1
|
Miller RC, Temenoff JS. Biomaterials for Cell Manufacturing. ACS Macro Lett 2024:1521-1530. [PMID: 39466845 DOI: 10.1021/acsmacrolett.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Cell therapies, potent populations of cells used to treat disease and injury, can be strategically manufactured with biomaterial intervention to improve clinical translation. In this viewpoint, we discuss biomaterial design and integration into cell manufacturing steps to achieve three main goals: scale-up, phenotype control, and selection of potent cells. Material properties can be engineered to influence the cell-biomaterial interface and, therefore, impart desirable cell behavior such as growth, secretory activity, and differentiation. Future directions for the field should capitalize on the combinatorial design of biomaterial properties to yield highly specific and potent cell populations. Furthermore, future biomaterials could contribute to novel high-throughput cell separation technologies that can individually select the most therapeutically relevant cells within a produced batch.
Collapse
Affiliation(s)
- Ryan C Miller
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, United States
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Williamson HK, Mendes PM. An integrated perspective on measuring cytokines to inform CAR-T bioprocessing. Biotechnol Adv 2024; 75:108405. [PMID: 38997052 DOI: 10.1016/j.biotechadv.2024.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Chimeric antigen receptor (CAR)-T cells are emerging as a generation-defining therapeutic however their manufacture remains a major barrier to meeting increased market demand. Monitoring critical quality attributes (CQAs) and critical process parameters (CPPs) during manufacture would vastly enrich acquired information related to the process and product, providing feedback to enable real-time decision making. Here we identify specific CAR-T cytokines as value-adding analytes and discuss their roles as plausible CPPs and CQAs. High sensitivity sensing technologies which can be easily integrated into manufacture workflows are essential to implement real-time monitoring of these cytokines. We therefore present biosensors as enabling technologies and evaluate recent advancements in cytokine detection in cell cultures, offering promising translatability to CAR-T biomanufacture. Finally, we outline emerging sensing technologies with future promise, and provide an overall outlook on existing gaps to implementation and the optimal sensing platform to enable cytokine monitoring in CAR-T biomanufacture.
Collapse
Affiliation(s)
- Hannah K Williamson
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Paula M Mendes
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Zhang W, Uyemura R, Zhong K, Guo R, Zhong L. Current Advances and Future Perspectives on Mesenchymal Stem Cell-Derived Extracellular Vesicles in Alzheimer's Disease. Aging Dis 2024; 15:2015-2027. [PMID: 38270122 PMCID: PMC11346404 DOI: 10.14336/ad.2023.1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024] Open
Abstract
The incidence of Alzheimer's disease (AD) has been increasing in recent years as the world's population ages, which poses a significant challenge to public health. Due to the complexity of pathogenesis of AD, currently there is no effective treatment for it. In recent years, cell and gene therapy has attracted widespread attention in the treatment of neurodegenerative diseases. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) represent a novel cell-free therapy with numerous advantages over cell-based therapies owing to their low immunogenicity and high safety profile. We summarize recent progress in the application of EVs for treating AD and the specific mechanisms and outline the underlying mechanisms. We also explore various methods for optimizing the function of MSC-EVs, including gene editing, modifying stem cell culture conditions and peptide modification. In addition, we discuss the therapeutic potentials of MSC-EVs, as well as the obstacles that currently impede their clinical utilization.
Collapse
Affiliation(s)
- Wenjing Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Russell Uyemura
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Kun Zhong
- American Center of Stem Cell Research and Regenerative Medicine, Farmington Hills, Michigan 48336, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
4
|
Matsueda S, Chen L, Li H, Yao H, Yu F. Recent clinical researches and technological development in TIL therapy. Cancer Immunol Immunother 2024; 73:232. [PMID: 39264449 PMCID: PMC11393248 DOI: 10.1007/s00262-024-03793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
Tumor-infiltrating lymphocyte (TIL) therapy represents a groundbreaking advancement in the solid cancer treatment, offering new hope to patients and their families with high response rates and long overall survival. TIL therapy involves extracting immune cells from a patient's tumor tissue, expanding them ex vivo, and infusing them back into the patient to target and eliminate cancer cells. This revolutionary approach harnesses the power of the immune system to combat cancers, ushering in a new era of T cell-based therapies along with CAR-T and TCR-therapies. In this comprehensive review, we aim to elucidate the remarkable potential of TIL therapy by delving into recent advancements in basic and clinical researches. We highlight on the evolving landscape of TIL therapy as a prominent immunotherapeutic strategy, its multifaceted applications, and the promising outcomes. Additionally, we explore the future horizons of TIL therapy, next-generation TILs, and combination therapy, to overcome the limitations and improve clinical efficacy of TIL therapy.
Collapse
Affiliation(s)
- Satoko Matsueda
- Fresh Wind Biotechnologies USA Inc, 4502 Riverstone Blvd, STE1104, Missouri City, TX, 77459, USA.
| | - Lei Chen
- Department of Neurosurgery, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Hongmei Li
- Department of Oncology, Qingdao University Medical School, Qinddao, 266003, China
| | - Hui Yao
- Fresh Wind Biotechnologies USA Inc, 4502 Riverstone Blvd, STE1104, Missouri City, TX, 77459, USA
| | - Fuli Yu
- Fresh Wind Biotechnologies USA Inc, 4502 Riverstone Blvd, STE1104, Missouri City, TX, 77459, USA
| |
Collapse
|
5
|
Sevenler D, Toner M. High throughput intracellular delivery by viscoelastic mechanoporation. Nat Commun 2024; 15:115. [PMID: 38167490 PMCID: PMC10762167 DOI: 10.1038/s41467-023-44447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Brief pulses of electric field (electroporation) and/or tensile stress (mechanoporation) have been used to reversibly permeabilize the plasma membrane of mammalian cells and deliver materials to the cytosol. However, electroporation can be harmful to cells, while efficient mechanoporation strategies have not been scalable due to the use of narrow constrictions or needles which are susceptible to clogging. Here we report a high throughput approach to mechanoporation in which the plasma membrane is stretched and reversibly permeabilized by viscoelastic fluid forces within a microfluidic chip without surface contact. Biomolecules are delivered directly to the cytosol within seconds at a throughput exceeding 250 million cells per minute. Viscoelastic mechanoporation is compatible with a variety of biomolecules including proteins, RNA, and CRISPR-Cas9 ribonucleoprotein complexes, as well as a range of cell types including HEK293T cells and primary T cells. Altogether, viscoelastic mechanoporation appears feasible for contact-free permeabilization and delivery of biomolecules to mammalian cells ex vivo.
Collapse
Affiliation(s)
- Derin Sevenler
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Shriners Children's, Boston, MA, 02114, USA.
| |
Collapse
|
6
|
Mai M, Luo S, Fasciano S, Oluwole TE, Ortiz J, Pang Y, Wang S. Morphology-based deep learning approach for predicting adipogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs). Front Cell Dev Biol 2023; 11:1329840. [PMID: 38099293 PMCID: PMC10720363 DOI: 10.3389/fcell.2023.1329840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent progenitor cells with the potential to differentiate into various cell types, including osteoblasts, chondrocytes, and adipocytes. These cells have been extensively employed in the field of cell-based therapies and regenerative medicine due to their inherent attributes of self-renewal and multipotency. Traditional approaches for assessing hMSCs differentiation capacity have relied heavily on labor-intensive techniques, such as RT-PCR, immunostaining, and Western blot, to identify specific biomarkers. However, these methods are not only time-consuming and economically demanding, but also require the fixation of cells, resulting in the loss of temporal data. Consequently, there is an emerging need for a more efficient and precise approach to predict hMSCs differentiation in live cells, particularly for osteogenic and adipogenic differentiation. In response to this need, we developed innovative approaches that combine live-cell imaging with cutting-edge deep learning techniques, specifically employing a convolutional neural network (CNN) to meticulously classify osteogenic and adipogenic differentiation. Specifically, four notable pre-trained CNN models, VGG 19, Inception V3, ResNet 18, and ResNet 50, were developed and tested for identifying adipogenic and osteogenic differentiated cells based on cell morphology changes. We rigorously evaluated the performance of these four models concerning binary and multi-class classification of differentiated cells at various time intervals, focusing on pivotal metrics such as accuracy, the area under the receiver operating characteristic curve (AUC), sensitivity, precision, and F1-score. Among these four different models, ResNet 50 has proven to be the most effective choice with the highest accuracy (0.9572 for binary, 0.9474 for multi-class) and AUC (0.9958 for binary, 0.9836 for multi-class) in both multi-class and binary classification tasks. Although VGG 19 matched the accuracy of ResNet 50 in both tasks, ResNet 50 consistently outperformed it in terms of AUC, underscoring its superior effectiveness in identifying differentiated cells. Overall, our study demonstrated the capability to use a CNN approach to predict stem cell fate based on morphology changes, which will potentially provide insights for the application of cell-based therapy and advance our understanding of regenerative medicine.
