1
|
Fang Z, Zhang S, Wang W, Xu Y, Lu M, Qian Y, Xiao X, Li Y, Tang BZ, Zhang M. Aggregation-induced emission-based phototheranostics to combat bacterial infection at wound sites: A review. Biomaterials 2025; 315:122950. [PMID: 39522351 DOI: 10.1016/j.biomaterials.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The healing of chronic wounds infected by bacteria has attracted increasing global concerns. In the past decades, antibiotics have certainly brought hope to cure bacteria-infected chronic wounds. However, the misuse of antibiotics leads to the emergence of numerous multidrug-resistant bacteria, which aggravate the health threat to clinical patients. To address these increasing challenges, scientists are committed to creating novel non-antibiotic strategies to kill bacteria and promote bacteria-infected chronic wound healing. Fortunately, with the quick development of nanotechnology, the representatives of phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), exhibit promising possibilities in promoting bacteria-infected wound healing. Well-known, photothermal agents and photosensitizers largely determine the effects of PTT and PDT. A common problem for these molecules is the aggregation-induced quenching effect, which highly limits their further applicability in biomedical and clinical fields. Fortunately, the occurrence of aggregation-induced emission luminogens (AIEgens) efficiently overcomes the photobleaching and exhibit advantages, such as strongly aggregated emission, superior photostability, aggregation-enhanced reactive oxygen species (ROS), and heat generation, which makes great sense to the development of PTT and PDT. This article reviews various studies conducted on novel AIEgen-based materials that can mediate potent PDT, PTT, and a combination of PDT and PTT to promote bacteria-infected chronic wound healing.
Collapse
Affiliation(s)
- Zhurun Fang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Shixuan Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Mengmeng Lu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxin Qian
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Xiyan Xiao
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yuanyuan Li
- Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China.
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Wang C, Liu X, Lv W, Kuang X, Wu F, Fan X, Pang Y. Long-lasting comfort ocular surface drug delivery by in situ formation of an adhesive lubricative Janus nanocoating. SCIENCE ADVANCES 2025; 11:eads0282. [PMID: 40053587 PMCID: PMC11887845 DOI: 10.1126/sciadv.ads0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
Topical drug delivery on ocular surface always suffers from frequent administration and low bioavailability due to short drug residence. Despite advances of different adhesive ophthalmic drugs in extending release, cornea and eyelid nonselective adhesion inevitably causes ocular discomfort and even damage. Here, we describe in situ formation of an adhesive lubricative Janus nanocoating (ALJN) to enable long-lasting comfort drug delivery. By iron complexation, an asymmetric ALJN is formed on ocular surface via facile sequential instillation. The adhesive polyphenol inner layer binding with ocular surface enables drug loading and sustained release, while the lubricative zwitterionic polymer outer layer prevents eyelid adhesion to ensure comfort. Following instillation, ALJN retains on ocular surface over 24 hours and reduces blinking frequency to normal level. Moreover, ALJN demonstrates remarkable therapeutic potential in mouse and rabbit models of corneal contusion and alkali burn. This work proposes a comfortable long-lasting topical delivery platform for treating various ocular diseases.
Collapse
Affiliation(s)
- Chuhan Wang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai 200011, China
| | - Xiaobing Liu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wenyan Lv
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao Kuang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai 200011, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai 200011, China
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Casado-Santos A, González-Cubero E, García-Rodríguez MB, Carrera-Serna Á, González-Fernández ML, Villar-Suárez V. The therapeutic potential of mesenchymal stromal cell secretome in treating spontaneous chronic corneal epithelial defects in dogs. Res Vet Sci 2025; 185:105559. [PMID: 39923345 DOI: 10.1016/j.rvsc.2025.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/25/2024] [Accepted: 01/26/2025] [Indexed: 02/11/2025]
Abstract
Corneal ulcers in dogs pose a significant challenge in veterinary ophthalmology, often leading to prolonged visual impairment and discomfort. This study aimed to assess the efficacy of adipose tissue-derived mesenchymal stromal cell (ASCs) secretome as a treatment for complicated corneal ulcers in dogs. Ten dogs with spontaneous chronic corneal epithelial defects, were treated with topical application of ASC secretome eye drops. Our results showed that secretome therapy facilitated complete healing of all corneal ulcers within 4 weeks, with an average healing time of 1.2 weeks. Notably, secretome treatment was effective even in cases that had previously failed to respond to conventional therapies. Clinical signs such as blepharospasm, conjunctival hyperemia, and photophobia were alleviated promptly following secretome administration. Secretome therapy was well-tolerated, with no adverse reactions reported, further supporting its safety profile. The findings suggest that ASC secretome represents a promising cell-free and minimally invasive therapeutic approach for the treatment of complicated corneal ulcers in dogs.
Collapse
Affiliation(s)
- Alejandro Casado-Santos
- Department of Surgery, Medicine and Veterinary Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana, University of Léon-Universidad de León, 24071, Spain
| | - Elsa González-Cubero
- Department of Neurosurgery, Stanford School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Mª Belén García-Rodríguez
- Department of Surgery, Medicine and Veterinary Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana, University of Léon-Universidad de León, 24071, Spain.
| | | | - Mª Luisa González-Fernández
- Department of Surgery, Medicine and Veterinary Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana, University of Léon-Universidad de León, 24071, Spain
| | - Vega Villar-Suárez
- Department of Surgery, Medicine and Veterinary Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana, University of Léon-Universidad de León, 24071, Spain; Institute of Biomedicine (IBIOMED), Faculty of Veterinary Sciences, Campus de Vegazana, University of León, 24071, Spain
| |
Collapse
|
4
|
Hernandez BJ, Robertson DM. Exosomes in Corneal Homeostasis and Wound Healing. Curr Eye Res 2025:1-9. [PMID: 39936626 DOI: 10.1080/02713683.2025.2459335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE The cornea is a transparent avascular tissue that serves as the first line of defense against opportunistic pathogens and provides a smooth refractive surface for vision. Due to its external location, the cornea is vulnerable to stress from the outer environment. This can lead to corneal epithelial breakdown and subsequent corneal disease. Extracellular vesicles (EVs) are nano-sized vesicles enclosed within a lipid bilayer that are secreted by all cells in the body and play a key role in cell-to-cell communication. Within the cornea field, EVs and exosomes, the latter of which represents a subpopulation of small EVs, have emerged as potential therapies for treating corneal diseases and have increased our understanding of the mechanisms by which EVs, and more specifically, exosomes released by stressed or unhealthy cells, leads to corneal dysfunction and disease. METHODS We conducted a literature search using PubMed and Google Scholar using keywords relevant to exosomes, extracellular vesicles, and cornea. We reviewed the literature focusing on EV studies on corneal wound healing and therapy. RESULTS This review provides a comprehensive overview of the current state of exosome biology as it relates to corneal disease and wound healing. Studies to date provide compelling data indicating that EVs and exosomes may play an integral role in the maintenance of corneal homeostasis. EVs and exosomes also have exciting potential as therapeutics in corneal wound healing and disease; and their presence in tear fluid may serve as potential diagnostic biomarkers for ocular and systemic diseases. CONCLUSION While corneal exosome biology is still in its infancy state, continued progress in this area will improve our understanding of the functional capacity of these small vesicles in the human cornea and may lead to the development of novel regenerative therapies.
