1
|
Haque MA, Shrestha A, Mikelis CM, Mattheolabakis G. Comprehensive analysis of lipid nanoparticle formulation and preparation for RNA delivery. Int J Pharm X 2024; 8:100283. [PMID: 39309631 PMCID: PMC11415597 DOI: 10.1016/j.ijpx.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/21/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Nucleic acid-based therapeutics are a common approach that is increasingly popular for a wide spectrum of diseases. Lipid nanoparticles (LNPs) are promising delivery carriers that provide RNA stability, with strong transfection efficiency, favorable and tailorable pharmacokinetics, limited toxicity, and established translatability. In this review article, we describe the lipid-based delivery systems, focusing on lipid nanoparticles, the need of their use, provide a comprehensive analysis of each component, and highlight the advantages and disadvantages of the existing manufacturing processes. We further summarize the ongoing and completed clinical trials utilizing LNPs, indicating important aspects/questions worth of investigation, and analyze the future perspectives of this significant and promising therapeutic approach.
Collapse
Affiliation(s)
- Md. Anamul Haque
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Archana Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Constantinos M. Mikelis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| |
Collapse
|
2
|
Nasr SS, Paul P, Loretz B, Lehr CM. Realizing time-staggered expression of nucleic acid-encoded proteins by co-delivery of messenger RNA and plasmid DNA on a single nanocarrier. Drug Deliv Transl Res 2024; 14:3339-3353. [PMID: 39009932 DOI: 10.1007/s13346-024-01668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Co-delivery of different protein-encoding polynucleotide species with varying expression kinetics of their therapeutic product will become a prominent requirement in the realm of combined nucleic acid(NA)-based therapies in the upcoming years. The current study explores the capacity for time-staggered expression of encoded proteins by simultaneous delivery of plasmid DNA (pDNA) in the core and mRNA on the shell of the same nanocarrier. The core is based on a Gelatin Type A-pDNA coacervate, thermally stabilized to form an irreversible nanogel stable enough for the deposition of cationic coats namely, protamine sulfate or LNP-related lipid mixtures. Only the protamine-coated nanocarriers remained colloidally stable following mRNA loading and could successfully co-transfect murine dendritic cell line DC2.4 with fluorescent reporter mRNA(mCherry) and pDNA (pAmCyan1). Further investigation of the protamine-coated nanosystem only, the transfection efficiency (percentage of transfected cells) and level of protein expression (mean fluorescence intensity, MFI) of mRNA and pDNA, simultaneously delivered by the same nanocarrier, were compared and kinetically assessed over 48 h in DC2.4 using flow cytometry. The onset of transfection for both nucleotides was initially delayed, with levels < 5% at 6 h. Thereafter, mRNA transfection reached 90% after 24 h and continued to slightly increase until 48 h. In contrast, pDNA transfection was clearly slower, reaching approximately 40% after 24 h, but continuing to increase to reach 94% at 48 h. The time course of protein expression (represented by MFI) for both NAs essentially followed that of transfection. Model-independent as well as model-dependent kinetic parameters applied to the data further confirmed such time-staggered expression of the two NA's where mRNA's rate of transfection and protein expression initially exceeded those of pDNA in the first 24 h of the experiment whereas the opposite was true during the second 24 h of the experiment where pDNA displayed the higher response rates. We expect that innovative nanocarriers capable of time-staggered co-delivery of different nucleotides could open new perspectives for multi-dosing, pulsatile or sustained expression of nucleic acid-based therapeutics in protein replacement, vaccination, and CRISPR-mediated gene editing scenarios.
Collapse
Affiliation(s)
- Sarah S Nasr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.
- Fischell Department of Bioengineering, University of Maryland, College Park, USA.
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Pascal Paul
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
3
|
Liu S, Wen Y, Shan X, Ma X, Yang C, Cheng X, Zhao Y, Li J, Mi S, Huo H, Li W, Jiang Z, Li Y, Lin J, Miao L, Lu X. Charge-assisted stabilization of lipid nanoparticles enables inhaled mRNA delivery for mucosal vaccination. Nat Commun 2024; 15:9471. [PMID: 39488531 DOI: 10.1038/s41467-024-53914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Inhaled delivery of messenger RNA (mRNA) using lipid nanoparticle (LNP) holds immense promise for treating pulmonary diseases or serving as a mucosal vaccine. However, the unsatisfactory delivery efficacy caused by the disintegration and aggregation of LNP during nebulization represents a major obstacle. To address this, we develop a charge-assisted stabilization (CAS) strategy aimed at inducing electrostatic repulsions among LNPs to enhance their colloidal stability. By optimizing the surface charges using a peptide-lipid conjugate, the leading CAS-LNP demonstrates exceptional stability during nebulization, resulting in efficient pulmonary mRNA delivery in mouse, dog, and pig. Inhaled CAS-LNP primarily transfect dendritic cells, triggering robust mucosal and systemic immune responses. We demonstrate the efficacy of inhaled CAS-LNP as a vaccine for SARS-CoV-2 Omicron variant and as a cancer vaccine to inhibit lung metastasis. Our findings illustrate the design principles of nebulized LNPs, paving the way of developing inhaled mRNA vaccines and therapeutics.
Collapse
Affiliation(s)
- Shuai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixing Wen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinzhu Shan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xinghuan Ma
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Chen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingdi Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjiao Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiwei Mi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haonan Huo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziqiong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yijia Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jiaqi Lin
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lei Miao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xueguang Lu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Guo Z, Wei C, Tan J, Xiu L, Zhu R, Li JL. Lapatinib-loaded reductive-responsive hyaluronic acid-cholesterol nanoparticles for inhibiting metastasis of uveal melanoma. Int J Biol Macromol 2024:137028. [PMID: 39488305 DOI: 10.1016/j.ijbiomac.2024.137028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Uveal melanoma (UM) is the most common intraocular primary malignancy in adults with highly metastatic characteristics. Currently, there are no effective therapies to prevent metastasis formation in UM, resulting in a poor prognosis. Herein, we report a novel lapatinib-loaded reductive-responsive nanoparticle platform prepared via the self-assembly of amphiphilic hyaluronic acid-cystamine-cholesteryl hemisuccinate conjugate to suppress the distant metastasis of UM. The platform can maintain a stable nanosphere structure in the physiological environment and effectively deliver the drug to UM tumor sites, enhancing intratumoral drug accumulation and penetration. Upon endocytosis, lapatinib-loaded nanoparticles rapidly disintegrate triggered by intracellular glutathione and release the payload, leading to considerable suppression of MuM-2B cell proliferation, invasion, and migration. Systemic administration of lapatinib-loaded nanoparticles into mice bearing lung metastases of UM resulted in significantly higher metastasis suppression compared to free lapatinib, with histological analyses indicating no detectable toxicity. This nanotherapeutic platform is expected to provide a promising approach for the safe and efficient prevention of metastasis in UM.
Collapse
Affiliation(s)
- Zhihao Guo
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Cailing Wei
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiangcheng Tan
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Linyun Xiu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ruohua Zhu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ji-Liang Li
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; University of Chinese Academy of Sciences Wenzhou Institute, Wenzhou 325001, China.
| |
Collapse
|
5
|
Tong J, Wang Z, Zhang J, Gao R, Liu X, Liao Y, Guo X, Wei Y. Advanced Applications of Nanomaterials in Atherosclerosis Diagnosis and Treatment: Challenges and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58072-58099. [PMID: 39432384 DOI: 10.1021/acsami.4c13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Atherosclerosis-induced coronary artery disease is a major cause of cardiovascular mortality. Clinically, conservative treatment strategies for atherosclerosis still focus on lifestyle interventions and the use of lipid-lowering and anticoagulant medications. Despite achieving some therapeutic effects, these approaches are limited by low bioavailability, long intervention periods, and significant side effects. With the advancement of nanotechnology, nanomaterials have demonstrated extraordinary potential in the biomedical field. Their excellent biocompatibility, surface modifiability, and high targeting capability not only enable efficient diagnosis of plaque progression but also allow precise drug delivery within atherosclerotic plaques, significantly enhancing drug bioavailability and reducing systemic side effects. Here, we systematically review the current research progress of nanomaterials in the field of atherosclerosis to summarize not only the types of nanomaterials but also their applications in both the diagnosis and treatment of atherosclerosis. Notably, in the context of plaque therapy, we provide a comprehensive overview of current nanomaterial applications based on their targeted therapeutic systems for different cell types within plaques. Additionally, we address the persistent challenge of clinical translation of nanomaterials by summarizing current issues and providing directions for innovation and improvement in nanomaterial design. Overall, we believe that this review systematically summarizes the applications and challenges of biomedical nanomaterials in atherosclerosis diagnosis and therapy, thereby offering insights and references for the development of therapeutic materials for atherosclerosis.
Collapse
Affiliation(s)
- Junran Tong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangfei Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
6
|
Cheng L, Zhu Y, Ma J, Aggarwal A, Toh WH, Shin C, Sangpachatanaruk W, Weng G, Kumar R, Mao HQ. Machine Learning Elucidates Design Features of Plasmid Deoxyribonucleic Acid Lipid Nanoparticles for Cell Type-Preferential Transfection. ACS NANO 2024; 18:28735-28747. [PMID: 39375194 PMCID: PMC11512640 DOI: 10.1021/acsnano.4c07615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
To broaden the accessibility of cell and gene therapies, it is essential to develop and optimize nonviral, cell type-preferential gene carriers such as lipid nanoparticles (LNPs). While high-throughput screening (HTS) approaches have proven effective in accelerating LNP discovery, they are often costly, labor-intensive, and do not consistently yield actionable design rules that direct screening efforts toward the most relevant chemical and formulation parameters. In this study, we employed a machine learning (ML) workflow, utilizing well-curated plasmid DNA LNP transfection data sets across six cell types, to extract compositional and chemical insights from HTS studies. Our approach achieved prediction errors averaging between 5 and 10%, depending on the cell type. By applying SHapley Additive exPlanations to our ML models, we uncovered key composition-function relationships that govern cell type-preferential LNP transfection efficiency. Notably, we identified consistent LNP composition parameters that enhance in vitro transfection efficiency across diverse cell types, including a helper lipid molar percentage of charged lipids between 9 and 50% and the inclusion of cationic/zwitterionic helper lipids. Additionally, several parameters were found to modulate cell type-preferentiality, such as the total molar percentage of ionizable and helper lipids, N/P ratio, PEGylated lipid molar percentage of uncharged lipids, and hydrophobicity of the helper lipid. This study leverages HTS of compositionally diverse LNP libraries combined with ML analysis to elucidate the interactions between lipid components in LNP formulations, providing insights that contribute to the design of LNP compositions tailored for cell type-preferential transfection.
