1
|
Zhang Y, Zheng X, Huang Y, Li S, Li X, Zhu L. EDB-FN-targeted probes for near infrared fluorescent imaging and positron emission tomography imaging of breast cancer in mice. Sci Rep 2024; 14:22056. [PMID: 39333775 PMCID: PMC11437091 DOI: 10.1038/s41598-024-73362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The extra domain B splice variant of fibronectin (EDB-FN), which is overexpressed in several cancers, is an approved diagnostic and therapeutic target of cancers. The aim of this study was to evaluate the EDB-FN-targeting peptide EDBp as a noninvasive imaging modality for molecular imaging of breast cancer in mice. Western blot, flow cytometry and immunofluorescence were used to assess the expression level of EDB-FN and its binding to EDRp in MCF7, SKBR3, 4T1, EMT6, MDA-MB-231 and MDA-MB-453 cells. Establishment MDA-MB-231-luc cells-based subcutaneous tumor model mice or pulmonary metastasis model mice. The EDRp molecular probes to perform fluorescent probes for near-infrared fluorescence (NIRF)·and PET imaging of model mice. Our results demonstrate that EDBp-Cy5 had a strong binding ability to the MDA-MB-231 cells and exhibited specific tumor accumulation in MDA-MB-231 subcutaneous and pulmonary metastasis model mice. Importantly, the EDBp peptide-based radiotracer [18F]-AlF-NOTA-EDBp provided excellent diagnostic value for positron emission tomography (PET) imaging of breast cancer, especially in subcutaneous model mice. The uptake of [18F]-AlF-NOTA-EDBp in subcutaneous tumors (6.53 ± 0.89%, ID/g) was unexpectedly higher than that in the kidney (4.96 ± 0.20, %ID/g). The high tumor uptake of these probes in mice suggests their potential for application in imaging of EDB-FN-positive breast cancer for disease staging of regional and distant metastases.
Collapse
Affiliation(s)
- Yun Zhang
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
| | - Xiaobin Zheng
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060, China
| | - Yanfang Huang
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
| | - Sijia Li
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
| | - Xinling Li
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060, China.
| | - Lijun Zhu
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Reisi Zargari N, Ebrahimi F, Akhlaghi M, Beiki D, Abdi K, Abbasi MA, Ramezanpour S, Asghari SM. Novel Gd-DTPA-peptide for targeted breast tumor magnetic resonance imaging. Biomed Pharmacother 2024; 178:117189. [PMID: 39059353 DOI: 10.1016/j.biopha.2024.117189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
The prevalence of breast cancer underscores the imperative for early diagnosis in guiding treatment decisions. This study introduces a novel contrast agent, Gd-DTPA-VGB3, derived from the peptide VGB3 targeting vascular endothelial growth factor receptor-1 (VEGFR1) and VEGFR2, to enhance the contrast of conventional drug Magnevist in breast tumor MRI. The MRI contrast agent was synthesized on rink amide resin via Fmoc strategy, incorporating amino acids, and coupling to diethylenetriaminepentaacetic acid (DTPA). Gadolinium (Gd)-DTPA-VGB3 displayed specific binding to VEGFR1/2 in a displacement binding assay. Gd-DTPA-VGB3 exhibited minimal cytotoxicity to normal MCF-10 cells while inhibiting 4T1 mammary carcinoma cell proliferation. Compared to Magnevist, Gd-DTPA-VGB3 demonstrated a 2.8-fold increase in contrast-to-noise ratio (CNR) (355 vs. 125). Gd-DTPA-VGB3 exhibited enhanced accumulation in 4T1 tumor-bearing mice, resulting in significant signal intensity improvement. The findings highlight Gd-DTPA-VGB3's specific binding to VEGFRs, substantiating its potential as a candidate for enhancing MRI contrast in breast cancer diagnostics.
Collapse
Affiliation(s)
| | - Fatemeh Ebrahimi
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Davood Beiki
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosrou Abdi
- Department of Radiopharmacy and Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abbasi
- Firoozabadi Hospital Clinical Research Development Unit (FHCRDU), Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Sonavane S, Salvi O, Asopa RV, Basu S. Assessing Krenning's score on 68 Ga-DOTATATE PET-CT and miPSMA score on 68 Ga-PSMA-11 PET-CT in TENIS: a comparison with FDG PET/CT and examining the feasibility of targeted radionuclide therapy. Nucl Med Commun 2024; 45:690-701. [PMID: 38832433 DOI: 10.1097/mnm.0000000000001856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVES The objective of this study was to assess receptor expression in metastatic differentiated thyroid carcinoma patients with progressive elevated thyroglobulin and negative iodine scintigraphy, we used 68 Ga-DOTATATE [Gallium-68 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-octreotate (DOTATATE)] (Krenning's score) and 68 Ga-PSMA-11 (Gallium-68 prostate-specific membrane antigen-11) PET-computed tomography (CT) [molecular imaging prostate-specific membrane antigen (miPSMA) score]. Patients with Krenning's score 3 and above and miPSMA score 2 and above were considered to determine the incidence of patients, who would qualify for treatment with 177 Lu-DOTATATE/PSMA [Lutetium-177 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-octreotate (DOTATATE)/prostate-specific membrane antigen]-based therapy. In addition, we compared 68 Ga-DOTATATE and 68 Ga-PSMA-11 PET-CT with 2-deoxy-2-[F-18]fluoroglucose ( 18 F-FDG) PET-CT (using maximum standardized uptake value). MATERIALS AND METHODS A total of 74 patients with histopathologically proven metastatic differentiated thyroid carcinoma with thyroglobulin elevation and negative iodine scintigraphy syndrome were studied retrospectively. They all had 18 F-FDG, 68 Ga-DOTATATE, and 68 Ga-PSMA-11 PET-CT scans available for undertaking this analysis. The lesions detected by 68 Ga-DOTATATE and 68 Ga-PSMA-11 were evaluated using Krenning's and miPSMA scores. In addition, quantitative comparisons of maximum standardized uptake values for 68 Ga-DOTATATE and 68 Ga-PSMA-11, as well as with 18 F-FDG, were conducted. RESULTS Patient-wise analysis revealed positivity rates of 40.5% for 68 Ga-DOTATATE, 41.89% for 68 Ga-PSMA-11, and 75.67% for 18 F-FDG. Among the 74 patients, 14 (18.91%) were deemed eligible for 177 Lu-DOTATATE/PSMA-617 therapy based on Krenning's score of 3 and above both/either miPSMA score of 2 and above on 68 Ga-DOTATATE or 68 Ga-PSMA-11 PET-CT. Within this subgroup, seven out of 74 patients (9.45%) were eligible for 177 Lu-DOTATATE therapy, and nine out of 74 patients (12.16%) were eligible for 177 Lu-PSMA-targeted therapy. Four patients were eligible for both therapies. CONCLUSION Among thyroglobulin elevation and negative iodine scintigraphy patient's subgroup, 9.45% could qualify for 177 Lu-DOTATATE and 12.16% for 177 Lu-PSMA-617. Four were eligible for both therapies. Given the lack of effective therapies, this subset of patients warrants consideration for radionuclide therapy exploration.
Collapse
Affiliation(s)
- Sunita Sonavane
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe,
- Homi Bhabha National Institute and
| | - Omkar Salvi
- Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Ramesh V Asopa
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe,
- Homi Bhabha National Institute and
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe,
- Homi Bhabha National Institute and
| |
Collapse
|
4
|
Zheleznyak A, Tang R, Duncan K, Manion B, Liang K, Xu B, Vanover A, Ghai A, Prior J, Lees S, Achilefu S, Kelly K, Shokeen M. Development of New CD38 Targeted Peptides for Cancer Imaging. Mol Imaging Biol 2024; 26:738-752. [PMID: 38480650 PMCID: PMC11282151 DOI: 10.1007/s11307-024-01901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 04/18/2024]
Abstract
PURPOSE Multiple myeloma (MM) affects over 35,000 patients each year in the US. There remains a need for versatile Positron Emission Tomography (PET) tracers for the detection, accurate staging, and monitoring of treatment response of MM that have optimal specificity and translational attributes. CD38 is uniformly overexpressed in MM and thus represents an ideal target to develop CD38-targeted small molecule PET radiopharmaceuticals to address these challenges. PROCEDURES Using phage display peptide libraries and pioneering algorithms, we identified novel CD38 specific peptides. Imaging bioconjugates were synthesized using solid phase peptide chemistry, and systematically analyzed in vitro and in vivo in relevant MM systems. RESULTS The CD38-targeted bioconjugates were radiolabeled with copper-64 (64Cu) with100% radiochemical purity and an average specific activity of 3.3 - 6.6 MBq/nmol. The analog NODAGA-PEG4-SL022-GGS (SL022: Thr-His-Tyr-Pro-Ile-Val-Ile) had a Kd of 7.55 ± 0.291 nM and was chosen as the lead candidate. 64Cu-NODAGA-PEG4-SL022-GGS demonstrated high binding affinity to CD38 expressing human myeloma MM.1S-CBR-GFP-WT cells, which was blocked by the non-radiolabeled version of the peptide analog and anti-CD38 clinical antibodies, daratumumab and isatuximab, by 58%, 73%, and 78%, respectively. The CD38 positive MM.1S-CBR-GFP-WT cells had > 68% enhanced cellular binding when compared to MM.1S-CBR-GFP-KO cells devoid of CD38. Furthermore, our new CD38-targeted radiopharmaceutical allowed visualization of tumors located in marrow rich bones, remaining there for up to 4 h. Clearance from non-target organs occurred within 60 min. Quantitative PET data from a murine disseminated tumor model showed significantly higher accumulation in the bones of tumor-bearing animals compared to tumor-naïve animals (SUVmax 2.06 ± 0.4 versus 1.24 ± 0.4, P = 0.02). Independently, tumor uptake of the target compound was significantly higher (P = 0.003) compared to the scrambled peptide, 64Cu-NODAGA-PEG4-SL041-GGS (SL041: Thr-Tyr-His-Ile-Pro-Ile-Val). The subcutaneous MM model demonstrated significantly higher accumulation in tumors compared to muscle at 1 and 4 h after tracer administration (SUVmax 0.8 ± 0.2 and 0.14 ± 0.04, P = 0.04 at 1 h; SUVmax 0.89 ± 0.01 and 0.09 ± 0.01, P = 0.0002 at 4 h). CONCLUSIONS The novel CD38-targeted, radiolabeled bioconjugates were specific and allowed visualization of MM, providing a starting point for the clinical translation of such tracers for the detection of MM.
