1
|
Wu X, Fang S. Comparison of differences in immune cells and immune microenvironment among different kinds of oncolytic virus treatments. Front Immunol 2024; 15:1494887. [PMID: 39588373 PMCID: PMC11586384 DOI: 10.3389/fimmu.2024.1494887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
Oncolytic viruses are either naturally occurring or genetically engineered viruses that can activate immune cells and selectively replicate in and destroy cancer cells without damaging healthy tissues. Oncolytic virus therapy (OVT) represents an emerging treatment approach for cancer. In this review, we outline the properties of oncolytic viruses and then offer an overview of the immune cells and tumor microenvironment (TME) across various OVTs. A thorough understanding of the immunological mechanisms involved in OVTs could lead to the identification of novel and more effective therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
| | - Shaokuan Fang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
3
|
Han H, Xing L, Chen BT, Liu Y, Zhou TJ, Wang Y, Zhang LF, Li L, Cho CS, Jiang HL. Progress on the pathological tissue microenvironment barrier-modulated nanomedicine. Adv Drug Deliv Rev 2023; 200:115051. [PMID: 37549848 DOI: 10.1016/j.addr.2023.115051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Imbalance in the tissue microenvironment is the main obstacle to drug delivery and distribution in the human body. Before penetrating the pathological tissue microenvironment to the target site, therapeutic agents are usually accompanied by three consumption steps: the first step is tissue physical barriers for prevention of their penetration, the second step is inactivation of them by biological molecules, and the third step is a cytoprotective mechanism for preventing them from functioning on specific subcellular organelles. However, recent studies in drug-hindering mainly focus on normal physiological rather than pathological microenvironment, and the repair of damaged physiological barriers is also rarely discussed. Actually, both the modulation of pathological barriers and the repair of damaged physiological barriers are essential in the disease treatment and the homeostasis maintenance. In this review, we present an overview describing the latest advances in the generality of these pathological barriers and barrier-modulated nanomedicine. Overall, this review holds considerable significance for guiding the design of nanomedicine to increase drug efficacy in the future.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
4
|
Tharmatt A, Sahel DK, Raza K, Pandey MM, Mittal A, Chitkara D. Topical delivery of Anti-VEGF nanomedicines for treating psoriasis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Oladipo AO, Lebelo SL, Msagati TAM. Nanocarrier design–function relationship: The prodigious role of properties in regulating biocompatibility for drug delivery applications. Chem Biol Interact 2023; 377:110466. [PMID: 37004951 DOI: 10.1016/j.cbi.2023.110466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The concept of drug delivery systems as a magic bullet for the delivery of bioactive compounds has emerged as a promising approach in the treatment of different diseases with significant advantages over the limitations of traditional methods. While nanocarrier-based drug delivery systems are the main advocates of drug uptake because they offer several advantages including reduced non-specific biodistribution, improved accumulation, and enhanced therapeutic efficiency; their safety and biocompatibility within cellular/tissue systems are therefore important for achieving the desired effect. The underlying power of "design-interplay chemistry" in modulating the properties and biocompatibility at the nanoscale level will direct the interaction with their immediate surrounding. Apart from improving the existing nanoparticle physicochemical properties, the balancing of the hosts' blood components interaction holds the prospect of conferring newer functions altogether. So far, this concept has been remarkable in achieving many fascinating feats in addressing many challenges in nanomedicine such as immune responses, inflammation, biospecific targeting and treatment, and so on. This review, therefore, provides a diverse account of the recent advances in the fabrication of biocompatible nano-drug delivery platforms for chemotherapeutic applications, as well as combination therapy, theragnostic, and other diseases that are of interest to scientists in the pharmaceutical industries. Thus, careful consideration of the "property of choice" would be an ideal way to realize specific functions from a set of delivery platforms. Looking ahead, there is an enormous prospect for nanoparticle properties in regulating biocompatibility.