Collapse
Affiliation(s)
- Leonardo Cheng
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Yining Zhu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Jingyao Ma
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Materials Science and Engineering, Whiting School of Engineering. Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ataes Aggarwal
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Wu Han Toh
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Charles Shin
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
| | - Will Sangpachatanaruk
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gene Weng
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ramya Kumar
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Materials Science and Engineering, Whiting School of Engineering. Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
De Lombaerde E, Cui X, Chen Y, Zhong Z, Deckers J, Mencarelli G, Opsomer L, Wang H, De Baere J, Lienenklaus S, Lambrecht BN, Sanders NN, De Geest BG. Amplification of Protein Expression by Self-Amplifying mRNA Delivered in Lipid Nanoparticles Containing a β-Aminoester Ionizable Lipid Correlates with Reduced Innate Immune Activation. ACS NANO 2024; 18:28311-28324. [PMID: 39352021 DOI: 10.1021/acsnano.4c09677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Self-amplifying mRNA (saRNA) is witnessing increased interest as a platform technology for protein replacement therapy, gene editing, immunotherapy, and vaccination. saRNA can replicate itself inside cells, leading to a higher and more sustained production of the desired protein at a lower dose. Controlling innate immune activation, however, is crucial to suppress unwanted inflammation upon delivery and self-replication of RNA in vivo. In this study, we report on a class of β-aminoester lipids (βAELs) synthesized through the Michael addition of an acrylate to diethanolamine, followed by esterification with fatty acids. These lipids possessed one or two ionizable amines, depending on the use of nonionic or amine-containing acrylates. We utilized βAELs for encapsulating saRNA in lipid nanoparticles (LNPs) and evaluated their transfection efficiency in vitro and in vivo in mice, while comparing them to LNPs containing ALC-0315 as an ionizable lipid reference. Among the tested lipids, OC7, which comprises two unsaturated oleoyl alkyl chains and an ionizable azepanyl motif, emerged as a βAEL with low cytotoxicity and immunogenicity relative to ALC-0315. Interestingly, saRNA delivered via the OC7 LNP exhibited a distinct in vivo transfection profile. Initially, intramuscular injection of OC7 LNP resulted in low protein expression shortly after administration, followed by a gradual increase over a period of up to 7 days. This pattern is indicative of successful self-amplification of saRNA. In contrast, saRNA delivered via ALC-0315 LNP demonstrated high protein translation initially, which gradually declined over time and lacked the amplification seen with OC7 LNP. We observed that, in contrast to saRNA OC7 LNP, saRNA ALC-0315 LNP induced potent innate immune activation by triggering cytoplasmic RIG-I-like receptors (RLRs), likely due to the highly efficient endosomal membrane rupturing properties of ALC-0315 LNP. Consequently, the massive production of type I interferons quickly hindered the amplification of the saRNA. Our findings highlight the critical role of the choice of ionizable lipid for saRNA formulation in LNPs, particularly in shaping the qualitative profile of protein expression. For applications where minimizing inflammation is desired, the use of ionizable lipids, such as the βAEL reported in this study, that elicit a low type I interferon response in saRNA LNP is crucial.
Collapse
Affiliation(s)
| | - Xiaole Cui
- Laboratory of Gene Therapy, Ghent University, 9820 Ghent, Belgium
| | | | | | - Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, 9052 Zwijnaarde, Belgium
| | - Giulia Mencarelli
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, 9052 Zwijnaarde, Belgium
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Lisa Opsomer
- Laboratory of Gene Therapy, Ghent University, 9820 Ghent, Belgium
| | | | | | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, 9052 Zwijnaarde, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam 3015, Netherlands
| | - Niek N Sanders
- Laboratory of Gene Therapy, Ghent University, 9820 Ghent, Belgium
| | | |
Collapse
|
8
|
Matayoshi K, Song F, Koide H, Yonezawa S, Nitta C, Okada M, Ozaki N, Kurata M, Asai T. Delivery of small interfering ribonucleic acid using lipid nanoparticles prepared with pH-responsive dipeptide-conjugated lipids. Biochem Biophys Res Commun 2024; 729:150372. [PMID: 38981400 DOI: 10.1016/j.bbrc.2024.150372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
The development of lipid nanoparticles (LNPs) has enabled the clinical application of small interfering ribonucleic acid (siRNA)-based therapies. Accordingly, various unique ionizable lipids have been explored for efficient siRNA delivery. However, safety concerns related to the structure of ionizable lipids have been raised. Here, we developed a pH-responsive dipeptide-conjugated lipid (DPL) for efficient, high safety siRNA delivery. We synthesized a DPL library by varying the dipeptide sequence and established a strong correlation between the knockdown efficiency of the DPL-based LNPs and the dipeptide sequence. The LNPs prepared with a DPL containing arginine (R) and glutamic acid (E) (DPL-ER) exhibited the highest knockdown efficiency. In addition, the DPL-ER-based LNPs with relatively long lipid tails (DPL-ER-C22:C22) exhibited a higher knockdown efficiency than those with short ones (DPL-ER-18:C18). The zeta potential of the DPL-ER-C22:C22-based LNPs increased as the pH decreased from 7.4 (physiological condition) to 5.5 (endosomal condition). Importantly, the DPL-ER-C22:C22-based LNPs exhibited a higher knockdown efficiency than the LNPs prepared using commercially available ionizable lipids. These results suggest that the DPL-based LNPs are safe and efficient siRNA delivery carriers.
Collapse
Affiliation(s)
- Katsuki Matayoshi
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Furan Song
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Hiroyuki Koide
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Sei Yonezawa
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Chiori Nitta
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Masako Okada
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Nahoko Ozaki
- Development & Technical Group, Sogo Pharmaceuticals Co., Ltd., 408-1 Sonegasaki, Kamisokoino, Nakama, Fukuoka, 809-0003, Japan
| | - Makiko Kurata
- Development & Technical Group, Sogo Pharmaceuticals Co., Ltd., 408-1 Sonegasaki, Kamisokoino, Nakama, Fukuoka, 809-0003, Japan
| | - Tomohiro Asai
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
9
|
McMillan C, Druschitz A, Rumbelow S, Borah A, Binici B, Rattray Z, Perrie Y. Tailoring lipid nanoparticle dimensions through manufacturing processes. RSC PHARMACEUTICS 2024; 1:841-853. [PMID: 39323767 PMCID: PMC11417672 DOI: 10.1039/d4pm00128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Lipid nanoparticles (LNPs), most commonly recognised for their role in COVID-19 mRNA vaccines, are important delivery vehicles for nucleic acid (mRNA, siRNA) therapies. The physicochemical attributes, such as size, nucleic acid encapsulation and electric charge, may have a significant impact on the efficacy of these medicines. In this study, adjustments to aqueous to lipid phase ratios were assessed for their impact on LNP size and other critical quality attributes (CQAs). It was observed that minor adjustments of aqueous-to-organic lipid phase ratios can be used to precisely control the size of ALC-0315-formulated LNPs. This was then used to evaluate the impact of phase ratio and corresponding size ranges on the in vitro and in vivo expression of these LNPs. In HEK293 cells, larger LNPs led to higher expression of the mRNA cargo within the LNPs, with a linear correlation between size and expression. In THP-1 cells this preference for larger LNPs was observed up to 120 d.nm after which there was a fall in expression. In BALB/c mice, however, LNPs at the lowest phase ratio tested, >120 d.nm, showed reduced expression compared to those of range 60-120 d.nm, within which there was no significant difference between sizes. These results suggest a robustness of LNP expression up to 120 d.nm, larger than those <100 d.nm conventionally used in medicine.
Collapse
Affiliation(s)
| | - Amy Druschitz
- Croda International Plc and Avanti Polar Lipids Alabaster AL USA
| | - Stephen Rumbelow
- Croda International Plc and Avanti Polar Lipids Alabaster AL USA
| | | | | | | | | |
Collapse
|
10
|
Gangavarapu A, Tapia-Lopez LV, Sarkar B, Pena-Zacarias J, Badruddoza AZM, Nurunnabi M. Lipid nanoparticles for enhancing oral bioavailability. NANOSCALE 2024; 16:18319-18338. [PMID: 39291697 DOI: 10.1039/d4nr01487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent studies, lipid nanoparticles have attracted attention as drug delivery systems owing to their preeminent potential in achieving the desired bioavailability of biopharmaceutics (BCS) class II and class IV drugs. The current debate concerns the bioavailability of these poorly absorbed drugs with their simultaneous oral degradation. Lipid nanoparticles, including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), are lipid-based carrier systems that can effectively encapsulate both lipophilic and hydrophilic drugs, offering versatile drug delivery systems. The unique properties of lipids (biodegradability and biocompatibility) and their transportation pathways enhance the biological availability of drugs. These particles can increase the gastrointestinal absorption and solubilization of minimally bioavailable drugs via a selective lymphatic pathway. This review mainly focuses on providing a brief update on lipid nanoparticles (LNPs) that synergistically increase the bioavailability of limited permeable drugs and highlight the transversal mechanisms of LNPs across the gastrointestinal hurdles, transmembrane absorption, transport kinetics, and computational tools. Finally, the present hurdles and future perspectives of LNPs for oral drug delivery systems are discussed.
Collapse
Affiliation(s)
- Anushareddy Gangavarapu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS 38677, USA.
| | - Lillian V Tapia-Lopez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Barnali Sarkar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Jaqueline Pena-Zacarias
- Biological Sciences Program, College of Science, University of Texas at El Paso, El Paso, TX 79965, USA
| | - Abu Zayed Md Badruddoza
- Pharmaceutical Sciences Small Molecule, Pfizer Worldwide Research and Development, Groton, CT 06340, USA.
| | - Md Nurunnabi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS 38677, USA.
| |
Collapse
|
11
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
12
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
13
|
Serpico L, Zhu Y, Maia RF, Sumedha S, Shahbazi MA, Santos HA. Lipid nanoparticles-based RNA therapies for breast cancer treatment. Drug Deliv Transl Res 2024; 14:2823-2844. [PMID: 38831199 PMCID: PMC11384647 DOI: 10.1007/s13346-024-01638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Breast cancer (BC) prevails as a major burden on global healthcare, being the most prevalent form of cancer among women. BC is a complex and heterogeneous disease, and current therapies, such as chemotherapy and radiotherapy, frequently fall short in providing effective solutions. These treatments fail to mitigate the risk of cancer recurrence and cause severe side effects that, in turn, compromise therapeutic responses in patients. Over the last decade, several strategies have been proposed to overcome these limitations. Among them, RNA-based technologies have demonstrated their potential across various clinical applications, notably in cancer therapy. However, RNA therapies are still limited by a series of critical issues like off-target effect and poor stability in circulation. Thus, novel approaches have been investigated to improve the targeting and bioavailability of RNA-based formulations to achieve an appropriate therapeutic outcome. Lipid nanoparticles (LNPs) have been largely proven to be an advantageous carrier for nucleic acids and RNA. This perspective explores the most recent advances on RNA-based technology with an emphasis on LNPs' utilization as effective nanocarriers in BC therapy and most recent progresses in their clinical applications.