Collapse
Affiliation(s)
- Belinda J Hernandez
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Danielle M Robertson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Sun Z, Lu K, He Q, Tang Y, Li H, Pazo EE, Hu L, Wei R. INOS ablation promotes corneal wound healing via activation of Akt signaling. Exp Eye Res 2024; 243:109886. [PMID: 38583755 DOI: 10.1016/j.exer.2024.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Corneal injury leads to impaired normal structure of the cornea. Improving the wound healing process in epithelial cells significantly contributes to ocular damage treatments. Here, we aimed to investigate the potential mechanisms of nitric oxide (NO) and its mediator, inducible nitric oxide synthase (iNOS), in the process of corneal wound healing. We established a corneal injury model of iNOS-/- mice, and treated human corneal epithelial cell lines (HCE-2) with the iNOS inhibitor L-INL, with or without NO replenishment by supplying sodium nitroferricyanide dihydrate (SNP). Our findings showed that inhibition of NO/iNOS accelerated corneal repair, enhanced uPAR (a receptor protein indicating the migration ability), and improved epithelial cell migration. Furthermore, NO/iNOS ablation activated Akt phosphorylation, reduced neutrophil marker protein MPO expression, and downregulated the transcription of inflammation cytokines CXCL-1, CXCL-2, IL-1β, IL-6, and TNF-α. However, the protective effects of NO/iNOS inhibition are significantly reduced by NO replenishment when treated with SNP. Therefore, we confirmed that inhibiting NO/iNOS improved the corneal wound healing by facilitating epithelial cell migration and reducing inflammatory reactions, which might be related to the activation of the Akt signaling pathway.
Collapse
Affiliation(s)
- Ziwen Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China
| | - Kunpeng Lu
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, 300070, Tianjin, China
| | - Qing He
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China
| | - Yang Tang
- Qingdao State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, 266071, Qingdao, China
| | - Haoru Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China
| | - Emmanuel Eric Pazo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China
| | - Lizhi Hu
- Basic Medical College, Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China.
| |
Collapse
|
6
|
Okoyeocha EOM, Tewari-Singh N. Chloropicrin induced ocular injury: Biomarkers, potential mechanisms, and treatments. Toxicol Lett 2024; 396:70-80. [PMID: 38677567 DOI: 10.1016/j.toxlet.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Ocular tissue, especially the cornea, is overly sensitive to chemical exposures. The availability and adoption of chemical threat agent chloropicrin (CP) is growing in the United States as a pesticide and fumigant; thereby increasing the risk of its use in warfare, terrorist attacks and non-intentional exposure. Exposure to CP results in immediate ocular, respiratory, and dermal injury; however, we lack knowledge on its mechanism of toxicity as well as of its breakdown products like chlorine and phosgene, and effective therapies are elusive. Herein, we have reviewed the recent findings on exposure route, toxicity and likely mechanisms of CP induced ocular toxicity based on other vesicating chemical warfare agents that cause ocular injury. We have focused on the implication of their toxicity and mechanistic outcomes in the ocular tissue, especially the cornea, which could be useful in the development of broad-spectrum effective therapeutic options. We have discussed on the potential countermeasures, overall hallmarks and challenges involved in studying ocular injuries from chemical threat agent exposures. Finally, we reviewed useful available technologies and methods that can assist in the identification of effective medical countermeasures for chemical threat agents related ocular injuries.
Collapse
Affiliation(s)
- Ebenezar O M Okoyeocha
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Xiao X, Lin Y, Fang X, Xie Z, Luo S, Wu H. Clinical features and comprehensive treatment of persistent corneal epithelial dysfunction after cataract surgery. BMC Ophthalmol 2024; 24:197. [PMID: 38671418 PMCID: PMC11046752 DOI: 10.1186/s12886-024-03466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE Evaluation of clinical efficacy and safety of tobramycin/dexamethasone eye ointment in treating persistent corneal epithelial dysfunction (PED) after cataract surgery. METHODS 26 cases diagnosed as PED after cataract surgery accept the tobramycin/dexamethasone ophthalmic ointment and intense pulse light treatment in the Xiamen University of Xiamen eye center between September 2016 and April 2022 were retrospectively analyzed, mainly including clinical manifestations, characteristics of morphological changes imaged by in vivo confocal microscopy, meibomian glands infrared photography, lipid layer thickness (LLT), management and therapeutic effects. RESULTS There were 26 eyes, include 8(35%) males and 15(65%) females with an average age of 69.6 ± 5.2 years(50 to 78 years). The mean hospitalization time was (18.4 ± 7.5) days after cataract surgery. Twenty patients had meibomian gland dysfunction. Infrared photography revealed varying loss in the meibomian glands, with a mean score of 3.8 ± 1.2 for gland loss. The mean LLT was 61.6 ± 8.4 nm. After treatment, 20 patients were cured, and 3 received amniotic membrane transplantation. After treatment, the uncorrected visual acuity (UCVA) and best-corrected vision activity (BCVA) improved (P < 0.001), and there was no significant difference in intraocular pressure (IOP) before and after treatment (P > 0.05). CONCLUSIONS The early manifestation of PED after surgery is punctate staining of the corneal epithelium. Tobramycin and dexamethasone eye ointment bandages have a good repair effect. The meibomian gland massage combined with intense pulse light treatment can effectively shorten the course of the disease.
Collapse
Affiliation(s)
- Xianwen Xiao
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yuan Lin
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China.
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China.
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China.
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China.
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China.
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China.
| | - Xie Fang
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Zhiwen Xie
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Shunrong Luo
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Huping Wu
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China.
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China.
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China.
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China.
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China.
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
8
|
Vicario-de-la-Torre M, Puebla-García V, Ybañez-García L, López-Cano JJ, González-Cela-Casamayor MA, Brugnera M, Burgos-Blasco B, Díaz-Valle D, Gegúndez-Fernández JA, Benítez-del-Castillo JM, Herrero-Vanrell R. Topical Insulin Eye Drops: Stability and Safety of Two Compounded Formulations for Treating Persistent Corneal Epithelial Defects. Pharmaceutics 2024; 16:580. [PMID: 38794241 PMCID: PMC11124528 DOI: 10.3390/pharmaceutics16050580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Compounded insulin eye drops were prepared at 1 IU/mL from commercially available subcutaneous insulin by dilution in saline solution or artificial tears. Physicochemical characterization and in vitro tolerance testing in human and conjunctival cells were followed by a 28-day short-term stability study under various conditions. The formulations were isotonic (280-300 mOsm/L), had a pH close to neutral (7-8), medium surface-tension values (<56 MN/m-1), and low (≈1 mPa·s) and medium (≈5 mPa·s) viscosities (compounded normal saline solution and artificial tear-based preparation, respectively). These values remained stable for 28 days under refrigeration. Microbiological stability was also excellent. Insulin potency remained in the 90-110% range in the compounded formulations containing normal saline solution when stored at 2-8 °C for 28 days, while it decreased in those based on artificial tears. Although both formulations were well tolerated in vitro, the compounded insulin diluted in a normal saline solution exhibited better cell tolerance. Preliminary data in humans showed that insulin in saline solution was an effective and safe treatment for persistent corneal epithelial defects. Compounded insulin eye drops diluted in normal saline solution could, therefore, constitute an emergent therapy for the treatment of persistent corneal epithelial defects.
Collapse
Affiliation(s)
- Marta Vicario-de-la-Torre
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (R.H.-V.)
- National Ocular Pathology Network (OFTARED), Carlos III Institute of Health, San Carlos Clinical Hospital Institute of Health Research (IdISSC), 28040 Madrid, Spain (D.D.-V.)
| | | | | | - José Javier López-Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (R.H.-V.)
- National Ocular Pathology Network (OFTARED), Carlos III Institute of Health, San Carlos Clinical Hospital Institute of Health Research (IdISSC), 28040 Madrid, Spain (D.D.-V.)
| | - Miriam Ana González-Cela-Casamayor
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (R.H.-V.)
- National Ocular Pathology Network (OFTARED), Carlos III Institute of Health, San Carlos Clinical Hospital Institute of Health Research (IdISSC), 28040 Madrid, Spain (D.D.-V.)
| | - Marco Brugnera
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (R.H.-V.)
