this finding into the clinic as a gene therapy, it is important to develop effective carriers able to deliver exogenous lncRNAs to the targeted cancer cells. Here, we propose the use of biocompatible sphingomyelin nanosystems comprising DOTAP (DSNs) to carry and deliver a plasmid vector encoding for TP53TG1 (pc(TP53TG1)-DSNs) to a colorectal cancer cell line (HCT-116). DSNs presented a high association capacity and convenient physicochemical properties. In addition, pc(TP53TG1)-DSNs showed anti-tumor activities in vitro, specifically a decrease in the proliferation rate, a diminished colony-forming capacity, and hampered migration and invasiveness of the treated cancer cells. Consequently, the proposed strategy displays a high potential as a therapeutic approach for colorectal cancer.
Collapse
Affiliation(s)
- Farimah Masoumi
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (F.M.); (S.M.S.); (B.L.B.)
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran
- School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon 46841-61167, Iran
| | - Sofia M. Saraiva
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (F.M.); (S.M.S.); (B.L.B.)
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain; (R.L.-L.); (M.E.)
| | - Belén L. Bouzo
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (F.M.); (S.M.S.); (B.L.B.)
| | - Rafael López-López
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain; (R.L.-L.); (M.E.)
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain
| | - Manel Esteller
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain; (R.L.-L.); (M.E.)
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08907 Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Ángel Díaz-Lagares
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain; (R.L.-L.); (M.E.)
- Cancer Epigenomics, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS), SERGAS, 15706 Santiago de Compostela, Spain
- Correspondence: (A.D.-L.); (M.d.l.F.)
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (F.M.); (S.M.S.); (B.L.B.)
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain; (R.L.-L.); (M.E.)
- Correspondence: (A.D.-L.); (M.d.l.F.)
| |
Collapse
|
39
|
Jurgielewicz B, Stice S, Yao Y. Therapeutic Potential of Nucleic Acids when Combined with Extracellular Vesicles. Aging Dis 2021; 12:1476-1493. [PMID: 34527423 PMCID: PMC8407886 DOI: 10.14336/ad.2021.0708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), endogenous nanocarriers of proteins, lipids, and genetic material, have been harnessed as intrinsic delivery vectors for nucleic acid therapies. EVs are nanosized lipid bilayer bound vesicles released from most cell types responsible for delivery of functional biologic material to mediate intercellular communication and to modulate recipient cell phenotypes. Due to their innate biological role and composition, EVs possess several advantages as delivery vectors for nucleic acid based therapies including low immunogenicity and toxicity, high bioavailability, and ability to be engineered to enhance targeting to specific recipient cells in vivo. In this review, the current understanding of the biological role of EVs as well as the advancements in loading EVs to deliver nucleic acid therapies are summarized. We discuss the current methods and associated challenges in loading EVs and the prospects of utilizing the inherent characteristics of EVs as a delivery vector of nucleic acid therapies for genetic disorders.