Collapse
Affiliation(s)
- Luigia Serpico
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.
| | - Yuewen Zhu
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Renata Faria Maia
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Sumedha Sumedha
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Chaudhary N, Newby AN, Whitehead KA. Non-Viral RNA Delivery During Pregnancy: Opportunities and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306134. [PMID: 38145340 PMCID: PMC11196389 DOI: 10.1002/smll.202306134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/25/2023] [Indexed: 12/26/2023]
Abstract
During pregnancy, the risk of maternal and fetal adversities increases due to physiological changes, genetic predispositions, environmental factors, and infections. Unfortunately, treatment options are severely limited because many essential interventions are unsafe, inaccessible, or lacking in sufficient scientific data to support their use. One potential solution to this challenge may lie in emerging RNA therapeutics for gene therapy, protein replacement, maternal vaccination, fetal gene editing, and other prenatal treatment applications. In this review, the current landscape of RNA platforms and non-viral RNA delivery technologies that are under active development for administration during pregnancy is explored. Advancements of pregnancy-specific RNA drugs against SARS-CoV-2, Zika, influenza, preeclampsia, and for in-utero gene editing are discussed. Finally, this study highlights bottlenecks that are impeding translation efforts of RNA therapies, including the lack of accurate cell-based and animal models of human pregnancy and concerns related to toxicity and immunogenicity during pregnancy. Overcoming these challenges will facilitate the rapid development of this new class of pregnancy-safe drugs.
Collapse
Affiliation(s)
- Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Alexandra N. Newby
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Kathryn A. Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
15
|
Norimatsu J, Mizuno HL, Watanabe T, Obara T, Nakakido M, Tsumoto K, Cabral H, Kuroda D, Anraku Y. Triphenylphosphonium-modified catiomers enhance in vivo mRNA delivery through stabilized polyion complexation. MATERIALS HORIZONS 2024; 11:4711-4721. [PMID: 38988276 DOI: 10.1039/d4mh00325j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Nanocarriers based on cationic materials play a central role in the success of mRNA-based therapies. Traditionally, amine-bearing lipids and polymers have been successfully employed for creating mRNA-loaded nanocarriers, though they still present challenges, such as physical and biological instability, limiting both delivery efficiency and therapeutic potential. Non-amine cations could be a promising avenue in addressing these limitations. However, such alternatives remain notably underexplored. Herein, we introduced triphenylphosphonium (TPP) as an alternative cationic moiety for mRNA delivery, leveraging its advantageous properties for nucleic acid complexation. Through the modification of amine-bearing catiomers, we replaced traditional amine-based counterparts with TPP to create innovative polymeric micelles as mRNA nanocarriers. A comprehensive analysis, encompassing physicochemical, thermodynamic, and computational approaches, revealed that the TPP substitution significantly influenced polymer self-assembly, mRNA binding, and the overall stability of mRNA-loaded polymeric micelles. Upon intravenous injection, TPP-bearing micelles demonstrated a remarkable increase in mRNA bioavailability, facilitating efficient protein production in solid tumors. These findings provide a compelling rationale for substituting amines with TPP, emphasizing their potential for advancing mRNA therapeutics.
Collapse
Affiliation(s)
- Jumpei Norimatsu
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Hayato L Mizuno
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Takayoshi Watanabe
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takumi Obara
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Makoto Nakakido
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- The Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Daisuke Kuroda
- Research Center of Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| |
Collapse
|
16
|
Wang Q, Jia S, Wang Z, Chen H, Jiang X, Li Y, Ji P. Nanogene editing drug delivery systems in the treatment of liver fibrosis. Front Med (Lausanne) 2024; 11:1418786. [PMID: 39386741 PMCID: PMC11461213 DOI: 10.3389/fmed.2024.1418786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Liver fibrosis is a group of diseases that seriously affect the health of the world's population. Despite significant progress in understanding the mechanisms of liver fibrogenesis, the technologies and drugs used to treat liver fibrosis have limited efficacy. As a revolutionary genetic tool, gene editing technology brings new hope for treating liver fibrosis. Combining nano-delivery systems with gene editing tools to achieve precise delivery and efficient expression of gene editing tools that can be used to treat liver fibrosis has become a rapidly developing field. This review provides a comprehensive overview of the principles and methods of gene editing technology and commonly used gene editing targets for liver fibrosis. We also discuss recent advances in common gene editing delivery vehicles and nano-delivery formulations in liver fibrosis research. Although gene editing technology has potential advantages in liver fibrosis, it still faces some challenges regarding delivery efficiency, specificity, and safety. Future studies need to address these issues further to explore the potential and application of liver fibrosis technologies in treating liver fibrosis.
Collapse
Affiliation(s)
- Qun Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Siyu Jia
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Hui Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Xinyi Jiang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Yan Li
- Department of International Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Vinales I, Silva-Espinoza JC, Medina BA, Urbay JEM, Beltran MA, Salinas DE, Ramirez-Ramos MA, Maldonado RA, Poon W, Penichet ML, Almeida IC, Michael K. Selective Transfection of a Transferrin Receptor-Expressing Cell Line with DNA-Lipid Nanoparticles. ACS OMEGA 2024; 9:39533-39545. [PMID: 39346819 PMCID: PMC11425831 DOI: 10.1021/acsomega.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 10/01/2024]
Abstract
Despite considerable progress in using lipid nanoparticle (LNP) vehicles for gene delivery, achieving selective transfection of specific cell types remains a significant challenge, hindering the advancement of new gene or gene-editing therapies. Although LNPs have been equipped with ligands aimed at targeting specific cellular receptors, achieving complete selectivity continues to be elusive. The exact reasons for this limited selectivity are not fully understood, as cell targeting involves a complex interplay of various cellular factors. Assessing how much ligand/receptor binding contributes to selectivity is challenging due to these additional influencing factors. Nonetheless, such data are important for developing new nanocarriers and setting realistic expectations for selectivity. Here, we have quantified the selective, targeted transfection using two uniquely engineered cell lines that eliminate unpredictable and interfering cellular influences. We have compared the targeted transfection of Chinese ovary hamster (CHO) cells engineered to express the human transferrin receptor 1 (hTfR1), CHO-TRVb-hTfR1, with CHO cells that completely lack any transferrin receptor, CHO-TRVb-neo cells (negative control). Thus, the two cell lines differ only in the presence/absence of hTfR1. The transfection was performed with pDNA-encapsulating LNPs equipped with the DT7 peptide ligand that specifically binds to hTfR1 and enables targeted transfection. The LNP's pDNA encoded for the monomeric GreenLantern (mGL) reporter protein, whose fluorescence was used to quantify transfection. We report a novel LNP composition designed to achieve an optimal particle size and ζ-potential, efficient pDNA encapsulation, hTfR1-targeting capability, and sufficient polyethylene glycol sheltering to minimize random cell targeting. The transfection efficiency was quantified in both cell lines separately through flow cytometry based on the expression of the fluorescent gene product. Our results demonstrated an LNP dose-dependent mGL expression, with a 5-fold preference for the CHO-TRVb-hTfR1 when compared to CHO-TRVb-neo. In another experiment, when both cell lines were mixed at a 1:1 ratio, the DT7-decorated LNP achieved a 3-fold higher transfection of the CHO-TRVb-hTfR1 over the CHO-TRVb-neo cells. Based on the low-level transfection of the CHO-TRVb-neo cells in both experiments, our results suggest that 17-25% of the transfection occurred in a nonspecific manner. The observed transfection selectivity for the CHO-TRVb-hTfR1 cells was based entirely on the hTfR1/DT7 interaction. This work showed that the platform of two engineered cell lines which differ only in the hTfR1 can greatly facilitate the development of LNPs with hTfR1-targeting ligands.
Collapse
Affiliation(s)
- Irodiel Vinales
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| | - Juan Carlos Silva-Espinoza
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Bryan A. Medina
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| | - Juan E. M. Urbay
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| | - Miguel A. Beltran
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Dante E. Salinas
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Marco A. Ramirez-Ramos
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - Rosa A. Maldonado
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Wilson Poon
- Department
of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Manuel L. Penichet
- Division
of Surgical Oncology, Department of Surgery, David Geffen School of
Medicine, University of California, Los
Angeles (UCLA), Los Angeles, California 90095, United States
- Department
of Microbiology, Immunology and Molecular Genetics, David Geffen School
of Medicine, University of California, Los
Angeles (UCLA), Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- The Molecular
Biology Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive
Cancer Center, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Igor C. Almeida
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Katja Michael
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
18
|
Liu Y, Huang Y, He G, Guo C, Dong J, Wu L. Development of mRNA Lipid Nanoparticles: Targeting and Therapeutic Aspects. Int J Mol Sci 2024; 25:10166. [PMID: 39337651 PMCID: PMC11432440 DOI: 10.3390/ijms251810166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as leading non-viral carriers for messenger RNA (mRNA) delivery in clinical applications. Overcoming challenges in safe and effective mRNA delivery to target tissues and cells, along with controlling release from the delivery vehicle, remains pivotal in mRNA-based therapies. This review elucidates the structure of LNPs, the mechanism for mRNA delivery, and the targeted delivery of LNPs to various cells and tissues, including leukocytes, T-cells, dendritic cells, Kupffer cells, hepatic endothelial cells, and hepatic and extrahepatic tissues. Here, we discuss the applications of mRNA-LNP vaccines for the prevention of infectious diseases and for the treatment of cancer and various genetic diseases. Although challenges remain in terms of delivery efficiency, specific tissue targeting, toxicity, and storage stability, mRNA-LNP technology holds extensive potential for the treatment of diseases.