- National Ocular Pathology Network (OFTARED), Carlos III Institute of Health, San Carlos Clinical Hospital Institute of Health Research (IdISSC), 28040 Madrid, Spain (D.D.-V.)
| | - Bárbara Burgos-Blasco
- National Ocular Pathology Network (OFTARED), Carlos III Institute of Health, San Carlos Clinical Hospital Institute of Health Research (IdISSC), 28040 Madrid, Spain (D.D.-V.)
- Ocular Surface and Inflammation Unit, Department of Ophthalmology, San Carlos Clinical Hospital Institute of Health Research (IdISSC), 28040 Madrid, Spain
| | - David Díaz-Valle
- National Ocular Pathology Network (OFTARED), Carlos III Institute of Health, San Carlos Clinical Hospital Institute of Health Research (IdISSC), 28040 Madrid, Spain (D.D.-V.)
- Ocular Surface and Inflammation Unit, Department of Ophthalmology, San Carlos Clinical Hospital Institute of Health Research (IdISSC), 28040 Madrid, Spain
| | - José Antonio Gegúndez-Fernández
- National Ocular Pathology Network (OFTARED), Carlos III Institute of Health, San Carlos Clinical Hospital Institute of Health Research (IdISSC), 28040 Madrid, Spain (D.D.-V.)
- Ocular Surface and Inflammation Unit, Department of Ophthalmology, San Carlos Clinical Hospital Institute of Health Research (IdISSC), 28040 Madrid, Spain
| | - José Manuel Benítez-del-Castillo
- National Ocular Pathology Network (OFTARED), Carlos III Institute of Health, San Carlos Clinical Hospital Institute of Health Research (IdISSC), 28040 Madrid, Spain (D.D.-V.)
- Ocular Surface and Inflammation Unit, Department of Ophthalmology, San Carlos Clinical Hospital Institute of Health Research (IdISSC), 28040 Madrid, Spain
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (R.H.-V.)
- National Ocular Pathology Network (OFTARED), Carlos III Institute of Health, San Carlos Clinical Hospital Institute of Health Research (IdISSC), 28040 Madrid, Spain (D.D.-V.)
| |
Collapse
|
9
|
Cao Q, Peng D, Wang J, Reinach PS, Yan D. Unraveling the Intricate Network of lncRNAs in Corneal Epithelial Wound Healing: Insights Into the Regulatory Role of linc17500. Transl Vis Sci Technol 2024; 13:4. [PMID: 38315480 PMCID: PMC10851785 DOI: 10.1167/tvst.13.2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose Epigenetic mechanisms orchestrate a harmonious process of corneal epithelial wound healing (CEWH). However, the precise role of long non-coding RNAs (lncRNAs) as key epigenetic regulators in mediating CEWH remains elusive. Here, we aimed to elucidate the functional contribution of lncRNAs in regulating CEWH. Methods We used a microarray to characterize lncRNA expression profiling during mouse CEWH. Subsequently, the aberrant lncRNAs and their cis-associated genes were subjected to comprehensive Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and western blot analyses were performed to determine the expression profiles of key markers during CEWH. The in vivo effects of linc17500 on this process were investigated through targeted small interfering RNA (siRNA) injection. Post-siRNA treatment, corneal re-epithelialization was assessed, alongside the expression of cytokeratins 12 and 14 (Krt12 and Krt14) and Ki67. Effects of linc17500 on mouse corneal epithelial cell (TKE2) proliferation, cell cycle, and migration were assessed by multicellular tumor spheroids (MTS), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and scratch-wound assay, respectively. Results Microarray analysis revealed dysregulation of numerous lncRNA candidates during CEWH. Bioinformatic analysis provided valuable annotations regarding the cis-associated genes of these lncRNAs. In vivo experiments demonstrated that knockdown of linc17500 resulted in delayed CEWH. Furthermore, the knockdown of linc17500 and its cis-associated gene, CDC28 protein kinase regulatory subunit 2 (Cks2), was found to impede TKE2 cell proliferation and migration. Notably, downregulation of linc17500 in TKE2 cells led to suppression of the activation status of Akt and Rb. Conclusions This study sheds light on the significant involvement of lncRNAs in mediating CEWH and highlights the regulatory role of linc17500 on TKE2 cell behavior. Translational Relevance These findings provide valuable insights for future therapeutic research aimed at addressing corneal wound complications.
Collapse
Affiliation(s)
- Qiongjie Cao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dewei Peng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiao Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peter S. Reinach
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Yan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Chi J, Lu M, Wang S, Xu T, Ju R, Liu C, Zhang Z, Jiang Z, Han B. Injectable hydrogels derived from marine polysaccharides as cell carriers for large corneal epithelial defects. Int J Biol Macromol 2023; 253:127084. [PMID: 37769782 DOI: 10.1016/j.ijbiomac.2023.127084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Injectable hydrogels have been employed for sutureless repair of corneal epithelial defects, which can perfectly fit the defect sites and minimize the associated discomfort. However, numerous hydrogels are ineffective in treating large corneal epithelial defects and still suffer from poor biocompatibility or weak applicability when used as cell carriers. Herein, hydroxypropyl chitin/carboxymethyl chitosan (HPCT/CMCS) temperature-sensitive hydrogels are fabricated, and their physicochemical properties and suitability for corneal epithelial repair are investigated. The results demonstrate that HPCT/CMCS hydrogels have excellent temperature sensitivity between 20 and 25 °C and a transparency of over 80 %. Besides, HPCT/CMCS hydrogels can promote cell proliferation and facilitate cell migration of primary rabbit corneal epithelial cells (CEpCs). A rabbit large corneal epithelial defect model (6 mm) is established, and CEpCs are transplanted into defect sites by HPCT/CMCS hydrogels. The results suggest that HPCT/CMCS/CEpCs significantly enhance the repair of large corneal epithelial defects with a healing rate of 99.6 % on day 8, while reducing inflammatory responses and scarring formation. Furthermore, HPCT/CMCS/CEpCs can contribute to the reconstruction of damaged tissues and the recovery of functional capacities. Overall, HPCT/CMCS hydrogels may be a feasible corneal cell carrier material and can provide an alternative approach to large corneal epithelial defects.
Collapse
Affiliation(s)
- Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Minxin Lu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Tianjiao Xu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Ruibao Ju
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Chenqi Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhenguo Zhang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China.
| |
Collapse
|
11
|
Ye P, Gu R, Zhu H, Chen J, Han F, Nie X. SOX family transcription factors as therapeutic targets in wound healing: A comprehensive review. Int J Biol Macromol 2023; 253:127243. [PMID: 37806414 DOI: 10.1016/j.ijbiomac.2023.127243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The SOX family plays a vital role in determining the fate of cells and has garnered attention in the fields of cancer research and regenerative medicine. It also shows promise in the study of wound healing, as it actively participates in the healing processes of various tissues such as skin, fractures, tendons, and the cornea. However, our understanding of the mechanisms behind the SOX family's involvement in wound healing is limited compared to its role in cancer. Gaining insight into its role, distribution, interaction with other factors, and modifications in traumatized tissues could provide valuable new knowledge about wound healing. Based on current research, SOX2, SOX7, and SOX9 are the most promising members of the SOX family for future interventions in wound healing. SOX2 and SOX9 promote the renewal of cells, while SOX7 enhances the microvascular environment. The SOX family holds significant potential for advancing wound healing research. This article provides a comprehensive review of the latest research advancements and therapeutic tools related to the SOX family in wound healing, as well as the potential benefits and challenges of targeting the SOX family for wound treatment.