Collapse
Affiliation(s)
- Alexander Zheleznyak
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rui Tang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kathleen Duncan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brad Manion
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kexian Liang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Baogang Xu
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alexander Vanover
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anchal Ghai
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Julie Prior
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stephen Lees
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Samuel Achilefu
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kimberly Kelly
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Monica Shokeen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Chen X, Zhang Z, Wang L, Zhang J, Zhao T, Cai J, Dang Y, Guo R, Liu R, Zhou Y, Wei R, Lou X, Xia F, Ma D, Li F, Dai J, Li F, Xi L. Homodimeric peptide radiotracer [ 68Ga]Ga-NOTA-(TMVP1) 2 for VEGFR-3 imaging of cervical cancer patients. Eur J Nucl Med Mol Imaging 2024; 51:2338-2352. [PMID: 38411667 DOI: 10.1007/s00259-024-06661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE Vascular endothelial growth factor receptor 3 (VEGFR-3) plays a critical role in tumor lymphangiogenesis and metastasis, holding promise as a promising therapeutic target for solid tumors. TMVP1 (LARGR) is a 5-amino acid peptide previously identified in our laboratory from bacterial peptide display system that specifically targets VEGFR-3. Radiolabeled TMVP1 can be used for non-invasive imaging of VEGFR-3 expressing tumors. Homodimeric peptides have better targeting ability than monomeric peptides, and it is worth exploring whether homodimers of TMVP1 ((TMVP1)2) can achieve better imaging effects. This study aimed to explore the peptide properties and tumor assessment value of [68Ga]Ga-labeled (TMVP1)2. METHODS In this study, we developed a TMVP1 homodimer that was conjugated with 1,4,7-triazacyclononane-N, N', N″-triacetic acid (NOTA) via tetraethyleneglycol (PEG4) and triglyicine (Gly3) spacer, and labeled with 68Ga, to construct [68Ga]Ga-NOTA-(TMVP1)2. Binding of VEGFR-3 by TMVP1 and (TMVP1)2, respectively, was modeled by molecular docking. The affinity of [68Ga]Ga-NOTA-(TMVP1)2 for VEGFR-3 and its ability to bind to cells were evaluated. MicroPET imaging and biodistribution studies of [68Ga]Ga-NOTA-(TMVP1)2 were performed in subcutaneous C33A cervical cancer xenografts. Five healthy volunteers and eight patients with cervical cancer underwent whole-body PET/CT acquisition 30-45 min after intravenous injection of [68Ga]Ga-NOTA-(TMVP1)2. RESULTS Both molecular docking and cellular experiments showed that homodimeric TMVP1 had a higher affinity for VEGFR-3 than monomeric TMVP1. [68Ga]Ga-NOTA-(TMVP1)2 was excreted mainly through the renal route and partly through the liver route. In mice bearing C33A xenografts, [68Ga]Ga-NOTA-(TMVP1)2 specifically localized in the tumor (2.32 ± 0.10% ID/g). Pretreatment of C33A xenograft mice with the unlabeled peptide NOTA-(TMVP1)2 reduced the enrichment of [68Ga]Ga-NOTA-(TMVP1)2 in tumors (0.58 ± 0.01% ID/g). [68Ga]Ga-NOTA-(TMVP1)2 proved to be safe in all healthy volunteers and recruited patients, with no side effects or allergies noted. In cervical cancer patients, a majority of the [18F]-FDG identified lesions (18/22, 81.8%) showed moderate to high signal intensity on [68Ga]Ga-NOTA-(TMVP1)2. SUVmax and SUVmean were 2.32 ± 0.77 and 1.61 ± 0.48, respectively. With normal muscle (gluteus maximus) as background, tumor-to-background ratios were 3.49 ± 1.32 and 3.95 ± 1.64 based on SUVmax and SUVmean, respectively. CONCLUSION The favorable characterizations of [68Ga]Ga-NOTA-(TMVP1)2 such as convenient synthesis, high specific activity, and high tumor uptake enable the evaluation of VEGFR-3 in cervical cancer patients and warrant further clinical studies. TRIAL REGISTRATION ChiCTR-DOD-17012458. Registered August 23, 2017 (retrospectively registered).
Collapse
Affiliation(s)
- Xi Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenzhong Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- Department of Gynecologic Oncology, Henan Provincial Cancer Hospital, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Wang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Zhang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiong Cai
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yonghong Dang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Rui Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Fei Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Ling Xi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| |
Collapse
|
6
|
Du H, Wang Q, Zhang B, Liang Z, Huang C, Shi D, Li F, Ling D. Structural Defect-Enabled Magnetic Neutrality Nanoprobes for Ultra-High-Field Magnetic Resonance Imaging of Isolated Tumor Cells in Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401538. [PMID: 38738793 DOI: 10.1002/adma.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Indexed: 05/14/2024]
Abstract
The identification of metastasis "seeds," isolated tumor cells (ITCs), is of paramount importance for the prognosis and tailored treatment of metastatic diseases. The conventional approach to clinical ITCs diagnosis through invasive biopsies is encumbered by the inherent risks of overdiagnosis and overtreatment. This underscores the pressing need for noninvasive ITCs detection methods that provide histopathological-level insights. Recent advancements in ultra-high-field (UHF) magnetic resonance imaging (MRI) have ignited hope for the revelation of minute lesions, including the elusive ITCs. Nevertheless, currently available MRI contrast agents are susceptible to magnetization-induced strong T2-decaying effects under UHF conditions, which compromises T1 MRI capability and further impedes the precise imaging of small lesions. Herein, this study reports a structural defect-enabled magnetic neutrality nanoprobe (MNN) distinguished by its paramagnetic properties featuring an exceptionally low magnetic susceptibility through atomic modulation, rendering it almost nonmagnetic. This unique characteristic effectively mitigates T2-decaying effect while concurrently enhancing UHF T1 contrast. Under 9 T MRI, the MNN demonstrates an unprecedentedly low r2/r1 value (≈1.06), enabling noninvasive visualization of ITCs with an exceptional detection threshold of ≈0.16 mm. These high-performance MNNs unveil the domain of hitherto undetectable minute lesions, representing a significant advancement in UHF-MRI for diagnostic purposes and fostering comprehensive metastasis research.
Collapse
Affiliation(s)
- Hui Du
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Zeyu Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Canyu Huang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dao Shi
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Songjiang Research Institute, Songjiang Hospital, Shanghai Key Laboratory of Emotions and Affective Disorder, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
| |
Collapse
|
7
|
Bauso LV, La Fauci V, Munaò S, Bonfiglio D, Armeli A, Maimone N, Longo C, Calabrese G. Biological Activity of Natural and Synthetic Peptides as Anticancer Agents. Int J Mol Sci 2024; 25:7264. [PMID: 39000371 PMCID: PMC11242495 DOI: 10.3390/ijms25137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer is one of the leading causes of morbidity and death worldwide, making it a serious global health concern. Chemotherapy, radiotherapy, and surgical treatment are the most used conventional therapeutic approaches, although they show several side effects that limit their effectiveness. For these reasons, the discovery of new effective alternative therapies still represents an enormous challenge for the treatment of tumour diseases. Recently, anticancer peptides (ACPs) have gained attention for cancer diagnosis and treatment. ACPs are small bioactive molecules which selectively induce cancer cell death through a variety of mechanisms such as apoptosis, membrane disruption, DNA damage, immunomodulation, as well as inhibition of angiogenesis, cell survival, and proliferation pathways. ACPs can also be employed for the targeted delivery of drugs into cancer cells. With over 1000 clinical trials using ACPs, their potential for application in cancer therapy seems promising. Peptides can also be utilized in conjunction with imaging agents and molecular imaging methods, such as MRI, PET, CT, and NIR, improving the detection and the classification of cancer, and monitoring the treatment response. In this review we will provide an overview of the biological activity of some natural and synthetic peptides for the treatment of the most common and malignant tumours affecting people around the world.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Valeria La Fauci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Serena Munaò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Desirèe Bonfiglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Alessandra Armeli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Noemi Maimone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Clelia Longo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| |
Collapse
|
8
|
Liu Q, Cai S, Ye J, Xie Q, Liu R, Qiu L, Lin J. Preclinical evaluation of 68 Ga-labeled peptide CK2 for PET imaging of NRP-1 expression in vivo. Eur J Nucl Med Mol Imaging 2024; 51:1826-1840. [PMID: 38319321 DOI: 10.1007/s00259-024-06632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
PURPOSE Neuropilin-1 (NRP-1) is a multifunctional protein involved in a variety of biological processes such as angiogenesis, tumorigenesis and immunomodulation. It was usually overexpressed in many cancer cell lines and correlated with poor prognosis of breast cancer. Positron emission tomography (PET) is an advanced imaging technique for detecting the function and metabolism of tumor-associated molecules in real time, dynamically, quantitatively and noninvasively. To improve the level of early diagnosis and evaluate the prognosis of breast cancer, an NRP-1 targeting peptide-based tracer [68 Ga]Ga-NOTA-PEG4-CK2 was designed to sensitively and specifically detect the NRP-1 expression in vivo via PET imaging. METHODS In silico modeling and microscale thermophoresis (MST) assay were carried out to design the NRP-1 targeting peptide NOTA-PEG4-CK2, and it was further radiolabeled with 68 Ga to prepare the tracer [68 Ga]Ga-NOTA-PEG4-CK2. The radiochemical yield (RCY), radiochemical purity (RCP), molar activity (Am), lipid-water partition coefficient (Log P) and stability of [68 Ga]Ga-NOTA-PEG4-CK2 were assessed. The targeting specificity of the tracer for NRP-1 was investigated by in vitro cellular uptake assay and in vivo PET imaging as well as blocking studies. The sensitivity of the tracer in monitoring the dynamic changes of NRP-1 expression induced by chemical drug was also investigated in vitro and in vivo. Ex vivo biodistribution, autoradiography, western blot, and immunofluorescence staining were also performed to study the specificity of [68 Ga]Ga-NOTA-PEG4-CK2 for NRP-1. RESULTS [68 Ga]Ga-NOTA-PEG4-CK2 was designed and synthesized with high RCY (> 98%), high stability (RCP > 95%) and high affinity to NRP-1 (KD = 25.39 ± 1.65 nM). In vitro cellular uptake assay showed that the tracer [68 Ga]Ga-NOTA-PEG4-CK2 can specifically bind to NRP-1 positive cancer cells MDA-MB-231 (1.04 ± 0.04% at 2 h) rather than NRP-1 negative cancer cells NCI-H1299 (0.43 ± 0.05%). In vivo PET imaging showed the maximum tumor uptake of [68 Ga]Ga-NOTA-PEG4-CK2 in MDA-MB-231 xenografts (4.16 ± 0.67%ID/mL) was significantly higher than that in NCI-H1299 xenografts (1.03 ± 0.19%ID/mL) at 10 min post injection, and the former exhibited higher tumor-to-muscle uptake ratio (5.22 ± 0.18) than the latter (1.07 ± 0.27) at 60 min post injection. MDA-MB-231 xenografts pretreated with nonradioactive precursor NOTA-PEG4-CK2 showed little tumor uptake of [68 Ga]Ga-NOTA-PEG4-CK2 (1.67 ± 0.38%ID/mL at 10 min post injection). Both cellular uptake assay and PET imaging revealed that NRP-1 expression in breast cancer MDA-MB-231 could be effectively suppressed by SB-203580 treatment and can be sensitively detected by [68 Ga]Ga-NOTA-PEG4-CK2. Ex vivo analysis also proved the high specificity and sensitivity of [68 Ga]Ga-NOTA-PEG4-CK2 for NRP-1 expression in MDA-MB-231 xenografts. CONCLUSION A promising NRP-1 targeting PET tracer [68 Ga]Ga-NOTA-PEG4-CK2 was successfully prepared. It showed remarkable specificity and sensitivity in monitoring the dynamic changes of NRP-1 expression. Hence, it could provide valuable information for early diagnosis of NRP-1 relevant cancers and evaluating the prognosis of cancer patients.
Collapse
Affiliation(s)
- Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Shuyue Cai
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Jiacong Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Quan Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Rongbin Liu
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
| |
Collapse
|
9
|
Mo C, Sun P, Liang H, Chen Z, Wang M, Fu L, Huang S, Tang G. Synthesis and preclinical evaluation of a novel probe [ 18F]AlF-NOTA-IPB-GPC3P for PET imaging of GPC3 positive tumor. Bioorg Chem 2024; 147:107352. [PMID: 38640719 DOI: 10.1016/j.bioorg.2024.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
Glypican-3 (GPC3) is markedly overexpressed in hepatocellular carcinoma (HCC) and not expressed in normal liver tissues. In this study, a novel peptide PET imaging agent ([18F]AlF-NOTA-IPB-GPC3P) was developed to target GPC3 expressed in tumors. The overall radiochemical yield of [18F]AlF-NOTA-IPB-GPC3P was 10-15 %, and its lipophilicity, expressed as the logD value at a pH of 7.4, was -1.18 ± 0.06 (n = 3). Compared to the previously reported tracer [18F]AlF-GP2633, [18F]AlF-NOTA-IPB-GPC3P exhibited higher cellular uptake (15.13 vs 5.96) and internalized rate (80.63 % vs 35.93 %) in Huh7 cells at 120 min. Micro-PET/CT and biodistribution studies further demonstrated that [18F]AlF-NOTA-IPB-GPC3P exhibited significantly increased tumor uptake and prolonged tumor residence in Huh7 tumors compared to [18F]AlF-GP2633 (4.66 ± 0.22 % ID/g vs 0.72 ± 0.09 % ID/g at 60 min, p < 0.001; 5.05 ± 0.23 % ID/g vs 0.35 ± 0.08 % ID/g at 120 min, p < 0.001, respectively). Furthermore, the tumor-to-organ ratios of [18F]AlF-NOTA-IPB-GPC3P surpassed those of [18F]AlF-GP2633. Our results support the utilization of [18F]AlF-NOTA-IPB-GPC3P as a PET imaging agent targeting the GPC3 receptor for tumor detection.