Collapse
Affiliation(s)
- Maxwell Mai
- Department of Mathematics, Southern Connecticut State University, New Haven, CT, United States
| | - Shuai Luo
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
| | - Samantha Fasciano
- Department of Cellular and Molecular Biology, University of New Haven, West Haven, CT, United States
| | - Timilehin Esther Oluwole
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
| | - Justin Ortiz
- Department of Mechanical and Industrial Engineering, University of New Haven, West Haven, CT, United States
| | - Yulei Pang
- Department of Mathematics, Southern Connecticut State University, New Haven, CT, United States
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
| |
Collapse
|
7
|
Giovannelli L, Bari E, Jommi C, Tartara F, Armocida D, Garbossa D, Cofano F, Torre ML, Segale L. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access. Bioact Mater 2023; 29:16-35. [PMID: 37456581 PMCID: PMC10338239 DOI: 10.1016/j.bioactmat.2023.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Neurodegenerative diseases represent a growing burden on healthcare systems worldwide. Mesenchymal stem cells (MSCs) have shown promise as a potential therapy due to their neuroregenerative, neuroprotective, and immunomodulatory properties, which are, however, linked to the bioactive substances they release, collectively known as secretome. This paper provides an overview of the most recent research on the safety and efficacy of MSC-derived secretome and extracellular vesicles (EVs) in clinical (if available) and preclinical models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, Huntington's disease, acute ischemic stroke, and spinal cord injury. The article explores the biologically active substances within MSC-secretome/EVs, the mechanisms responsible for the observed therapeutic effects, and the strategies that may be used to optimize MSC-secretome/EVs production based on specific therapeutic needs. The review concludes with a critical discussion of current clinical trials and a perspective on potential future directions in translating MSC-secretome and EVs into the clinic, specifically regarding how to address the challenges associated with their pharmaceutical manufacturing, including scalability, batch-to-batch consistency, adherence to Good Manufacturing Practices (GMP) guidelines, formulation, and storage, along with quality controls, access to the market and relative costs, value for money and impact on total expenditure.
Collapse
Affiliation(s)
- Lorella Giovannelli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Claudio Jommi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Daniele Armocida
- A.U.O, Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135, Roma, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10126, Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10126, Turin, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- PharmaExceed S.r.l, 27100, Pavia, Italy
| | - Lorena Segale
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| |
Collapse
|
8
|
Kardorff M, Mahler HC, Huwyler J, Sorret L. Comparison of cell viability methods for human mesenchymal/stromal stem cells and human A549 lung carcinoma cells after freeze-thaw stress. J Pharmacol Toxicol Methods 2023; 124:107474. [PMID: 37866798 DOI: 10.1016/j.vascn.2023.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
For the safety and efficacy of frozen cell therapy products, determination of cellular viability is key. However, results of cell viability measurements do not only depend on the cell line or on the inflicted stress, but also on the assay used, making inter-experimental comparisons difficult. The aim of this study was thus to assess commonly used viability assays in clinically relevant human mesenchymal/stromal stem cells and human A549 lung carcinoma cells. Post freeze-thaw stress viability and proliferation were evaluated under different conditions using trypan blue, acridine orange/DAPI stain, alamarBlue, ATP, and neutral red assays. Significant differences in cell viability between metabolic assays were observed, likely due to their distinct intrinsic detection mechanisms. Membrane-integrity based assays generally overestimated cell viabilities in this study. Furthermore, noticeable differences in inter-assay sensitivities were observed. These differences highlight that cell viability methods should be meticulously selected and their associated results carefully interpreted in a relevant context to ensure reliable conclusions. Indeed, although cell membrane integrity based assays are a popular choice to determine cellular quality attributes after freezing and thawing, we demonstrate that metabolic assays may be more suitable in this context.
Collapse
Affiliation(s)
- Markus Kardorff
- Drug Product Services, Lonza AG, Hochbergerstrasse 60G, 4057 Basel, Switzerland; Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Léa Sorret
- Drug Product Services, Lonza AG, Hochbergerstrasse 60G, 4057 Basel, Switzerland.
| |
Collapse
|
9
|
Sevenler D, Toner M. High throughput intracellular delivery by viscoelastic mechanoporation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538131. [PMID: 37163007 PMCID: PMC10168280 DOI: 10.1101/2023.04.24.538131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Brief and intense electric fields (electroporation) and/or tensile stresses (mechanoporation) have been used to temporarily permeabilize the plasma membrane of mammalian cells for the purpose of delivering materials to the cytosol. However, electroporation can be harmful to cells, while efficient mechanoporation strategies have not been scalable due to the use of narrow constrictions or needles which are susceptible to clogging. Here we report a method of mechanoporation in which cells were stretched and permeabilized by viscoelastic flow forces without surface contact. Inertio-elastic cell focusing aligned cells to the center of the device, avoiding direct contact with walls and enabling efficient (95%) intracellular delivery to over 200 million cells per minute. Functional biomolecules such as proteins, RNA, and ribonucleoprotein complexes were successfully delivered to Jurkat cells. Efficient intracellular delivery to HEK293T cells and primary activated T cells was also demonstrated. Contact-free mechanoporation using viscoelastic fluid forces appears to be feasible method for efficient and high throughput intracellular delivery of biomolecules to mammalian cells ex vivo.
Collapse
Affiliation(s)
- Derin Sevenler
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| |
Collapse
|
10
|
Handral HK, Wyrobnik TA, Lam ATL. Emerging Trends in Biodegradable Microcarriers for Therapeutic Applications. Polymers (Basel) 2023; 15:polym15061487. [PMID: 36987266 PMCID: PMC10057597 DOI: 10.3390/polym15061487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Microcarriers (MCs) are adaptable therapeutic instruments that may be adjusted to specific therapeutic uses, making them an appealing alternative for regenerative medicine and drug delivery. MCs can be employed to expand therapeutic cells. MCs can be used as scaffolds for tissue engineering, as well as providing a 3D milieu that replicates the original extracellular matrix, facilitating cell proliferation and differentiation. Drugs, peptides, and other therapeutic compounds can be carried by MCs. The surface of the MCs can be altered, to improve medication loading and release, and to target specific tissues or cells. Allogeneic cell therapies in clinical trials require enormous volumes of stem cells, to assure adequate coverage for several recruitment locations, eliminate batch to batch variability, and reduce production costs. Commercially available microcarriers necessitate additional harvesting steps to extract cells and dissociation reagents, which reduces cell yield and quality. To circumvent such production challenges, biodegradable microcarriers have been developed. In this review, we have compiled key information relating to biodegradable MC platforms, for generating clinical-grade cells, that permit cell delivery at the target site without compromising quality or cell yields. Biodegradable MCs could also be employed as injectable scaffolds for defect filling, supplying biochemical signals for tissue repair and regeneration. Bioinks, coupled with biodegradable microcarriers with controlled rheological properties, might improve bioactive profiles, while also providing mechanical stability to 3D bioprinted tissue structures. Biodegradable materials used for microcarriers have the ability to solve in vitro disease modeling, and are advantageous to the biopharmaceutical drug industries, because they widen the spectrum of controllable biodegradation and may be employed in a variety of applications.
Collapse
Affiliation(s)
- Harish K. Handral
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
- Correspondence:
| | - Tom Adam Wyrobnik
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Alan Tin-Lun Lam
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
| |
Collapse
|
11
|
Weber L, Lee BS, Imboden S, Hsieh CJ, Lin NY. Phenotyping senescent mesenchymal stromal cells using AI image translation. CURRENT RESEARCH IN BIOTECHNOLOGY 2023; 5:100120. [PMID: 38045568 PMCID: PMC10691861 DOI: 10.1016/j.crbiot.2023.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) offer promising potential in biomedical research, clinical therapeutics, and immunomodulatory therapies due to their ease of isolation and multipotent, immunoprivileged, and immunosuppersive properties. Extensive efforts have focused on optimizing the cell isolation and culture methods to generate scalable, therapeutically-relevant MSCs for clinical applications. However, MSC-based therapies are often hindered by cell heterogeneity and inconsistency of therapeutic function caused, in part, by MSC senescence. As such, noninvasive and molecular-based MSC characterizations play an essential role in assuring the consistency of MSC functions. Here, we demonstrated that AI image translation algorithms can effectively predict immunofluorescence images of MSC senescence markers from phase contrast images. We showed that the expression level of senescence markers including senescence-associated beta-galactosidase (SABG), p16, p21, and p38 are accurately predicted by deep-learning models for Doxorubicin-induced MSC senescence, irradiation-induced MSC senescence, and replicative MSC senescence. Our AI model distinguished the non-senescent and senescent MSC populations and simultaneously captured the cell-to-cell variability within a population. Our microscopy-based phenotyping platform can be integrated with cell culture routines making it an easily accessible tool for MSC engineering and manufacturing.
Collapse
Affiliation(s)
- Leya Weber
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles 90095, CA, United States
| | - Brandon S. Lee
- Department of Bioengineering, University of California, Los Angeles 90095, CA, United States
| | - Sara Imboden
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles 90095, CA, United States
| | - Cho-Jui Hsieh
- Department of Computer Science, University of California, Los Angeles 90095, CA, United States
| | - Neil Y.C. Lin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles 90095, CA, United States
- Department of Bioengineering, University of California, Los Angeles 90095, CA, United States
- California NanoSystems Institute, University of California, Los Angeles 90095, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles 90095, CA, United States
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles 90095, CA, United States
- Broad Stem Cell Center, University of California, Los Angeles 90095, CA, United States
| |
Collapse
|
12
|
High throughput screening of mesenchymal stem cell lines using deep learning. Sci Rep 2022; 12:17507. [PMID: 36266301 PMCID: PMC9584889 DOI: 10.1038/s41598-022-21653-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are increasingly used as regenerative therapies for patients in the preclinical and clinical phases of various diseases. However, the main limitations of such therapies include functional heterogeneity and the lack of appropriate quality control (QC) methods for functional screening of MSC lines; thus, clinical outcomes are inconsistent. Recently, machine learning (ML)-based methods, in conjunction with single-cell morphological profiling, have been proposed as alternatives to conventional in vitro/vivo assays that evaluate MSC functions. Such methods perform in silico analyses of MSC functions by training ML algorithms to find highly nonlinear connections between MSC functions and morphology. Although such approaches are promising, they are limited in that extensive, high-content single-cell imaging is required; moreover, manually identified morphological features cannot be generalized to other experimental settings. To address these limitations, we propose an end-to-end deep learning (DL) framework for functional screening of MSC lines using live-cell microscopic images of MSC populations. We quantitatively evaluate various convolutional neural network (CNN) models and demonstrate that our method accurately classifies in vitro MSC lines to high/low multilineage differentiating stress-enduring (MUSE) cells markers from multiple donors. A total of 6,120 cell images were obtained from 8 MSC lines, and they were classified into two groups according to MUSE cell markers analyzed by immunofluorescence staining and FACS. The optimized DenseNet121 model showed area under the curve (AUC) 0.975, accuracy 0.922, F1 0.922, sensitivity 0.905, specificity 0.942, positive predictive value 0.940, and negative predictive value 0.908. Therefore, our DL-based framework is a convenient high-throughput method that could serve as an effective QC strategy in future clinical biomanufacturing processes.