Collapse
Affiliation(s)
- Penghui Ye
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Rifang Gu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China
| | - Huan Zhu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jitao Chen
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
12
|
Liu Q, Nan Y, Yang Y, Li X, Jiang W, Jiao T, Li J, Jia X, Ye M, Niu Y, Yuan L. Exploring the Role of Lycium barbarum Polysaccharide in Corneal Injury Repair and Investigating the Relevant Mechanisms through In Vivo and In Vitro Experiments. Molecules 2023; 29:49. [PMID: 38202631 PMCID: PMC10779902 DOI: 10.3390/molecules29010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Lycium barbarum polysaccharide (LBP) is the main active component of Fructus Lycii, exhibiting various biological activities. This study aims to explore the protective effects of LBP on human corneal epithelial cells (HCEC) and a rat corneal injury model. Potential target points for LBP improving corneal injury repair were screened from public databases, and functional and pathway enrichment analyses of core targets were conducted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Rat corneal alkali burns and HCEC oxidative stress injury models were established, and the results were validated through slit lamp examination, HE staining, TUNEL assay, immunofluorescence, CCK-8 assay, flow cytometry, scratch assay, and qRT-PCR methods. In the context of database retrieval, identification of 10 LBP monosaccharide components and 50 corneal injury repair-related targets was achieved. KEGG pathway analysis suggested that LBP might regulate the IL-17 and TNF signaling pathways through targets such as JUN, CASP3, and MMP9, thereby improving corneal damage. In vivo and in vitro experimental results indicated that LBP could reduce the increase of inflammation index scores (p < 0.05), inflammatory cell density (p < 0.01), TUNEL-positive cells (p < 0.01), corneal opacity scores (p < 0.01), and expression of corneal stromal fibrosis-related proteins α-SMA, FN, and COL (p < 0.01) caused by chemical damage to rat corneas. LBP inhibited oxidative stress-induced decreases in cell viability (p < 0.001) and migration healing ability (p < 0.01) in HCECs, reducing apoptosis rates (p < 0.001), ROS levels (p < 0.001), and the expression of inflammatory factors TNF-α and IL-6 (p < 0.01). qRT-PCR results demonstrated that LBP intervention decreased the mRNA levels of JUN, CASP3, and MMP9 in H2O2-induced alkaline-burned corneas and HCECs (p < 0.01).The integrated results from network pharmacology and validation experiments suggest that the inhibitory effects of LBP on apoptosis, inflammation, and fibrosis after corneal injury may be achieved through the suppression of the TNF and IL-17 signaling pathways mediated by JUN, CASP3, and MMP9.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yi Nan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
| | - Yifan Yang
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (M.Y.)
| | - Xiangyang Li
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
| | - Wenjie Jiang
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
| | - Taiqiang Jiao
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
| | - Jiaqing Li
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
| | - Xusheng Jia
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
| | - Mengyi Ye
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (M.Y.)
| | - Yang Niu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
| | - Ling Yuan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
13
|
Meng S, Hu H, Qiao Y, Wang F, Zhang BN, Sun D, Zhou L, Zhao L, Xie L, Zhang H, Zhou Q. A Versatile Hydrogel with Antibacterial and Sequential Drug-Releasing Capability for the Programmable Healing of Infectious Keratitis. ACS NANO 2023; 17:24055-24069. [PMID: 38044579 DOI: 10.1021/acsnano.3c09034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hydrogels have attracted tremendous attention as favorable corneal substitutes for treating severe infectious keratitis (IK). However, current hydrogel-based corneal substitutes were majorly designed to promote the single stage of corneal regeneration, which falls short in meeting the clinical management needs of severe IK including the multiple phases of corneal wound healing. Herein, we introduce a versatile hybrid hydrogel (SQPV) composed of silk fibroin and chitosan, which exhibits spatiotemporal properties for drug release. The SQPV is fabricated by incorporating verteporfin-loaded poly(lactic-co-glycolic)-polyethylene glycol-o-nitrobenzene micelles into a hydrogel network, which is formed from methacrylate silk fibroin and glycidyl methacrylate functionalized quaternized chitosan containing polydeoxyribonucleotide. This double network approach results in a material with exceptional anti-inflammatory, antibacterial, and proliferative stimulation and tissue remodeling regulation capabilities. Furthermore, SQPV showcases mechanical strength and transparency akin to those of native cornea. Extensive in vitro and in vivo studies validate SQPV's ability to effectively eliminate residual bacteria, mitigate inflammation, foster regeneration of corneal epithelium and stroma, prevent corneal scarring, and ultimately expedite wound healing. In summary, the SF/CS-based hybrid hydrogel may represent a promising substitute for comprehensive corneal repair and regeneration in severe IK.
Collapse
Affiliation(s)
- Shuqin Meng
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao 266071, P.R. China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Yujie Qiao
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao 266071, P.R. China
| | - Fuyan Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao 266071, P.R. China
| | - Bi Ning Zhang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao 266071, P.R. China
| | - Difang Sun
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao 266071, P.R. China
| | - Longfang Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao 266071, P.R. China
| | - Long Zhao
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao 266071, P.R. China
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao 266071, P.R. China
| | - Hengrui Zhang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao 266071, P.R. China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao 266071, P.R. China
| |
Collapse
|
14
|
Wu Y, Du L, Xu X, Hu Y, Liu J, Zhang J, Lei L, He W, Sheng Z, Ni Y, Qu J, Li X, Jiang J. Nano Self-Assemblies of Caffeic Acid-Fibronectin Mimic a Peptide Conjugate for the Treatment of Corneal Epithelial Injury. Mol Pharm 2023; 20:5937-5946. [PMID: 37871179 DOI: 10.1021/acs.molpharmaceut.3c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Rapid corneal re-epithelialization is important for corneal wound healing. Corneal epithelial cell motility and oxidative stress are important targets for therapeutic intervention. In this study, we covalently conjugated the antioxidant caffeic acid (CA) with a bioactive peptide sequence (PHSRN) to generate a CA-PHSRN amphiphile, which was formulated into nanoparticular eye drops with an average size of 43.21 ± 16 nm. CA-PHSRN caused minimal cytotoxicity against human corneal epithelial cells (HCECs) and RAW264.7 cells, exhibited an excellent free radical scavenging ability, and remarkably attenuated reactive oxygen species (ROS) levels in H2O2-stimulated HCECs. The antioxidant and anti-inflammatory activities of CA-PHSRN were assessed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The results show that CA-PHSRN treatment effectively prevented LPS-induced DNA damage and significantly reduced the levels of LPS-induced pro-inflammatory cytochemokines (i.e., iNOS, NO, TNF-α, IL-6, and COX-2) in a dose-dependent manner. Moreover, using a rabbit corneal epithelial ex vivo migration assay, we demonstrated that the proposed CA-PHSRN accelerated corneal epithelial cell migration and exhibited high ocular tolerance and ocular bioavailability after topical instillation. Taken together, the proposed CA-PHSRN nanoparticular eye drops are a promising therapeutic formulation for the treatment of corneal epithelial injury.