Collapse
Affiliation(s)
- Chunwei Mo
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Penghui Sun
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Haoran Liang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Zihao Chen
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Meng Wang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Lilan Fu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Shun Huang
- Department of Nuclear Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China.
| | - Ganghua Tang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
10
|
Qu B, Li X, Ma Y, Wang Y, Han Y, Hou G, Gao F. 68Ga labeled EphA2-targeted cyclic peptide: a novel positron imaging tracer for triple-negative breast cancer? Dalton Trans 2024; 53:7946-7952. [PMID: 38646723 DOI: 10.1039/d4dt00837e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The absence of better biomarkers currently limits early diagnosis and treatment of triple-negative breast cancer (TNBC). Our previously published study reported that the cyclic-peptide SD01 exhibited specific binding to EphA2 (Ephrin type-A receptor 2) on TNBC. To develop a novel PET imaging agent, we prepared gallium-68 (68Ga) labeled-DOTA-SD01 and evaluated its specificity and effectiveness through micro PET/CT imaging in a TNBC-bearing mouse model. SD01 and a control linear peptide YSA were conjugated to DOTA and subsequently labeled with 68Ga, obtaining 68Ga-DOTA-SD01 and 68Ga-DOTA-YSA. Both showed high radiochemical purity, stability, good hydrophilicity, and high binding affinity to 4T1 cells. Micro PET/CT imaging showed high radioactivity accumulation in tumors; SUVmean (mean standardized uptake value) of tumors in the group of 68Ga-DOTA-SD01 was 3.34 ± 0.25 and 2.65 ± 0.32 in the group of 68Ga-DOTA-YSA; T/NT ratios (target to non-target, SUVmean ratios of tumor to muscle) were 3.12 ± 0.06 and 2.77 ± 0.11 at 30 min, respectively (p < 0.05). The biodistribution study showed that tumor uptake % ID per g (percentage of injected dose per gram of tissue) in the group of 68Ga-DOTA-SD01 was 2.73 ± 0.34, and 1.77 ± 0.38 in the group of 68Ga-DOTA-YSA; T/NT ratios (radioactivity of tumor to muscle) were 3.55 ± 0.12 and 3.05 ± 0.10 for both groups at 30 min, respectively (p < 0.05). All these suggest that 68Ga-DOTA-SD01 may act as a better novel PET imaging agent for EphA2 positive tumors, such as TNBC.
Collapse
Affiliation(s)
- Bin Qu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China.
- Department of Nuclear Medicine, Weifang People's Hospital, Weifang, 261041, Shandong, China
| | - Xianjun Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China.
- Department of Nuclear Medicine, Weifang People's Hospital, Weifang, 261041, Shandong, China
| | - Yuze Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Yanzhi Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Yeming Han
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
11
|
Cheung TL, Tam LKB, Tam WS, Zhang L, Kai HY, Thor W, Wu Y, Lam PL, Yeung YH, Xie C, Chau HF, Lo WS, Zhang T, Wong KL. Facile Peptide Macrocyclization and Multifunctionalization via Cyclen Installation. SMALL METHODS 2024:e2400006. [PMID: 38593368 DOI: 10.1002/smtd.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Cyclen-peptide bioconjugates are usually prepared in multiple steps that require individual preparation and purification of the cyclic peptide and hydrophilic cyclen derivatives. An efficient strategy is discovered for peptide cyclization and functionalization toward lanthanide probe via three components intermolecular crosslinking on solid-phase peptide synthesis with high conversion yield. Multifunctionality can be conferred by introducing different modular parts or/and metal ions on the cyclen-embedded cyclopeptide. As a proof-of-concept, a luminescent Eu3+ complex and a Gd3+-based contrasting agent for in vitro optical imaging and in vivo magnetic resonance imaging, respectively, are demonstrated through utilizing this preparation of cyclen-embedded cyclic arginylglycylaspartic acid (RGD) peptide.
Collapse
Affiliation(s)
- Tsz-Lam Cheung
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Leo K B Tam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wing-Sze Tam
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Leilei Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, and College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hei-Yui Kai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Waygen Thor
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yue Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Department of Surgery, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Pak-Lun Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yik-Hoi Yeung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chen Xie
- Department of Clinical Oncology, University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Ho-Fai Chau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wai-Sum Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, and College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Ka-Leung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
12
|
Xu D, Li Y, Yin S, Huang F. Strategies to address key challenges of metallacycle/metallacage-based supramolecular coordination complexes in biomedical applications. Chem Soc Rev 2024; 53:3167-3204. [PMID: 38385584 DOI: 10.1039/d3cs00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Owing to their capacity for dynamically linking two or more functional molecules, supramolecular coordination complexes (SCCs), exemplified by two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, have gained increasing significance in biomedical applications. However, their inherent hydrophobicity and self-assembly driven by heavy metal ions present common challenges in their applications. These challenges can be overcome by enhancing the aqueous solubility and in vivo circulation stability of SCCs, alongside minimizing their side effects during treatment. Addressing these challenges is crucial for advancing the fundamental research of SCCs and their subsequent clinical translation. In this review, drawing on extensive contemporary research, we offer a thorough and systematic analysis of the strategies employed by SCCs to surmount these prevalent yet pivotal obstacles. Additionally, we explore further potential challenges and prospects for the broader application of SCCs in the biomedical field.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
13
|
Liang Z, Xiao L, Wang Q, Zhang B, Mo W, Xie S, Liu X, Chen Y, Yang S, Du H, Wang P, Li F, Ling D. Ligand-Mediated Magnetism-Conversion Nanoprobes for Activatable Ultra-High Field Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2024; 63:e202318948. [PMID: 38212253 DOI: 10.1002/anie.202318948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Ultra-high field (UHF) magnetic resonance imaging (MRI) has emerged as a focal point of interest in the field of cancer diagnosis. Despite the ability of current paramagnetic or superparamagnetic smart MRI contrast agents to selectively enhance tumor signals in low-field MRI, their effectiveness at UHF remains inadequate due to inherent magnetism. Here, we report a ligand-mediated magnetism-conversion nanoprobe (MCNP) composed of 3-mercaptopropionic acid ligand-coated silver-gadolinium bimetallic nanoparticles. The MCNP exhibits a pH-dependent magnetism conversion from ferromagnetism to diamagnetism, facilitating tunable nanomagnetism for pH-activatable UHF MRI. Under neutral pH, the thiolate (-S- ) ligands lead to short τ'm and increased magnetization of the MCNPs. Conversely, in the acidic tumor microenvironment, the thiolate ligands are protonated and transform into thiol (-SH) ligands, resulting in prolonged τ'm and decreased magnetization of the MCNP, thereby enhancing longitudinal relaxivity (r1) values at UHF MRI. Notably, under a 9 T MRI field, the pH-sensitive changes in Ag-S binding affinity of the MCNP lead to a remarkable (>10-fold) r1 increase in an acidic medium (pH 5.0). In vivo studies demonstrate the capability of MCNPs to amplify MRI signal of hepatic tumors, suggesting their potential as a next-generation UHF-tailored smart MRI contrast agent.
Collapse
Affiliation(s)
- Zeyu Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lin Xiao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Wenkui Mo
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xun Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Du
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengzhan Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| |
Collapse
|
14
|
Al Musaimi O. Peptide Therapeutics: Unveiling the Potential against Cancer-A Journey through 1989. Cancers (Basel) 2024; 16:1032. [PMID: 38473389 PMCID: PMC11326481 DOI: 10.3390/cancers16051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The United States Food and Drug Administration (FDA) has approved a plethora of peptide-based drugs as effective drugs in cancer therapy. Peptides possess high specificity, permeability, target engagement, and a tolerable safety profile. They exhibit selective binding with cell surface receptors and proteins, functioning as agonists or antagonists. They also serve as imaging agents for diagnostic applications or can serve a dual-purpose as both diagnostic and therapeutic (theragnostic) agents. Therefore, they have been exploited in various forms, including linkers, peptide conjugates, and payloads. In this review, the FDA-approved prostate-specific membrane antigen (PSMA) peptide antagonists, peptide receptor radionuclide therapy (PRRT), somatostatin analogs, antibody-drug conjugates (ADCs), gonadotropin-releasing hormone (GnRH) analogs, and other peptide-based anticancer drugs are analyzed in terms of their chemical structures and properties, therapeutic targets and mechanisms of action, development journey, administration routes, and side effects.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Faculty of Medical Sciences, Newcastle upon Tyne NE1 7RU, UK
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
15
|
Pierri G, Schettini R. Advances in MRI: Peptide and peptidomimetic-based contrast agents. J Pept Sci 2024; 30:e3544. [PMID: 37726947 DOI: 10.1002/psc.3544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Magnetic resonance imaging (MRI) is a common medical imaging technique that provides three-dimensional body images. MRI contrast agents improve image contrast by raising the rate of water proton relaxation in specific tissues. Peptides and peptidomimetics act as scaffolds for MRI imaging agents because of their increased size and offer the possibility to engine a higher hydration value within the design. The design of a new Gd-based contrast agent must take into account high stability constants to avoid free Gd(III), with the subsequent nephrotoxicity, and high relaxivity values. This review analyzes various synthetic approaches, reports studies of relaxometric parameters, and focuses on the description and application of Gd(III)-chelates based on peptide and peptidomimetic scaffolds. In addition, the X-ray molecular structures of three DOTA complexes will be reported to emphasize the necessity of using the X-ray diffraction analysis to identify the coordination sphere of the metals and the mechanism of action of the compounds.
Collapse
Affiliation(s)
- Giovanni Pierri
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy
| | - Rosaria Schettini
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy
| |
Collapse
|
16
|
Rahimi MN, Corlett A, Van Zuylekom J, Sani MA, Blyth B, Thompson P, Roselt PD, Haskali MB. Precision peptide theranostics: developing N- to C-terminus optimized theranostics targeting cholecystokinin-2 receptor. Theranostics 2024; 14:1815-1828. [PMID: 38505611 PMCID: PMC10945332 DOI: 10.7150/thno.89701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/10/2024] [Indexed: 03/21/2024] Open
Abstract
Peptides are ideal for theranostic development as they afford rapid target accumulation, fast clearance from background tissue, and exhibit good tissue penetration. Previously, we developed a novel series of peptides that presented discreet folding propensity leading to an optimal candidate [68Ga]Ga-DOTA-GA1 ([D-Glu]6-Ala-Tyr-NMeGly-Trp-NMeNle-Asp-Nal-NH2) with 50 pM binding affinity against cholecystokinin-2 receptors (CCK2R). However, we were confronted with challenges of unfavorably high renal uptake. Methods: A structure activity relationship study was undertaken of the lead theranostic candidate. Prudent structural modifications were made to the peptide scaffold to evaluate the contributions of specific N-terminal residues to the overall biological activity. Optimal candidates were then evaluated in nude mice bearing transfected A431-CCK2 tumors, and their biodistribution was quantitated ex vivo. Results: We identified and confirmed that D-Glu3 to D-Ala3 substitution produced 2 optimal candidates, [68Ga]Ga-DOTA-GA12 and [68Ga]Ga-DOTA-GA13. These radiopeptides presented with high target/background ratios, enhanced tumor retention, excellent metabolic stability in plasma and mice organ homogenates, and a 4-fold reduction in renal uptake, significantly outperforming their non-alanine counterparts. Conclusions: Our study identified novel radiopharmaceutical candidates that target the CCK2R. Their high tumor uptake and reduced renal accumulation warrant clinical translation.