Collapse
Affiliation(s)
- Yaping Liu
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yingying Huang
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guantao He
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Guo
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinhua Dong
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
19
|
Dong H, Qin B, Zhang H, Lei L, Wu S. Current Treatment Methods for Charcot-Marie-Tooth Diseases. Biomolecules 2024; 14:1138. [PMID: 39334903 PMCID: PMC11430469 DOI: 10.3390/biom14091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Charcot-Marie-Tooth (CMT) disease, the most common inherited neuromuscular disorder, exhibits a wide phenotypic range, genetic heterogeneity, and a variable disease course. The diverse molecular genetic mechanisms of CMT were discovered over the past three decades with the development of molecular biology and gene sequencing technologies. These methods have brought new options for CMT reclassification and led to an exciting era of treatment target discovery for this incurable disease. Currently, there are no approved disease management methods that can fully cure patients with CMT, and rehabilitation, orthotics, and surgery are the only available treatments to ameliorate symptoms. Considerable research attention has been given to disease-modifying therapies, including gene silencing, gene addition, and gene editing, but most treatments that reach clinical trials are drug treatments, while currently, only gene therapies for CMT2S have reached the clinical trial stage. In this review, we highlight the pathogenic mechanisms and therapeutic investigations of different subtypes of CMT, and promising therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Hongxian Dong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| | - Boquan Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shizhou Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| |
Collapse
|
20
|
Nelson AL, Mancino C, Gao X, Choe JA, Chubb L, Williams K, Czachor M, Marcucio R, Taraballi F, Cooke JP, Huard J, Bahney C, Ehrhart N. β-catenin mRNA encapsulated in SM-102 lipid nanoparticles enhances bone formation in a murine tibia fracture repair model. Bioact Mater 2024; 39:273-286. [PMID: 38832305 PMCID: PMC11145078 DOI: 10.1016/j.bioactmat.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Fractures continue to be a global economic burden as there are currently no osteoanabolic drugs approved to accelerate fracture healing. In this study, we aimed to develop an osteoanabolic therapy which activates the Wnt/β-catenin pathway, a molecular driver of endochondral ossification. We hypothesize that using an mRNA-based therapeutic encoding β-catenin could promote cartilage to bone transformation formation by activating the canonical Wnt signaling pathway in chondrocytes. To optimize a delivery platform built on recent advancements in liposomal technologies, two FDA-approved ionizable phospholipids, DLin-MC3-DMA (MC3) and SM-102, were used to fabricate unique ionizable lipid nanoparticle (LNP) formulations and then tested for transfection efficacy both in vitro and in a murine tibia fracture model. Using firefly luciferase mRNA as a reporter gene to track and quantify transfection, SM-102 LNPs showed enhanced transfection efficacy in vitro and prolonged transfection, minimal fracture interference and no localized inflammatory response in vivo over MC3 LNPs. The generated β-cateninGOF mRNA encapsulated in SM-102 LNPs (SM-102-β-cateninGOF mRNA) showed bioactivity in vitro through upregulation of downstream canonical Wnt genes, axin2 and runx2. When testing SM-102-β-cateninGOF mRNA therapeutic in a murine tibia fracture model, histomorphometric analysis showed increased bone and decreased cartilage composition with the 45 μg concentration at 2 weeks post-fracture. μCT testing confirmed that SM-102-β-cateninGOF mRNA promoted bone formation in vivo, revealing significantly more bone volume over total volume in the 45 μg group. Thus, we generated a novel mRNA-based therapeutic encoding a β-catenin mRNA and optimized an SM-102-based LNP to maximize transfection efficacy with a localized delivery.
Collapse
Affiliation(s)
- Anna Laura Nelson
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
- Colorado State University, School of Biomedical Engineering, Fort Collins CO, USA
| | - Chiara Mancino
- Houston Methodist Research Institute, Center for Musculoskeletal Regeneration, Houston TX, USA
| | - Xueqin Gao
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
| | - Joshua A. Choe
- University of Wisconsin-Madison, Department of Orthopedics and Rehabilitation, Department of Biomedical Engineering, Medical Scientist Training Program, Madison, WI, USA
| | - Laura Chubb
- Colorado State University, Department of Clinical Sciences, Fort Collins CO, USA
| | - Katherine Williams
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | - Molly Czachor
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
| | - Ralph Marcucio
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - Francesca Taraballi
- Houston Methodist Research Institute, Center for Musculoskeletal Regeneration, Houston TX, USA
| | - John P. Cooke
- Houston Methodist Research Institute, Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston, TX, USA
| | - Johnny Huard
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
- Colorado State University, Department of Clinical Sciences, Fort Collins CO, USA
| | - Chelsea Bahney
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
- Colorado State University, Department of Clinical Sciences, Fort Collins CO, USA
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - Nicole Ehrhart
- Colorado State University, School of Biomedical Engineering, Fort Collins CO, USA
- Colorado State University, Department of Clinical Sciences, Fort Collins CO, USA
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| |
Collapse
|
21
|
Aliakbarinodehi N, Niederkofler S, Emilsson G, Parkkila P, Olsén E, Jing Y, Sjöberg M, Agnarsson B, Lindfors L, Höök F. Time-Resolved Inspection of Ionizable Lipid-Facilitated Lipid Nanoparticle Disintegration and Cargo Release at an Early Endosomal Membrane Mimic. ACS NANO 2024; 18:22989-23000. [PMID: 39133894 PMCID: PMC11363135 DOI: 10.1021/acsnano.4c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Advances in lipid nanoparticle (LNP) design have contributed notably to the emergence of the current clinically approved mRNA-based vaccines and are of high relevance for delivering mRNA to combat diseases where therapeutic alternatives are sparse. LNP-assisted mRNA delivery utilizes ionizable lipid-mediated cargo translocation across the endosomal membrane driven by the acidification of the endosomal environment. However, this process occurs at a low efficiency, a few percent at the best. Utilizing surface-sensitive fluorescence microscopy with a single LNP and mRNA resolution, we have investigated pH-controlled interactions between individual LNPs and a planar anionic supported lipid bilayer (SLB) formed on nanoporous silica, mimicking the electrostatic conditions of the early endosomal membrane. For LNPs with an average diameter of 140 nm, fusion with the anionic SLB preferentially occurred when the pH was reduced from 6.6 to 6.0. Furthermore, there was a delay in the onset of LNP fusion after the pH drop, and upon fusion, a significant fraction (>70%) of mRNA was released into the acidic solution representing the endosomal lumen, while a fraction of mRNA remained bound to the SLB even after reversing the pH to neutral cytosolic conditions. Finally, a comparison of the fusion efficiency of two LNP formulations with different surface concentrations of gel-forming lipids correlated with differences in the protein translation efficiency previously observed in human primary cell transfection studies. Together, these findings emphasize the relevance of biophysical investigations of ionizable lipid-containing LNP-assisted mRNA delivery mechanisms while potentially also offering means to optimize the design of LNPs with enhanced endosomal escape capabilities.
Collapse
Affiliation(s)
- Nima Aliakbarinodehi
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Simon Niederkofler
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Gustav Emilsson
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Mölndal 43181, Sweden
| | - Petteri Parkkila
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Erik Olsén
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Yujia Jing
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Mölndal 43181, Sweden
| | - Mattias Sjöberg
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Björn Agnarsson
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Lennart Lindfors
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Mölndal 43181, Sweden
| | - Fredrik Höök
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| |
Collapse
|
22
|
Barbieri BD, Peeler DJ, Samnuan K, Day S, Hu K, Sallah HJ, Tregoning JS, McKay PF, Shattock RJ. The role of helper lipids in optimising nanoparticle formulations of self-amplifying RNA. J Control Release 2024; 374:280-292. [PMID: 39142355 DOI: 10.1016/j.jconrel.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Lipid nanoparticle (LNP) formulation plays a vital role in RNA vaccine delivery. However, further optimisation of self-amplifying RNA (saRNA) vaccine formulation could help enhance seroconversion rates in humans and improve storage stability. Altering either the ionisable or helper lipid can alter the characteristics and performance of formulated saRNA through the interplay of the phospholipid's packing parameter and the geometrical shape within the LNP membrane. In this study, we compared the impact of three helper lipids (DSPC, DOPC, or DOPE) used with two different ionisable lipids (MC3 and C12-200) on stability, transfection efficiency and the inflammation and immunogenicity of saRNA. While helper lipid identity altered saRNA expression across four cell lines in vitro, this was not predictive of an ex vivo or in vivo response. The helper lipid used influenced LNP storage where DSPC provided the best stability profile over four weeks at 2-8 °C. Importantly, helper lipid impact on LNP storage stability was the best predictor of expression in human skin explants, where C12-200 in combination with DSPC provided the most durable expression. C12-200 LNPs also improved protein expression (firefly luciferase) and humoral responses to a SARS-CoV-2 spike saRNA vaccine compared to MC3 LNPs, where the effect of helper lipids was less apparent. Nevertheless, the performance of C12-200 in combination with DSPC appears optimal for saRNA when balancing preferred storage stability requirements against in vivo and ex vivo potency. These data suggest that helper lipid influences the stability and functionality of ionisable lipid nanoparticle-formulated saRNA.
Collapse
Affiliation(s)
| | - David J Peeler
- Department of Infectious Disease, Imperial College London, London, UK; Department of Materials, Imperial College London, London, UK
| | - Karnyart Samnuan
- Department of Infectious Disease, Imperial College London, London, UK
| | - Suzanne Day
- Department of Infectious Disease, Imperial College London, London, UK
| | - Kai Hu
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, UK
| | - Paul F McKay
- Department of Infectious Disease, Imperial College London, London, UK
| | - Robin J Shattock
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
23
|
Neill B, Romero AR, Fenton OS. Advances in Nonviral mRNA Delivery Materials and Their Application as Vaccines for Melanoma Therapy. ACS APPLIED BIO MATERIALS 2024; 7:4894-4913. [PMID: 37930174 PMCID: PMC11220486 DOI: 10.1021/acsabm.3c00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA) vaccines are promising platforms for cancer immunotherapy because of their potential to encode for a variety of tumor antigens, high tolerability, and capacity to induce strong antitumor immune responses. However, the clinical translation of mRNA cancer vaccines can be hindered by the inefficient delivery of mRNA in vivo. In this review, we provide an overview of mRNA cancer vaccines by discussing their utility in treating melanoma. Specifically, we begin our review by describing the barriers that can impede mRNA delivery to target cells. We then review native mRNA structure and discuss various modification methods shown to enhance mRNA stability and transfection. Next, we outline the advantages and challenges of three nonviral carrier platforms (lipid nanoparticles, polymeric nanoparticles, and lipopolyplexes) frequently used for mRNA delivery. Last, we summarize preclinical and clinical studies that have investigated nonviral mRNA vaccines for the treatment of melanoma. In writing this review, we aim to highlight innovative nonviral strategies designed to address mRNA delivery challenges while emphasizing the exciting potential of mRNA vaccines as next-generation therapies for the treatment of cancers.
Collapse
Affiliation(s)
- Bevin Neill
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adriana Retamales Romero
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Owen S. Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
24
|
Oliveira IS, Silva SG, Gomes AC, Real Oliveira MECD, Vale MLCD, Marques EF. Cationic Serine-Based Gemini Surfactant:Monoolein Aggregates as Viable and Efficacious Agents for DNA Complexation and Compaction: A Cytotoxicity and Physicochemical Assessment. J Funct Biomater 2024; 15:224. [PMID: 39194661 DOI: 10.3390/jfb15080224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Cationic gemini surfactants have emerged as potential gene delivery agents as they can co-assemble with DNA due to a strong electrostatic association. Commonly, DNA complexation is enhanced by the inclusion of a helper lipid (HL), which also plays a key role in transfection efficiency. The formation of lipoplexes, used as non-viral vectors for transfection, through electrostatic and hydrophobic interactions is affected by various physicochemical parameters, such as cationic surfactant:HL molar ratio, (+/-) charge ratio, and the morphological structure of the lipoplexes. Herein, we investigated the DNA complexation ability of mixtures of serine-based gemini surfactants, (nSer)2N5, and monoolein (MO) as a helper lipid. The micelle-forming serine surfactants contain long lipophilic chains (12 to 18 C atoms) and a five CH2 spacer, both linked to the nitrogen atoms of the serine residues by amine linkages. The (nSer)2N5:MO aggregates are non-cytotoxic up to 35-90 µM, depending on surfactant and surfactant/MO mixing ratio, and in general, higher MO content and longer surfactant chain length tend to promote higher cell viability. All systems efficaciously complex DNA, but the (18Ser)2N5:MO one clearly stands as the best-performing one. Incorporating MO into the serine surfactant system affects the morphology and size distribution of the formed mixed aggregates. In the low concentration regime, gemini-MO systems aggregate in the form of vesicles, while at high concentrations the formation of a lamellar liquid crystalline phase is observed. This suggests that lipoplexes might share a similar bilayer-based structure.