Collapse
Affiliation(s)
- Yiping Wu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Lulu Du
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Xiaoning Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Yuhan Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Jia Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Jingwei Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Lei Lei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Wenfang He
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Zihao Sheng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Yuanao Ni
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Jia Qu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Jun Jiang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| |
Collapse
|
15
|
He S, Liu J, Xue Y, Fu T, Li Z. Sympathetic Nerves Coordinate Corneal Epithelial Wound Healing by Controlling the Mobilization of Ly6Chi Monocytes From the Spleen to the Injured Cornea. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 37682569 PMCID: PMC10500368 DOI: 10.1167/iovs.64.12.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023] Open
Abstract
Purpose This study aims to investigate the potential involvement of spleen-derived monocytes in the repair process following corneal epithelial abrasion. Methods A corneal epithelial abrasion model was established in male C57BL/6J mice, and the dynamic changes of monocyte subpopulations in the injured cornea were analyzed using flow cytometry. The effects of Ly6Chi monocyte depletion and local adoptive transfer of purified Ly6Chi monocytes on wound closure and neutrophil recruitment to the injured cornea were observed. The effect of sympathetic nerves on the recruitment of spleen-derived Ly6Chi monocytes to the injured cornea was also investigated using multiple methods. The emigration of fluorescence-labeled monocytes to the injured cornea was validated through intravital microscopy. Finally, differential genes between different groups were identified through high-throughput RNA sequencing and analyzed for functional enrichment, followed by verification by quantitative PCR. Results Ly6Chi monocytes were present in large numbers in the injured cornea prior to neutrophil recruitment. Predepletion of Ly6Chi monocytes significantly inhibited neutrophil recruitment to the injured cornea. Furthermore, surgical removal of the spleen significantly reduced the number of Ly6Chi monocytes in the injured cornea. Further observations revealed that sympathetic blockade significantly reduced the number of Ly6Chi monocytes recruited to the injured cornea. In contrast, administration of the β2-adrenergic receptor agonist significantly increased the number of Ly6Chi monocytes recruited to the injured cornea in animals treated with sympathectomy and catecholamine synthesis inhibition. Conclusions Our results suggest that spleen-derived Ly6Chi monocytes, under the control of the sympathetic nervous system, play a critical role in the inflammatory response following corneal injury.
Collapse
Affiliation(s)
- Siyu He
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Zhijie Li
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| |
Collapse
|
16
|
Wang M, Li Y, Wang H, Li M, Wang X, Liu R, Zhang D, Xu W. Corneal regeneration strategies: From stem cell therapy to tissue engineered stem cell scaffolds. Biomed Pharmacother 2023; 165:115206. [PMID: 37494785 DOI: 10.1016/j.biopha.2023.115206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Corneal epithelial defects and excessive wound healing might lead to severe complications. As stem cells can self-renew infinitely, they are a promising solution for regenerating the corneal epithelium and treating severe corneal epithelial injury. The chemical and biophysical properties of biological scaffolds, such as the amniotic membrane, fibrin, and hydrogels, can provide the necessary signals for stem cell proliferation and differentiation. Multiple researchers have conducted investigations on these scaffolds and evaluated them as potential therapeutic interventions for corneal disorders. These studies have identified various inherent benefits and drawbacks associated with these scaffolds. In this study, we provided a comprehensive overview of the history and use of various stem cells in corneal repair. We mainly discussed biological scaffolds that are used in stem cell transplantation and innovative materials that are under investigation.
Collapse
Affiliation(s)
- Mengyuan Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Ying Li
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Hongqiao Wang
- Blood Purification Department, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital, Qingdao, Shandong 266071, PR China
| | - Meng Li
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiaomin Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Rongzhen Liu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Daijun Zhang
- Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
17
|
Lu X, Chen Z, Lu J, Watsky M. Effects of Topical 1,25 and 24,25 Vitamin D on Diabetic, Vitamin D Deficient and Vitamin D Receptor Knockout Mouse Corneal Wound Healing. Biomolecules 2023; 13:1065. [PMID: 37509101 PMCID: PMC10377579 DOI: 10.3390/biom13071065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Delayed or prolonged corneal wound healing and non-healing corneas put patients at risk for ocular surface infections and subsequent stromal opacification, resulting in discomfort or visual loss. It is important to enhance corneal wound healing efficiency and quality. Vitamin D (Vit D) is both a hormone and a vitamin, and its insufficiency has been linked to immune disorders and diabetes. For this study, wound healing and recruitment of CD45+ cells into the wound area of normoglycemic and diabetic mice were examined following corneal epithelial debridement and treatment with 1,25-dihyroxyvitamin D (1,25 Vit D) or 24,25-dihydroxyvitamin D (24,25 Vit D). Treatment with topical 1,25-dihyroxyvitamin D (1,25 Vit D) resulted in significantly increased corneal wound healing rates of normoglycemic, diabetic and diabetic Vit D deficient mice. Furthermore, 24,25-dihydroxyvitamin D (24,25 Vit D) significantly increased corneal wound healing of diabetic Vit D deficient and Vit D receptor knockout (VDR KO) mice. In addition, CD45+ cell numbers were reduced in diabetic and VDR KO mouse corneas compared to normoglycemic mice, and 24,25 Vit D increased the recruitment of CD45+ cells to diabetic mouse corneas after epithelial debridement. CD45+ cells were found to infiltrate into the corneal basal epithelial layer after corneal epithelial debridement. Our data indicate that topical Vit D promotes corneal wound healing and further supports previous work that the Vit D corneal wound healing effect is not totally VDR-dependent.
Collapse
Affiliation(s)
| | | | | | - Mitchell Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
18
|
Anitua E, de la Fuente M, Sánchez-Ávila RM, de la Sen-Corcuera B, Merayo-Lloves J, Muruzábal F. Beneficial Effects of Plasma Rich in Growth Factors (PRGF) Versus Autologous Serum and Topical Insulin in Ocular Surface Cells. Curr Eye Res 2023; 48:456-464. [PMID: 36695530 DOI: 10.1080/02713683.2023.2173237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE In the last few decades, several blood derived products such as platelet-rich plasma (PRP), plasma rich in growth factors (PRGF) and autologous serum (AS) have been used for the treatment of ocular surface disorders. Recently, insulin has been proposed to be used as an alternative for the treatment of ocular surface diseases. The aim of this study was to evaluate the biological potential of PRGF eye drops in comparison with AS and insulin on ocular surface cells. METHODS Blood from three healthy young donors was collected to obtain autologous serum (AS) eye drops and plasma rich in growth factors (PRGF) eye drops. Insulin (Actrapid®) was diluted at 1 and 0.2 IU/mL. The biological potential of PRGF, AS and insulin was assessed by proliferation in HCE, HK and HConF cells. Wound healing assay was performed in HCE cells after incubation with the different treatments. HConF and HK cells were differentiated to myofibroblast after treatment with 2.5 ng/mL of TGF-β1 and then incubated with all treatments. RESULTS PRGF eye drops induced significantly higher proliferation rate compared to AS or insulin in HConF and HK cells, but not in HCE cells. In addition, the percentage of wound healing area was significantly reduced after PRGF treatment in comparison with AS or insulin treatment. Furthermore, PRGF significantly reduced the number of myodifferentiated cells compared to AS and insulin at both concentrations analyzed. CONCLUSION The results obtained in the present study show that PRGF increases the biological activity of the ocular surface cells and reduces the expression of fibrosis marker compared to insulin or AS. TRANSLATIONAL RELEVANCE The present study suggests that plasma rich in growth factors eye drops are a more effective therapy than insulin and autologous serum eye drops for the treatment of ocular surface diseases.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - María de la Fuente
- BTI Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | | | - Borja de la Sen-Corcuera
- BTI Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain.,Fundación para la Investigación y la Innovación Biosanitaria de Asturias (FINBA), Oviedo, Spain
| | - Francisco Muruzábal
- BTI Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
19
|
Chaidaroon W, Pantarote S, Upaphong P, Choovuthayakorn J. Comparison of Efficacy and Safety of Two Commercial Artificial Tears Between 0.18% and 0.3% Sodium Hyaluronate for Corneal Epithelial Healing in Pterygium Excision with Conjunctival Autograft Transplantation: A Study Protocol for a Randomized Controlled Trial. Clin Ophthalmol 2022; 16:3935-3944. [DOI: 10.2147/opth.s388276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
|
20
|
Santra M, Liu YC, Jhanji V, Yam GHF. Human SMILE-Derived Stromal Lenticule Scaffold for Regenerative Therapy: Review and Perspectives. Int J Mol Sci 2022; 23:ijms23147967. [PMID: 35887309 PMCID: PMC9315730 DOI: 10.3390/ijms23147967] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
A transparent cornea is paramount for vision. Corneal opacity is one of the leading causes of blindness. Although conventional corneal transplantation has been successful in recovering patients’ vision, the outcomes are challenged by a global lack of donor tissue availability. Bioengineered corneal tissues are gaining momentum as a new source for corneal wound healing and scar management. Extracellular matrix (ECM)-scaffold-based engineering offers a new perspective on corneal regenerative medicine. Ultrathin stromal laminar tissues obtained from lenticule-based refractive correction procedures, such as SMall Incision Lenticule Extraction (SMILE), are an accessible and novel source of collagen-rich ECM scaffolds with high mechanical strength, biocompatibility, and transparency. After customization (including decellularization), these lenticules can serve as an acellular scaffold niche to repopulate cells, including stromal keratocytes and stem cells, with functional phenotypes. The intrastromal transplantation of these cell/tissue composites can regenerate native-like corneal stromal tissue and restore corneal transparency. This review highlights the current status of ECM-scaffold-based engineering with cells, along with the development of drug and growth factor delivery systems, and elucidates the potential uses of stromal lenticule scaffolds in regenerative therapeutics.