Collapse
Affiliation(s)
- Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, 1710, South Africa.
| | - Sogolo L Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, 1710, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering, and Technology, University of South Africa, Private Bag X06, Florida, 1710, South Africa
| |
Collapse
|
6
|
Xu Q, Sigen A, Wang W. Injectable Hydrogels as a Stem Cell Delivery Platform for Wound Healing. MULTIFUNCTIONAL HYDROGELS FOR BIOMEDICAL APPLICATIONS 2022:323-355. [DOI: 10.1002/9783527825820.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Song J, Hu L, Liu B, Jiang N, Huang H, Luo J, Wang L, Zeng J, Huang F, Huang M, Cai L, Tang L, Chen S, Chen Y, Wu A, Zheng S, Chen Q. The Emerging Role of Immune Cells and Targeted Therapeutic Strategies in Diabetic Wounds Healing. J Inflamm Res 2022; 15:4119-4138. [PMID: 35898820 PMCID: PMC9309318 DOI: 10.2147/jir.s371939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Poor wound healing in individuals with diabetes has long plagued clinicians, and immune cells play key roles in the inflammation, proliferation and remodeling that occur in wound healing. When skin integrity is damaged, immune cells migrate to the wound bed through the actions of chemokines and jointly restore tissue homeostasis and barrier function by exerting their respective biological functions. An imbalance of immune cells often leads to ineffective and disordered inflammatory responses. Due to the maladjusted microenvironment, the wound is unable to smoothly transition to the proliferation and remodeling stage, causing it to develop into a chronic refractory wound. However, chronic refractory wounds consistently lead to negative outcomes, such as long treatment cycles, high hospitalization rates, high medical costs, high disability rates, high mortality rates, and many adverse consequences. Therefore, strategies that promote the rational distribution and coordinated development of immune cells during wound healing are very important for the treatment of diabetic wounds (DW). Here, we explored the following aspects by performing a literature review: 1) the current situation of DW and an introduction to the biological functions of immune cells; 2) the role of immune cells in DW; and 3) existing (or undeveloped) therapies targeting immune cells to promote wound healing to provide new ideas for basic research, clinical treatment and nursing of DW.
Collapse
Affiliation(s)
- Jianying Song
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Lixin Hu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Bo Liu
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Nan Jiang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Houqiang Huang
- Department of Nursing, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - JieSi Luo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jing Zeng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Min Huang
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Luyao Cai
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Lingyu Tang
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Shunli Chen
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yinyi Chen
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Silin Zheng
- Department of Nursing, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qi Chen
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
8
|
Wu K, Liu Z, Dong C, Gu S, Li L, Wang W, Zhou Y. MiR-4739 inhibits the malignant behavior of esophageal squamous cell carcinoma cells via the homeobox C10/vascular endothelial growth factor A/phosphatidylinositol 3-kinase/AKT pathway. Bioengineered 2022; 13:14066-14079. [PMID: 35730500 PMCID: PMC9342426 DOI: 10.1080/21655979.2022.2068783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Esophageal cancer is a lethal disease, and emerging evidence has shown that microRNAs are involved in its development, progression, and clinical outcome. MicroRNAs are potential biomarkers for esophageal squamous cell carcinoma (ESCC), and may be useful in advanced RNA therapy for ESCC. This study was conducted to evaluate the molecular mechanism of miR-4739 in ESCC. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to measure RNA and protein levels. Transwell assay, Cell Counting Kit-8 assay, cytometry analysis, and human umbilical vein endothelial cell tube formation assay were conducted to determine the molecular function of miR-4739 in ESCC. Potential targets of miR-4739 were predicted using bioinformatics tools and confirmed in ESCC cells using a luciferase reporter and RNA pulldown assay. Finally, we performed immunohistochemistry to evaluate the effects of administering agomir-4739 to a mouse model of ESCC. MiR-4739 expression was downregulated in ESCC tissues and cells. MiR-4739 overexpression inhibited cell proliferation, migration, and invasion, and promoted apoptosis of ESCC cells. Furthermore, vascular endothelial growth factor A expression was downregulated by miR-4739 mimics in ESCC cells. MiR-4739 negatively regulated homeobox C10 expression. Additionally, agomir-4739 inhibited tumor growth and angiogenesis in vivo. We demonstrated that miR-4739 overexpression exerted an inhibitory effect on ESCC cells by preventing the expression of homeobox C10 via the vascular endothelial growth factor A/phosphatidylinositol 3-kinase/AKT pathway, indicating the potential of this microRNA as a treatment target in ESCC.