Collapse
Affiliation(s)
- Isabel S Oliveira
- CIQUP (Centro de Investigação em Química da Universidade do Porto), IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Sandra G Silva
- LAQV-REQUIMTE (Laboratório Associado para a Química Verde-Rede Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Andreia C Gomes
- CBMA (Centro de Biologia Molecular e Ambiental), Departamento de Biologia, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal
| | - M Elisabete C D Real Oliveira
- CFUM (Center of Physics), Departamento de Física, Universidade do Minho, Campos de Gualtar, 4710-057 Braga, Portugal
| | - M Luísa C do Vale
- LAQV-REQUIMTE (Laboratório Associado para a Química Verde-Rede Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Eduardo F Marques
- CIQUP (Centro de Investigação em Química da Universidade do Porto), IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
25
|
Bathula NV, Friesen JJ, Casmil IC, Wayne CJ, Liao S, Soriano SKV, Ho CH, Strumpel A, Blakney AK. Delivery vehicle and route of administration influences self-amplifying RNA biodistribution, expression kinetics, and reactogenicity. J Control Release 2024; 374:28-38. [PMID: 39097193 DOI: 10.1016/j.jconrel.2024.07.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Self-amplifying RNA (saRNA) is a next-generation RNA platform derived from an alphavirus that enables replication in host cytosol, offering a promising shift from traditional messenger RNA (mRNA) therapies by enabling sustained protein production from minimal dosages. The approval of saRNA-based vaccines, such as the ARCT-154 for COVID-19 in Japan, underscores its potential for diverse therapeutic applications, including vaccine development, cancer immunotherapy, and gene therapy. This study investigates the role of delivery vehicle and administration route on saRNA expression kinetics and reactogenicity. Employing ionizable lipid-based nanoparticles (LNPs) and polymeric nanoparticles, we administered saRNA encoding firefly luciferase to BALB/c mice through six routes (intramuscular (IM), intradermal (ID), intraperitoneal (IP), intranasal (IN), intravenous (IV), and subcutaneous (SC)), and observed persistent saRNA expression over a month. Our findings reveal that while LNPs enable broad route applicability and stability, pABOL (poly (cystamine bisacrylamide-co-4-amino-1-butanol)) formulations significantly amplify protein expression via intramuscular delivery. Notably, the disparity between RNA biodistribution and protein expression highlight the nuanced interplay between administration routes, delivery vehicles, and therapeutic outcomes. Additionally, our research unveiled distinct biodistribution profiles and inflammatory responses contingent upon the chosen delivery formulation and route. This research illuminates the intricate dynamics governing saRNA delivery, biodistribution and reactogenicity, offering essential insights for optimizing therapeutic strategies and advancing the clinical and commercial viability of saRNA technologies.
Collapse
Affiliation(s)
- Nuthan Vikas Bathula
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Josh J Friesen
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Irafasha C Casmil
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Christopher J Wayne
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Suiyang Liao
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 2A1, Canada
| | - Shekinah K V Soriano
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Chia Hao Ho
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Anneke Strumpel
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada; RWTH Aachen University, Templergraben 55, Aachen 52062, Germany
| | - Anna K Blakney
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada.
| |
Collapse
|
26
|
Palanki R, Han EL, Murray AM, Maganti R, Tang S, Swingle KL, Kim D, Yamagata H, Safford HC, Mrksich K, Peranteau WH, Mitchell MJ. Optimized microfluidic formulation and organic excipients for improved lipid nanoparticle mediated genome editing. LAB ON A CHIP 2024; 24:3790-3801. [PMID: 39037068 PMCID: PMC11302771 DOI: 10.1039/d4lc00283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
mRNA-based gene editing platforms have tremendous promise in the treatment of genetic diseases. However, for this potential to be realized in vivo, these nucleic acid cargos must be delivered safely and effectively to cells of interest. Ionizable lipid nanoparticles (LNPs), the most clinically advanced non-viral RNA delivery system, have been well-studied for the delivery of mRNA but have not been systematically optimized for the delivery of mRNA-based CRISPR-Cas9 platforms. In this study, we investigated the effect of microfluidic and lipid excipient parameters on LNP gene editing efficacy. Through in vitro screening in liver cells, we discovered distinct trends in delivery based on phospholipid, cholesterol, and lipid-PEG structure in LNP formulations. Combination of top-performing lipid excipients produced an LNP formulation that resulted in 3-fold greater gene editing in vitro and facilitated 3-fold greater reduction of a therapeutically-relevant protein in vivo relative to the unoptimized LNP formulation. Thus, systematic optimization of LNP formulation parameters revealed a novel LNP formulation that has strong potential for delivery of gene editors to the liver to treat metabolic disease.
Collapse
Affiliation(s)
- Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Amanda M Murray
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Rohin Maganti
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Sophia Tang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Dongyoon Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hannah Yamagata
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hannah C Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Kaitlin Mrksich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - William H Peranteau
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
28
|
Chauhan S, Nagpal K. Latest Delivery Advancements of Lipid Nanoparticles for Cancer Treatment. Assay Drug Dev Technol 2024; 22:340-360. [PMID: 38968367 DOI: 10.1089/adt.2024.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Abstract
As one of the primary causes of illness and death globally, cancer demands novel and potent treatment approaches, which is why lipid nanoparticles (LNPs) have gained attention as a promising delivery system for anticancer drugs with precision and efficacy. The article discusses the salient characteristics of LNPs, such as the lipid components, particle size, polydispersity index, and encapsulation efficiency, followed by strategies that enhance their remarkable drug delivery capabilities. The articles explore LNPs ability to improve the solubility, stability, and bioavailability of various chemotherapeutics, nucleic acids, and immunotherapeutic modalities. It also highlights the recent advancement in surface modification of LNPs, which is essential to improve their effectiveness. Tailored coatings of LNPs improve targeting precision, stability, and biocompatibility; enhancing their transport to boost therapeutic efficacy for cancer targeting. The review summarizes the recent advancements made in using LNPs to treat different forms of cancer and focuses on the most recent clinical studies. Overall, the review highlights that the LNPs can target and treat cancer in a tailored manner through gene therapy, RNA interference, and immunotherapy.
Collapse
Affiliation(s)
- Somia Chauhan
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
29
|
Soroudi S, Jaafari MR, Arabi L. Lipid nanoparticle (LNP) mediated mRNA delivery in cardiovascular diseases: Advances in genome editing and CAR T cell therapy. J Control Release 2024; 372:113-140. [PMID: 38876358 DOI: 10.1016/j.jconrel.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality among non-communicable diseases. Current cardiac regeneration treatments have limitations and may lead to adverse reactions. Hence, innovative technologies are needed to address these shortcomings. Messenger RNA (mRNA) emerges as a promising therapeutic agent due to its versatility in encoding therapeutic proteins and targeting "undruggable" conditions. It offers low toxicity, high transfection efficiency, and controlled protein production without genome insertion or mutagenesis risk. However, mRNA faces challenges such as immunogenicity, instability, and difficulty in cellular entry and endosomal escape, hindering its clinical application. To overcome these hurdles, lipid nanoparticles (LNPs), notably used in COVID-19 vaccines, have a great potential to deliver mRNA therapeutics for CVDs. This review highlights recent progress in mRNA-LNP therapies for CVDs, including Myocardial Infarction (MI), Heart Failure (HF), and hypercholesterolemia. In addition, LNP-mediated mRNA delivery for CAR T-cell therapy and CRISPR/Cas genome editing in CVDs and the related clinical trials are explored. To enhance the efficiency, safety, and clinical translation of mRNA-LNPs, advanced technologies like artificial intelligence (AGILE platform) in RNA structure design, and optimization of LNP formulation could be integrated. We conclude that the strategies to facilitate the extra-hepatic delivery and targeted organ tropism of mRNA-LNPs (SORT, ASSET, SMRT, and barcoded LNPs) hold great prospects to accelerate the development and translation of mRNA-LNPs in CVD treatment.
Collapse
Affiliation(s)
- Setareh Soroudi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Zhang M, Hussain A, Hu B, Yang H, Li C, Guo S, Han X, Li B, Dai Y, Cao Y, Chi H, Weng Y, Qin CF, Huang Y. Atavistic strategy for the treatment of hyperuricemia via ionizable liposomal mRNA. Nat Commun 2024; 15:6463. [PMID: 39085241 PMCID: PMC11292028 DOI: 10.1038/s41467-024-50752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Hyperuricemia is associated with an increased risk of gout, hypertension, diabetes, and cardiovascular diseases. Most mammals maintain normal serum uric acid (SUA) via urate oxidase (Uox), an enzyme that metabolizes poorly-soluble UA to highly-soluble allantoin. In contrast, Uox became a pseudogene in humans and apes over the long course of evolution. Here we demonstrate an atavistic strategy for treating hyperuricemia based on endogenous expression of Uox in hepatocytes mediated by mRNA (mUox) loaded with an ionizable lipid nanoparticle termed iLAND. mUox@iLAND allows effective transfection and protein expression in vitro. A single dose of mUox@iLAND lowers SUA levels for several weeks in two female murine models, including a novel long-lasting model, which is also confirmed by metabolomics analysis. Together with the excellent safety profiles observed in vivo, the proposed mRNA agent demonstrates substantial potential for hyperuricemia therapy and the prevention of associated conditions.