Collapse
Affiliation(s)
- Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vishal Jhanji
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
21
|
Sun X, Song W, Teng L, Huang Y, Liu J, Peng Y, Lu X, Yuan J, Zhao X, Zhao Q, Xu Y, Shen J, Peng X, Ren L. MiRNA 24-3p-rich exosomes functionalized DEGMA-modified hyaluronic acid hydrogels for corneal epithelial healing. Bioact Mater 2022; 25:640-656. [PMID: 37056274 PMCID: PMC10086767 DOI: 10.1016/j.bioactmat.2022.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/02/2022] Open
Abstract
The damage of corneal epithelium may lead to the formation of irreversible corneal opacities and even blindness. The migration rate of corneal epithelial cells directly affects corneal repair. Here, we explored ocu-microRNA 24-3p (miRNA 24-3p) that can promote rabbit corneal epithelial cells migration and cornea repair. Exosomes, an excellent transport carrier, were exacted from adipose derived mesenchymal stem cells for loading with miRNA 24-3p to prepare miRNA 24-3p-rich exosomes (Exos-miRNA 24-3p). It can accelerate corneal epithelial migration in vitro and in vivo. For application in cornea alkali burns, we further modified hyaluronic acid with di(ethylene glycol) monomethyl ether methacrylate (DEGMA) to obtain a thermosensitive hydrogel, also reported a thermosensitive DEGMA-modified hyaluronic acid hydrogel (THH) for the controlled release of Exos-miRNA 24-3p. It formed a highly uniform and clear thin layer on the ocular surface to resist clearance from blinking and extended the drug-ocular-epithelium contact time. The use of THH-3/Exos-miRNA 24-3p for 28 days after alkali burn injury accelerated corneal epithelial defect healing and epithelial maturation. It also reduced corneal stromal fibrosis and macrophage activation. MiRNA 24-3p-rich exosomes functionalized DEGMA-modified hyaluronic acid hydrogel as a multilevel delivery strategy has a potential use for cell-free therapy of corneal epithelial regeneration.
Collapse
|
22
|
Diaz‐Valle D, Burgos‐Blasco B, Rego‐Lorca D, Puebla‐Garcia V, Perez‐Garcia P, Benitez‐del‐Castillo JM, Herrero‐Vanrell R, Vicario‐de‐la‐Torre M, Gegundez‐Fernandez JA. Comparison of the efficacy of topical insulin with autologous serum eye drops in persistent epithelial defects of the cornea. Acta Ophthalmol 2022; 100:e912-e919. [PMID: 34407296 DOI: 10.1111/aos.14997] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To investigate the effect of topical insulin on epithelization in persistent epithelial defects (PED) refractory to usual treatment compared to autologous serum. DESIGN Retrospective, consecutive case-control series. METHODS The charts of 61 consecutive patients with PED treated with topical insulin (case group) and 23 treated with autologous serum (control group) were reviewed. Primary efficacy end points were the percentage of patients in which epithelization was achieved, as well as the rate and time until epithelization. Secondary efficacy point was need for amniotic membrane transplantation (AMT) or other surgeries. RESULTS Mean time between PED diagnosis and start of topical insulin was 22.7 ± 18.5 days (range 13-115) and the mean area was 14.8 ± 16.2 mm2 (range 1.1-70.6). In the control group, mean time was 27.9 ± 16.8 days, mean epithelial defect area being 18.6 ± 15.0 mm2 (range 1.7-52.9). No differences in baseline characteristics were found between groups (p > 0.05). Epithelization was achieved in 51 patients (84%) on insulin and 11 patients (48%) on autologous serum (p = 0.002). In those patients, mean time until reepithelization was 32.6 ± 28.3 days (range 4-124) in the insulin group and 82.6 ± 82.4 days (range 13-231) in the autologous serum group (p = 0.011). The need for AMT was significantly lower in the insulin group (p = 0.005). PED recurrence was higher in patients treated on autologous serum (43%) compared with insulin (11%) (p = 0.002). CONCLUSIONS Topical insulin is an effective treatment and safely promotes healing of PED. In our series, topical insulin presented better epithelization outcomes than autologous serum and could thus be considered as a first-line treatment.
Collapse
Affiliation(s)
- David Diaz‐Valle
- Servicio de Oftalmología Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC) Hospital Clinico San Carlos Madrid Spain
| | - Barbara Burgos‐Blasco
- Servicio de Oftalmología Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC) Hospital Clinico San Carlos Madrid Spain
| | - Daniela Rego‐Lorca
- Servicio de Oftalmología Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC) Hospital Clinico San Carlos Madrid Spain
| | | | - Pilar Perez‐Garcia
- Servicio de Oftalmología Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC) Hospital Clinico San Carlos Madrid Spain
| | - Jose M. Benitez‐del‐Castillo
- Servicio de Oftalmología Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC) Hospital Clinico San Carlos Madrid Spain
| | - Rocio Herrero‐Vanrell
- Departamento de Farmacia y Tecnología Farmacéutica Facultad de Farmacia Universidad Complutense de Madrid Madrid España
| | - Marta Vicario‐de‐la‐Torre
- Departamento de Farmacia y Tecnología Farmacéutica Facultad de Farmacia Universidad Complutense de Madrid Madrid España
| | - Jose A. Gegundez‐Fernandez
- Servicio de Oftalmología Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC) Hospital Clinico San Carlos Madrid Spain
| |
Collapse
|
23
|
Zhang W, Lan X, Zhu J, Zhang C, Huang Y, Mo K, Tan J, Guo H, Huang H, Li M, Ouyang H, Wang L. Healing Ability of Central Corneal Epithelium in Rabbit Ocular Surface Injury Models. Transl Vis Sci Technol 2022; 11:28. [PMID: 35771535 PMCID: PMC9251814 DOI: 10.1167/tvst.11.6.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Wound healing of the corneal epithelium mainly involves two types of cells: limbal stem/progenitor cells (LSCs) and differentiated central corneal epithelial cells (CECs). The healing ability of CECs is still debatable, and its correlated transcriptomic alterations during wound healing are yet to be elucidated. This study aimed to determine the healing ability and mechanisms underlying the actions of CECs using rabbit ocular surface injury models. Methods A central corneal ring-like residual epithelium model was used to investigate the healing ability of CECs. Uninjured and injury-stimulated LSCs and CECs were collected for transcriptomic analysis. The analysis results were verified by quantitative reverse transcriptase polymerase chain reaction, immunofluorescence staining, and two types of rabbit corneal injury models. Results During wound healing, the upregulated genes in LSCs were mostly enriched in the mitotic cell cycle–related processes, but those in CECs were mostly enriched in cell adhesion and migration. CECs could repair the epithelial defects successfully at one-time injuries. However, after repetitive injuries, the CECs repaired notably slower and failed to completely heal the defect, but the LSCs repaired even faster than the one-time injury. Conclusions Our results indicated rabbit CECs repair the epithelial defect mainly depending on migration and its proliferative ability is limited, and LSCs are the main source of regenerative epithelial cells. Translational Relevance This study provides information on gene expression in the corneal epithelium during wound healing, indicating that regulation of the cell cycle, cell adhesion, and migration may be the basis for future treatment strategies for corneal wound healing.