Collapse
|
13
|
Suyama T, Takemoto Y, Miyauchi H, Kato Y, Matsuzaki Y, Kato R. Morphology-based noninvasive early prediction of serial-passage potency enhances the selection of clone-derived high-potency cell bank from mesenchymal stem cells. Inflamm Regen 2022; 42:30. [PMID: 36182958 PMCID: PMC9526913 DOI: 10.1186/s41232-022-00214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/29/2022] [Indexed: 11/12/2022] Open
Abstract
Background Rapidly expanding clones (RECs) are one of the single-cell-derived mesenchymal stem cell clones sorted from human bone marrow mononuclear cells (BMMCs), which possess advantageous features. The RECs exhibit long-lasting proliferation potency that allows more than 10 repeated serial passages in vitro, considerably benefiting the manufacturing process of allogenic MSC-based therapeutic products. Although RECs aid the preparation of large-variation clone libraries for a greedy selection of better-quality clones, such a selection is only possible by establishing multiple-candidate cell banks for quality comparisons. Thus, there is a high demand for a novel method that can predict “low-risk and high-potency clones” early and in a feasible manner given the excessive cost and effort required to maintain such an establishment. Methods LNGFR and Thy-1 co-positive cells from BMMCs were single-cell-sorted into 96-well plates, and only fast-growing clones that reached confluency in 2 weeks were picked up and passaged as RECs. Fifteen RECs were prepared as passage 3 (P3) cryostock as the primary cell bank. From this cryostock, RECs were passaged until their proliferation limitation; their serial-passage limitation numbers were labeled as serial-passage potencies. At the P1 stage, phase-contrast microscopic images were obtained over 6–90 h to identify time-course changes of 24 morphological descriptors describing cell population information. Machine learning models were constructed using the morphological descriptors for predicting serial-passage potencies. The time window and field-of-view-number effects were evaluated to identify the most efficient image data usage condition for realizing high-performance serial-passage potency models. Results Serial-passage test results indicated variations of 7–13-repeated serial-passage potencies within RECs. Such potency values were predicted quantitatively with high performance (RMSE < 1.0) from P1 morphological profiles using a LASSO model. The earliest and minimum effort predictions require 6–30 h with 40 FOVs and 6–90 h with 15 FOVs, respectively. Conclusion We successfully developed a noninvasive morphology-based machine learning model to enhance the efficiency of establishing cell banks with single-cell-derived RECs for quantitatively predicting the future serial-passage potencies of clones. Conventional methods that can make noninvasive and quantitative predictions without wasting precious cells in the early stage are lacking; the proposed method will provide a more efficient and robust cell bank establishment process for allogenic therapeutic product manufacturing. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00214-w.
Collapse
Affiliation(s)
- Takashi Suyama
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.,PuREC Co. Ltd, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Yuto Takemoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Hiromi Miyauchi
- PuREC Co. Ltd, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Yuko Kato
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.,PuREC Co. Ltd, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Yumi Matsuzaki
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan. .,PuREC Co. Ltd, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan. .,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
14
|
MacDonald KN, Hall MG, Ivison S, Gandhi S, Klein Geltink RI, Piret JM, Levings MK. Consequences of adjusting cell density and feed frequency on serum-free expansion of thymic regulatory T cells. Cytotherapy 2022; 24:1121-1135. [PMID: 36008207 DOI: 10.1016/j.jcyt.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Given the promising results from phase 1/2 clinical trials of therapy involving regulatory T cells (Tregs), it is critical to develop Treg manufacturing methods that use well-defined reagents. METHODS Seeking to maximize expansion of human thymic Tregs activated with anti-CD3/CD28 antibody-coated beads and cultured in serum-free medium, the authors investigated the effect of adjusting process parameters including cell density and cell concentration, and feeding strategy on Treg yield and quality. RESULTS The authors found that levels of expansion and viability varied with cell density on the day of restimulation. Tregs restimulated at low cell densities (1 × 105 cells/cm2) initially had high growth rates, viability and FOXP3 expression, but these parameters decreased with time and were less stable than those observed in cultures of Tregs restimulated at high cell densities (5 × 105 cells/cm2), which had slower growth rates. High-density expansion was associated with expression of inhibitory molecules and lower intracellular oxygen and extracellular nutrient concentrations as well as extracellular lactate accumulation. Experiments to test the effect of low oxygen revealed that transient exposure to low oxygen levels had little impact on expansion, viability or phenotype. Similarly, blockade of inhibitory molecules had little effect. By contrast, replenishing nutrients by increasing the feeding frequency between 2 days and 4 days after restimulation increased FOXP3, viability and expansion in high-density cultures. CONCLUSION These data show the previously undescribed consequences of adjusting cell density on Treg expansion and establish a Good Manufacturing Practice-relevant protocol using non-cell-based activation reagents and serum-free media that supports sustained expansion without loss of viability or phenotype.
Collapse
Affiliation(s)
- Katherine N MacDonald
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Michael G Hall
- British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Sabine Ivison
- British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Sanjiv Gandhi
- British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Ramon I Klein Geltink
- British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, Canada
| | - James M Piret
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, Canada; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Megan K Levings
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
15
|
Imai Y, Kanie K, Kato R. Morphological heterogeneity description enabled early and parallel non-invasive prediction of T-cell proliferation inhibitory potency and growth rate for facilitating donor selection of human mesenchymal stem cells. Inflamm Regen 2022; 42:8. [PMID: 35093181 PMCID: PMC8801074 DOI: 10.1186/s41232-021-00192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Within the extensively developed therapeutic application of mesenchymal stem cells (MSCs), allogenic immunomodulatory therapy is among the promising categories. Although donor selection is a critical early process that can maximize the production yield, determining the promising candidate is challenging owing to the lack of effective biomarkers and variations of cell sources. In this study, we developed the morphology-based non-invasive prediction models for two quality attributes, the T-cell proliferation inhibitory potency and growth rate. Methods Eleven lots of mixing bone marrow-derived and adipose-derived MSCs were analyzed. Their morphological profiles and growth rates were quantified by image processing by acquiring 6 h interval time-course phase-contrast microscopic image acquisition. T-cell proliferation inhibitory potency was measured by employing flow cytometry for counting the proliferation rate of peripheral blood mononuclear cells (PBMCs) co-cultured with MSCs. Subsequently, the morphological profile comprising 32 parameters describing the time-course transition of cell population distribution was used for explanatory parameters to construct T-cell proliferation inhibitory potency classification and growth rate prediction models. For constructing prediction models, the effect of machine learning methods, parameter types, and time-course window size of morphological profiles were examined to identify those providing the best performance. Results Unsupervised morphology-based visualization enabled the identification of anomaly lots lacking T-cell proliferation inhibitory potencies. The best performing machine learning models exhibited high performances of predictions (accuracy > 0.95 for classifying risky lots, and RMSE < 1.50 for predicting growth rate) using only the first 4 days of morphological profiles. A comparison of morphological parameter types showed that the accumulated time-course information of morphological heterogeneity in cell populations is important for predicting the potencies. Conclusions To enable more consistent cell manufacturing of allogenic MSC-based therapeutic products, this study indicated that early non-invasive morphology-based prediction can facilitate the lot selection process for effective cell bank establishment. It was also found that morphological heterogeneity description is important for such potency prediction. Furthermore, performances of the morphology-based prediction models trained with data consisting of origin-different MSCs demonstrated the effectiveness of sharing morphological data between different types of MSCs, thereby complementing the data limitation issue in the morphology-based quality prediction concept. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-021-00192-5.
Collapse
|
16
|
Odeh‐Couvertier VY, Dwarshuis NJ, Colonna MB, Levine BL, Edison AS, Kotanchek T, Roy K, Torres‐Garcia W. Predicting T‐cell quality during manufacturing through an artificial intelligence‐based integrative multiomics analytical platform. Bioeng Transl Med 2022; 7:e10282. [PMID: 35600660 PMCID: PMC9115702 DOI: 10.1002/btm2.10282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022] Open
Abstract
Large‐scale, reproducible manufacturing of therapeutic cells with consistently high quality is vital for translation to clinically effective and widely accessible cell therapies. However, the biological and logistical complexity of manufacturing a living product, including challenges associated with their inherent variability and uncertainties of process parameters, currently make it difficult to achieve predictable cell‐product quality. Using a degradable microscaffold‐based T‐cell process, we developed an artificial intelligence (AI)‐driven experimental‐computational platform to identify a set of critical process parameters and critical quality attributes from heterogeneous, high‐dimensional, time‐dependent multiomics data, measurable during early stages of manufacturing and predictive of end‐of‐manufacturing product quality. Sequential, design‐of‐experiment‐based studies, coupled with an agnostic machine‐learning framework, were used to extract feature combinations from early in‐culture media assessment that were highly predictive of the end‐product CD4/CD8 ratio and total live CD4+ and CD8+ naïve and central memory T cells (CD63L+CCR7+). Our results demonstrate a broadly applicable platform tool to predict end‐product quality and composition from early time point in‐process measurements during therapeutic cell manufacturing.