Collapse
Affiliation(s)
- Brian Jurgielewicz
- 1Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA.,2Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Steven Stice
- 1Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA.,2Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA.,3ArunA Bio, Athens, GA 30602, USA
| | - Yao Yao
- 1Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA.,2Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
40
|
Terada T, Kulkarni JA, Huynh A, Tam YYC, Cullis P. Protective Effect of Edaravone against Cationic Lipid-Mediated Oxidative Stress and Apoptosis. Biol Pharm Bull 2021; 44:144-149. [PMID: 33390543 DOI: 10.1248/bpb.b20-00679] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liposomes containing ionizable cationic lipids have been widely used for the delivery of nucleic acids such as small-interfering RNA and mRNA. The utility of cationic lipids with a permanent positive charge, however, is limited to in vitro transfection of cultured cells due to its dose-limiting toxic side effects observed in animals. Several reports have suggested that the permanently charged cationic lipids induce reactive oxygen species (ROS) and ROS-mediated toxicity in cells. We therefore hypothesized that the concomitant use of ROS inhibitor could reduce toxicity and improve drug efficacy. In this study, suppression of the cationic toxicity was evaluated using an ROS scavenger, edaravone, which is a low-molecular-weight antioxidant drug clinically approved for acute-phase cerebral infarction and amyotrophic lateral sclerosis. Cell viability assay in the mouse macrophage-like cell line RAW264 indicated that the concomitant use of edaravone were not able to suppress the cytotoxicity induced by cationic liposomes comprised of monovalent cationic lipid N-(1-[2,3-dioleyloxy]propyl)-N,N,N-trimethylammonium chloride (DOTMA) over a short period of time. Cationic lipids-induced necrosis was assumed to be involved in the cytotoxicity upon short-term exposure to cationic liposomes. On the other hand, the significant improvement of cell viability was observed when the short treatment with cationic liposomes was followed by exposure to edaravone for 24 h. It was also confirmed that apoptosis inhibition by ROS elimination might have contributed to this effect. These results suggest the utility of continuous administration with edaravone as concomitant drug for suppression of adverse reactions in therapeutic treatment using cationic liposomes.
Collapse
Affiliation(s)
- Takeshi Terada
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation
| | | | - Ariel Huynh
- Department of Pharmaceutical Sciences, University of British Columbia
| | - Yuen Yi C Tam
- Department of Biochemistry and Molecular Biology, University of British Columbia
| | - Pieter Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia
| |
Collapse
|
41
|
Recent trends of NFκB decoy oligodeoxynucleotide-based nanotherapeutics in lung diseases. J Control Release 2021; 337:629-644. [PMID: 34375688 DOI: 10.1016/j.jconrel.2021.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Nuclear factor κB (NFκB) is a unique protein complex that plays a major role in lung inflammation and respiratory dysfunction. The NFκB signaling pathway, therefore becomes an avenue for the development of potential pharmacological interventions, especially in situations where chronic inflammation is often constitutively active and plays a key role in the pathogenesis and progression of the disease. NFκB decoy oligodeoxynucleotides (ODNs) are double-stranded and carry NFκB binding sequences. They prevent the formation of NFκB-mediated inflammatory cytokines and thus have been employed in the treatment of a variety of chronic inflammatory diseases. However, the systemic administration of naked decoy ODNs restricts their therapeutic effectiveness because of their poor pharmacokinetic profile, instability, degradation by cellular enzymes and their low cellular uptake. Both structural modification and nanotechnology have shown promising results in enhancing the pharmacokinetic profiles of potent therapeutic substances and have also shown great potential in the treatment of respiratory diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. In this review, we examine the contribution of NFκB activation in respiratory diseases and recent advancements in the therapeutic use of decoy ODNs. In addition, we also highlight the limitations and challenges in use of decoy ODNs as therapeutic molecules, cellular uptake of decoy ODNs, and the current need for novel delivery systems to provide efficient delivery of decoy ODNs. Furthermore, this review provides a common platform for discussion on the existence of decoy ODNs, as well as outlining perspectives on the latest generation of delivery systems that encapsulate decoy ODNs and target NFκB in respiratory diseases.