Collapse
Affiliation(s)
- Wang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xihong Lan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Canwei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
24
|
Agarwal S, Khan TA, Vanathi M, Srinivasan B, Iyer G, Tandon R. Update on diagnosis and management of refractory corneal infections. Indian J Ophthalmol 2022; 70:1475-1490. [PMID: 35502013 PMCID: PMC9333031 DOI: 10.4103/ijo.ijo_2273_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 11/06/2022] Open
Abstract
Infectious keratitis is a medical emergency resulting in significant visual morbidity. Indiscriminate use of antimicrobials leading to the emergence of resistant or refractory microorganisms has further worsened the prognosis. Coexisting ocular surface diseases, delay in diagnosis due to inadequate microbiological sample, a slow-growing/virulent organism, or systemic immunosuppressive state all contribute to the refractory response of the ulcer. With improved understanding of these varied ocular and systemic factors contributing to the refractory nature of the microbes, role of biofilm formation and recent research on improving the bioavailability of drugs along with the development of alternative therapies have helped provide the required multidimensional approach to effectively diagnose and manage cases of refractory corneal ulcers and prevent corneal perforations or further dissemination of disease. In this review, we explore the current literature and future directions of the diagnosis and treatment of refractory keratitis.
Collapse
Affiliation(s)
- Shweta Agarwal
- Dr. G. Sitalakshmi Memorial Clinic for Ocular Surface Disorders, C. J. Shah Cornea Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Tanveer A Khan
- Cornea, Lens and Refractive Surgery Services, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi, India
| | - Murugesan Vanathi
- Cornea, Lens and Refractive Surgery Services, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi, India
| | - Bhaskar Srinivasan
- Dr. G. Sitalakshmi Memorial Clinic for Ocular Surface Disorders, C. J. Shah Cornea Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Geetha Iyer
- Dr. G. Sitalakshmi Memorial Clinic for Ocular Surface Disorders, C. J. Shah Cornea Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Radhika Tandon
- Cornea, Lens and Refractive Surgery Services, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Luo Y, Liu L, Liao Y, Yang P, Liu X, Lu L, Chen J, Qu C. Multifunctional Baicalin-Modified Contact Lens for Preventing Infection, Regulating the Ocular Surface Microenvironment and Promoting Corneal Repair. Front Bioeng Biotechnol 2022; 10:855022. [PMID: 35309981 PMCID: PMC8926214 DOI: 10.3389/fbioe.2022.855022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Corneal injury inevitably leads to disruption of the ocular surface microenvironment, which is closely associated with delayed epithelial cell repair and the development of infection. Recently, drug-loaded therapeutic contact lenses have emerged as a new approach to treating corneal injury due to their advantages of relieving pain, promoting corneal repair, and preventing infection. However, few therapeutic contact lenses could modulate the ocular surface’s inflammation and oxidative stress microenvironment. To address this, in this study, we covalently immobilized multifunctional baicalin (BCL), a flavon molecular with anti-inflammatory, anti-oxidative stress, and antibacterial capabilities, onto the surface of the contact lens. The BCL-modified contact lens showed excellent optical properties, powerful antibacterial properties, and non-toxicity to endothelial cells. Furthermore, the BCL-modified contact lens could significantly modulate the ocular surface microenvironment, including inhibition of macrophage aggregation and resistance to epithelium damage caused by oxidative stress. In animal models, BCL-modified corneal contact lens effectively promoted corneal epithelial cells repair. These excellent properties suggested that multifunctional BCL molecules had great application potential in the surface engineering of ophthalmic medical materials.
Collapse
Affiliation(s)
- Yue Luo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- The Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Luying Liu
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China
| | - Yuzhen Liao
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China
| | - Xiaoqi Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Lei Lu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jiang Chen
- The Department of Neurosurgery, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Jiang Chen, ; Chao Qu,
| | - Chao Qu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- The Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Jiang Chen, ; Chao Qu,
| |
Collapse
|
26
|
Jeng BH, Hamrah P, Kirshner ZZ, Mendez BC, Wessel HC, Brown LR, Steed DL. Exploratory Phase II Multicenter, Open-Label, Clinical Trial of ST266, a Novel Secretome for Treatment of Persistent Corneal Epithelial Defects. Transl Vis Sci Technol 2022; 11:8. [PMID: 34994777 PMCID: PMC8742509 DOI: 10.1167/tvst.11.1.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective An exploratory phase II, multicenter, open-label, clinical trial (NCT03687632) was conducted to evaluate the safety and effectiveness in treating persistent corneal epithelial defects (PEDs) with ST266, a proprietary novel multi-cytokine platform biologic solution secreted by cultured Amnion-derived Multipotent Progenitor (AMP) cells. Methods Subjects with a PED were treated with ST266 eye drops 4 times daily for 28 days, then followed for 1 week. Safety was assessed by monitoring of adverse events (AEs) and serious adverse events (SAEs). Efficacy was assessed by measuring the area of the PED by slit lamp biomicroscopy. Tolerability of ST266, percentage of eyes with complete healing, reduction in area of the epithelial defect, and maintenance of a reduction in the area of the epithelial defect 7 days after treatment were recorded. Results Thirteen patients were enrolled into the trial at one of eight sites. The first patient withdrew after 5 days. The remaining 12 patients with PEDs with median duration of 39 days (range = 12 to 393 days) completed treatment. Ten of the 12 eyes had been refractory to treatment with various conventional therapies prior to enrollment. After 28 days of treatment, there was a significant decrease in mean PED area compared with baseline (66.4% ± 35.3%, P = 0.001). At follow-up, 1 week after completion of treatment, on day 35, the PED area was further reduced by 78.8% ± 37.5% (P = 0.01) compared with baseline. During 28 days of treatment, 5 eyes (41.7%) had complete wound closure. There were no AEs of concern thought to be related to the drug, and no SAEs were noted. Conclusions In this trial, we found ST266 eye drops might promote corneal epithelization, thereby reducing the PED area, including in refractory cases in a wide range of etiologies. ST266 was well-tolerated by most patients.
Collapse
Affiliation(s)
- Bennie H Jeng
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pedram Hamrah
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ziv Z Kirshner
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| | | | - Howard C Wessel
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| | - Larry R Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| | - David L Steed
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Mugisho OO, Green CR. The NLRP3 inflammasome in age-related eye disease: Evidence-based connexin hemichannel therapeutics. Exp Eye Res 2021; 215:108911. [PMID: 34958779 DOI: 10.1016/j.exer.2021.108911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
Abstract
The inflammasome pathway is a fundamental component of the innate immune system, playing a key role especially in chronic age-related eye diseases (AREDs). The inflammasome is of particular interest because it is a common disease pathway that once instigated, can amplify and perpetuate itself leading to chronic inflammation. With aging, it becomes more difficult to shut down inflammation after an insult but the common pathway means that a shared solution may be feasible that could be effective across multiple disease indications. This review focusses on the NLRP3 inflammasome, the most studied and characterized inflammasome in the eye. It describes the two-step signalling required for NLRP3 inflammasome complex activation, and provides evidence for its role in AREDs. In the final section, the article gives an overview of potential NLRP3 inflammasome targeting therapies, before presenting evidence for connexin hemichannel regulators as upstream blockers of inflammasome activation. These have shown therapeutic efficacy in multiple ocular disease models.