Collapse
Affiliation(s)
| | - Nathan J. Dwarshuis
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta Georgia USA
| | - Maxwell B. Colonna
- Departments of Genetics and Biochemistry & Molecular Biology, Complex Carbohydrate Research Center University of Georgia Athens Georgia USA
| | - Bruce L. Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Arthur S. Edison
- Departments of Genetics and Biochemistry & Molecular Biology, Complex Carbohydrate Research Center University of Georgia Athens Georgia USA
| | | | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta Georgia USA
| | - Wandaliz Torres‐Garcia
- Department of Industrial Engineering University of Puerto Rico Mayagüez Mayagüez Puerto Rico USA
| |
Collapse
|
17
|
Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev 2021; 179:114003. [PMID: 34653533 DOI: 10.1016/j.addr.2021.114003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is shaped by dynamic metabolic and immune interactions between precancerous and cancerous tumor cells and stromal cells like epithelial cells, fibroblasts, endothelial cells, and hematopoietically-derived immune cells. The metabolic states of the TME, including the hypoxic and acidic niches, influence the immunosuppressive phenotypes of the stromal and immune cells, which confers resistance to both host-mediated tumor killing and therapeutics. Numerous in vitro TME platforms for studying immunotherapies, including cell therapies, are being developed. However, we do not yet understand which immune and stromal components are most critical and how much model complexity is needed to answer specific questions. In addition, scalable sourcing and quality-control of appropriate TME cells for reproducibly manufacturing these platforms remain challenging. In this regard, lessons from the manufacturing of immunomodulatory cell therapies could provide helpful guidance. Although immune cell therapies have shown unprecedented results in hematological cancers and hold promise in solid tumors, their manufacture poses significant scale, cost, and quality control challenges. This review first provides an overview of the in vivo TME, discussing the most influential cell populations in the tumor-immune landscape. Next, we summarize current approaches for cell therapies against cancers and the relevant manufacturing platforms. We then evaluate current immune-tumor models of the TME and immunotherapies, highlighting the complexity, architecture, function, and cell sources. Finally, we present the technical and fundamental knowledge gaps in both cell manufacturing systems and immune-TME models that must be addressed to elucidate the interactions between endogenous tumor immunity and exogenous engineered immunity.
Collapse
|
18
|
Sevenler D, Bean H, Toner M, Sandlin RD. Slow-delivery and distributed exchange of cryoprotective agents with hydrogel beads. Cryobiology 2021; 103:150-152. [PMID: 34560067 DOI: 10.1016/j.cryobiol.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Intracellular loading of cryoprotective agents (CPAs) into target cells is a critical step for cryopreservation. However, biological membranes are usually much less permeable to CPAs than to water, resulting in high osmotic pressures and osmotic damage during the CPA loading and unloading phases of cryopreservation. Here, we show that calcium alginate hydrogel beads several millimeters in diamater containing CPAs can be admixed with a cell suspension to spontaneously release CPAs in a gradual and distributed manner. We demonstrate that beads containing cell media enable the gradual removal of CPA from Jurkat cells equilibrated in a typical cryopreservation solution of 15% glycerol, protecting the cells from hypotonic damage. We show that the dynamics of CPA exchange are accurately described by a numerical model of free diffusion within the gel. This approach may enable semiautomated and closed methods of gradual CPA exchange from large volume cell suspensions.
Collapse
Affiliation(s)
- Derin Sevenler
- Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Hailey Bean
- Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Rebecca D Sandlin
- Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Zhao L, Liu P, Xie W, Zhang S, Thieme S, Zitvogel L, Kroemer G, Kepp O. A genotype-phenotype screening system using conditionally immortalized immature dendritic cells. STAR Protoc 2021; 2:100732. [PMID: 34430908 PMCID: PMC8365513 DOI: 10.1016/j.xpro.2021.100732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Here, we describe a protocol for CRISPR/Cas9-mediated gene knockout in conditionally immortalized immature dendritic cells (DCs), which can be limitlessly expanded before differentiation. This facilitates the genetic screening of DC functions in vitro including assessment of phagocytosis, cytokine production, expression of co-stimulatory or co-inhibitory molecules, and antigen presentation, as well as evaluation of the capacity to elicit anticancer immune responses in vivo. Altogether, these approaches described in this protocol allow investigators to link the genotype of DCs to their phenotype. For complete details on the use and execution of this protocol, please refer to Le Naour et al. (2020). Conditionally immortalized immature dendritic cells (DCs) can be expanded without limits A CRISPR/Cas9 system allows for genetic screening of DC functions Different DC functions are assessed in vitro DC genotype-dependent anticancer immunity can be determined in mice
Collapse
Affiliation(s)
- Liwei Zhao
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Peng Liu
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Corresponding author
| | - Wei Xie
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Université Paris Sud, Paris Saclay, Faculty of Medicine, Kremlin Bicêtre, France
| | - Shuai Zhang
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Université Paris Sud, Paris Saclay, Faculty of Medicine, Kremlin Bicêtre, France
| | - Sebastian Thieme
- Department of Pediatrics, University Clinic ‘Carl Gustav Carus’ Dresden, Dresden, Germany
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale, U1015, Gustave Roussy, Villejuif, France
- Center of clinical investigations BIOTHERIS, Gustave Roussy, Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Corresponding author
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Corresponding author
| |
Collapse
|
20
|
Garcia-Aponte OF, Herwig C, Kozma B. Lymphocyte expansion in bioreactors: upgrading adoptive cell therapy. J Biol Eng 2021; 15:13. [PMID: 33849630 PMCID: PMC8042697 DOI: 10.1186/s13036-021-00264-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
Bioreactors are essential tools for the development of efficient and high-quality cell therapy products. However, their application is far from full potential, holding several challenges when reconciling the complex biology of the cells to be expanded with the need for a manufacturing process that is able to control cell growth and functionality towards therapy affordability and opportunity. In this review, we discuss and compare current bioreactor technologies by performing a systematic analysis of the published data on automated lymphocyte expansion for adoptive cell therapy. We propose a set of requirements for bioreactor design and identify trends on the applicability of these technologies, highlighting the specific challenges and major advancements for each one of the current approaches of expansion along with the opportunities that lie in process intensification. We conclude on the necessity to develop targeted solutions specially tailored for the specific stimulation, supplementation and micro-environmental needs of lymphocytes’ cultures, and the benefit of applying knowledge-based tools for process control and predictability.
Collapse
Affiliation(s)
- Oscar Fabian Garcia-Aponte
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria
| | - Christoph Herwig
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| | - Bence Kozma
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria
| |
Collapse
|
21
|
Yuan DJ, Shi L, Kam LC. Biphasic response of T cell activation to substrate stiffness. Biomaterials 2021; 273:120797. [PMID: 33878536 DOI: 10.1016/j.biomaterials.2021.120797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
T cell activation is sensitive to the mechanical properties of an activating substrate. However, there are also contrasting results on how substrate stiffness affects T cell activation, including differences between T cells of mouse and human origin. Towards reconciling these differences, this report examines the response of primary human T cells to polyacrylamide gels with stiffness between 5 and 110 kPa presenting activating antibodies to CD3 and CD28. T cell proliferation and IL-2 secretion exhibited a biphasic functional response to substrate stiffness, which can be shifted by changing density of activating antibodies and abrogated by inhibition of cellular contractility. T cell morphology was modulated by stiffness at early time points. RNA-seq indicates that T cells show differing monotonic trends in upregulated genes and pathways towards both ends of the stiffness spectrum. These studies provide a framework of T cell mechanosensing and suggest an effect of ligand density that may reconcile different, contrasting patterns of stiffness sensing seen in previous studies.
Collapse
Affiliation(s)
- Dennis J Yuan
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Lingting Shi
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
22
|
Imboden S, Liu X, Lee BS, Payne MC, Hsieh CJ, Lin NYC. Investigating heterogeneities of live mesenchymal stromal cells using AI-based label-free imaging. Sci Rep 2021; 11:6728. [PMID: 33762607 PMCID: PMC7991643 DOI: 10.1038/s41598-021-85905-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells that have great potential for regenerative medicine, tissue repair, and immunotherapy. Unfortunately, the outcomes of MSC-based research and therapies can be highly inconsistent and difficult to reproduce, largely due to the inherently significant heterogeneity in MSCs, which has not been well investigated. To quantify cell heterogeneity, a standard approach is to measure marker expression on the protein level via immunochemistry assays. Performing such measurements non-invasively and at scale has remained challenging as conventional methods such as flow cytometry and immunofluorescence microscopy typically require cell fixation and laborious sample preparation. Here, we developed an artificial intelligence (AI)-based method that converts transmitted light microscopy images of MSCs into quantitative measurements of protein expression levels. By training a U-Net+ conditional generative adversarial network (cGAN) model that accurately (mean [Formula: see text] = 0.77) predicts expression of 8 MSC-specific markers, we showed that expression of surface markers provides a heterogeneity characterization that is complementary to conventional cell-level morphological analyses. Using this label-free imaging method, we also observed a multi-marker temporal-spatial fluctuation of protein distributions in live MSCs. These demonstrations suggest that our AI-based microscopy can be utilized to perform quantitative, non-invasive, single-cell, and multi-marker characterizations of heterogeneous live MSC culture. Our method provides a foundational step toward the instant integrative assessment of MSC properties, which is critical for high-throughput screening and quality control in cellular therapies.