Collapse
|
42
|
Bozzer S, Bo MD, Toffoli G, Macor P, Capolla S. Nanoparticles-Based Oligonucleotides Delivery in Cancer: Role of Zebrafish as Animal Model. Pharmaceutics 2021; 13:1106. [PMID: 34452067 PMCID: PMC8400075 DOI: 10.3390/pharmaceutics13081106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/29/2022] Open
Abstract
Oligonucleotide (ON) therapeutics are molecular target agents composed of chemically synthesized DNA or RNA molecules capable of inhibiting gene expression or protein function. How ON therapeutics can efficiently reach the inside of target cells remains a problem still to be solved in the majority of potential clinical applications. The chemical structure of ON compounds could affect their capability to pass through the plasma membrane. Other key factors are nuclease degradation in the extracellular space, renal clearance, reticulo-endothelial system, and at the target cell level, the endolysosomal system and the possible export via exocytosis. Several delivery platforms have been proposed to overcome these limits including the use of lipidic, polymeric, and inorganic nanoparticles, or hybrids between them. The possibility of evaluating the efficacy of the proposed therapeutic strategies in useful in vivo models is still a pivotal need, and the employment of zebrafish (ZF) models could expand the range of possibilities. In this review, we briefly describe the main ON therapeutics proposed for anticancer treatment, and the different strategies employed for their delivery to cancer cells. The principal features of ZF models and the pros and cons of their employment in the development of ON-based therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| |
Collapse
|
43
|
Liu D, Liu J, Ma B, Deng B, Leng X, Kong D, Liu L. A simple self-adjuvanting biomimetic nanovaccine self-assembled with the conjugate of phospholipids and nucleotides can induce a strong cancer immunotherapeutic effect. Biomater Sci 2021; 9:84-92. [PMID: 33016303 DOI: 10.1039/d0bm01333a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomimetic nanoparticles have potential applications in many fields due to their favorable properties. Here, we developed a self-adjuvanting biomimetic anti-tumor nanovaccine, which was self-assembled with an amphiphilic conjugate synthesized with the phospholipids of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and hydrophilic Toll-like receptor (TLR9) agonist CpG ODN. The nanovaccine could not only provide effective initial antigen stimulation and sustained long-term antigen supply with a controlled release, but also induce antigen cross-presentation via the MHC-I pathway initiating CD8+ T-cell responses. Moreover, the dense nucleotide shell around the nanovaccine could promote antigen endocytosis via various receptor-mediated pathways into dendritic cells. CpG ODN interacted with TLR9 triggering the cytokine secretion of TNF-α and IL-10, which further boosted the anti-tumor humoral and cellular immune responses, which led to a significant tumor suppressive effect and remarkable survival prolongation. So, this nanovaccine self-assembled with phospholipid-nucleotide amphiphiles can serve as a safe, simple and efficient approach for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Dan Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Paclitaxel loading in cationic liposome vectors is enhanced by replacement of oleoyl with linoleoyl tails with distinct lipid shapes. Sci Rep 2021; 11:7311. [PMID: 33790325 PMCID: PMC8012651 DOI: 10.1038/s41598-021-86484-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Lipid carriers of hydrophobic paclitaxel (PTX) are used in clinical trials for cancer chemotherapy. Improving their loading capacity requires enhanced PTX solubilization. We compared the time-dependence of PTX membrane solubility as a function of PTX content in cationic liposomes (CLs) with lipid tails containing one (oleoyl; DOPC/DOTAP) or two (linoleoyl; DLinPC/newly synthesized DLinTAP) cis double bonds by using microscopy to generate kinetic phase diagrams. The DLin lipids displayed significantly increased PTX membrane solubility over DO lipids. Remarkably, 8 mol% PTX in DLinTAP/DLinPC CLs remained soluble for approximately as long as 3 mol% PTX (the solubility limit, which has been the focus of most previous studies and clinical trials) in DOTAP/DOPC CLs. The increase in solubility is likely caused by enhanced molecular affinity between lipid tails and PTX, rather than by the transition in membrane structure from bilayers to inverse cylindrical micelles observed with small-angle X-ray scattering. Importantly, the efficacy of PTX-loaded CLs against prostate cancer cells (their IC50 of PTX cytotoxicity) was unaffected by changing the lipid tails, and toxicity of the CL carrier was negligible. Moreover, efficacy was approximately doubled against melanoma cells for PTX-loaded DLinTAP/DLinPC over DOTAP/DOPC CLs. Our findings demonstrate the potential of chemical modifications of the lipid tails to increase the PTX membrane loading while maintaining (and in some cases even increasing) the efficacy of CLs. The increased PTX solubility will aid the development of liposomal PTX carriers that require significantly less lipid to deliver a given amount of PTX, reducing side effects and costs.