Collapse
Affiliation(s)
- Marwa N. Rahimi
- Department of Radiopharmaceutical Sciences, Cancer Imaging, The Peter MacCallum Cancer Centre, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Alicia Corlett
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Jessica Van Zuylekom
- Models of Cancer Translational Research Centre, The Peter MacCallum Cancer Centre, Victoria 3000, Australia
| | - Marc Antoine Sani
- The Bio21 Institute, School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010 Australia
| | - Benjamin Blyth
- Models of Cancer Translational Research Centre, The Peter MacCallum Cancer Centre, Victoria 3000, Australia
| | - Philip Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia
| | - Peter D. Roselt
- Department of Radiopharmaceutical Sciences, Cancer Imaging, The Peter MacCallum Cancer Centre, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Mohammad B. Haskali
- Department of Radiopharmaceutical Sciences, Cancer Imaging, The Peter MacCallum Cancer Centre, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
17
|
Lander A, Kong Y, Jin Y, Wu C, Luk LYP. Deciphering the Synthetic and Refolding Strategy of a Cysteine-Rich Domain in the Tumor Necrosis Factor Receptor (TNF-R) for Racemic Crystallography Analysis and d-Peptide Ligand Discovery. ACS BIO & MED CHEM AU 2024; 4:68-76. [PMID: 38404743 PMCID: PMC10885103 DOI: 10.1021/acsbiomedchemau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 02/27/2024]
Abstract
Many cell-surface receptors are promising targets for chemical synthesis because of their critical roles in disease development. This synthetic approach enables investigations by racemic protein crystallography and ligand discovery by mirror-image methodologies. However, due to their complex nature, the chemical synthesis of a receptor can be a significant challenge. Here, we describe the chemical synthesis and folding of a central, cysteine-rich domain of the cell-surface receptor tumor necrosis factor 1 which is integral to binding of the cytokine TNF-α, namely, TNFR-1 CRD2. Racemic protein crystallography at 1.4 Å confirmed that the native binding conformation was preserved, and TNFR-1 CRD2 maintained its capacity to bind to TNF-α (KD ≈ 7 nM). Encouraged by this discovery, we carried out mirror-image phage display using the enantiomeric receptor mimic and identified a d-peptide ligand for TNFR-1 CRD2 (KD = 1 μM). This work demonstrated that cysteine-rich domains, including the central domains, can be chemically synthesized and used as mimics for investigations.
Collapse
Affiliation(s)
- Alexander
J. Lander
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Yifu Kong
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Yi Jin
- Manchester
Institute of Biotechnology, University of
Manchester, Manchester M1 7DN, U.K.
| | - Chuanliu Wu
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Louis Y. P. Luk
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
18
|
Rizvi SF, Zhang L, Zhang H, Fang Q. Peptide-Drug Conjugates: Design, Chemistry, and Drug Delivery System as a Novel Cancer Theranostic. ACS Pharmacol Transl Sci 2024; 7:309-334. [PMID: 38357281 PMCID: PMC10863443 DOI: 10.1021/acsptsci.3c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
The emergence of peptide-drug conjugates (PDCs) that utilize target-oriented peptide moieties as carriers of cytotoxic payloads, interconnected with various cleavable/noncleavable linkers, resulted in the key-foundation of the new era of targeted therapeutics. They are capable of retaining the integrity of conjugates in the blood circulatory system as well as releasing the drugs at the tumor microenvironment. Other valuable advantages are specificity and selectivity toward targeted-receptors, higher penetration ability, and drug-loading capacity, making them a suitable candidate to play their vital role as promising carrier agents. In this review, we summarized the types of cell-targeting (CTPs) and cell-penetrating peptides (CPPs) that have broad applications in the advancement of targeted drug-delivery systems (DDS). Moreover, the techniques to overcome the limitations of peptide-chemistry for their extensive implementation to construct the PDCs. Besides this, the diversified breakthrough of linker chemistry, and ample knowledge of various cytotoxic payloads used in PDCs in recent years, as well as the mechanism of action of PDCs was critically discussed. The principal aim is to provide scattered and diversified knowledge in one place and to help researchers understand the pinching knots in the science of PDC development, also their progression toward a bright future for PDCs as novel theranostics in clinical practice.
Collapse
Affiliation(s)
- Syed Faheem
Askari Rizvi
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, and
Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
- Institute
of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, 54000, Punjab Pakistan
| | - Linjie Zhang
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
| | - Haixia Zhang
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
| | - Quan Fang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, and
Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
| |
Collapse
|
19
|
Kalaba P, Sanchez de la Rosa C, Möller A, Alewood PF, Muttenthaler M. Targeting the Oxytocin Receptor for Breast Cancer Management: A Niche for Peptide Tracers. J Med Chem 2024; 67:1625-1640. [PMID: 38235665 PMCID: PMC10859963 DOI: 10.1021/acs.jmedchem.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Breast cancer is a leading cause of death in women, and its management highly depends on early disease diagnosis and monitoring. This remains challenging due to breast cancer's heterogeneity and a scarcity of specific biomarkers that could predict responses to therapy and enable personalized treatment. This Perspective describes the diagnostic landscape for breast cancer management, molecular strategies targeting receptors overexpressed in tumors, the theranostic potential of the oxytocin receptor (OTR) as an emerging breast cancer target, and the development of OTR-specific optical and nuclear tracers to study, visualize, and treat tumors. A special focus is on the chemistry and pharmacology underpinning OTR tracer development, preclinical in vitro and in vivo studies, challenges, and future directions. The use of peptide-based tracers targeting upregulated receptors in cancer is a highly promising strategy complementing current diagnostics and therapies and providing new opportunities to improve cancer management and patient survival.
Collapse
Affiliation(s)
- Predrag Kalaba
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | | | - Andreas Möller
- QIMR
Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- The
Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Paul F. Alewood
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus Muttenthaler
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
20
|
Murphy PS, Galette P, van der Aart J, Janiczek RL, Patel N, Brown AP. The role of clinical imaging in oncology drug development: progress and new challenges. Br J Radiol 2023; 96:20211126. [PMID: 37393537 PMCID: PMC10546429 DOI: 10.1259/bjr.20211126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/14/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023] Open
Abstract
In 2008, the role of clinical imaging in oncology drug development was reviewed. The review outlined where imaging was being applied and considered the diverse demands across the phases of drug development. A limited set of imaging techniques was being used, largely based on structural measures of disease evaluated using established response criteria such as response evaluation criteria in solid tumours. Beyond structure, functional tissue imaging such as dynamic contrast-enhanced MRI and metabolic measures using [18F]flourodeoxyglucose positron emission tomography were being increasingly incorporated. Specific challenges related to the implementation of imaging were outlined including standardisation of scanning across study centres and consistency of analysis and reporting. More than a decade on the needs of modern drug development are reviewed, how imaging has evolved to support new drug development demands, the potential to translate state-of-the-art methods into routine tools and what is needed to enable the effective use of this broadening clinical trial toolset. In this review, we challenge the clinical and scientific imaging community to help refine existing clinical trial methods and innovate to deliver the next generation of techniques. Strong industry-academic partnerships and pre-competitive opportunities to co-ordinate efforts will ensure imaging technologies maintain a crucial role delivering innovative medicines to treat cancer.
Collapse
Affiliation(s)
| | - Paul Galette
- Telix Pharmaceuticals (US) Inc, Fishers, United States
| | | | | | | | - Andrew P. Brown
- Vale Imaging Consultancy Solutions, Harston, Cambridge, United Kingdom
| |
Collapse
|
21
|
Kleynhans J, Sathekge MM, Ebenhan T. Preclinical Research Highlighting Contemporary Targeting Mechanisms of Radiolabelled Compounds for PET Based Infection Imaging. Semin Nucl Med 2023; 53:630-643. [PMID: 37012169 DOI: 10.1053/j.semnuclmed.2023.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/04/2023]
Abstract
It is important to constantly monitor developments in the preclinical imaging arena of infection. Firstly, novel radiopharmaceuticals with the correct characteristics must be identified to funnel into the clinic. Secondly, it must be evaluated if enough innovative research is being done and adequate resources are geared towards the development of radiopharmaceuticals that could feed into the Nuclear Medicine Clinic in the near future. It is proposed that the ideal infection imaging agent will involve PET combined with CT but more ideally MRI. The radiopharmaceuticals currently presented in preclinical literature have a wide selection of vectors and targets. Ionic formulations of PET-radionuclides such 64CuCl2 and 68GaCl2 are evaluated for bacterial infection imaging. Many small molecule based radiopharmaceuticals are being investigated with the most prominent targets being cell wall synthesis, maltodextrin transport (such as [18F]F-maltotriose), siderophores (bacterial and fungal infections), the folate synthesis pathway (such as [18F]F-PABA) and protein synthesis (radiolabelled puromycin). Mycobacterial specific antibiotics, antifungals and antiviral agents are also under investigation as infection imaging agents. Peptide based radiopharmaceuticals are developed for bacterial, fungal and viral infections. The radiopharmaceutical development could even react quickly enough on a pandemic to develop a SARS-CoV-2 imaging agent in a timely fashion ([64Cu]Cu-NOTA-EK1). New immuno-PET agents for the imaging of viruses have recently been published, specifically for HIV persistence but also for SARS-CoV2. A very promising antifungal immuno-PET agent (hJ5F) is also considered. Future technologies could include the application of aptamers and bacteriophages and even going as far as the design of theranostic infection. Another possibility would be the application of nanobodies for immuno-PET applications. Standardization and optimization of the preclinical evaluation of radiopharmaceuticals could enhance clinical translation and reduce time spent in pursuing less than optimal candidates.
Collapse
Affiliation(s)
- Janke Kleynhans
- Department of Pharmaceutical and Pharmacological sciences, Radiopharmaceutical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mike Machaba Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa; Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | - Thomas Ebenhan
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
22
|
Nhàn NTT, Yamada T, Yamada KH. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023; 24:12931. [PMID: 37629112 PMCID: PMC10454368 DOI: 10.3390/ijms241612931] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide-drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL 60607, USA
| | - Kaori H. Yamada
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology & Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
23
|
Childs M, Chandrabalan A, Hodgson D, Ramachandran R, Luyt LG. Discovery of Ghrelin(1-8) Analogues with Improved Stability and Functional Activity for PET Imaging. ACS Pharmacol Transl Sci 2023; 6:1075-1086. [PMID: 37470019 PMCID: PMC10353549 DOI: 10.1021/acsptsci.3c00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 07/21/2023]
Abstract
The highest affinity ghrelin-based analogue for fluorine-18 positron emission tomography, [Inp1,Dpr3(6-FN),1Nal4,Thr8]ghrelin(1-8) amide (1), has remarkable subnanomolar receptor affinity (IC50 = 0.11 nM) toward the growth hormone secretagogue receptor 1a (GHSR). However, initial in vivo PET imaging and biodistribution of [18F]1 in mice demonstrated an unfavorable pharmacokinetic profile with rapid clearance and accumulation in liver and intestinal tissue, prompting concerns about the metabolic stability of this probe. The aims of the present study were to examine the proteolytic stability of ghrelin analogue 1 in the presence of blood and liver enzymes, structurally modify the peptide to improve stability without impeding the strong binding affinity, and measure the presently unknown functional activity of ghrelin(1-8) analogues. The in vitro stability and metabolite formation of 1 in human serum and liver S9 fraction revealed a metabolic soft spot between amino acids Leu5 and Ser6 in the peptide sequence. A focused library of ghrelin(1-8) analogues was synthesized and evaluated in a structure-activity-stability relationship study to further understand the structural importance of the residues at these positions in the context of stability and receptor affinity. The critical nature of l-stereochemistry at position 5 was identified and substitution of Ser6 with l-2,3-diaminopropionic acid led to a novel ligand with substantially improved in vitro stability while maintaining subnanomolar GHSR affinity. Despite the highly modified nature of these analogues compared to human ghrelin, ghrelin(1-8) analogues were found to recruit all G protein subtypes (Gαq/11/13/i1/oB) known to associate with GHSR as well as β-arrestins with low micromolar to nanomolar potencies. The study of these analogues demonstrates the ability to balance desirable ligand properties, including affinity, stability, and potency to produce well-rounded candidate molecules for further in vivo evaluation.