Collapse
Affiliation(s)
- Kaiqin Wu
- Department of Thoracic-Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, Jiangsu, China
| | - Zhenchuan Liu
- Department of Thoracic-Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, Jiangsu, China
| | - Chenglai Dong
- Department of Thoracic-Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, Jiangsu, China
| | - Shaorui Gu
- Department of Thoracic-Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, Jiangsu, China
| | - Lei Li
- Department of Thoracic-Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, Jiangsu, China
| | - Wenli Wang
- Department of Thoracic-Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, Jiangsu, China
| | - Yongxin Zhou
- Department of Thoracic-Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, Jiangsu, China
| |
Collapse
|
9
|
Huang S, Le H, Hong G, Chen G, Zhang F, Lu L, Zhang X, Qiu Y, Wang Z, Zhang Q, Ouyang G, Shen J. An all-in-one biomimetic iron-small interfering RNA nanoplatform induces ferroptosis for cancer therapy. Acta Biomater 2022; 148:244-257. [DOI: 10.1016/j.actbio.2022.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 01/18/2023]
|
10
|
Đorđević S, Gonzalez MM, Conejos-Sánchez I, Carreira B, Pozzi S, Acúrcio RC, Satchi-Fainaro R, Florindo HF, Vicent MJ. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res 2022; 12:500-525. [PMID: 34302274 PMCID: PMC8300981 DOI: 10.1007/s13346-021-01024-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
The field of nanomedicine has significantly influenced research areas such as drug delivery, diagnostics, theranostics, and regenerative medicine; however, the further development of this field will face significant challenges at the regulatory level if related guidance remains unclear and unconsolidated. This review describes those features and pathways crucial to the clinical translation of nanomedicine and highlights considerations for early-stage product development. These include identifying those critical quality attributes of the drug product essential for activity and safety, appropriate analytical methods (physical, chemical, biological) for characterization, important process parameters, and adequate pre-clinical models. Additional concerns include the evaluation of batch-to-batch consistency and considerations regarding scaling up that will ensure a successful reproducible manufacturing process. Furthermore, we advise close collaboration with regulatory agencies from the early stages of development to assure an aligned position to accelerate the development of future nanomedicines.
Collapse
Affiliation(s)
- Snežana Đorđević
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - María Medel Gonzalez
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal.
| | - María J Vicent
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain.
| |
Collapse
|
11
|
MicroRNA-539-5p-Loaded PLGA Nanoparticles Grafted with iRGD as a Targeting Treatment for Choroidal Neovascularization. Pharmaceutics 2022; 14:pharmaceutics14020243. [PMID: 35213977 PMCID: PMC8877575 DOI: 10.3390/pharmaceutics14020243] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Choroidal neovascularization (CNV) is a major cause of visual impairment that results from excessive growth of blood vessels in the eye’s choroid. The limited clinical efficacy of the current therapy for this condition requires the emergence of new treatment modalities such as microRNA (miRNAs). A recent study identified microRNA-539-5p (miR-539) as an angiogenic suppressor in a CNV animal model; however, its therapeutic delivery is limited. Therefore, this study aims to formulate miR-539 in targeted nanoparticles (NPs) prepared from polylactic-co-glycolic acid (PLGA). The NPs were decorated with internalizing arginylglycylaspartic (RGD) peptide (iRGD), which specifically targets the alpha-v-beta-3 (αvβ3) integrin receptor that is overexpressed in blood vessels of ocular tissue in CNV patients. The 1H NMR spectra results revealed successful conjugation of iRGD peptide into PLGA NPs. The miR-539-PLGA.NPs and miR-539-iRGD-PLGA.NPs were prepared and showed a particle size of 300 ± 3 and 306.40 ± 4 nm, respectively. A reduction in human retinal microvascular endothelial cell (HRMEC) viability was shown 48 and 72 h post transfection with miR-539 incorporated in PLGA NPs and iRGD-PLGA.NPs. iRGD-functionalized PLGA NPs caused further significant reduction in cell viability when compared with plain ones, revealing an enhancement in the NP uptake with iRGD-grafted NPs. The current study showed that miR-539-PLGA.NPs and miR-539-iRGD-PLGA.NPs are promising approaches that reduced the viability of HRMECs, suggesting their therapeutic potential in the treatment of CNV.