Collapse
Affiliation(s)
- Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Shuai Guo
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Xiaofeng Han
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
- Rigerna Therapeutics Co. Ltd., Beijing, China
| | - Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Yuhong Cao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
| | - Hang Chi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
31
|
Karahmet Sher E, Alebić M, Marković Boras M, Boškailo E, Karahmet Farhat E, Karahmet A, Pavlović B, Sher F, Lekić L. Nanotechnology in medicine revolutionizing drug delivery for cancer and viral infection treatments. Int J Pharm 2024; 660:124345. [PMID: 38885775 DOI: 10.1016/j.ijpharm.2024.124345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Advancements in nanotechnology were vastly applied in medicine and pharmacy, especially in the field of nano-delivery systems. It took a long time for these systems to ensure precise delivery of very delicate molecules, such as RNA, to cells at concentrations that yield remarkable efficiency, with success rates reaching 95.0% and 94.5%. These days, there are several advantages of using nanotechnological solutions in the prevention and treatment of cancer and viral infections. Its interventions improve treatment outcomes both due to increased effectiveness of the drug at target location and by reducing adverse reactions, thereby increasing patient adherence to the therapy. Based on the current knowledge an updated review was made, and perspective, opportunities and challenges in nanomedicine were discussed. The methods employed include comprehensive examination of existing literature and studies on nanoparticles and nano-delivery systems including both in vitro tests performed on cell cultures and in vivo assessments carried out on appropriate animal models, with a specific emphasis on their applications in oncology and virology. This brings together various aspects including both structure and formation as well as its association with characteristic behaviour in organisms, providing a novel perspective. Furthermore, the practical application of these systems in medicine and pharmacy with a focus on viral diseases and malignancies was explored. This review can serve as a valuable guide for fellow researchers, helping them navigate the abundance of findings in this field. The results indicate that applications of nanotechnological solutions for the delivery of medicinal products improving therapeutic outcomes will continue to expand.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Mirna Alebić
- Department of Pharmacy, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Marijana Marković Boras
- Department of Laboratory Diagnostic, University Clinical Hospital Mostar, Mostar 88000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Boškailo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Esma Karahmet Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Food and Nutrition, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Alma Karahmet
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Bojan Pavlović
- Faculty of Physical Education and Sports, University of East Sarajevo, Lukavica, Republika Srpska 75327, Bosnia and Herzegovina
| | - Farooq Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Lana Lekić
- Faculty of Health Studies, University of Sarajevo, Sarajevo 71000, Bosnia and Herzegovina
| |
Collapse
|
32
|
Cheng Z, Fobian SF, Gurrieri E, Amin M, D'Agostino VG, Falahati M, Zalba S, Debets R, Garrido MJ, Saeed M, Seynhaeve ALB, Balcioglu HE, Ten Hagen TLM. Lipid-based nanosystems: the next generation of cancer immune therapy. J Hematol Oncol 2024; 17:53. [PMID: 39030582 PMCID: PMC11265205 DOI: 10.1186/s13045-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Immunotherapy has become an important part of the oncotherapy arsenal. Its applicability in various cancer types is impressive, as well as its use of endogenous mechanisms to achieve desired ends. However, off-target or on-target-off-tumor toxicity, limited activity, lack of control in combination treatments and, especially for solid tumors, low local accumulation, have collectively limited clinical use thereof. These limitations are partially alleviated by delivery systems. Lipid-based nanoparticles (NPs) have emerged as revolutionary carriers due to favorable physicochemical characteristics, with specific applications and strengths particularly useful in immunotherapeutic agent delivery. The aim of this review is to highlight the challenges faced by immunotherapy and how lipid-based NPs have been, and may be further utilized to address such challenges. We discuss recent fundamental and clinical applications of NPs in a range of areas and provide a detailed discussion of the main obstacles in immune checkpoint inhibition therapies, adoptive cellular therapies, and cytokine therapies. We highlight how lipid-based nanosystems could address these through either delivery, direct modulation of the immune system, or targeting of the immunosuppressive tumor microenvironment. We explore advanced and emerging liposomal and lipid nanoparticle (LNP) systems for nucleic acid delivery, intrinsic and extrinsic stimulus-responsive formulations, and biomimetic lipid-based nanosystems in immunotherapy. Finally, we discuss the key challenges relating to the clinical use of lipid-based NP immunotherapies, suggesting future research directions for the near term to realize the potential of these innovative lipid-based nanosystems, as they become the crucial steppingstone towards the necessary enhancement of the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ziyun Cheng
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Seth-Frerich Fobian
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elena Gurrieri
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mohamadreza Amin
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sara Zalba
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Mesha Saeed
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ann L B Seynhaeve
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
33
|
Fazel F, Matsuyama-Kato A, Alizadeh M, Zheng J, Fletcher C, Gupta B, St-Denis M, Boodhoo N, Sharif S. A Marek's Disease Virus Messenger RNA-Based Vaccine Modulates Local and Systemic Immune Responses in Chickens. Viruses 2024; 16:1156. [PMID: 39066318 PMCID: PMC11281610 DOI: 10.3390/v16071156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease (MD), caused by the Marek's disease virus, is a lymphoproliferative disease in chickens that can be controlled by vaccination. However, the current vaccines can limit tumor growth and death but not virus replication and transmission. The present study aimed to evaluate host responses following intramuscular injection of an mRNA vaccine encoding gB and pp38 proteins of the MDV within the first 36 h. The vaccine was injected in low and high doses using prime and prime-boost strategies. The expression of type I and II interferons (IFNs), a panel of interferon-stimulated genes, and two key antiviral cytokines, IL-1β and IL-2, were measured in spleen and lungs after vaccination. The transcriptional analysis of the above genes showed significant increases in the expression of MDA5, Myd88, IFN-α, IFN-β, IFN-γ, IRF7, OAS, Mx1, and IL-2 in both the spleen and lungs within the first 36 h of immunization. Secondary immunization increased expression of all the above genes in the lungs. In contrast, only IFN-γ, MDA5, MyD88, Mx1, and OAS showed significant upregulation in the spleen after the secondary immunization. This study shows that two doses of the MDV mRNA vaccine encoding gB and pp38 antigens activate innate and adaptive responses and induce an antiviral state in chickens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
34
|
Liu Y, Wang R, Chen Q, Chang Y, Chen Q, Fukumoto K, Wang B, Yu J, Luo C, Ma J, Chen X, Murayama Y, Umeda K, Kodera N, Harada Y, Sekine SI, Li J, Tadakuma H. Organ-Specific Gene Expression Control Using DNA Origami-Based Nanodevices. NANO LETTERS 2024; 24:8410-8417. [PMID: 38920331 PMCID: PMC11249008 DOI: 10.1021/acs.nanolett.4c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Nanodevices that function in specific organs or cells are one of the ultimate goals of synthetic biology. The recent progress in DNA nanotechnology such as DNA origami has allowed us to construct nanodevices to deliver a payload (e.g., drug) to the tumor. However, delivery to specific organs remains difficult due to the fragility of the DNA nanostructure and the low targeting capability of the DNA nanostructure. Here, we constructed tough DNA origami that allowed us to encapsulate the DNA origami into lipid-based nanoparticles (LNPs) under harsh conditions (low pH), harnessing organ-specific delivery of the gene of interest (GOI). We found that DNA origami-encapsulated LNPs can increase the functionality of payload GOIs (mRNA and siRNA) inside mouse organs through the contribution from different LNP structures revealed by cryogenic electron microscope (Cryo-EM). These data should be the basis for future organ-specific gene expression control using DNA origami nanodevices.
Collapse
Affiliation(s)
- Yuxiang Liu
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Ruixuan Wang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Qimingxing Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Yan Chang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Qi Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Kodai Fukumoto
- Institute
for Protein Research, Osaka University, Osaka 565-0871, Japan
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Bingxun Wang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Jianchen Yu
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Changfeng Luo
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Jiayuan Ma
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Xiaoxia Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Zhejiang
Provincial Key Laboratory of Pancreatic Disease Hangzhou, Zhejiang University School of Medicine First Affiliated
Hospital, Zhejiang 310009, People’s Republic
of China
| | - Yuko Murayama
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Kenichi Umeda
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshie Harada
- Institute
for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Shun-ichi Sekine
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Jianfeng Li
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Gene Editing
Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s
Republic of China
| | - Hisashi Tadakuma
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Gene Editing
Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s
Republic of China
| |
Collapse
|
35
|
Maji M, Ghosh S, Didwania N, Ali N. Differentially Charged Liposomes Stimulate Dendritic Cells with Varying Effects on Uptake and Processing When Used Alone or in Combination with an Adjuvant. ACS OMEGA 2024; 9:29175-29185. [PMID: 39005780 PMCID: PMC11238303 DOI: 10.1021/acsomega.3c07814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 07/16/2024]
Abstract
Liposomes carrying differential charges have been extensively studied for their role in stimulating dendritic cells (DCs), major antigen-presenting cells, known to serve as a pivotal bridge between innate and adaptive immunity. However, the impact of the differentially charged liposomes on activating DCs remains to be understood. In this study, we have investigated the impact of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-based neutral, anionic, and cationic liposomes on the uptake, immunostimulation, and intracellular fate in mouse bone-marrow-derived DCs. We observed that liposomes could induce phenotypic maturation of DCs by inducing the expression of costimulatory molecules (CD40 and CD86) and production of cytokines tumor necrosis factor-α, interleukin-12,and nitric oxide. Interestingly, admixing monophosphoryl lipid A with charged liposomes further enhances the expression of the costimulatory molecules and production of cytokines, with preferential activation by positively charged liposomes. Fluorometric analysis using a pH-sensitive dye and flow-cytometry-based pathway inhibition assays revealed that cationic liposomes were taken up more efficiently by DCs through endocytosis and transported to neutral compartments for further processing, whereas anionic and neutral liposomes were inclined to accumulate in acidic compartments. These findings therefore endorse the use of cationic DSPC liposomes as a preferred option for vaccine delivery vehicles over neutral and negatively charged liposomes, particularly for the preferential activation of DCs.
Collapse
Affiliation(s)
| | | | - Nicky Didwania
- Infectious Diseases and Immunology
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
36
|
Guasp P, Reiche C, Sethna Z, Balachandran VP. RNA vaccines for cancer: Principles to practice. Cancer Cell 2024; 42:1163-1184. [PMID: 38848720 DOI: 10.1016/j.ccell.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
Vaccines are the most impactful medicines to improve health. Though potent against pathogens, vaccines for cancer remain an unfulfilled promise. However, recent advances in RNA technology coupled with scientific and clinical breakthroughs have spurred rapid discovery and potent delivery of tumor antigens at speed and scale, transforming cancer vaccines into a tantalizing prospect. Yet, despite being at a pivotal juncture, with several randomized clinical trials maturing in upcoming years, several critical questions remain: which antigens, tumors, platforms, and hosts can trigger potent immunity with clinical impact? Here, we address these questions with a principled framework of cancer vaccination from antigen detection to delivery. With this framework, we outline features of emergent RNA technology that enable rapid, robust, real-time vaccination with somatic mutation-derived neoantigens-an emerging "ideal" antigen class-and highlight latent features that have sparked the belief that RNA could realize the enduring vision for vaccines against cancer.
Collapse
Affiliation(s)
- Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Reiche
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary Sethna
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod P Balachandran
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
37
|
Yi X, Leng P, Wang S, Liu L, Xie B. Functional Nanomaterials for the Treatment of Osteoarthritis. Int J Nanomedicine 2024; 19:6731-6756. [PMID: 38979531 PMCID: PMC11230134 DOI: 10.2147/ijn.s465243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease, affecting more than 595 million people worldwide. Nanomaterials possess superior physicochemical properties and can influence pathological processes due to their unique structural features, such as size, surface interface, and photoelectromagnetic thermal effects. Unlike traditional OA treatments, which suffer from short half-life, low stability, poor bioavailability, and high systemic toxicity, nanotherapeutic strategies for OA offer longer half-life, enhanced targeting, improved bioavailability, and reduced systemic toxicity. These advantages effectively address the limitations of traditional therapies. This review aims to inspire researchers to develop more multifunctional nanomaterials and promote their practical application in OA treatment.