Collapse
Affiliation(s)
- Marina
D. Childs
- Department
of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| | - Arundhasa Chandrabalan
- Department
of Physiology and Pharmacology, University
of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| | - Derian Hodgson
- Department
of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| | - Rithwik Ramachandran
- Department
of Physiology and Pharmacology, University
of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| | - Leonard G. Luyt
- Department
of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
- Departments
of Medical Imaging and Oncology, University
of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
- London
Regional Cancer Program, Lawson Health Research
Institute, 800 Commissioners
Road East, London, Ontario, N6A 4L6, Canada
| |
Collapse
|
24
|
Han Z, Li Y, Wang X, Li C, Li C, Lin Q, Xu E, Tang J, Lai M, Ma Y, Gu Y. In Vivo Staging the Progression of Colitis and Associated Cancer by Concurrent Microimaging of Key Biomarkers. Anal Chem 2023. [PMID: 37366081 DOI: 10.1021/acs.analchem.3c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Currently colorectal cancer (CRC) staging (colitis, adenoma, and carcinoma) mainly relies on ex vivo pathologic analysis requiring an invasive surgical process with limited sample collection and increased metastatic risk. Thus, in vivo noninvasive pathological diagnosis is extremely demanded. By verifying the samples of clinical patients and CRC mouse models, it was found that vascular endothelial growth factor receptor 2 (VEGFR2) was barely expressed in the colitis stage and only appeared in adenoma and carcinoma stages with obvious elevation, while prostaglandin E receptor 4 (PTGER4) could be observed from colitis to adenoma and carcinoma stages with a gradient increase of expression. VEGFR2 and PTGER4 were further chosen as key biomarkers for molecular pathological diagnosis in vivo and corresponding molecular probes were constructed. The feasibility of in vivo noninvasive CRC staging by concurrent microimaging of dual biomarkers using confocal laser endoscopy (CLE) was verified in CRC mouse models and further confirmed by ex vivo pathological analysis. In vivo CLE imaging exhibited the correlation of severe colonic crypt structural alteration with a higher biomarker expression in adenoma and carcinoma stages. This strategy shows promise in benefiting patients undergoing CRC progression with in-time, noninvasive, and precise pathological staging, thus providing valuable guidance for selecting therapeutic strategies.
Collapse
Affiliation(s)
- Zhihao Han
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Li
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Wang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chang Li
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Changsheng Li
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Qiao Lin
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Enping Xu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinlong Tang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310014, China
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Ma
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
25
|
d'Orchymont F, Holland JP. Asymmetric rotaxanes as dual-modality supramolecular imaging agents for targeting cancer biomarkers. Commun Chem 2023; 6:107. [PMID: 37264077 DOI: 10.1038/s42004-023-00906-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/17/2023] [Indexed: 06/03/2023] Open
Abstract
Dual-modality imaging agents featuring both a radioactive complex for positron emission tomography (PET) and a fluorophore for optical fluorescence imaging (OFI) are crucial tools for reinforcing clinical diagnosis and intraoperative surgeries. We report the synthesis and characterisation of bimodal mechanically interlocked rotaxane-based imaging agents, constructed via the cucurbit[6]uril CB[6]-mediated alkyne-azide 'click' reaction. Two synthetic routes involving four- or six-component reactions are developed to access asymmetric rotaxanes. Furthermore, by using this rapid and versatile approach, a peptide-based rotaxane targeted toward the clinical prostate cancer biomarker, prostate-specific membrane antigen (PSMA), and bearing a 68Ga-radiometal ion complex for positron emission tomography and fluorescein as an optically active imaging agent, was synthesised. The chemical and radiochemical stability, and the cellular uptake profile of the radiolabelled and fluorescent rotaxane was evaluated in vitro where the experimental data demonstrate the viability of using an asymmetric rotaxane platform to produce dual-modality imaging agents that specifically target prostate cancer cells.
Collapse
Affiliation(s)
- Faustine d'Orchymont
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Jason P Holland
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
26
|
Muilenburg KM, Isder CC, Radhakrishnan P, Batra SK, Ly QP, Carlson MA, Bouvet M, Hollingsworth MA, Mohs AM. Mucins as contrast agent targets for fluorescence-guided surgery of pancreatic cancer. Cancer Lett 2023; 561:216150. [PMID: 36997106 PMCID: PMC10150776 DOI: 10.1016/j.canlet.2023.216150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
Pancreatic cancer is difficult to resect due to its unique challenges, often leading to incomplete tumor resections. Fluorescence-guided surgery (FGS), also known as intraoperative molecular imaging and optical surgical navigation, is an intraoperative tool that can aid surgeons in complete tumor resection through an increased ability to detect the tumor. To target the tumor, FGS contrast agents rely on biomarkers aberrantly expressed in malignant tissue compared to normal tissue. These biomarkers allow clinicians to identify the tumor and its stage before surgical resection and provide a contrast agent target for intraoperative imaging. Mucins, a family of glycoproteins, are upregulated in malignant tissue compared to normal tissue. Therefore, these proteins may serve as biomarkers for surgical resection. Intraoperative imaging of mucin expression in pancreatic cancer can potentially increase the number of complete resections. While some mucins have been studied for FGS, the potential ability to function as a biomarker target extends to the entire mucin family. Therefore, mucins are attractive proteins to investigate more broadly as FGS biomarkers. This review summarizes the biomarker traits of mucins and their potential use in FGS for pancreatic cancer.
Collapse
Affiliation(s)
- Kathryn M Muilenburg
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Carly C Isder
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Prakash Radhakrishnan
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| | - Quan P Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Mark A Carlson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA; VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA.
| | - Michael A Hollingsworth
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| |
Collapse
|
27
|
De Rosa L, Hawala I, Di Stasi R, Stefania R, Capozza M, Nava D, D’Andrea LD. A Chemical Strategy for the Preparation of Multimodified Peptide Imaging Probes. J Org Chem 2023; 88:4546-4553. [PMID: 36988421 PMCID: PMC10088022 DOI: 10.1021/acs.joc.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 03/30/2023]
Abstract
Multimodality probes appear of great interest for innovative imaging applications in disease diagnosis. Herein, we present a chemical strategy enabling site-specific double-modification and cyclization of a peptide probe exploiting native chemical ligation (NCL) and thiol-maleimide addition. The synthetic strategy is straightforward and of general applicability for the development of double-labeled peptide multimodality probes.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto
di Biostrutture e Bioimmagini, Consiglio
Nazionale Delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Ivan Hawala
- Centro
di Imaging Molecolare, Dipartimento di Biotecnologie Molecolari e
Scienze per La Salute, Università
di Torino, via Nizza
52, 10126 Torino, Italy
| | - Rossella Di Stasi
- Istituto
di Biostrutture e Bioimmagini, Consiglio
Nazionale Delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Rachele Stefania
- Centro
di Imaging Molecolare, Dipartimento di Biotecnologie Molecolari e
Scienze per La Salute, Università
di Torino, via Nizza
52, 10126 Torino, Italy
| | - Martina Capozza
- Centro
di Imaging Molecolare, Dipartimento di Biotecnologie Molecolari e
Scienze per La Salute, Università
di Torino, via Nizza
52, 10126 Torino, Italy
| | - Donatella Nava
- Dipartimento
di Scienze Farmaceutiche, Università
di Milano, Via Venezian
21, 20133 Milano, Italy
| | - Luca Domenico D’Andrea
- Istituto
di Scienze e Tecnologie Chimiche “G. Natta”, Consiglio Nazionale Delle Ricerche, Via M. Bianco 9, 20131 Milano, Italy
| |
Collapse
|
28
|
Raheem SJ, Salih AK, Garcia MD, Sharpe JC, Toosi BM, Price EW. A Systematic Investigation into the Influence of Net Charge on the Biological Distribution of Radiometalated Peptides Using [ 68Ga]Ga-DOTA-TATE Derivatives. Bioconjug Chem 2023; 34:549-561. [PMID: 36800496 DOI: 10.1021/acs.bioconjchem.3c00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Recently, several radiometalated peptides have been approved for clinical imaging and/or therapy (theranostics) of several types of cancer; nonetheless, the primary challenge that most of these peptides confront is significant renal uptake and retention, which is often dose limiting and can cause nephrotoxicity. In response to this, numerous methods have been employed to reduce the uptake of radiometalated peptides in the kidneys, and among these is adding a linker to modulate polarity and/or charge. To better understand the influence of net charge on the biodistribution of radiometalated peptides, we selected the clinically popular construct DOTA-TATE (NETSPOT/LUTATHERA) as a model system. We synthesized derivatives using manual solid-phase peptide synthesis methods including mechanical and ultrasonic agitation to effectively yield the gold standard DOTA-TATE and a series of derivatives with different net charges (+2, +1, 0, -1, -2). Dynamic PET imaging from 0 to 90 min in healthy female mice (CD1) revealed high accumulation and retention of activity in the kidneys for the net-neutral (0) charged [68Ga]Ga-DOTA-TATE and even higher for positively charged derivatives, whereas negatively charged derivatives exhibited low accumulation and fast renal excretion. Ex vivo biodistribution at 2 h post injection demonstrated a significant retention of [68Ga]Ga-DOTA-TATE (∼74 %ID/g) in the kidneys, which increased as the net positive charge per molecule increased to +1 and +2 (∼272 %ID/g and ∼333 %ID/g, respectively), but the -1 and -2 net charged molecules exhibited lower renal uptake (∼15 %ID/g and 16 %ID/g, respectively). Interestingly, the net -2 charged [68Ga]Ga-DOTA-(Glu)2-PEG4-TATE was stable in blood serum but had much higher healthy organ uptake (lungs, liver, spleen) than the net -1 compound, suggesting instability in vivo. Although the [68Ga]Ga-DOTA-PEG4-TATE derivative with a net charge of 0 also showed a decrease in kidney uptake, it also showed instability in blood serum and in vivo. Despite the superior pharmacokinetics of the net -1 charged [68Ga]Ga-DOTA-Glu-PEG4-TATE in healthy mice with respect to kidney uptake and overall profile, dynamic PET images and ex vivo biodistribution in male mice (NSG) bearing AR42J (SSTR2 overexpressing) subcutaneous tumor xenografts showed significantly diminished tumor uptake when compared to the gold standard [68Ga]Ga-DOTA-TATE. Taken together, these findings indicate unambiguously that kidney uptake and retention are significantly influenced by the net charge of peptide-based radiotracers. In addition, it was illustrated that the negatively charged peptides had substantially decreased kidney uptake, but in this instantiation the tumor uptake was also impaired.
Collapse
Affiliation(s)
- Shvan J Raheem
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| | - Akam K Salih
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| | - Moralba Dominguez Garcia
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| | - Jessica C Sharpe
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N-5B4, Saskatoon, Saskatchewan, Canada
| | - Behzad M Toosi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N-5B4, Saskatoon, Saskatchewan, Canada
| | - Eric W Price
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
29
|
Cheng Z, Ma J, Yin L, Yu L, Yuan Z, Zhang B, Tian J, Du Y. Non-invasive molecular imaging for precision diagnosis of metastatic lymph nodes: opportunities from preclinical to clinical applications. Eur J Nucl Med Mol Imaging 2023; 50:1111-1133. [PMID: 36443568 DOI: 10.1007/s00259-022-06056-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
Lymph node metastasis is an indicator of the invasiveness and aggressiveness of cancer. It is a vital prognostic factor in clinical staging of the disease and therapeutic decision-making. Patients with positive metastatic lymph nodes are likely to develop recurrent disease, distant metastasis, and succumb to death in the coming few years. Lymph node dissection and histological analysis are needed to detect whether regional lymph nodes have been infiltrated by cancer cells and determine the likely outcome of treatment and the patient's chances of survival. However, these procedures are invasive, and tissue biopsies are prone to sampling error. In recent years, advanced molecular imaging with novel imaging probes has provided new technologies that are contributing to comprehensive management of cancer, including non-invasive investigation of lymphatic drainage from tumors, identifying metastatic lymph nodes, and guiding surgeons to operate efficiently in patients with complex lesions. In this review, first, we outline the current status of different molecular imaging modalities applied for lymph node metastasis management. Second, we summarize the multi-functional imaging probes applied with the different imaging modalities as well as applications of cancer lymph node metastasis from preclinical studies to clinical translations. Third, we describe the limitations that must be considered in the field of molecular imaging for improved detection of lymph node metastasis. Finally, we propose future directions for molecular imaging technology that will allow more personalized treatment plans for patients with lymph node metastasis.