Collapse
Affiliation(s)
- Sara Imboden
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 90095, USA.
| | - Xuanqing Liu
- Department of Computer Science, University of California, Los Angeles, 90095, USA
| | - Brandon S Lee
- Department of Bioengineering, University of California, Los Angeles, 90095, USA
| | - Marie C Payne
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 90095, USA
| | - Cho-Jui Hsieh
- Department of Computer Science, University of California, Los Angeles, 90095, USA
| | - Neil Y C Lin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 90095, USA.,Department of Bioengineering, University of California, Los Angeles, 90095, USA.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 90095, USA
| |
Collapse
|
23
|
Evaluation of Production Protocols for the Generation of NY-ESO-1-Specific T Cells. Cells 2021; 10:cells10010152. [PMID: 33466646 PMCID: PMC7828728 DOI: 10.3390/cells10010152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
NY-ESO-1-specific T cells have shown promising activity in the treatment of soft tissue sarcoma (STS). However, standardized protocols for their generation are limited. Particularly, cost-effectiveness considerations of cell production protocols are of importance for conducting clinical studies. In this study, two different NY-ESO-1-specific T cell production protocols were compared. Major differences between protocols 1 and 2 include culture medium, interleukin-2 and retronectin concentrations, T cell activation strategy, and the transduction process. NY-ESO-1-specific T cells generated according to the two protocols were investigated for differences in cell viability, transduction efficiency, T cell expansion, immunophenotype as well as functionality. NY-ESO-1-specific T cells showed similar viability and transduction efficiency between both protocols. Protocol 1 generated higher absolute numbers of NY-ESO-1-specific T cells. However, there was no difference in absolute numbers of NY-ESO-1-specific T cell subsets with less-differentiated phenotypes accounting for efficient in vivo expansion and engraftment. Furthermore, cells generated according to protocol 1 displayed higher capacity of TNF-α generation, but lower cytotoxic capacities. Overall, both protocols provided functional NY-ESO-1-specific T cells. However, compared to protocol 1, protocol 2 is advantageous in terms of cost-effectiveness. Cell production protocols should be designed diligently to achieve a cost-effective cellular product for further clinical evaluation.
Collapse
|
24
|
Saw WS, Anasamy T, Foo YY, Kwa YC, Kue CS, Yeong CH, Kiew LV, Lee HB, Chung LY. Delivery of Nanoconstructs in Cancer Therapy: Challenges and Therapeutic Opportunities. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000206] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen Shang Saw
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Theebaa Anasamy
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Yiing Yee Foo
- Department of Pharmacology Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
| | - Yee Chu Kwa
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Chin Siang Kue
- Department of Diagnostic and Allied Health Sciences Faculty of Health and Life Sciences Management and Science University Shah Alam Selangor 40100 Malaysia
| | - Chai Hong Yeong
- School of Medicine Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor 47500 Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
| | - Hong Boon Lee
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
- School of Biosciences Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor 47500 Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
25
|
Chin MH, Gentleman E, Coppens MO, Day RM. Rethinking Cancer Immunotherapy by Embracing and Engineering Complexity. Trends Biotechnol 2020; 38:1054-1065. [DOI: 10.1016/j.tibtech.2020.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 12/23/2022]
|
26
|
Gaissmaier L, Elshiaty M, Christopoulos P. Breaking Bottlenecks for the TCR Therapy of Cancer. Cells 2020; 9:E2095. [PMID: 32937956 PMCID: PMC7564186 DOI: 10.3390/cells9092095] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors have redefined the treatment of cancer, but their efficacy depends critically on the presence of sufficient tumor-specific lymphocytes, and cellular immunotherapies develop rapidly to fill this gap. The paucity of suitable extracellular and tumor-associated antigens in solid cancers necessitates the use of neoantigen-directed T-cell-receptor (TCR)-engineered cells, while prevention of tumor evasion requires combined targeting of multiple neoepitopes. These can be currently identified within 2 weeks by combining cutting-edge next-generation sequencing with bioinformatic pipelines and used to select tumor-reactive TCRs in a high-throughput manner for expeditious scalable non-viral gene editing of autologous or allogeneic lymphocytes. "Young" cells with a naive, memory stem or central memory phenotype can be additionally armored with "next-generation" features against exhaustion and the immunosuppressive tumor microenvironment, where they wander after reinfusion to attack heavily pretreated and hitherto hopeless neoplasms. Facilitated by major technological breakthroughs in critical manufacturing steps, based on a solid preclinical rationale, and backed by rapidly accumulating evidence, TCR therapies break one bottleneck after the other and hold the promise to become the next immuno-oncological revolution.
Collapse
Affiliation(s)
- Lena Gaissmaier
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Mariam Elshiaty
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Balistreri CR, De Falco E, Bordin A, Maslova O, Koliada A, Vaiserman A. Stem cell therapy: old challenges and new solutions. Mol Biol Rep 2020; 47:3117-3131. [PMID: 32128709 DOI: 10.1007/s11033-020-05353-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Stem cell therapy (SCT), born as therapeutic revolution to replace pharmacological treatments, remains a hope and not yet an effective solution. Accordingly, stem cells cannot be conceivable as a "canonical" drug, because of their unique biological properties. A new reorientation in this field is emerging, based on a better understanding of stem cell biology and use of cutting-edge technologies and innovative disciplines. This will permit to solve the gaps, failures, and long-term needs, such as the retention, survival and integration of stem cells, by employing pharmacology, genetic manipulation, biological or material incorporation. Consequently, the clinical applicability of SCT for chronic human diseases will be extended, as well as its effectiveness and success, leading to long-awaited medical revolution. Here, some of these aspects are summarized, reviewing and discussing recent advances in this rapidly developing research field.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Antonella Bordin
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Olga Maslova
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
28
|
Sun W, Starly B, Daly AC, Burdick JA, Groll J, Skeldon G, Shu W, Sakai Y, Shinohara M, Nishikawa M, Jang J, Cho DW, Nie M, Takeuchi S, Ostrovidov S, Khademhosseini A, Kamm RD, Mironov V, Moroni L, Ozbolat IT. The bioprinting roadmap. Biofabrication 2020; 12:022002. [DOI: 10.1088/1758-5090/ab5158] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
George R, Ma A, Motyka B, Shi YE, Liu Q, Griebel P. A dendritic cell-targeted chimeric hepatitis B virus immunotherapeutic vaccine induces both cellular and humoral immune responses in vivo. Hum Vaccin Immunother 2019; 16:779-792. [PMID: 31687875 PMCID: PMC7227651 DOI: 10.1080/21645515.2019.1689081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chimigen® HBV Immunotherapeutic Vaccine (C-HBV), a recombinant chimeric fusion protein comprising hepatitis B virus (HBV) S1 and S2 surface antigen fragments, Core antigen and a murine monoclonal antibody heavy chain fragment (Fc), was designed and produced in Sf9 insect cells. C-HBV targets the host immune system through specific receptors present on dendritic cells (DCs) which facilitates antigen internalization, processing, and presentation on MHC class I and II to induce both cellular and humoral immune responses against HBV antigens. T cell responses, previously assessed by ex vivo antigen presentation assays using human peripheral blood mononuclear cell (PBMC)-derived DCs and T cells from uninfected and HBV chronic-infected donors, demonstrated that C-HBV was highly immunogenic. A vaccine dose response study was performed in sheep to analyze the immunogenicity of C-HBV in vivo. Sheep (n = 8/group) received three consecutive subcutaneous injections of each dose of C-HBV at four-week intervals. Analysis of serum antibody levels confirmed C-HBV induced a dose-dependent antibody response to C-HBV and S1/S2-Core. Kinetics of the S1/S2-Core specific antibody response was similar to hepatitis B surface antigen (HBsAg)-specific antibody responses induced by ENGERIX-B. Analysis of cell-mediated immune responses (CMI) confirmed C-HBV induced both dose-dependent S1/S2-Core-specific lymphocyte proliferative responses and IFN-γ secretion. These responses were stronger with blood lymphocytes than with cells isolated from the lymph node draining the vaccination site. No correlation was seen between antibody titers and CMI. The results confirm C-HBV is an effective delivery vehicle for the induction of T cell responses and may be an appropriate candidate for immunotherapy for chronic HBV infections.
Collapse
Affiliation(s)
| | - Allan Ma
- Akshaya Bio Inc., Edmonton, Alberta, Canada
| | - Bruce Motyka
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Yuenian Eric Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Liu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Philip Griebel
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
30
|
Expansion processes for cell-based therapies. Biotechnol Adv 2019; 37:107455. [PMID: 31629791 DOI: 10.1016/j.biotechadv.2019.107455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/08/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Living cells are emerging as therapeutic entities for the treatment of patients affected with severe and chronic diseases where no conventional drug can provide a definitive cure. At the same time, the promise of cell-based therapies comes with several biological, regulatory, economic, logistical, safety and engineering challenges that need to be addressed before translating into clinical practice. Among the complex operations required for their manufacturing, cell expansion occupies a significant part of the entire process and largely determines the number, the phenotype and several other critical quality attributes of the final cell therapy products (CTPs). This review aims at characterizing the main culture systems and expansion processes used for CTP production, highlighting the need to implement scalable, cost-efficient technologies together with process optimization strategies to bridge the gap between basic scientific research and commercially available therapies.
Collapse
|
31
|
Xu X, Li T, Shen S, Wang J, Abdou P, Gu Z, Mo R. Advances in Engineering Cells for Cancer Immunotherapy. Am J Cancer Res 2019; 9:7889-7905. [PMID: 31695806 PMCID: PMC6831467 DOI: 10.7150/thno.38583] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy aims to utilize the host immune system to kill cancer cells. Recent representative immunotherapies include T-cell transfer therapies, such as chimeric antigen receptor T cell therapy, antibody-based immunomodulator therapies, such as immune checkpoint blockade therapy, and cytokine therapies. Recently developed therapies leveraging engineered cells for immunotherapy against cancers have been reported to enhance antitumor efficacy while reducing side effects. Such therapies range from biologically, chemically and physically -engineered cells to bioinspired and biomimetic nanomedicines. In this review, advances of engineering cells for cancer immunotherapy are summarized, and prospects of this field are discussed.