Collapse
|
12
|
Yang M, Yang B, Deng D. Targeting of EIF4EBP1 by miR-99a-3p affects the functions of B lymphocytes via autophagy and aggravates SLE disease progression. J Cell Mol Med 2021; 25:10291-10305. [PMID: 34668631 PMCID: PMC8572797 DOI: 10.1111/jcmm.16991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive activation of immune cells plays a key role in the pathogenesis of systemic lupus erythematosus (SLE). The regulation of immune cells by miRNAs is a research hotspot. In this study, second-generation high-throughput sequencing revealed a reduction in miR-99a-3p expression in patients with SLE; however, the specific mechanism underlying this phenomenon remains unclear. After transfection with an miR-99a-3p agomir, the proliferation of Ball-1 cells decreased and the levels of their apoptosis increased. The opposite effects were observed in cells transfected with the miR-99a-3p antagomir. Luciferase reporter assay indicated that miR-99a-3p directly targeted EIF4EBP1. Rescue experiments confirmed the proposed interaction between miR-99a-3p and EIF4EBP1. In vitro, in vivo and clinical investigations further confirmed that the miR-99a-3p agomir reduced the expression of EIF4EBP1, LC3B and LAMP-2A. In the in vivo experiments, serum levels of anti-nuclear antibodies, double-stranded DNA, IgE, IgM, IL-6, IL-10 and B lymphocyte stimulator were higher in mice from the antagomir group than those in mice from the MRL/lpr group. Furthermore, the protein and mRNA levels of EIF4EBP1, LC3B and LAMP-2A, the intensity of immunohistochemical staining of EIF4EBP1, LC3B and LAMP-2A, the urinary protein levels, and the C3 immunofluorescence deposition increased in mice from the antagomir group. The upregulation of miR-99a-3p expression protected B cells from EIF4EBP1-mediated autophagy, whilst the downregulation of miR-99a-3p expression induced autophagy via the EIF4EBP1-mediated regulation of the autophagy signalling pathway in B cells isolated from individuals with SLE. Based on these results, miR-99a-3p and EIF4EBP1 may be considered potential targets for SLE treatment.
Collapse
Affiliation(s)
- Meng Yang
- Department of DermatologyThe Second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
- Department of DermatologyThe Third Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Binbin Yang
- Department of DermatologyThe Second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Danqi Deng
- Department of DermatologyThe Second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
13
|
Chen X, Jin R, Jiang Q, Bi Q, He T, Song X, Barz M, Ai H, Shuai X, Nie Y. Delivery of siHIF-1α to Reconstruct Tumor Normoxic Microenvironment for Effective Chemotherapeutic and Photodynamic Anticancer Treatments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100609. [PMID: 34032365 DOI: 10.1002/smll.202100609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The tumor hypoxic microenvironment not only induces genetic and epigenetic changes in tumor cells, immature vessels formation for oxygen demand, but also compromises the efficiency of therapeutic interventions. On the other hand, conventional therapeutic approaches which kill tumor cells or destroy tumor blood vessels to block nutrition and oxygen supply usually facilitate even harsher microenvironment. Thus, simultaneously relieving the strained response of tumor cells and blood vessels represents a promising strategy to reverse the adverse tumor hypoxic microenvironment. In the present study, an integrated amphiphilic system (RSCD) is designed based on Angiotensin II receptor blocker candesartan for siRNA delivery against the hypoxia-inducible factor-1 alpha (HIF-1α), aiming at both vascular and cellular "relaxation" to reconstruct a tumor normoxic microenvironment. Both in vitro and in vivo studies have confirmed that the hypoxia-inducible HIF-1α expression is down-regulated by 70% and vascular growth is inhibited by 60%. The "relaxation" therapy enables neovascularization with more complete and organized structures to obviously increase the oxygen level inside tumor, which results in a 50% growth inhibition. Moreover, reconstruction of tumor microenvironment enhances tumor-targeted drug delivery, and significantly improves the chemotherapeutic and photodynamic anticancer treatments.