Collapse
|
45
|
Oieni J, Lolli A, D'Atri D, Kops N, Yayon A, van Osch GJVM, Machluf M. Nano-ghosts: Novel biomimetic nano-vesicles for the delivery of antisense oligonucleotides. J Control Release 2021; 333:28-40. [PMID: 33741386 DOI: 10.1016/j.jconrel.2021.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Antisense oligonucleotides (ASOs) carry an enormous therapeutic potential in different research areas, however, the lack of appropriate carriers for their delivery to the target tissues is hampering their clinical translation. The present study investigates the application of novel biomimetic nano-vesicles, Nano-Ghosts (NGs), for the delivery of ASOs to human mesenchymal stem cells (MSCs), using a microRNA inhibitor (antimiR) against miR-221 as proof-of-concept. The integration of this approach with a hyaluronic acid-fibrin (HA-FB) hydrogel scaffold is also studied, thus expanding the potential of NGs applications in regenerative medicine. The study shows robust antimiR encapsulation in the NGs using electroporation and the NGs ability to be internalized in MSCs and to deliver their cargo while avoiding endo-lysosomal degradation. This leads to rapid and strong knock-down of miR-221 in hMSCs in vitro, both in 2D and 3D hydrogel culture conditions (>90% and > 80% silencing efficiency, respectively). Finally, in vivo studies performed with an osteochondral defect model demonstrate the NGs ability to effectively deliver antimiR to endogenous cells. Altogether, these results prove that the NGs can operate as stand-alone system or as integrated platform in combination with scaffolds for the delivery of ASOs for a wide range of applications in drug delivery and regenerative medicine.
Collapse
Affiliation(s)
- Jacopo Oieni
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands; Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands
| | - Domenico D'Atri
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Nicole Kops
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands
| | - Avner Yayon
- Procore Ltd., Weizmann Science Park, 7 Golda Meir St., Ness Ziona 7414002, Israel
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands; Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, 3015GD, the Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628, the Netherlands
| | - Marcelle Machluf
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
46
|
Wang JL, Hanafy MS, Xu H, Leal J, Zhai Y, Ghosh D, Williams III RO, David Charles Smyth H, Cui Z. Aerosolizable siRNA-encapsulated solid lipid nanoparticles prepared by thin-film freeze-drying for potential pulmonary delivery. Int J Pharm 2021; 596:120215. [DOI: 10.1016/j.ijpharm.2021.120215] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022]
|
47
|
Ponti F, Campolungo M, Melchiori C, Bono N, Candiani G. Cationic lipids for gene delivery: many players, one goal. Chem Phys Lipids 2021; 235:105032. [PMID: 33359210 DOI: 10.1016/j.chemphyslip.2020.105032] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Lipid-based carriers represent the most widely used alternative to viral vectors for gene expression and gene silencing purposes. This class of non-viral vectors is particularly attractive for their ease of synthesis and chemical modifications to endow them with desirable properties. Despite combinatorial approaches have led to the generation of a large number of cationic lipids displaying different supramolecular structures and improved behavior, additional effort is needed towards the development of more and more effective cationic lipids for transfection purposes. With this review, we seek to highlight the great progress made in the design of each and every constituent domain of cationic lipids, that is, the chemical structure of the headgroup, linker and hydrophobic moieties, and on the specific effect on the assembly with nucleic acids. Since the complexity of such systems is known to affect their performances, the role of formulation, stability and phase behavior on the transfection efficiency of such assemblies will be thoroughly discussed. Our objective is to provide a conceptual framework for the development of ever more performing lipid gene delivery vectors.