Collapse
|
32
|
Yan H, Shao D, Lao Y, Li M, Hu H, Leong KW. Engineering Cell Membrane-Based Nanotherapeutics to Target Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900605. [PMID: 31406672 PMCID: PMC6685500 DOI: 10.1002/advs.201900605] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/28/2019] [Indexed: 05/10/2023]
Abstract
Inflammation is ubiquitous in the body, triggering desirable immune response to defend against dangerous signals or instigating undesirable damage to cells and tissues to cause disease. Nanomedicine holds exciting potential in modulating inflammation. In particular, cell membranes derived from cells involved in the inflammatory process may be used to coat nanotherapeutics for effective targeted delivery to inflammatory tissues. Herein, the recent progress of rationally engineering cell membrane-based nanotherapeutics for inflammation therapy is highlighted, and the challenges and opportunities presented in realizing the full potential of cell-membrane coating in targeting and manipulating the inflammatory microenvironment are discussed.
Collapse
Affiliation(s)
- Huize Yan
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Dan Shao
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Yeh‐Hsing Lao
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Mingqiang Li
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Guangdong Provincial Key Laboratory of Liver DiseaseThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510630China
| | - Hanze Hu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Institutes of Life SciencesSchool of Biomedical Science and Engineering and National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510006China
- Department of System BiologyColumbia University Medical CenterNew YorkNY10032USA
| |
Collapse
|
33
|
Das R, Roosloot R, van Pel M, Schepers K, Driessen M, Fibbe WE, de Bruijn JD, Roelofs H. Preparing for cell culture scale-out: establishing parity of bioreactor- and flask-expanded mesenchymal stromal cell cultures. J Transl Med 2019; 17:241. [PMID: 31340829 PMCID: PMC6657181 DOI: 10.1186/s12967-019-1989-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background Cell-based therapies have the potential to become treatment options for many diseases, but efficient scale-out of these therapies has proven to be a major hurdle. Bioreactors can be used to overcome this hurdle, but changing the culture method can introduce unwanted changes to the cell product. Therefore, it is important to establish parity between products generated using traditional methods versus those generated using a bioreactor. Methods Mesenchymal stromal cells (MSCs) are cultured in parallel using either traditional culture flasks, spinner vessels or a new bioreactor system. To investigate parity between the cells obtained from different methods, harvested cells are compared in terms of yield, phenotype and functionality. Results Bioreactor-based expansion yielded high cell numbers (222–510 million cells). Highest cell expansion was observed upon culture in flasks [average 5.0 population doublings (PDL)], followed by bioreactor (4.0 PDL) and spinner flasks (3.3 PDL). Flow cytometry confirmed MSC identity (CD73+, CD90+ and CD105+) and lack of contaminating hematopoietic cell populations. Cultured MSCs did not display genetic aberrations and no difference in differentiation and immunomodulatory capacity was observed between culture conditions. The response to IFNγ stimulation was similar for cells obtained from all culture conditions, as was the capacity to inhibit T cell proliferation. Conclusions The new bioreactor technology can be used to culture large amounts of cells with characteristics equivalent to those cultured using traditional, flask based, methods. Electronic supplementary material The online version of this article (10.1186/s12967-019-1989-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruud Das
- Scinus Cell Expansion BV, Professor Bronkhorstlaan 10, Building 48, 3723 MB, Bilthoven, The Netherlands.
| | - Rens Roosloot
- Scinus Cell Expansion BV, Professor Bronkhorstlaan 10, Building 48, 3723 MB, Bilthoven, The Netherlands
| | - Melissa van Pel
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Koen Schepers
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Marijn Driessen
- Scinus Cell Expansion BV, Professor Bronkhorstlaan 10, Building 48, 3723 MB, Bilthoven, The Netherlands
| | - Willem E Fibbe
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Joost Dick de Bruijn
- Scinus Cell Expansion BV, Professor Bronkhorstlaan 10, Building 48, 3723 MB, Bilthoven, The Netherlands.,Twente University, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.,Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Helene Roelofs
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Mesenchymal stromal cells (MSC) have emerged as one of the most promising candidates for immunomodulatory cell therapy in kidney transplantation. Here we describe novel insights into the MSC mechanism of action and provide an overview of initial safety and feasibility studies with MSC in kidney transplantation. RECENT FINDINGS Clinical studies of MSC-based cell therapy in kidney transplant recipients demonstrated the safety and feasibility of cell therapy and provide the first encouraging evidence of the efficacy of MSC in enabling the minimization of immunosuppressive drugs. In our initial experience with MSC-based therapy in kidney transplant recipients we carried out extensive clinical and immunological monitoring of MSC-treated patients and found possible biomarkers of MSC immunomodulation in some of them. Based on these biomarkers we identified a patient in whom complete discontinuation of immunosuppression has been achieved safely and successfully. SUMMARY Many issues should be addressed before MSC-based therapy becomes a standard treatment protocol for kidney transplantation. A better understanding of the MSC mechanism of action and the identification of biomarkers of response to therapy will inform the rational design of the most effective clinical protocol and the selection of patients amenable to safe immunosuppressive drug withdrawal.
Collapse
|
35
|
Seoane‐Vazquez E, Shukla V, Rodriguez‐Monguio R. Innovation and competition in advanced therapy medicinal products. EMBO Mol Med 2019; 11:e9992. [PMID: 30770338 PMCID: PMC6404110 DOI: 10.15252/emmm.201809992] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Advanced therapy medicinal products (ATMP s), including gene therapy, cell therapy and tissue engineering products, represent a paradigm shift in health care, but they are expensive. E. Seoane‐Vazquez, V. Shukla and R. Rodriguez‐Monguio discuss ATMP s prospects for the generics market.
Collapse
Affiliation(s)
| | | | - Rosa Rodriguez‐Monguio
- Director of the Medication Outcomes CenterSchool of PharmacyUniversity of CaliforniaSan FranciscoCAUSA
| |
Collapse
|
36
|
Lee JB, Kang H, Fang L, D'Souza C, Adeyi O, Zhang L. Developing Allogeneic Double-Negative T Cells as a Novel Off-the-Shelf Adoptive Cellular Therapy for Cancer. Clin Cancer Res 2019; 25:2241-2253. [DOI: 10.1158/1078-0432.ccr-18-2291] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 11/16/2022]
|
37
|
Qiu Q, Wen Y, Dong H, Shen A, Zheng X, Li Y, Feng F. A highly sensitive living probe derived from nanoparticle-remodeled neutrophils for precision tumor imaging diagnosis. Biomater Sci 2019; 7:5211-5220. [PMID: 31593202 DOI: 10.1039/c9bm01083a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Thiol activated, imaging agents loaded BSA nanoparticles were remodeled onto thiol-containing neutrophil surface through disulfide–thiol exchange for potential diagnosis applications.
Collapse
Affiliation(s)
- Qiansai Qiu
- Department of Medical Imaging
- Nantong Tumor Hospital
- Nantong University
- Nantong 226361
- China
| | - Ya Wen
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO)
- Tongji University School of Medicine
- Shanghai 200092
- China
| | - Haiqing Dong
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO)
- Tongji University School of Medicine
- Shanghai 200092
- China
| | - Aijun Shen
- Department of Medical Imaging
- Nantong Tumor Hospital
- Nantong University
- Nantong 226361
- China
| | - Xingxing Zheng
- Department of Medical Imaging
- Nantong Tumor Hospital
- Nantong University
- Nantong 226361
- China
| | - Yongyong Li
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO)
- Tongji University School of Medicine
- Shanghai 200092
- China
| | - Feng Feng
- Department of Medical Imaging
- Nantong Tumor Hospital
- Nantong University
- Nantong 226361
- China
| |
Collapse
|
38
|
Imai Y, Yoshida K, Matsumoto M, Okada M, Kanie K, Shimizu K, Honda H, Kato R. In-process evaluation of culture errors using morphology-based image analysis. Regen Ther 2018; 9:15-23. [PMID: 30525071 PMCID: PMC6222266 DOI: 10.1016/j.reth.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/22/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Advancing industrial-scale manufacture of cells as therapeutic products is an example of the wide applications of regenerative medicine. However, one bottleneck in establishing stable and efficient cell manufacture is quality control. Owing to the lack of effective in-process measurement technology, analyzing the time-consuming and complex cell culture process that essentially determines cellular quality is difficult and only performed by manual microscopic observation. Our group has been applying advanced image-processing and machine-learning modeling techniques to construct prediction models that support quality evaluations during cell culture. In this study, as a model of errors during the cell culture process, intentional errors were compared to the standard culture and analyzed based only on the time-course morphological information of the cells. METHODS Twenty-one lots of human mesenchymal stem cells (MSCs), including both bone-marrow-derived MSCs and adipose-derived MSCs, were cultured under 5 conditions (one standard and 4 types of intentional errors, such as clear failure of handlings and machinery malfunctions). Using time-course microscopic images, cell morphological profiles were quantitatively measured and utilized for visualization and prediction modeling. For visualization, modified principal component analysis (PCA) was used. For prediction modeling, linear regression analysis and the MT method were applied. RESULTS By modified PCA visualization, the differences in cellular lots and culture conditions were illustrated as traits on a morphological transition line plot and found to be effective descriptors for discriminating the deviated samples in a real-time manner. In prediction modeling, both the cell growth rate and error condition discrimination showed high accuracy (>80%), which required only 2 days of culture. Moreover, we demonstrated the applicability of different concepts of machine learning using the MT method, which is effective for manufacture processes that mostly collect standard data but not a large amount of failure data. CONCLUSIONS Morphological information that can be quantitatively acquired during cell culture has great potential as an in-process measurement tool for quality control in cell manufacturing processes.