Collapse
Affiliation(s)
- Xinyue Yi
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, People’s Republic of China
| | - Pengyuan Leng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Supeng Wang
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Bingju Xie
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
38
|
Tafech B, Rokhforouz MR, Leung J, Sung MM, Lin PJ, Sin DD, Lauster D, Block S, Quon BS, Tam Y, Cullis P, Feng JJ, Hedtrich S. Exploring Mechanisms of Lipid Nanoparticle-Mucus Interactions in Healthy and Cystic Fibrosis Conditions. Adv Healthc Mater 2024; 13:e2304525. [PMID: 38563726 DOI: 10.1002/adhm.202304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Mucus forms the first defense line of human lungs, and as such hampers the efficient delivery of therapeutics to the underlying epithelium. This holds particularly true for genetic cargo such as CRISPR-based gene editing tools which cannot readily surmount the mucosal barrier. While lipid nanoparticles (LNPs) emerge as versatile non-viral gene delivery systems that can help overcome the delivery challenge, many knowledge gaps remain, especially for diseased states such as cystic fibrosis (CF). This study provides fundamental insights into Cas9 mRNA or ribonucleoprotein-loaded LNP-mucus interactions in healthy and diseased states by assessing the impact of the genetic cargo, mucin sialylation, mucin concentration, ionic strength, pH, and polyethylene glycol (PEG) concentration and nature on LNP diffusivity leveraging experimental approaches and Brownian dynamics (BD) simulations. Taken together, this study identifies key mucus and LNP characteristics that are critical to enabling a rational LNP design for transmucosal delivery.
Collapse
Affiliation(s)
- Belal Tafech
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Mohammad-Reza Rokhforouz
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jerry Leung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Molly Mh Sung
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Paulo Jc Lin
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Daniel Lauster
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, 12169, Berlin, Germany
| | - Stephan Block
- Institute of Organic Chemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Bradley S Quon
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Adult Cystic Fibrosis Clinic, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Pieter Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Center of Biological Design, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| |
Collapse
|
39
|
Arjunan P, Kathirvelu D, Mahalingam G, Goel AK, Zacharaiah UG, Srivastava A, Marepally S. Lipid-nanoparticle-enabled nucleic acid therapeutics for liver disorders. Acta Pharm Sin B 2024; 14:2885-2900. [PMID: 39027251 PMCID: PMC11252464 DOI: 10.1016/j.apsb.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 07/20/2024] Open
Abstract
Inherited genetic disorders of the liver pose a significant public health burden. Liver transplantation is often limited by the availability of donor livers and the exorbitant costs of immunosuppressive therapy. To overcome these limitations, nucleic acid therapy provides a hopeful alternative that enables gene repair, gene supplementation, and gene silencing with suitable vectors. Though viral vectors are the most efficient and preferred for gene therapy, pre-existing immunity debilitating immune responses limit their use. As a potential alternative, lipid nanoparticle-mediated vectors are being explored to deliver multiple nucleic acid forms, including pDNA, mRNA, siRNA, and proteins. Herein, we discuss the broader applications of lipid nanoparticles, from protein replacement therapy to restoring the disease mechanism through nucleic acid delivery and gene editing, as well as multiple preclinical and clinical studies as a potential alternative to liver transplantation.
Collapse
Affiliation(s)
- Porkizhi Arjunan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
- Manipal academy for higher education, Mangalore 576104, Karnataka, India
| | - Durga Kathirvelu
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| | - Gokulnath Mahalingam
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| | - Ashish Kumar Goel
- Department of Hepatology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Uday George Zacharaiah
- Department of Hepatology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
- Department of Hematology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Srujan Marepally
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| |
Collapse
|
40
|
Wu S, Lin L, Shi L, Liu S. An overview of lipid constituents in lipid nanoparticle mRNA delivery systems. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1978. [PMID: 38965928 DOI: 10.1002/wnan.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024]
Abstract
mRNA therapeutics have shown great potential for a broad spectrum of disease treatment. However, the challenges of mRNA's inherent instability and difficulty in cellular entry have hindered its progress in the biomedical field. To address the cellular barriers and deliver mRNA to cells of interest, various delivery systems are designed. Among these, lipid nanoparticles (LNPs) stand out as the most extensively used mRNA delivery systems, particularly following the clinical approvals of corona virus disease 2019 (COVID-19) mRNA vaccines. LNPs are comprised of ionizable cationic lipids, phospholipids, cholesterol, and polyethylene glycol derived lipids (PEG-lipids). In this review, we primarily summarize the recent advancements of the LNP mRNA delivery technology, focusing on the structures of four lipid constituents and their biomedical applications. We delve into structure-activity relationships of the lipids, while also exploring the future prospects and challenges in developing more efficacious mRNA delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Shiqi Wu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lu Shi
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Kang DD, Hou X, Wang L, Xue Y, Li H, Zhong Y, Wang S, Deng B, McComb DW, Dong Y. Engineering LNPs with polysarcosine lipids for mRNA delivery. Bioact Mater 2024; 37:86-93. [PMID: 38523704 PMCID: PMC10957522 DOI: 10.1016/j.bioactmat.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Since the approval of the lipid nanoparticles (LNP)-mRNA vaccines against the SARS-CoV-2 virus, there has been an increased interest in the delivery of mRNA through LNPs. However, current LNP formulations contain PEG lipids, which can stimulate the generation of anti-PEG antibodies. The presence of these antibodies can potentially cause adverse reactions and reduce therapeutic efficacy after administration. Given the widespread deployment of the COVID-19 vaccines, the increased exposure to PEG may necessitate the evaluation of alternative LNP formulations without PEG components. In this study, we investigated a series of polysarcosine (pSar) lipids as alternatives to the PEG lipids to determine whether pSar lipids could still provide the functionality of the PEG lipids in the ALC-0315 and SM-102 LNP systems. We found that complete replacement of the PEG lipid with a pSar lipid can increase or maintain mRNA delivery efficiency and exhibit similar safety profiles in vivo.
Collapse
Affiliation(s)
- Diana D. Kang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xucheng Hou
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leiming Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yonger Xue
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Haoyuan Li
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yichen Zhong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Siyu Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
| | - David W. McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
42
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
43
|
Zhang T, Yin H, Li Y, Yang H, Ge K, Zhang J, Yuan Q, Dai X, Naeem A, Weng Y, Huang Y, Liang XJ. Optimized lipid nanoparticles (LNPs) for organ-selective nucleic acids delivery in vivo. iScience 2024; 27:109804. [PMID: 38770138 PMCID: PMC11103379 DOI: 10.1016/j.isci.2024.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Nucleic acid therapeutics offer tremendous promise for addressing a wide range of common public health conditions. However, the in vivo nucleic acids delivery faces significant biological challenges. Lipid nanoparticles (LNPs) possess several advantages, such as simple preparation, high stability, efficient cellular uptake, endosome escape capabilities, etc., making them suitable for delivery vectors. However, the extensive hepatic accumulation of LNPs poses a challenge for successful development of LNPs-based nucleic acid therapeutics for extrahepatic diseases. To overcome this hurdle, researchers have been focusing on modifying the surface properties of LNPs to achieve precise delivery. The review aims to provide current insights into strategies for LNPs-based organ-selective nucleic acid delivery. In addition, it delves into the general design principles, targeting mechanisms, and clinical development of organ-selective LNPs. In conclusion, this review provides a comprehensive overview to provide guidance and valuable insights for further research and development of organ-selective nucleic acid delivery systems.
Collapse
Affiliation(s)
- Tian Zhang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Han Yin
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yu Li
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haiyin Yang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kun Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002 China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002 China
| | - Qing Yuan
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xuyan Dai
- Apharige Therapeutics Co., Ltd, Beijing 102629, China
| | - Abid Naeem
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
44
|
Huang X, Ma Y, Ma G, Xia Y. Unlocking the Therapeutic Applicability of LNP-mRNA: Chemistry, Formulation, and Clinical Strategies. RESEARCH (WASHINGTON, D.C.) 2024; 7:0370. [PMID: 38894715 PMCID: PMC11185168 DOI: 10.34133/research.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 06/21/2024]
Abstract
Messenger RNA (mRNA) has emerged as an innovative therapeutic modality, offering promising avenues for the prevention and treatment of a variety of diseases. The tremendous success of mRNA vaccines in effectively combatting coronavirus disease 2019 (COVID-19) evidences the unlimited medical and therapeutic potential of mRNA technology. Overcoming challenges related to mRNA stability, immunogenicity, and precision targeting has been made possible by recent advancements in lipid nanoparticles (LNPs). This review summarizes state-of-the-art LNP-mRNA-based therapeutics, including their structure, material compositions, design guidelines, and screening principles. Additionally, we highlight current preclinical and clinical trends in LNP-mRNA therapeutics in a broad range of treatments in ophthalmological conditions, cancer immunotherapy, gene editing, and rare-disease medicine. Particular attention is given to the translation and evolution of LNP-mRNA vaccines into a broader spectrum of therapeutics. We explore concerns in the aspects of inadequate extrahepatic targeting efficacy, elevated doses, safety concerns, and challenges of large-scale production procedures. This discussion may offer insights and perspectives on near- and long-term clinical development prospects for LNP-mRNA therapeutics.