Collapse
Affiliation(s)
- Zhongquan Cheng
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaojiao Ma
- Department of Medical Ultrasonics, China-Japan Friendship Hospital, Yinghua East Road 2#, ChaoYang Dist., Beijing, 100029, China
| | - Lin Yin
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Leyi Yu
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China
| | - Zhu Yuan
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.
| | - Bo Zhang
- Department of Medical Ultrasonics, China-Japan Friendship Hospital, Yinghua East Road 2#, ChaoYang Dist., Beijing, 100029, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
30
|
Bai JW, Qiu SQ, Zhang GJ. Molecular and functional imaging in cancer-targeted therapy: current applications and future directions. Signal Transduct Target Ther 2023; 8:89. [PMID: 36849435 PMCID: PMC9971190 DOI: 10.1038/s41392-023-01366-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Targeted anticancer drugs block cancer cell growth by interfering with specific signaling pathways vital to carcinogenesis and tumor growth rather than harming all rapidly dividing cells as in cytotoxic chemotherapy. The Response Evaluation Criteria in Solid Tumor (RECIST) system has been used to assess tumor response to therapy via changes in the size of target lesions as measured by calipers, conventional anatomically based imaging modalities such as computed tomography (CT), and magnetic resonance imaging (MRI), and other imaging methods. However, RECIST is sometimes inaccurate in assessing the efficacy of targeted therapy drugs because of the poor correlation between tumor size and treatment-induced tumor necrosis or shrinkage. This approach might also result in delayed identification of response when the therapy does confer a reduction in tumor size. Innovative molecular imaging techniques have rapidly gained importance in the dawning era of targeted therapy as they can visualize, characterize, and quantify biological processes at the cellular, subcellular, or even molecular level rather than at the anatomical level. This review summarizes different targeted cell signaling pathways, various molecular imaging techniques, and developed probes. Moreover, the application of molecular imaging for evaluating treatment response and related clinical outcome is also systematically outlined. In the future, more attention should be paid to promoting the clinical translation of molecular imaging in evaluating the sensitivity to targeted therapy with biocompatible probes. In particular, multimodal imaging technologies incorporating advanced artificial intelligence should be developed to comprehensively and accurately assess cancer-targeted therapy, in addition to RECIST-based methods.
Collapse
Affiliation(s)
- Jing-Wen Bai
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
| | - Si-Qi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Clinical Research Center, Shantou Central Hospital, 515041, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, 515041, Shantou, China
| | - Guo-Jun Zhang
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
| |
Collapse
|
31
|
Sedighi M, Mahmoudi Z, Ghasempour A, Shakibaie M, Ghasemi F, Akbari M, Abbaszadeh S, Mostafavi E, Santos HA, Shahbazi MA. Nanostructured multifunctional stimuli-responsive glycopolypeptide-based copolymers for biomedical applications. J Control Release 2023; 354:128-145. [PMID: 36599396 DOI: 10.1016/j.jconrel.2022.12.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Inspired by natural resources, such as peptides and carbohydrates, glycopolypeptide biopolymer has recently emerged as a new form of biopolymer being recruited in various biomedical applications. Glycopolypeptides with well-defined secondary structures and pendant glycosides on the polypeptide backbone have sparked lots of research interest and they have an innate ability to self-assemble in diverse structures. The nanostructures of glycopolypeptides have also opened up new perspectives in biomedical applications due to their stable three-dimensional structures, high drug loading efficiency, excellent biocompatibility, and biodegradability. Although the development of glycopolypeptide-based nanocarriers is well-studied, their clinical translation is still limited. The present review highlights the preparation and characterization strategies related to glycopolypeptides-based copolymers, followed by a comprehensive discussion on their biomedical applications with a specific focus on drug delivery by various stimuli-responsive (e.g., pH, redox, conduction, and sugar) nanostructures, as well as their beneficial usage in diagnosis and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Shakibaie
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Akbari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, 45139-56111 Zanjan, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
32
|
Ahmadi M, Ahmadyousefi Y, Salimi Z, Mirzaei R, Najafi R, Amirheidari B, Rahbarizadeh F, Kheshti J, Safari A, Soleimani M. Innovative Diagnostic Peptide-Based Technologies for Cancer Diagnosis: Focus on EGFR-Targeting Peptides. ChemMedChem 2023; 18:e202200506. [PMID: 36357328 DOI: 10.1002/cmdc.202200506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Active targeting using biological ligands has emerged as a novel strategy for the targeted delivery of diagnostic agents to tumor cells. Conjugating functional targeting moieties with diagnostic probes can increase their accumulation in tumor cells and tissues, enhancing signal detection and, thus, the sensitivity of diagnosis. Due to their small size, ease of chemical synthesis and site-specific modification, high tissue penetration, low immunogenicity, rapid blood clearance, low cost, and biosafety, peptides offer several advantages over antibodies and proteins in diagnostic applications. Epidermal growth factor receptor (EGFR) is one of the most promising cancer biomarkers for actively targeting diagnostic and therapeutic agents to tumor cells due to its active involvement and overexpression in various cancers. Several peptides for EGFR-targeting have been identified in the last decades, which have been obtained by multiple means including derivation from natural proteins, phage display screening, positional scanning synthetic combinatorial library, and in silico screening. Many studies have used these peptides as a targeting moiety for diagnosing different cancers in vitro, in vivo, and in clinical trials. This review summarizes the progress of EGFR-targeting peptide-based assays in the molecular diagnosis of cancer.
Collapse
Affiliation(s)
- Mohammad Ahmadi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Salimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Kheshti
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Safari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
33
|
Mansour S, Adhya I, Lebleu C, Dumpati R, Rehan A, Chall S, Dai J, Errasti G, Delacroix T, Chakrabarti R. Identification of a novel peptide ligand for the cancer-specific receptor mutation EGFRvIII using high-throughput sequencing of phage-selected peptides. Sci Rep 2022; 12:20725. [PMID: 36456600 PMCID: PMC9715707 DOI: 10.1038/s41598-022-25257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
We report here the selection and characterization of a novel peptide ligand using phage display targeted against the cancer-specific epidermal growth factor tyrosine kinase receptor mutation variant III (EGFRvIII). This receptor is expressed in several kinds of cancer: ovarian cancer, breast cancer and glioblastoma, but not in normal tissues. A 12-mer random peptide library was screened against EGFRvIII. Phage-selected peptides were sequenced in high-throughput by next generation sequencing (NGS), and their diversity was studied to identify highly abundant clones expected to bind with the highest affinities to EGFRvIII. The enriched peptides were characterized and their binding capacity towards stable cell lines expressing EGFRvIII, EGFR wild type (EGFR WT), or a low endogenous level of EGFR WT was confirmed by flow cytometry analysis. The best peptide candidate, VLGREEWSTSYW, was synthesized, and its binding specificity towards EGFRvIII was validated in vitro. Additionally, computational docking analysis suggested that the identified peptide binds selectively to EGFRvIII. The novel VLGREEWSTSYW peptide is thus a promising EGFRvIII-targeting agent for future applications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sourour Mansour
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Indranil Adhya
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Coralie Lebleu
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Rama Dumpati
- Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India
| | - Ahmed Rehan
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Santu Chall
- Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India
| | - Jingqi Dai
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Gauthier Errasti
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Thomas Delacroix
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Raj Chakrabarti
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France ,Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India ,Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Ste 110, Mount Laurel, NJ 08054 USA
| |
Collapse
|
34
|
Galbiati A, Zana A, Bocci M, Millul J, Elsayed A, Mock J, Neri D, Cazzamalli S. A Dimeric FAP-Targeting Small-Molecule Radioconjugate with High and Prolonged Tumor Uptake. J Nucl Med 2022; 63:1852-1858. [PMID: 35589404 PMCID: PMC9730928 DOI: 10.2967/jnumed.122.264036] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/10/2022] [Indexed: 01/11/2023] Open
Abstract
Imaging procedures based on small-molecule radioconjugates targeting fibroblast activation protein (FAP) have recently emerged as a powerful tool for the diagnosis of a wide variety of tumors. However, the therapeutic potential of radiolabeled FAP-targeting agents is limited by their short residence time in neoplastic lesions. In this work, we present the development and in vivo characterization of BiOncoFAP, a new dimeric FAP-binding motif with an extended tumor residence time and favorable tumor-to-organ ratio. Methods: The binding properties of BiOncoFAP and its monovalent OncoFAP analog were assayed against recombinant human FAP. Preclinical experiments with 177Lu-OncoFAP-DOTAGA (177Lu-OncoFAP) and 177Lu-BiOncoFAP-DOTAGA (177Lu-BiOncoFAP) were performed on mice bearing FAP-positive HT-1080 tumors. Results: OncoFAP and BiOncoFAP displayed comparable subnanomolar dissociation constants toward recombinant human FAP in solution, but the bivalent BiOncoFAP bound more avidly to the target immobilized on solid supports. In a comparative biodistribution study, 177Lu-BiOncoFAP exhibited a more stable and prolonged tumor uptake than 177Lu-OncoFAP (∼20 vs. ∼4 percentage injected dose/g, respectively, at 24 h after injection). Notably, 177Lu-BiOncoFAP showed favorable tumor-to-organ ratios with low kidney uptake. Both 177Lu-OncoFAP and 177Lu-BiOncoFAP displayed potent antitumor efficacy when administered at therapeutic doses to tumor-bearing mice. Conclusion: 177Lu-BiOncoFAP is a promising candidate for radioligand therapy of cancer, with favorable in vivo tumor-to-organ ratios, a long tumor residence time, and potent anticancer efficacy.
Collapse
Affiliation(s)
- Andrea Galbiati
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Aureliano Zana
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Matilde Bocci
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Jacopo Millul
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Abdullah Elsayed
- Research and Development Department, Philochem AG, Otelfingen, Switzerland;,Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland; and
| | - Jacqueline Mock
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland; and,Philogen S.p.A., Siena, Italy
| | - Samuele Cazzamalli
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| |
Collapse
|
35
|
Kadam AH, Kandasamy K, Buss T, Cederstrom B, Yang C, Narayanapillai S, Rodriguez J, Levin MD, Koziol J, Olenyuk B, Borok Z, Chrastina A, Schnitzer JE. Targeting caveolae to pump bispecific antibody to TGF-β into diseased lungs enables ultra-low dose therapeutic efficacy. PLoS One 2022; 17:e0276462. [PMID: 36413536 PMCID: PMC9681080 DOI: 10.1371/journal.pone.0276462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
The long-sought-after "magic bullet" in systemic therapy remains unrealized for disease targets existing inside most tissues, theoretically because vascular endothelium impedes passive tissue entry and full target engagement. We engineered the first "dual precision" bispecific antibody with one arm pair to precisely bind to lung endothelium and drive active delivery and the other to precisely block TGF-β effector function inside lung tissue. Targeting caveolae for transendothelial pumping proved essential for delivering most of the injected intravenous dose precisely into lungs within one hour and for enhancing therapeutic potency by >1000-fold in a rat pneumonitis model. Ultra-low doses (μg/kg) inhibited inflammatory cell infiltration, edema, lung tissue damage, disease biomarker expression and TGF-β signaling. The prodigious benefit of active vs passive transvascular delivery of a precision therapeutic unveils a new promising drug design, delivery and therapy paradigm ripe for expansion and clinical testing.