Collapse
Affiliation(s)
- Xiaobing Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Qian Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Qunjie Bi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Ting He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Xu Song
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Matthias Barz
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
- Institute of Organic Chemistry, Johannes Gutenberg-University, Mainz Duesbergweg 10-14, 55099, Mainz, Germany
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
14
|
Hu X, Xia F, Lee J, Li F, Lu X, Zhuo X, Nie G, Ling D. Tailor-Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002545. [PMID: 33854877 PMCID: PMC8025024 DOI: 10.1002/advs.202002545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/25/2020] [Indexed: 05/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide due to its aggressiveness and the challenge to early diagnosis and treatment. In recent decades, nanomaterials have received increasing attention for diagnosis and therapy of PDAC. However, these designs are mainly focused on the macroscopic tumor therapeutic effect, while the crucial nano-bio interactions in the heterogeneous microenvironment of PDAC remain poorly understood. As a result, the majority of potent nanomedicines show limited performance in ameliorating PDAC in clinical translation. Therefore, exploiting the unique nature of the PDAC by detecting potential biomarkers together with a deep understanding of nano-bio interactions that occur in the tumor microenvironment is pivotal to the design of PDAC-tailored effective nanomedicine. This review will introduce tailor-made nanomaterials-enabled laboratory tests and advanced noninvasive imaging technologies for early and accurate diagnosis of PDAC. Moreover, the fabrication of a myriad of tailor-made nanomaterials for various PDAC therapeutic modalities will be reviewed. Furthermore, much preferred theranostic multifunctional nanomaterials for imaging-guided therapies of PDAC will be elaborated. Lastly, the prospects of these nanomaterials in terms of clinical translation and potential breakthroughs will be briefly discussed.
Collapse
Affiliation(s)
- Xi Hu
- Department of Clinical PharmacyZhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Researchthe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Fan Xia
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Jiyoung Lee
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Fangyuan Li
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Biomedical Engineering of the Ministry of EducationCollege of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhou310058China
| | - Xiaoyang Lu
- Department of Clinical PharmacyZhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Researchthe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xiaozhen Zhuo
- Department of Cardiologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyNo.11 Zhongguancun BeiyitiaoBeijing100190China
- GBA Research Innovation Institute for NanotechnologyGuangzhou510700China
| | - Daishun Ling
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Biomedical Engineering of the Ministry of EducationCollege of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhou310058China
| |
Collapse
|
15
|
Yoshida K, Yokoi A, Kato T, Ochiya T, Yamamoto Y. The clinical impact of intra- and extracellular miRNAs in ovarian cancer. Cancer Sci 2020; 111:3435-3444. [PMID: 32750177 PMCID: PMC7541008 DOI: 10.1111/cas.14599] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer due to lack of early screening methods and acquired drug resistance. MicroRNAs (miRNAs) are effective post‐transcriptional regulators that are transferred by extracellular vesicles, such as exosomes. Numerous studies have revealed that miRNAs are differentially expressed in epithelial ovarian cancer and act either as oncogenes or tumor suppressor genes. Cancer cells secrete exosomes containing miRNAs, which exert various effects on the components of the tumor microenvironment, including cancer‐associated fibroblasts, macrophages, and adipocytes. Conversely, cancer cells also receive exosomes from these cells. As a result of cell‐to‐cell communication, epithelial ovarian cancer acquires a more aggressive phenotype and resistance to multiple drugs. In addition, some circulating miRNAs are protected from RNase degradation in the peripheral blood and can be potential non‐invasive biomarkers. In particular, the combination of several circulating miRNAs enhances the accuracy of cancer screening. Likewise, comprehensive analyses revealed specific miRNA signatures in non‐epithelial ovarian tumors and several miRNAs contributing to alterations of carcinogenic pathways. Overall, miRNAs play a crucial role in ovarian cancer progression. In this review, we discuss the emerging roles of intra‐ and extracellular miRNAs in ovarian cancers. In the near future, miRNAs will be practical biomarkers and computational deep learning will help in the clinical application of miRNAs. Moreover, miRNAs are potential therapeutic targets and agents, and there are ongoing clinical trials of miRNA replacement therapy. Therefore, accelerating research on miRNA might improve the prognosis of patients with ovarian cancer.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
16
|
Shu M, Gao F, Yu C, Zeng M, He G, Wu Y, Su Y, Hu N, Zhou Z, Yang Z, Xu L. Dual-targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab. NANOTECHNOLOGY 2020; 31:335102. [PMID: 32303014 DOI: 10.1088/1361-6528/ab8a8a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dual-targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab resulted in enhanced antitumor activity, which overcomes the resistance to trastuzumab monotherapy. Herein, we have developed branched polyethylenimine-functionalized carbon dot (BP-CD) nanocarriers, which exhibited efficient green fluorescent protein gene delivery and expression. The positively charged BP-CDs allowed for effective nucleic acid binding and displayed a highly efficient small interfering RNA (siRNA)-mediated delivery targeting of cancer cells. The transfection of BP-CDs and HER3 siRNA complexes down-regulated HER3 protein expression and induced significant cell growth inhibition in BT-474 cells. BP-CDs/HER3 siRNA complexes induced cell death of BT-474 cells through G0/G1 cell cycle arrest and apoptosis. The combined treatment of BP-CDs/HER3 siRNA complexes and trastuzumab caused greater cell growth suppression in BT-474 cells when compared to either agent alone. The findings suggest that this dual-targeted therapy with the combination of BP-CDs/HER3 siRNA and trastuzumab represents a promising approach in breast cancer.