Collapse
Affiliation(s)
- Yuta Imai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kei Yoshida
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Megumi Matsumoto
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Mai Okada
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kei Kanie
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kazunori Shimizu
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroyuki Honda
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
39
|
Marklein RA, Klinker MW, Drake KA, Polikowsky HG, Lessey-Morillon EC, Bauer SR. Morphological profiling using machine learning reveals emergent subpopulations of interferon-γ-stimulated mesenchymal stromal cells that predict immunosuppression. Cytotherapy 2018; 21:17-31. [PMID: 30503100 DOI: 10.1016/j.jcyt.2018.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although a preponderance of pre-clinical data demonstrates the immunosuppressive potential of mesenchymal stromal cells (MSCs), significant heterogeneity and lack of critical quality attributes (CQAs) based on immunosuppressive capacity likely have contributed to inconsistent clinical outcomes. This heterogeneity exists not only between MSC lots derived from different donors, tissues and manufacturing conditions, but also within a given MSC lot in the form of functional subpopulations. We therefore explored the potential of functionally relevant morphological profiling (FRMP) to identify morphological subpopulations predictive of the immunosuppressive capacity of MSCs derived from multiple donors, manufacturers and passages. METHODS We profiled the single-cell morphological response of MSCs from different donors and passages to the functionally relevant inflammatory cytokine interferon (IFN)-γ. We used the machine learning approach visual stochastic neighbor embedding (viSNE) to identify distinct morphological subpopulations that could predict suppression of activated CD4+ and CD8+ T cells in a multiplexed quantitative assay. RESULTS Multiple IFN-γ-stimulated subpopulations significantly correlated with the ability of MSCs to inhibit CD4+ and CD8+ T-cell activation and served as effective CQAs to predict the immunosuppressive capacity of additional manufactured MSC lots. We further characterized the emergence of morphological heterogeneity following IFN-γ stimulation, which provides a strategy for identifying functional subpopulations for future single-cell characterization and enrichment techniques. DISCUSSION This work provides a generalizable analytical platform for assessing functional heterogeneity based on single-cell morphological responses that could be used to identify novel CQAs and inform cell manufacturing decisions.
Collapse
Affiliation(s)
- Ross A Marklein
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA; School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, USA.
| | - Matthew W Klinker
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | - Elizabeth C Lessey-Morillon
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Steven R Bauer
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
40
|
Mosanya CH, Isaacs JD. Tolerising cellular therapies: what is their promise for autoimmune disease? Ann Rheum Dis 2018; 78:297-310. [PMID: 30389690 PMCID: PMC6390030 DOI: 10.1136/annrheumdis-2018-214024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/22/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022]
Abstract
The current management of autoimmunity involves the administration of immunosuppressive drugs coupled to symptomatic and functional interventions such as anti-inflammatory therapies and hormone replacement. Given the chronic nature of autoimmunity, however, the ideal therapeutic strategy would be to reinduce self-tolerance before significant tissue damage has accrued. Defects in, or defective regulation of, key immune cells such as regulatory T cells have been documented in several types of human autoimmunity. Consequently, it has been suggested that the administration of ex vivo generated, tolerogenic immune cell populations could provide a tractable therapeutic strategy. Several potentially tolerogenic cellular therapies have been developed in recent years; concurrent advances in cell manufacturing technologies promise scalable, affordable interventions if safety and efficacy can be demonstrated. These therapies include mesenchymal stromal cells, tolerogenic dendritic cells and regulatory T cells. Each has advantages and disadvantages, particularly in terms of the requirement for a bespoke versus an ‘off-the-shelf’ treatment but also their suitability in particular clinical scenarios. In this review, we examine the current evidence for these three types of cellular therapy, in the context of a broader discussion around potential development pathway(s) and their likely future role. A brief overview of preclinical data is followed by a comprehensive discussion of human data.
Collapse
Affiliation(s)
- Chijioke H Mosanya
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John D Isaacs
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK .,Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
41
|
DE Wolf C, VAN DE Bovenkamp M, Hoefnagel M. Regulatory perspective on in vitro potency assays for human dendritic cells used in anti-tumor immunotherapy. Cytotherapy 2018; 20:1289-1308. [PMID: 30327247 DOI: 10.1016/j.jcyt.2018.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/25/2018] [Accepted: 07/14/2018] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are key connectors between the innate and adaptive immune system and have an important role in modulating other immune cells. Therefore, their therapeutic application to steer immune responses is considered in various disorders, including cancer. Due to differences in the cell source and manufacturing process, each DC medicinal product is unique. Consequently, release tests to ensure consistent quality need to be product-specific. Although general guidance concerning quality control testing of cell-based therapies is available, cell type-specific regulation is still limited. Especially guidance related to potency testing is needed, because developing an in vitro assay measuring cell properties relevant for in vivo functionality is challenging. In this review, we provide DC-specific guidance for development of in vitro potency assays for characterisation and release. We present a broad overview of in vitro potency assays suggested for DC products to determine their anti-tumor functionality. Several advantages and limitations of these assays are discussed. Also, we provide some points to consider for selection and design of a potency test. The ideal functionality assay for anti-tumor products evaluates the capacity of DCs to stimulate antigen-specific T cells. Because this approach may not be feasible for release, use of surrogate potency markers could be considered, provided that these markers are sufficiently linked to the in vivo DC biological activity and clinical response. Further elucidation of the involvement of specific DC subsets in anti-tumor responses will result in improved manufacturing processes for DC-based products and should be considered during potency assay development.
Collapse
Affiliation(s)
- Charlotte DE Wolf
- Medicines Evaluation Board College ter Beoordeling van Geneesmiddelen-Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands; Department of Infectious Diseases and Immunology, Utrecht University, The Netherlands
| | - Marja VAN DE Bovenkamp
- Medicines Evaluation Board College ter Beoordeling van Geneesmiddelen-Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands
| | - Marcel Hoefnagel
- Medicines Evaluation Board College ter Beoordeling van Geneesmiddelen-Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands.
| |
Collapse
|
42
|
Dhall S, Sathyamoorthy M, Kuang JQ, Hoffman T, Moorman M, Lerch A, Jacob V, Sinclair SM, Danilkovitch A. Properties of viable lyopreserved amnion are equivalent to viable cryopreserved amnion with the convenience of ambient storage. PLoS One 2018; 13:e0204060. [PMID: 30278042 PMCID: PMC6168127 DOI: 10.1371/journal.pone.0204060] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/31/2018] [Indexed: 12/29/2022] Open
Abstract
Human amniotic membrane (AM) has a long history of clinical use for wound treatment. AM serves as a wound protective barrier maintaining proper moisture. AM is anti-inflammatory, anti-microbial and antifibrotic, and supports angiogenesis, granulation tissue formation and wound re-epithelialization. These properties of AM are attributed to its native extracellular matrix, growth factors, and endogenous cells including mesenchymal stem cells. Advances in tissue preservation have helped to overcome the short shelf life of fresh AM and led to the development of AM products for clinical use. Viable cryopreserved amnion (VCAM), which retains all native components of fresh AM, has shown positive outcomes in clinical trials for wound management. However, cryopreservation requires ultra-low temperature storage and shipment that limits widespread use of VCAM. We have developed a lyopreservation technique to allow for ambient storage of living tissues. Here, we compared the structural, molecular, and functional properties of a viable lyopreserved human amniotic membrane (VLAM) with properties of VCAM using in vitro and in vivo wound models. We found that the structure, growth factors, and cell viability of VLAM is similar to that of VCAM and fresh AM. Both, VCAM and VLAM inhibited TNF-α secretion and upregulated VEGF expression in vitro under conditions designed to mimic inflammation and hypoxia in a wound microenvironment, and resulted in wound closure in a diabetic mouse chronic wound model. Taken together, these data demonstrate that VLAM structural and functional properties are equivalent to VCAM but without the constraints of ultra-low temperature storage.
Collapse
Affiliation(s)
- Sandeep Dhall
- Osiris Therapeutics Inc., Columbia, MD, United States of America
- * E-mail:
| | | | - Jin-Qiang Kuang
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Tyler Hoffman
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Matthew Moorman
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Anne Lerch
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Vimal Jacob
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | | | | |
Collapse
|
43
|
Improving CLL Vγ9Vδ2-T-cell fitness for cellular therapy by ex vivo activation and ibrutinib. Blood 2018; 132:2260-2272. [PMID: 30213872 DOI: 10.1182/blood-2017-12-822569] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/01/2018] [Indexed: 12/27/2022] Open
Abstract
The efficacy of autologous (αβ) T-cell-based treatment strategies in chronic lymphocytic leukemia (CLL) has been modest. The Vγ9Vδ2-T cell subset consists of cytotoxic T lymphocytes with potent antilymphoma activity via a major histocompatibility complex-independent mechanism. We studied whether Vγ9Vδ2-T cells can be exploited as autologous effector lymphocytes in CLL. Healthy control Vγ9Vδ2-T cells were activated by and had potent cytolytic activity against CLL cells. However, CLL-derived Vγ9Vδ2-T cells proved dysfunctional with respect to effector cytokine production and degranulation, despite an increased frequency of the effector-type subset. Consequently, cytotoxicity against malignant B cells was hampered. A comparable dysfunctional phenotype was observed in healthy Vγ9Vδ2-T cells after coculture with CLL cells, indicating a leukemia-induced mechanism. Gene-expression profiling implicated alterations in synapse formation as a conceivable contributor to compromised Vγ9Vδ2-T-cell function in CLL patients. Dysfunction of Vγ9Vδ2-T cells was fully reversible upon activation with autologous monocyte-derived dendritic cells (moDCs). moDC activation resulted in efficient expansion and predominantly yielded Vγ9Vδ2-T cells with a memory phenotype. Furthermore, ibrutinib treatment promoted an antitumor T helper 1 (TH1) phenotype in Vγ9Vδ2-T cells, and we demonstrated binding of ibrutinib to IL-2-inducible kinase (ITK) in Vγ9Vδ2-T cells. Taken together, CLL-mediated dysfunction of autologous Vγ9Vδ2-T cells is fully reversible, resulting in potent cytotoxicity toward CLL cells. Our data support the potential use of Vγ9Vδ2-T cells as effector T cells in CLL immunotherapy and favor further exploration of combining Vγ9Vδ2-T-cell-based therapy with ibrutinib.