Collapse
Affiliation(s)
| | - Yishan Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing, PR China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing, PR China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing, PR China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
45
|
Giulimondi F, Digiacomo L, Renzi S, Cassone C, Pirrottina A, Molfetta R, Palamà IE, Maiorano G, Gigli G, Amenitsch H, Pozzi D, Zingoni A, Caracciolo G. Optimizing Transfection Efficiency in CAR-T Cell Manufacturing through Multiple Administrations of Lipid-Based Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:3746-3757. [PMID: 38775109 DOI: 10.1021/acsabm.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The existing manufacturing protocols for CAR-T cell therapies pose notable challenges, particularly in attaining a transient transfection that endures for a significant duration. To address this gap, this study aims to formulate a transfection protocol utilizing multiple lipid-based nanoparticles (LNPs) administrations to enhance transfection efficiency (TE) to clinically relevant levels. By systematically fine-tuning and optimizing our transfection protocol through a series of iterative refinements, we have accomplished a remarkable one-order-of-magnitude augmentation in TE within the immortalized T-lymphocyte Jurkat cell line. This enhancement has been consistently observed over 2 weeks, and importantly, it has been achieved without any detrimental impact on cell viability. In the subsequent phase of our study, we aimed to optimize the gene delivery system by evaluating three lipid-based formulations tailored for DNA encapsulation using our refined protocol. These formulations encompassed two LNPs constructed from ionizable lipids and featuring systematic variations in lipid composition (iLNPs) and a cationic lipoplex (cLNP). Our findings showcased a notable standout among the three formulations, with cLNP emerging as a frontrunner for further refinement and integration into the production pipeline of CAR-T therapies. Consequently, cLNP was scrutinized for its potential to deliver CAR-encoding plasmid DNA to the HEK-293 cell line. Confocal microscopy experiments demonstrated its efficiency, revealing substantial internalization compared to iLNPs. By employing a recently developed confocal image analysis method, we substantiated that cellular entry of cLNP predominantly occurs through macropinocytosis. This mechanism leads to heightened intracellular endosomal escape and mitigates lysosomal accumulation. The successful expression of anti-CD19-CD28-CD3z, a CAR engineered to target CD19, a protein often expressed on the surface of B cells, was confirmed using a fluorescence-based assay. Overall, our results indicated the effectiveness of cLNP in gene delivery and suggested the potential of multiple administration transfection as a practical approach for refining T-cell engineering protocols in CAR therapies. Future investigations may focus on refining outcomes by adjusting transfection parameters like nucleic acid concentration, lipid-to-DNA ratio, and incubation time to achieve improved TE and increased gene expression levels.
Collapse
Affiliation(s)
- Francesca Giulimondi
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Serena Renzi
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Chiara Cassone
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Andrea Pirrottina
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | | | - Gabriele Maiorano
- Nanotechnology Institute, CNR-NANOTEC, Via Monteroni, Lecce 73100, Italy
| | - Giuseppe Gigli
- Nanotechnology Institute, CNR-NANOTEC, Via Monteroni, Lecce 73100, Italy
- Department of Medicine, University of Salento, Arnesano street c/o Campus Ecotekne, Lecce 73100, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| |
Collapse
|
46
|
BenDavid E, Ramezanian S, Lu Y, Rousseau J, Schroeder A, Lavertu M, Tremblay JP. Emerging Perspectives on Prime Editor Delivery to the Brain. Pharmaceuticals (Basel) 2024; 17:763. [PMID: 38931430 PMCID: PMC11206523 DOI: 10.3390/ph17060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Prime editing shows potential as a precision genome editing technology, as well as the potential to advance the development of next-generation nanomedicine for addressing neurological disorders. However, turning in prime editors (PEs), which are macromolecular complexes composed of CRISPR/Cas9 nickase fused with a reverse transcriptase and a prime editing guide RNA (pegRNA), to the brain remains a considerable challenge due to physiological obstacles, including the blood-brain barrier (BBB). This review article offers an up-to-date overview and perspective on the latest technologies and strategies for the precision delivery of PEs to the brain and passage through blood barriers. Furthermore, it delves into the scientific significance and possible therapeutic applications of prime editing in conditions related to neurological diseases. It is targeted at clinicians and clinical researchers working on advancing precision nanomedicine for neuropathologies.
Collapse
Affiliation(s)
- Eli BenDavid
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Laboratory of Nanopharmacology and Pharmaceutical Nanoscience, Faculty of Pharmacy, Laval University, Québec, QC G1V 4G2, Canada
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Sina Ramezanian
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Yaoyao Lu
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Joël Rousseau
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Marc Lavertu
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
| | - Jacques P. Tremblay
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
47
|
Guo Z, Zeng C, Shen Y, Hu L, Zhang H, Li Z, Dong W, Wang Q, Liu Q, Wang Y, Jiang W. Helper Lipid-Enhanced mRNA Delivery for Treating Metabolic Dysfunction-Associated Fatty Liver Disease. NANO LETTERS 2024; 24:6743-6752. [PMID: 38783628 DOI: 10.1021/acs.nanolett.4c01458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lipid nanoparticles (LNPs) represent the forefront of mRNA delivery platforms, yet achieving precise delivery to specific cells remains a challenge. The current targeting strategies complicate the formulation and impede the regulatory approval process. Here, through a straightforward regulation of helper lipids within LNPs, we introduce an engineered LNP designed for targeted delivery of mRNA into hepatocytes for metabolic dysfunction-associated fatty liver disease (MAFLD) treatment. The optimized LNP, supplied with POPC as the helper lipid, exhibits a 2.49-fold increase in mRNA transfection efficiency in hepatocytes compared to that of FDA-approved LNPs. CTP:phosphocholine cytidylyltransferase α mRNA is selected for delivery to hepatocytes through the optimized LNP system for self-calibration of phosphatidylcholine levels to prevent lipid droplet expansion in MAFLD. This strategy effectively regulates lipid homeostasis, while demonstrating proven biosafety. Our results present a mRNA therapy for MAFLD and open a new avenue for discovering potent lipids enabling mRNA delivery to specific cells.
Collapse
Affiliation(s)
- Zixuan Guo
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Cici Zeng
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yanqiong Shen
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei 230601, China
| | - Lei Hu
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Haiyan Zhang
- Core Facility Centre for Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhibin Li
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wang Dong
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qin Wang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qi Liu
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei 230601, China
| | - Wei Jiang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
48
|
Jung O, Jung HY, Thuy LT, Choi M, Kim S, Jeon HG, Yang J, Kim SM, Kim TD, Lee E, Kim Y, Choi JS. Modulating Lipid Nanoparticles with Histidinamide-Conjugated Cholesterol for Improved Intracellular Delivery of mRNA. Adv Healthc Mater 2024; 13:e2303857. [PMID: 38344923 DOI: 10.1002/adhm.202303857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Recently, mRNA-based therapeutics, including vaccines, have gained significant attention in the field of gene therapy for treating various diseases. Among the various mRNA delivery vehicles, lipid nanoparticles (LNPs) have emerged as promising vehicles for packaging and delivering mRNA with low immunogenicity. However, while mRNA delivery has several advantages, the delivery efficiency and stability of LNPs remain challenging for mRNA therapy. In this study, an ionizable helper cholesterol analog, 3β[L-histidinamide-carbamoyl] cholesterol (Hchol) lipid is developed and incorporated into LNPs instead of cholesterol to enhance the LNP potency. The pKa values of the Hchol-LNPs are ≈6.03 and 6.61 in MC3- and SM102-based lipid formulations. Notably, the Hchol-LNPs significantly improve the delivery efficiency by enhancing the endosomal escape of mRNA. Additionally, the Hchol-LNPs are more effective in a red blood cell hemolysis at pH 5.5, indicating a synergistic effect of the protonated imidazole groups of Hchol and cholesterol on endosomal membrane destabilization. Furthermore, mRNA delivery is substantially enhanced in mice treated with Hchol-LNPs. Importantly, LNP-encapsulated SARS-CoV-2 spike mRNA vaccinations induce potent antigen-specific antibodies against SARS-CoV-2. Overall, incorporating Hchol into LNP formulations enables efficient endosomal escape and stability, leading to an mRNA delivery vehicle with a higher delivery efficiency.
Collapse
Affiliation(s)
- Onesun Jung
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hye-Youn Jung
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Le Thi Thuy
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Minyoung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seongyeon Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hae-Geun Jeon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Seok-Min Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Bioscience Major, KRIBB School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Eunjung Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yoonkyung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Bioscience Major, KRIBB School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
49
|
De Peña AC, Zimmer D, Gutterman-Johns E, Chen NM, Tripathi A, Bailey-Hytholt CM. Electrophoretic Microfluidic Characterization of mRNA- and pDNA-Loaded Lipid Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26984-26997. [PMID: 38753459 DOI: 10.1021/acsami.4c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lipid nanoparticles (LNPs) are clinically advanced nonviral gene delivery vehicles with a demonstrated ability to address viral, oncological, and genetic diseases. However, the further development of LNP therapies requires rapid analytical techniques to support their development and manufacturing. The method developed and described in this paper presents an approach to rapidly and accurately analyze LNPs for optimized therapeutic loading by utilizing an electrophoresis microfluidic platform to analyze the composition of LNPs with different clinical lipid compositions (Onpattro, Comirnaty, and Spikevax) and nucleic acid (plasmid DNA (pDNA) and messenger RNA (mRNA)) formulations. This method enables the high-throughput screening of LNPs using a 96- or 384-well plate with approximate times of 2-4 min per sample using a total volume of 11 μL. The lipid analysis requires concentrations approximately between 109 and 1010 particles/mL and has an average precision error of 10.4% and a prediction error of 19.1% when compared to using a NanoSight, while the nucleic acid analysis requires low concentrations of 1.17 ng/μL for pDNA and 0.17 ng/μL for mRNA and has an average precision error of 4.8% and a prediction error of 9.4% when compared to using a PicoGreen and RiboGreen assay. In addition, our method quantifies the relative concentration of nucleic acid per LNP. Utilizing this approach, we observed an average of 263 ± 62.2 mRNA per LNP and 126.3 ± 21.2 pDNA per LNP for the LNP formulations used in this study, where the accuracy of these estimations is dependent on reference standards. We foresee the utility of this technique in the high-throughput characterization of LNPs during manufacturing and formulation research and development.
Collapse
Affiliation(s)
- Adriana Coll De Peña
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Daniel Zimmer
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Everett Gutterman-Johns
- Department of Molecular Biology, Cell Biology, and Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Nicole M Chen
- Department of Molecular Biology, Cell Biology, and Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Christina M Bailey-Hytholt
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| |
Collapse
|
50
|
Geng WC, Jiang ZT, Chen SL, Guo DS. Supramolecular interaction in the action of drug delivery systems. Chem Sci 2024; 15:7811-7823. [PMID: 38817563 PMCID: PMC11134347 DOI: 10.1039/d3sc04585d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/27/2024] [Indexed: 06/01/2024] Open
Abstract
Complex diseases and diverse clinical needs necessitate drug delivery systems (DDSs), yet the current performance of DDSs is far from ideal. Supramolecular interactions play a pivotal role in various aspects of drug delivery, encompassing biocompatibility, drug loading, stability, crossing biological barriers, targeting, and controlled release. Nevertheless, despite having some understanding of the role of supramolecular interactions in drug delivery, their incorporation is frequently overlooked in the design and development of DDSs. This perspective provides a brief analysis of the involved supramolecular interactions in the action of drug delivery, with a primary emphasis on the DDSs employed in the clinic, mainly liposomes and polymers, and recognized phenomena in research, such as the protein corona. The supramolecular interactions implicated in various aspects of drug delivery systems, including biocompatibility, drug loading, stability, spatiotemporal distribution, and controlled release, were individually analyzed and discussed. This perspective aims to trigger a comprehensive and systematic consideration of supramolecular interactions in the further development of DDSs. Supramolecular interactions embody the true essence of the interplay between the majority of DDSs and biological systems.
Collapse
Affiliation(s)
- Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Ze-Tao Jiang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Shi-Lin Chen
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| |
Collapse
|