Collapse
Affiliation(s)
- Mengjun Shu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chaharband F, Daftarian N, Kanavi MR, Varshochian R, Hajiramezanali M, Norouzi P, Arefian E, Atyabi F, Dinarvand R. Trimethyl chitosan-hyaluronic acid nano-polyplexes for intravitreal VEGFR-2 siRNA delivery: Formulation and in vivo efficacy evaluation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 26:102181. [DOI: 10.1016/j.nano.2020.102181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/06/2020] [Accepted: 02/26/2020] [Indexed: 12/29/2022]
|
18
|
Yin HC, Chen XY, Wang W, Meng QW. Identification and comparison of the porcine H1, U6, and 7SK RNA polymerase III promoters for short hairpin RNA expression. Mamm Genome 2020; 31:110-116. [PMID: 32318815 DOI: 10.1007/s00335-020-09838-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
RNA polymerase III is an essential enzyme in eukaryotes for synthesis of tRNA, 5S rRNA, and other small nuclear and cytoplasmic RNAs. Thus, RNA polymerase III promoters are often used in small hairpin RNA (shRNA) expression. In this study, the porcine H1, U6, and 7SK RNA polymerase III type promoters were cloned into a pcDNA3.1( +) expression vector containing a shRNA sequence targeting enhanced green fluorescent protein (EGFP). PK and DF-1 cells were cotransfected with the construction of recombinant interference expression vector and the EGFP expression vector, pEGFP-N1. The average fluorescence intensity of EGFP in transfected cells was measured by fluorescence microscopy and flow cytometry. Real-time PCR was used to detect expressed shRNAs and the relative expression of EGFP, to confirm the activity of the promoters. The results showed that the activity of porcine 7SK promoter is stronger than the U6 promoter, which is in turn stronger than porcine H1. While the high levels of expression of the U6 and 7SK promoters saturate the shRNAs level in the host cell, which can cause cytotoxicity and tissue damage. Therefore, porcine H1 promoter is effective for expression of shRNA, and may be an excellent tool to knockdown gene expression in pigs for functional genomics studies. The results also lay a foundation for the development of porcine RNAi technology and genetically modified porcine research.
Collapse
Affiliation(s)
- Hai-Chang Yin
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, People's Republic of China.,Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, 161006, Heilongjiang, People's Republic of China
| | - Xin-Yu Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Qing-Wen Meng
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China.
| |
Collapse
|
19
|
Jiang Q, Chen X, Liang H, Nie Y, Jin R, Barz M, Yue D, Gu Z. Multistage rocket: integrational design of a prodrug-based siRNA delivery system with sequential release for enhanced antitumor efficacy. NANOSCALE ADVANCES 2019; 1:498-507. [PMID: 36132232 PMCID: PMC9473180 DOI: 10.1039/c8na00191j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/12/2018] [Indexed: 05/24/2023]
Abstract
An integrated peptide-camptothecin prodrug (RSC) system was designed as a nano-sized multistage rocket for the efficient complexation and controlled sequential release of siRNA and anticancer drug under tumor-relevant reductive and esterase-enriched conditions, which facilitated the avoidance of negative interactions and maximized the synergistic effect.