Collapse
Affiliation(s)
- Federica Ponti
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy; Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Dept. Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC, Canada
| | - Matilde Campolungo
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Clara Melchiori
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Nina Bono
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| | - Gabriele Candiani
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| |
Collapse
|
48
|
Nanodelivery of immunogenic cell death-inducers for cancer immunotherapy. Drug Discov Today 2020; 26:651-662. [PMID: 33278602 DOI: 10.1016/j.drudis.2020.11.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/22/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
|
49
|
Tomeh MA, Zhao X. Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems. Mol Pharm 2020; 17:4421-4434. [PMID: 33213144 DOI: 10.1021/acs.molpharmaceut.0c00913] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug delivery systems (DDSs) have great potential for improving the treatment of several diseases, especially microbial infections and cancers. However, the formulation procedures of DDSs remain challenging, especially at the nanoscale. Reducing batch-to-batch variation and enhancing production rate are some of the essential requirements for accelerating the translation of DDSs from a small scale to an industrial level. Microfluidic technologies have emerged as an alternative to the conventional bench methods to address these issues. By providing precise control over the fluid flows and rapid mixing, microfluidic systems can be used to fabricate and engineer different types of DDSs with specific properties for efficient delivery of a wide range of drugs and genetic materials. This review discusses the principles of controlled rapid mixing that have been employed in different microfluidic strategies for producing DDSs. Moreover, the impact of the microfluidic device design and parameters on the type and properties of DDS formulations was assessed, and recent applications in drug and gene delivery were also considered.
Collapse
Affiliation(s)
- Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom.,School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
50
|
Wonder EA, Ewert KK, Liu C, Steffes VM, Kwak J, Qahar V, Majzoub RN, Zhang Z, Carragher B, Potter CS, Li Y, Qiao W, Safinya CR. Assembly of Building Blocks by Double-End-Anchored Polymers in the Dilute Regime Mediated by Hydrophobic Interactions at Controlled Distances. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45728-45743. [PMID: 32960036 PMCID: PMC7671076 DOI: 10.1021/acsami.0c10972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hierarchical assembly of building blocks via competing, orthogonal interactions is a hallmark of many of nature's composite materials that do not require highly specific ligand-receptor interactions. To mimic this assembly mechanism requires the development of building blocks capable of tunable interactions. In the present work, we explored the interplay between repulsive (steric and electrostatic) and attractive hydrophobic forces. The designed building blocks allow hydrophobic forces to effectively act at controlled, large distances, to create and tune the assembly of membrane-based building blocks under dilute conditions, and to affect their interactions with cellular membranes via physical cross-bridges. Specifically, we employed double-end-anchored poly(ethylene glycol)s (DEA-PEGs)-hydrophilic PEG tethers with hydrophobic tails on both ends. Using differential-interference-contrast optical microscopy, synchrotron small-angle X-ray scattering (SAXS), and cryogenic electron microscopy, we investigated the ability of DEA-PEGs to mediate assembly in the dilute regime on multiple length scales and on practical time scales. The PEG length, anchor hydrophobicity, and molar fraction of DEA-PEG molecules within a membrane strongly affect the assembly properties. Additional tuning of the intermembrane interactions can be achieved by adding repulsive interactions via PEG-lipids (steric) or cationic lipids to the DEA-PEG-mediated attractions. While the optical and electron microscopy imaging methods provided qualitative evidence of the ability of DEA-PEGs to assemble liposomes, the SAXS measurements and quantitative line-shape analysis in dilute preparations demonstrated that the ensemble average of loosely organized liposomal assemblies maintains DEA-PEG concentration-dependent tethering on defined nanometer length scales. For cationic liposome-DNA nanoparticles (CL-DNA NPs), aggregation induced by DEA-PEGs decreased internalization of NPs by cells, but tuning the DEA-PEG-induced attractions by adding repulsive steric interactions via PEG-lipids limited aggregation and increased NP uptake. Furthermore, confocal microscopy imaging together with colocalization studies with Rab11 and LysoTracker as markers of intracellular pathways showed that modifying CL-DNA NPs with DEA-PEGs alters their interactions with the plasma and endosomal membranes.
Collapse
Affiliation(s)
- Emily A. Wonder
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Kai K. Ewert
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Chenyu Liu
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Victoria M. Steffes
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Jasmin Kwak
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Vikar Qahar
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Ramsey N. Majzoub
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Zhening Zhang
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Bridget Carragher
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Clinton S. Potter
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cyrus R. Safinya
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|