Collapse
|
44
|
Meng Y, Sun J, Hu T, Ma Y, Du T, Kong C, Zhang G, Yu T, Piao H. Rapid expansion in the WAVE bioreactor of clinical scale cells for tumor immunotherapy. Hum Vaccin Immunother 2018; 14:2516-2526. [PMID: 29847223 DOI: 10.1080/21645515.2018.1480241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell-based immunotherapy using natural killer (NK) cells, cytokine-induced killer (CIK) cells and dendritic cells (DCs) is emerging as a potential novel approach in the auxiliary treatment of a tumor. However, non-standard operation procedure, small-scale cell number, or human error may limit the clinical development of cell-based immunotherapy. To simplify clinical scale NK cells, CIK cells and DCs expansions, we investigated the use of the WAVE bioreactor, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes. We developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant number of cells for our adoptive cell transfer clinical protocols. The high proliferative rate, surface phenotypes, and cytotoxicity of these immune cells, as well as the safety of cultivation were analyzed to illuminate the effect of WAVE bioreactor. The results demonstrated that the benefit of utilizing modern WAVE bioreactors in cancer immunotherapy was simple, safe, and flexible production.
Collapse
Affiliation(s)
- Yiming Meng
- a Central laboratory, Cancer hospital of China medical university , Shenyang , China
| | - Jing Sun
- a Central laboratory, Cancer hospital of China medical university , Shenyang , China
| | - Tingting Hu
- b Department of Blood Bank , Cancer hospital of China medical university , Shenyang , China
| | - Yushu Ma
- a Central laboratory, Cancer hospital of China medical university , Shenyang , China
| | - Tiaozhao Du
- a Central laboratory, Cancer hospital of China medical university , Shenyang , China
| | - Cuicui Kong
- a Central laboratory, Cancer hospital of China medical university , Shenyang , China
| | - Guirong Zhang
- a Central laboratory, Cancer hospital of China medical university , Shenyang , China
| | - Tao Yu
- c Department of Medical Image , Cancer hospital of China medical university , Shenyang , China
| | - Haozhe Piao
- a Central laboratory, Cancer hospital of China medical university , Shenyang , China.,d Department of Neurosurgery , Cancer hospital of China medical university , Shenyang , China
| |
Collapse
|
45
|
Anczurowski M, Hirano N. Two Weeks' Notice from Allogeneic Sources. Clin Cancer Res 2018; 24:5195-5197. [PMID: 29941482 DOI: 10.1158/1078-0432.ccr-18-1552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/13/2018] [Accepted: 06/21/2018] [Indexed: 11/16/2022]
Abstract
A novel pipeline for neoantigen-specific T-cell receptor (TCR) identification has been validated in ovarian cancer, making use of HLA-matched allogeneic healthy donor T cells. This workflow allows for the identification of tumor-specific TCRs 2 weeks after antigen-specific stimulation and eliminates problematic patient-to-patient variation in the selection of neoantigen-specific TCRs. Clin Cancer Res; 24(21); 5195-7. ©2018 AACR See related article by Matsuda et al., p. 5357.
Collapse
Affiliation(s)
- Mark Anczurowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Naoto Hirano
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada. .,Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
46
|
|
47
|
Jecker NS, Wightman AG, Rosenberg AR, Diekema DS. Ethical Guidance for Selecting Clinical Trials to Receive Limited Space in an Immunotherapy Production Facility. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2018; 18:58-67. [PMID: 29621473 DOI: 10.1080/15265161.2018.1444817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Our aims are to (1) set forth a multiprinciple system for selecting among clinical trials competing for limited space in an immunotherapy production facility that supplies products under investigation by scientific investigators; (2) defend this system by appealing to justice principles; and (3) illustrate our proposal by showing how it might be implemented. Our overarching aim is to assist manufacturers of immunotherapeutic products and other potentially breakthrough experimental therapies with the ethical task of prioritizing requests from scientific investigators when production capacity is limited.
Collapse
|
48
|
de Wolf C, van de Bovenkamp M, Hoefnagel M. Regulatory perspective on in vitro potency assays for human T cells used in anti-tumor immunotherapy. Cytotherapy 2018; 20:601-622. [PMID: 29598903 DOI: 10.1016/j.jcyt.2018.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 02/06/2023]
Abstract
The adaptive immune system is known to play an important role in anti-neoplastic responses via induction of several effector pathways, resulting in tumor cell death. Because of their ability to specifically recognize and kill tumor cells, the potential use of autologous tumor-derived and genetically engineered T cells as adoptive immunotherapy for cancer is currently being explored. Because of the variety of potential T cell-based medicinal products at the level of starting material and manufacturing process, product-specific functionality assays are needed to ensure quality for individual products. In this review, we provide an overview of in vitro potency assays suggested for characterization and release of different T cell-based anti-tumor products. We discuss functional assays, as presented in scientific advices and literature, highlighting specific advantages and limitations of the various assays. Because the anticipated in vivo mechanism of action for anti-tumor T cells involves tumor recognition and cell death, in vitro potency assays based on the cytotoxic potential of antigen-specific T cells are most evident. However, assays based on other T cell properties may be appropriate as surrogates for cytotoxicity. For all proposed assays, biological relevance of the tests and correlation of the read-outs with in vivo functionality need to be substantiated with sufficient product-specific (non-)clinical data. Moreover, further unraveling the complex interaction of immune cells with and within the tumor environment is expected to lead to further improvement of the T cell-based products. Consequently, increased knowledge will allow further optimized guidance for potency assay development.
Collapse
Affiliation(s)
- Charlotte de Wolf
- Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands; Department of Infectious Diseases and Immunology, Utrecht University, The Netherlands
| | | | | |
Collapse
|
49
|
Huang Y, Gao X, Chen J. Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharm Sin B 2018; 8:4-13. [PMID: 29872618 PMCID: PMC5985693 DOI: 10.1016/j.apsb.2017.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/01/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022] Open
Abstract
Precise drug delivery to tumors with low system toxicity is one of the most important and challenging tasks for pharmaceutical researchers. Despite progress in the field of nanotherapeutics, the use of artificially synthesized nanocarriers still faces several challenges, including rapid clearance from blood circulation and limited capability of overcoming multiple physiological barriers, which hamper the clinical application of nanoparticle-based therapies. Since leukocytes (including monocytes/macrophages, neutrophils, dendritic cells and lymphocytes) target tumors and can migrate across physiological barriers, leukocytes are increasing utilized as carriers to transfer nanoparticles to tumors. In this review we specifically focus on the molecular and cellular mechanisms of leukocytes that can be exploited as a vehicle to deliver nanoparticles to tumors and summarize the latest research on how leukocytes can be harnessed to improve therapeutic end-points. We also discuss the challenges and opportunities of this leukocyte-derived nanoparticle drug delivery system.
Collapse
|
50
|
Fournier C, Martin F, Zitvogel L, Kroemer G, Galluzzi L, Apetoh L. Trial Watch: Adoptively transferred cells for anticancer immunotherapy. Oncoimmunology 2017; 6:e1363139. [PMID: 29147628 DOI: 10.1080/2162402x.2017.1363139] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/29/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Immunotherapies aimed at strengthening immune effector responses against malignant cells are growing at exponential rates. Alongside, the impressive benefits obtained by patients with advanced melanoma who received adoptively transferred tumor-infiltrating lymphocytes (TILs) have encouraged the scientific community to pursue adoptive cell transfer (ACT)-based immunotherapy. ACT involves autologous or allogenic effector lymphocytes that are generally obtained from the peripheral blood or resected tumors, expanded and activated ex vivo, and administered to lymphodepleted patients. ACT may be optionally associated with chemo- and/or immunotherapeutics, with the overall aim of enhancing the proliferation, persistence and functionality of infused cells, as well as to ensure their evolution in an immunological permissive local and systemic microenvironment. In addition, isolated lymphocytes can be genetically engineered to endow them with the ability to target a specific tumor-associated antigen (TAA), to increase their lifespan, and/or to reduce their potential toxicity. The infusion of chimeric antigen receptor (CAR)-expressing cytotoxic T lymphocytes redirected against CD19 has shown promising clinical efficacy in patients with B-cell malignancies. Accordingly, the US Food and Drug Administration (FDA) has recently granted 'breakthrough therapy' designation to a CAR-based T-cell therapy (CTL019) for patients with B-cell malignancies. Considerable efforts are now being devoted to the development of efficient ACT-based immunotherapies for non-hematological neoplasms. In this Trial Watch, we summarize recent clinical advances on the use of ACT for oncological indications.
Collapse
Affiliation(s)
- Carole Fournier
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - François Martin
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lionel Apetoh
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| |
Collapse
|