Collapse
Affiliation(s)
- Qian Jiang
- National Engineering Research Center for Biomaterials, Sichuan University Chengdu 610064 P. R. China
- Department of Pharmacy, The Second People's Hospital of Chengdu Chengdu 610017 P. R. China
| | - Xiaobing Chen
- National Engineering Research Center for Biomaterials, Sichuan University Chengdu 610064 P. R. China
| | - Hong Liang
- National Engineering Research Center for Biomaterials, Sichuan University Chengdu 610064 P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University Chengdu 610064 P. R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University Chengdu 610064 P. R. China
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz Duesbergweg 10-14 55099 Mainz Germany
| | - Dong Yue
- National Engineering Research Center for Biomaterials, Sichuan University Chengdu 610064 P. R. China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| |
Collapse
|
20
|
Andón FT, Digifico E, Maeda A, Erreni M, Mantovani A, Alonso MJ, Allavena P. Targeting tumor associated macrophages: The new challenge for nanomedicine. Semin Immunol 2017; 34:103-113. [PMID: 28941641 DOI: 10.1016/j.smim.2017.09.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/23/2022]
Abstract
The engineering of new nanomedicines with ability to target and kill or re-educate Tumor Associated Macrophages (TAMs) stands up as a promising strategy to induce the effective switching of the tumor-promoting immune suppressive microenvironment, characteristic of tumors rich in macrophages, to one that kills tumor cells, is anti-angiogenic and promotes adaptive immune responses. Alternatively, the loading of monocytes/macrophages in blood circulation with nanomedicines, may be used to profit from the high infiltration ability of myeloid cells and to allow the drug release in the bulk of the tumor. In addition, the development of TAM-targeted imaging nanostructures, can be used to study the macrophage content in solid tumors and, hence, for a better diagnosis and prognosis of cancer disease. The major challenges for the effective targeting of TAM with nanomedicines and their application in the clinic have already been identified. These challenges are associated to the undesirable clearance of nanomedicines by, the mononuclear phagocyte system (macrophages) in competing organs (liver, lung or spleen), upon their intravenous injection; and also to the difficult penetration of nanomedicines across solid tumors due to the abnormal vasculature and the excessive extracellular matrix present in stromal tumors. In this review we describe the recent nanotechnology-base strategies that have been developed to target macrophages in tumors.
Collapse
Affiliation(s)
- Fernando Torres Andón
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy; Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), University of Santiago de Compostela, 15706 Campus Vida, Santiago de Compostela, Spain.
| | - Elisabeth Digifico
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy; Humanitas University, Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Akihiro Maeda
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Marco Erreni
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy; Humanitas University, Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| | - María José Alonso
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), University of Santiago de Compostela, 15706 Campus Vida, Santiago de Compostela, Spain; Pharmacy & Pharmaceutical Technology Department, School of Pharmacy, University of Santiago de Compostela, 15705 Campus Vida, Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Paola Allavena
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| |
Collapse
|
21
|
Alaarg A, Pérez-Medina C, Metselaar JM, Nahrendorf M, Fayad ZA, Storm G, Mulder WJM. Applying nanomedicine in maladaptive inflammation and angiogenesis. Adv Drug Deliv Rev 2017; 119:143-158. [PMID: 28506745 PMCID: PMC5682240 DOI: 10.1016/j.addr.2017.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/12/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022]
Abstract
Inflammation and angiogenesis drive the development and progression of multiple devastating diseases such as atherosclerosis, cancer, rheumatoid arthritis, and inflammatory bowel disease. Though these diseases have very different phenotypic consequences, they possess several common pathophysiological features in which monocyte recruitment, macrophage polarization, and enhanced vascular permeability play critical roles. Thus, developing rational targeting strategies tailored to the different stages of the journey of monocytes, from bone marrow to local lesions, and their extravasation from the vasculature in diseased tissues will advance nanomedicine. The integration of in vivo imaging uniquely allows studying nanoparticle kinetics, accumulation, clearance, and biological activity, at levels ranging from subcellular to an entire organism, and will shed light on the fate of intravenously administered nanomedicines. We anticipate that convergence of nanomedicines, biomedical engineering, and life sciences will help to advance clinically relevant therapeutics and diagnostic agents for patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Amr Alaarg
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Josbert M Metselaar
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Institute for Experimental Molecular Imaging, University Clinic, Helmholtz Institute for Biomedical Engineering, Aachen, Germany
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gert Storm
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|