Collapse
Affiliation(s)
- Anil H. Kadam
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Kathirvel Kandasamy
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Tim Buss
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Brittany Cederstrom
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Chun Yang
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Sreekanth Narayanapillai
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Juan Rodriguez
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Michael D. Levin
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Jim Koziol
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Zea Borok
- Department of Medicine, UCSD School of Medicine, La Jolla, California, United States of America
| | - Adrian Chrastina
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Jan E. Schnitzer
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
- Institute for Engineering in Medicine, UCSD, La Jolla, California, United States of America
| |
Collapse
|
36
|
Bottens RA, Yamada T. Cell-Penetrating Peptides (CPPs) as Therapeutic and Diagnostic Agents for Cancer. Cancers (Basel) 2022; 14:cancers14225546. [PMID: 36428639 PMCID: PMC9688740 DOI: 10.3390/cancers14225546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Cell-Penetrating Peptides (CPPs) are short peptides consisting of <30 amino acids. Their ability to translocate through the cell membrane while carrying large cargo biomolecules has been the topic of pre-clinical and clinical trials. The ability to deliver cargo complexes through membranes yields potential for therapeutics and diagnostics for diseases such as cancer. Upon cellular entry, some CPPs have the ability to target specific organelles. CPP-based intracellular targeting strategies hold tremendous potential as they can improve efficacy and reduce toxicities and side effects. Further, recent clinical trials show a significant potential for future CPP-based cancer treatment. In this review, we summarize recent advances in CPPs based on systematic searches in PubMed, Embase, Web of Science, and Scopus databases until 30 September 2022. We highlight targeted delivery and explore the potential uses for CPPs as diagnostics, drug delivery, and intrinsic anti-cancer agents.
Collapse
Affiliation(s)
- Ryan A. Bottens
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
- Richard & Loan Hill Department of Biomedical Engineering, College of Medicine and Engineering, University of Illinois, Chicago, IL 60607, USA
- Correspondence:
| |
Collapse
|
37
|
Gonçalves S, Martins IC, Santos NC. Nanoparticle‐peptide conjugates for bacterial detection and neutralization: Potential applications in diagnostics and therapy. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1819. [DOI: 10.1002/wnan.1819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| | - Ivo C. Martins
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
38
|
Barta P, Kamaraj R, Kucharova M, Novy Z, Petrik M, Bendova K, Hajduch M, Pavek P, Trejtnar F. Preparation, In Vitro Affinity, and In Vivo Biodistribution of Receptor-Specific 68Ga-Labeled Peptides Targeting Vascular Endothelial Growth Factor Receptors. Bioconjug Chem 2022; 33:1825-1836. [PMID: 36197842 DOI: 10.1021/acs.bioconjchem.2c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
As angiogenesis plays a key role in tumor growth and metastasis, the angiogenic process has attracted scientific interest as a target for diagnostic and therapeutic agents. Factors influencing angiogenesis include the vascular endothelial growth factor (VEGF) family and the two associated receptor types (VEGFR-1 and VEGFR-2). VEGFR-1/-2 detection and quantification in cancer lesions are essential for tumor process management. As a result of the advantageous pharmacokinetics and image contrast, peptides radiolabeled with PET emitters have become interesting tools for the visualization of VEGFR-1/-2-positive tumors. In this study, we prepared 68Ga-labeled peptides containing 15 (peptide 1) and 23 (peptide 2) amino acids as new PET tracers for tumor angiogenic process imaging. METHODS The peptides were conjugated with NODAGA-tris(t-Bu ester) and subsequently radiolabeled with [68Ga]Ga-chloride. The prepared [68Ga]Ga-NODAGA-peptide 1 and [68Ga]Ga-NODAGA-peptide 2 were tested for radiochemical purity and saline/plasma stability. Consequently, the binding affinity toward VEGFRs was assessed in vitro on human glioblastoma and kidney carcinoma cells. The found peptide receptor affinity was compared with the calculated values in the PROtein binDIng enerGY prediction (PRODIGY) server. Finally, the biodistribution study was performed on BALB/c female mice to reveal the basic pharmacokinetic behavior of radiopeptides. RESULTS The in vitro affinity testing of [68Ga]Ga-NODAGA-peptides 1 and 2 showed retained receptor binding as characterized by equilibrium dissociation constant (KD) values in the range of 0.5-1.2 μM and inhibitory concentration 50% (IC50) values in the range of 3.0-5.6 μM. Better binding properties of peptide 2 to VEGFR-1/-2 were found in the PRODIGY server. The biodistribution study on mice showed remarkable accumulation of both peptides in the kidneys and urinary bladder with a short half-life after intravenous application. The in vitro plasma stability of [68Ga]Ga-NODAGA-peptide 2 was superior to that of [68Ga]Ga-NODAGA-peptide 1. CONCLUSIONS The obtained results demonstrated a high radiolabeling yield with no need for purification and preserved binding potency of 68Ga-labeled peptides 1 and 2 toward VEGFRs in cancer cells. The peptide-receptor protein interaction assessed in protein-peptide docking determined the strongest interaction of peptide 2 with domain 2 of VEGFR-2 in addition to a more acceptable plasma stability (t1/2 = 120 min) than that for peptide 1. We found both radiolabeled peptides very potent in their receptor binding, which makes them suitable imaging agents. The rapid transition of the radiopeptides into the urinary tract indicates suitable pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Pavel Barta
- Faculty of Pharmacy in Hradec Kralove, Department of Biophysics and Physical Chemistry, Charles University, Hradec Kralove 500 05, Czech Republic
| | - Rajamanikkam Kamaraj
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Charles University, Hradec Kralove 500 05, Czech Republic
| | - Monika Kucharova
- Faculty of Pharmacy in Hradec Kralove, Department of Biophysics and Physical Chemistry, Charles University, Hradec Kralove 500 05, Czech Republic
| | - Zbynek Novy
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc 779 00, Czech Republic
| | - Milos Petrik
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc 779 00, Czech Republic
| | - Katerina Bendova
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc 779 00, Czech Republic
| | - Marian Hajduch
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc 779 00, Czech Republic
| | - Petr Pavek
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Charles University, Hradec Kralove 500 05, Czech Republic
| | - Frantisek Trejtnar
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Charles University, Hradec Kralove 500 05, Czech Republic
| |
Collapse
|
39
|
Grega SD, Zheng DX, Zheng QH. Imaging ligands targeting glypican-3 receptor expression in hepatocellular carcinoma. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2022; 12:113-121. [PMID: 36072763 PMCID: PMC9441927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality. Early detection of HCC is important since potentially curative therapies exist in the initial stages of HCC; no curative therapies exist for late-stage HCC. However, the initial detection of HCC remains challenging due to the lack of symptoms during the early stage of the disease. Other methods of screening and detecting HCC, including blood serum tests and conventional imaging methods, remain inadequate due to genetic differences between patients and the high background activity of liver tissues. Thus, there is a need for an accurate imaging agent for the diagnosis, staging, and prognosis of HCC. Glypican-3 (GPC3) is an oncofetal receptor responsible for regulating cell division, growth, and survival. GPC3 is a clinically relevant biomarker for imaging and therapeutics, as its expression is HCC tumor-specific and absent from normal and other pathological liver tissues. The development of novel GPC3-targeting imaging agents has encompassed three classes of biomolecules: peptides, antibodies, and aptamers. These biomolecules serve as constructs for diagnostic imaging (demonstrating potential as positron emission tomography [PET], single-photon emission tomography [SPECT], and optical imaging agents) and HCC treatment delivery. More than 20 unique ligands have been identified in the literature as showing specificity for the GPC3 receptor. Although several ligands are currently under clinical investigation as therapies for HCC, clinical translation of GPC3-targeting ligands as imaging agents is lacking. This review highlights the current landscape of ligands targeting GPC3 and describes their promising possibilities as imaging agents for HCC.
Collapse
Affiliation(s)
- Shaun D Grega
- Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolis, IN, USA
| | - David X Zheng
- Department of Dermatology, Case Western Reserve University School of MedicineCleveland, OH, USA
| | - Qi-Huang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
40
|
Liu WL, Zhang YQ, Li LT, Zhu YY, Ming ZH, Chen WL, Yang RQ, Li RH, Chen M, Zhang GJ. Application of molecular imaging in immune checkpoints therapy: From response assessment to prognosis prediction. Crit Rev Oncol Hematol 2022; 176:103746. [PMID: 35752425 DOI: 10.1016/j.critrevonc.2022.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, immune checkpoint therapy (ICT) represented by programmed cell death1 (PD-1) and its major ligands, programmed death ligand 1 (PD-L1), has achieved significant success. Detection of PD-L1 by immunohistochemistry (IHC) is a classic method to guide the treatment of ICT patients. However, PD-L1 expression in the tumor microenvironment is highly complex. Thus, PD-L1 IHC is inadequate to fully understand the relevance of PD-L1 levels in the whole body and their dynamics to improve therapeutic outcomes. Intriguingly, numerous studies have revealed that molecular imaging technologies could potentially meet this need. Therefore, the purpose of this narrative review is to summarize the preclinical and clinical application of ICT guided by molecular imaging technology, and to explore the future opportunities and practical difficulties of these innovations.
Collapse
Affiliation(s)
- Wan-Ling Liu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Yong-Qu Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Liang-Tao Li
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Yuan-Yuan Zhu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Zi-He Ming
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Wei-Ling Chen
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Rui-Qin Yang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Rong-Hui Li
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Department of Medical Oncology, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Min Chen
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China.
| | - Guo-Jun Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China; Cancer Research Center, School of Medicine, Xiamen University, 4221 South Xiang'an Road, Xiamen, China.
| |
Collapse
|
41
|
Krutzek F, Kopka K, Stadlbauer S. Development of Radiotracers for Imaging of the PD-1/PD-L1 Axis. Pharmaceuticals (Basel) 2022; 15:ph15060747. [PMID: 35745666 PMCID: PMC9228425 DOI: 10.3390/ph15060747] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has emerged as a major treatment option for a variety of cancers. Among the immune checkpoints addressed, the programmed death receptor 1 (PD-1) and its ligand PD-L1 are the key targets for an ICI. PD-L1 has especially been proven to be a reproducible biomarker allowing for therapy decisions and monitoring therapy success. However, the expression of PD-L1 is not only heterogeneous among and within tumor lesions, but the expression is very dynamic and changes over time. Immunohistochemistry, which is the standard diagnostic tool, can only inadequately address these challenges. On the other hand, molecular imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) provide the advantage of a whole-body scan and therefore fully address the issue of the heterogeneous expression of checkpoints over time. Here, we provide an overview of existing PET, SPECT, and optical imaging (OI) (radio)tracers for the imaging of the upregulation levels of PD-1 and PD-L1. We summarize the preclinical and clinical data of the different molecule classes of radiotracers and discuss their respective advantages and disadvantages. At the end, we show possible future directions for developing new radiotracers for the imaging of PD-1/PD-L1 status in cancer patients.
Collapse
Affiliation(s)
- Fabian Krutzek
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
| | - Klaus Kopka
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technical University Dresden, 01069 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, University Cancer Cancer (UCC), 01307 Dresden, Germany
| | - Sven Stadlbauer
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
- Correspondence:
| |
Collapse
|
42
|
Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022; 12:e822. [PMID: 35593206 PMCID: PMC9121317 DOI: 10.1002/ctm2.822] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Due to the complex physiological structure, microenvironment and multiple physiological barriers, traditional anti-cancer drugs are severely restricted from reaching the tumour site. Cell-penetrating peptides (CPPs) are typically made up of 5-30 amino acids, and can be utilised as molecular transporters to facilitate the passage of therapeutic drugs across physiological barriers. Up to now, CPPs have widely been used in many anti-cancer treatment strategies, serving as an excellent potential choice for oncology treatment. However, their drawbacks, such as the lack of cell specificity, short duration of action, poor stability in vivo, compatibility problems (i.e. immunogenicity), poor therapeutic efficacy and formation of unwanted metabolites, have limited their further application in cancer treatment. The cellular uptake mechanisms of CPPs involve mainly endocytosis and direct penetration, but still remain highly controversial in academia. The CPPs-based drug delivery strategy could be improved by clever design or chemical modifications to develop the next-generation CPPs with enhanced cell penetration capability, stability and selectivity. In addition, some recent advances in targeted cell penetration that involve CPPs provide some new ideas to optimise CPPs.
Collapse
Affiliation(s)
- Meiling Zhou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xi Zou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Kexin Cheng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Tao Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Bin Yan
- Department of Pathology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
43
|
Naffouje SA, Goto M, Coward LU, Gorman GS, Christov K, Wang J, Green A, Shilkaitis A, Das Gupta TK, Yamada T. Nontoxic Tumor-Targeting Optical Agents for Intraoperative Breast Tumor Imaging. J Med Chem 2022; 65:7371-7379. [PMID: 35544687 DOI: 10.1021/acs.jmedchem.2c00417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Precise identification of the tumor margins during breast-conserving surgery (BCS) remains a challenge given the lack of visual discrepancy between malignant and surrounding normal tissues. Therefore, we developed a fluorescent imaging agent, ICG-p28, for intraoperative imaging guidance to better aid surgeons in achieving negative margins in BCS. Here, we determined the pharmacokinetics (PK), biodistribution, and preclinical toxicity of ICG-p28. The PK and biodistribution of ICG-p28 indicated rapid tissue uptake and localization at tumor lesions. There were no dose-related effect and no significant toxicity in any of the breast cancer and normal cell lines tested. Furthermore, ICG-p28 was evaluated in clinically relevant settings with transgenic mice that spontaneously developed invasive mammary tumors. Intraoperative imaging with ICG-p28 showed a significant reduction in the tumor recurrence rate. This simple, nontoxic, and cost-effective method can offer a new approach that enables surgeons to intraoperatively identify tumor margins and potentially improves overall outcomes by reducing recurrence rates.
Collapse
Affiliation(s)
- Samer A Naffouje
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Masahide Goto
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Lori U Coward
- McWhorter School of Pharmacy, Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, Alabama 35229, United States
| | - Gregory S Gorman
- McWhorter School of Pharmacy, Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, Alabama 35229, United States
| | - Konstantin Christov
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Jing Wang
- Department of Mathematics, Statistics and Computer Science, University of Illinois College of Liberal Arts and Sciences, Urbana, Illinois 60612, United States
| | - Albert Green
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Anne Shilkaitis
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Tapas K Das Gupta
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States.,Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Medicine and Engineering, Chicago, Illinois 60607, United States
| |
Collapse
|
44
|
Guan J, Yuan C, Tian X, Cheng L, Gao H, Yao Q, Wang X, Wu H, Chen Z, Jian F. SPECT Imaging of Acute Disc Herniation by Targeting Integrin α5β1 in Rat Models. Front Neurol 2022; 13:782967. [PMID: 35614922 PMCID: PMC9124789 DOI: 10.3389/fneur.2022.782967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Traditional morphological imaging of intervertebral disc herniation (IVDH) is challenging in early disease diagnosis. Aiming at the early diagnosis of IVD by non-invasive molecular imaging targeting of integrin α5β1, we performed novel imaging in rats with acute IVDH for the first time. Methods Animal models were prepared by conducting an established needle puncture procedure through the normal intervertebral disc (IVD). The disc-injured rats underwent SPECT/CT imaging of the 99mTc-3PisoDGR2 peptide at 1 day to 2 months postinjury. The expression change of integrin α5β1 was determined by anti-integrin α5 and anti-integrin α5β1 immunohistochemistry (IHC). Magnetic resonance imaging (MRI) was performed for comparison during disease progression. The morphological changes of the disc were determined by safranin-O staining. Results Rats with acute IVDH showed gradually increased disc uptake of 99mTc-3PisoDGR2 from 1 to 7 days posttreatment, which was a significantly higher level than that of the normal disks in degenerative diseases. IHC results showed the expression of integrin α5β1 on the surface of annulus fibrosus (AF) cells and nucleus pulposus (NP) cells, which agreed with the uptake data. MRI showed a progressively decreased T2 density and MRI index throughout the investigation. Hematoxylin and eosin (HE) staining and safranin-O staining revealed a disorganized structure of the IVD as well as loss of proteoglycans after puncture. Conclusions The present study demonstrated a good correlation between integrin α5β1 expression and acute disc herniation. The SPECT/CT imaging of 99mTc-3PisoDGR2 targeting integrin α5β1 may diagnose IVDH in an acute phase for early disease management.
Collapse
Affiliation(s)
- Jian Guan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
| | - Chenghua Yuan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
| | - Xin Tian
- Center for Experimental Animals, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lei Cheng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
| | - Hannan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qingyu Yao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
| | - Xinyu Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
| | - Zan Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
- *Correspondence: Zan Chen
| | - Fengzeng Jian
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
- Fengzeng Jian
| |
Collapse
|
45
|
Gong J, Zhao L, Yang J, Zhu M, Zhao J. [99mTc]Tc-Labeled Plectin-Targeting Peptide as a Novel SPECT Probe for Tumor Imaging. Pharmaceutics 2022; 14:pharmaceutics14050996. [PMID: 35631582 PMCID: PMC9146797 DOI: 10.3390/pharmaceutics14050996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Certain receptors are often overexpressed during tumor occurrence and development and closely correlate with carcinogenesis. Owing to its overexpression on the cell membrane and cytoplasm of various tumors, plectin, which is involved in tumor proliferation, migration, and invasion, has been viewed as a promising target for cancer imaging. Hence, plectin-targeting agents have great potential as imaging probes for tumor diagnosis. In this study, we developed a [99mTc]Tc-labeled plectin-targeted peptide (PTP) as a novel single-photon emission computed tomography (SPECT) probe for tumor imaging and investigated its pharmacokinetics, biodistribution, and targeting ability in several types of tumor-bearing mouse models. The PTP had good biocompatibility and targeting ability to tumor cells in vitro and could be readily labeled with [99mTc]Tc after modification with the bifunctional chelator 6-hydrazino nicotinamide (HYNIC). Furthermore, the prepared [99mTc]Tc-labeled PTP ([99mTc]Tc-HYNIC-PTP) showed high radiochemical purity and excellent stability in vitro. In addition, favorable biodistribution, fast blood clearance, and clear accumulation of [99mTc]Tc-HYNIC-PTP in several types of tumors were observed, with a good correlation between tumor uptake and plectin expression levels. These results indicate the potential of [99mTc]Tc-HYNIC-PTP as a novel SPECT probe for tumor imaging.
Collapse
Affiliation(s)
- Jiali Gong
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (J.G.); (L.Z.)
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (J.G.); (L.Z.)
| | - Jiqin Yang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
- Correspondence: (J.Y.); (M.Z.); (J.Z.); Tel.: +86-21-3779-8352 (J.Z.)
| | - Meilin Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
- Correspondence: (J.Y.); (M.Z.); (J.Z.); Tel.: +86-21-3779-8352 (J.Z.)
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (J.G.); (L.Z.)
- Correspondence: (J.Y.); (M.Z.); (J.Z.); Tel.: +86-21-3779-8352 (J.Z.)
| |
Collapse
|
46
|
Ebrahimi F, Hosseinimehr SJ. Homomultimer strategy for improvement of radiolabeled peptides and antibody fragments in tumor targeting. Curr Med Chem 2022; 29:4923-4957. [PMID: 35450521 DOI: 10.2174/0929867329666220420131836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
A homomultimeric radioligand is composed of multiple identical ligands connected to the linker and radionuclide to detect a variety of overexpressed receptors on cancer cells. Multimer strategy holds great potential for introducing new radiotracers based on peptide and monoclonal antibody (mAb) derivatives in molecular imaging and therapy. It offers a reliable procedure for the preparation of biological-based targeting with diverse affinities and pharmacokinetics. In this context, we provide a useful summary and interpretation of the main results by a comprehensive look at multimeric radiopharmaceuticals in nuclear oncology. Therefore, there will be explanations for the strategy mechanisms and the main variables affecting the biodistribution results. The discussion is followed by highlights of recent work in the targeting of various types of receptors. The consequences are expressed based on comparing some parameters between monomer and multimer counterparts in each relevant section.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
47
|
Khuda N, Somasundaram S, Easley CJ. Electrochemical Sensing of the Peptide Drug Exendin-4 Using a Versatile Nucleic Acid Nanostructure. ACS Sens 2022; 7:784-789. [PMID: 35180342 PMCID: PMC8985241 DOI: 10.1021/acssensors.1c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although endogenous peptides and peptide-based therapeutics are both highly relevant to human health, there are few approaches for sensitive biosensing of this class of molecules with minimized workflow. In this work, we have further expanded on the generalizability of our recently developed DNA nanostructure architecture by applying it to electrochemical (EC) peptide quantification. While DNA-small molecule conjugates were used in a prior work to make sensors for small molecule and protein analytes, here DNA-peptide conjugates were incorporated into the nanostructure at the electrode surfaces, and antibody displacement permitted rapid peptide sensing. Interestingly, multivalent DNA-peptide conjugates were found to be detrimental to the assay readout, yet these effects could be minimized by solution-phase bioconjugation. The final biosensor was validated for quantifying exendin-4 (4.2 kDa)─a human glucagon-like peptide-1 receptor agonist important in diabetes therapy─for the first time using EC methods with minimal workflow. The sensor was functional in 98% human serum, and the low nanomolar assay range lies between the injected dose concentration and the therapeutic range, boding well for future applications in therapeutic drug monitoring.
Collapse
|
48
|
Chen L, Meng Z, Tian L, Zhang Y, Zhao L, Du X, Ma M, Zhang H, Chen J, Meng Q. Complexation of specific residues by carboxylatopillar[6]arene for improving the zymolytic stability of arginine-containing peptides. Org Biomol Chem 2022; 20:2222-2226. [PMID: 35234795 DOI: 10.1039/d2ob00017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A general strategy for improving the zymolytic stability against proteases is reported. Carboxylatopillar[6]arene (CP6A) could effectively bind arginine and arginine-containing peptides, thereby improving the stability of angiotensin peptides in the presence of trypsin by the complexation of the side chain of the arginine residue.
Collapse
Affiliation(s)
- Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Long Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Liang Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Mengke Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Han Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China.
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| |
Collapse
|
49
|
Zhang T, Ouyang X, Gou S, Zhang Y, Yan N, Chang L, Li B, Zhang F, Liu H, Ni J. Novel Synovial Targeting Peptide-Sinomenine Conjugates as a Potential Strategy for the Treatment of Rheumatoid Arthritis. Int J Pharm 2022; 617:121628. [PMID: 35245636 DOI: 10.1016/j.ijpharm.2022.121628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
Abstract
Sinomenine (SIN) is an effective anti-inflammatory agent, but its therapeutic efficacy is limited by its short half-life and the high dosage required. Tissue-specific strategies have the potential to overcome these limitations. The synovial homing peptide (CKSTHDRLC) was identified to have high synovial endothelium targeting affinity. In this work, two peptide-drug conjugates (PDCs), conjugate (L) and conjugate (C), were synthesized, in which SIN was covalently connected to the linear and cyclic synovial homing peptide, respectively, via a 6-aminocaproic acid linker. An evaluation of biostability showed that conjugate (C) was more stable in mouse serum and inflammatory joint homogenate than conjugate (L). The two conjugates gradually released free SIN. Interestingly, conjugate (L) self-cyclized via a disulfide bridge in a biological environment, which significantly impacted its biostability. It had an almost equipotent half-life in serum but faster degradation in the inflammatory joint than conjugate (C). Therefore, conjugate (C) exhibited better therapeutic efficacy and tissue targeting. All the results indicated that PDCs particularly in its cyclic form might be more efficient for targeted deliver and represent a potential strategy for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Tianyue Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xu Ouyang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Na Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Linlin Chang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beibei Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fangyan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China.
| |
Collapse
|
50
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 557] [Impact Index Per Article: 278.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|