Collapse
Affiliation(s)
- Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
28
|
Zhong Y, Wang K, Zhang Y, Yin Q, Li S, Wang J, Zhang X, Han H, Yao K. Ocular Wnt/β-Catenin Pathway Inhibitor XAV939-Loaded Liposomes for Treating Alkali-Burned Corneal Wound and Neovascularization. Front Bioeng Biotechnol 2021; 9:753879. [PMID: 34765592 PMCID: PMC8576519 DOI: 10.3389/fbioe.2021.753879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Corneal wound involves a series of complex and coordinated physiological processes, leading to persistent epithelial defects and opacification. An obstacle in the treatment of ocular diseases is poor drug delivery and maintenance. In this study, we constructed a Wnt/β-catenin pathway inhibitor, XAV939-loaded liposome (XAV939 NPs), and revealed its anti-inflammatory and antiangiogenic effects. The XAV939 NPs possessed excellent biocompatibility in corneal epithelial cells and mouse corneas. In vitro corneal wound healing assays demonstrated their antiangiogenic effect, and LPS-induced expressions of pro-inflammatory genes of IL-1β, IL-6, and IL-17α were significantly suppressed by XAV939 NPs. In addition, the XAV939 NPs significantly ameliorated alkali-burned corneas with slight corneal opacity, reduced neovascularization, and faster recovery, which were attributed to the decreased gene expressions of angiogenic and inflammatory cytokines. The findings supported the potential of XAV939 NPs in ameliorating corneal wound and suppressing neovascularization, providing evidence for their clinical application in ocular vascular diseases.
Collapse
Affiliation(s)
- Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Wang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yin Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qichuan Yin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaming Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Li L, Li L, Chen Q, Yang X, Hui Q, Al-Azzani H, Huang Y, Cai J, Wang X, Jin Z. Toxicity Evaluation of Long-Term Topical Application of Recombinant Human Keratinocyte Growth Factor-2 Eye Drops on Macaca Fascicularis. Front Pharmacol 2021; 12:740726. [PMID: 34621172 PMCID: PMC8490875 DOI: 10.3389/fphar.2021.740726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022] Open
Abstract
Recombinant human keratinocyte growth factor-2 (rhKGF-2), an effective agent for the regeneration of epithelial tissue, was found to have great potential for use in treatments of corneal diseases that involve corneal epithelial defects. Furthermore, the safety of long-term and high-dose external use of KGF-2 eye drops in rabbits has been well established previously. The aim of this study is to determine the safe dose range and target organs for toxicity of rhKGF-2 eye drops in Macaca fascicularis (M. fascicularis). The M. fascicularis animals were administered with different doses of rhKGF-2 eye drops (125, 500, and 2000 μg/ml) for four consecutive weeks, followed by a 2 week recovery period. No significant differences in weight, electrocardiogram characteristics, blood and urine indexes, pathology, and bone marrow cells were detected among the animals in different groups. The corneas of some animals in the middle- and high-dose groups showed fluorescence when stained with sodium fluorescein, and then the staining disappeared on days 28 and 42. Anti-rhKGF-2 antibodies were detected in a small number of animals in the high-dose group, and their level decreased after rhKGF-2 withdrawal. No neutralizing antibodies were detected. The result demonstrated that there was no obvious adverse reaction when topical application of rhKGF-2 eye drops at the dosage of 125 or 500 μg/ml on the M. fascicularis. This study is of great significance for the future clinical transformation of rhKGF-2 eye drops.
Collapse
Affiliation(s)
- Le Li
- Department of Ophthalmology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, China
| | - Lijia Li
- Department of Ophthalmology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, China
| | - Qi Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Xuanxin Yang
- School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, China
| | - Qi Hui
- School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, China
| | - Hamdi Al-Azzani
- School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, China
| | - Yadong Huang
- College of Pharmacy and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Jianqiu Cai
- Department of Ophthalmology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojie Wang
- Department of Ophthalmology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, China
| | - Zi Jin
- Department of Ophthalmology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Zhao L, Qi X, Cai T, Fan Z, Wang H, Du X. Gelatin hydrogel/contact lens composites as rutin delivery systems for promoting corneal wound healing. Drug Deliv 2021; 28:1951-1961. [PMID: 34623206 PMCID: PMC8475096 DOI: 10.1080/10717544.2021.1979126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Corneal wound healing is a highly regulated biological process that is of importance for reducing the risk of blinding corneal infections and inflammations. Traditional eye drop was the main approach for promoting corneal wound healing. However, its low bioavailability required a high therapeutic concentration, which can lead to ocular or even systemic side effects. To develop a safe and effective method for treating corneal injury, we fabricated rutin-encapsulated gelatin hydrogel/contact lens composites by dual crosslinking reactions including in situ free radical polymerization and carboxymethyl cellulose/N-hydroxysulfosuccinimide crosslinking. In vitro drug release results evidenced that rutin in the composites could be sustainedly released for up to 14 days. In addition, biocompatibility assay indicated nontoxicity of the composites. Finally, the effect of rutin-encapsulated composites on the healing of the corneal injury in rabbits was investigated. The injury was basically cured in corneas using rutin-encapsulated composites (healing rate, 98.3% ± 0.7%) at 48 h post-operation, while the damage was still present in corneas using the composite (healing rate, 87.0% ± 4.5%). Further proteomics analysis revealed that corneal wound healing may be promoted by the ERK/MAPK and PI3K/AKT signal pathways. These results inform a potential intervention strategy to facilitate corneal wound healing in humans.
Collapse
Affiliation(s)
- Lianghui Zhao
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xia Qi
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Tao Cai
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Zheng Fan
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Hongwei Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xianli Du
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| |
Collapse
|
31
|
Capistrano da Silva E, Carossino M, Smith-Fleming KM, Langohr IM, Martins BDC. Determining the efficacy of the bovine amniotic membrane homogenate during the healing process in rabbits' ex vivo corneas. Vet Ophthalmol 2021; 24:380-390. [PMID: 34402564 DOI: 10.1111/vop.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the efficacy of bovine amniotic membrane homogenate (BAMH) on wounded ex vivo rabbit corneas. PROCEDURE Eighteen corneas obtained from normal rabbit eyes were wounded equally using a 6 mm trephine and cultured into an air-liquid interface model. Corneas were treated with phosphate-buffered saline (PBS) (n = 6, control group), 0.2% ethylenediaminetetraacetic acid (EDTA; n = 6), or BAMH (n = 6). All treatments were applied topically 6 times/day. Each cornea was macrophotographed daily with and without fluorescein stain to assess epithelialization and haziness. After 7 days, corneal transparency was evaluated, and the tissues prepared for histologic analysis of viability, and total and epithelial thickness. RESULTS The mean epithelialization time was 6.2 ± 0.82 days for the control group, 6.2 ± 0.75 days for the EDTA-treated group, and 5.1 ± 0.40 days for the BAMH-treated group, demonstrating a significant difference between the BAMH and the other groups. The corneas that received EDTA had better transparency compared with the other groups. Histologically, all corneas had adequate morphology and architecture after healing. Analysis of corneal and epithelial thickness revealed no significant difference among groups. CONCLUSION Bovine amniotic membrane homogenate is an effective and promising treatment for stromal and epithelial ulcers.
Collapse
Affiliation(s)
- Erotides Capistrano da Silva
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University, Baton Rouge, LA, USA
| | - Kathryn M Smith-Fleming
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ingeborg M Langohr
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Bianca da C Martins
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
32
|
Putra I, Shen X, Anwar KN, Rabiee B, Samaeekia R, Almazyad E, Giri P, Jabbehdari S, Hayat MR, Elhusseiny AM, Ghassemi M, Mahmud N, Edward DP, Joslin CE, Rosenblatt MI, Dana R, Eslani M, Hematti P, Djalilian AR. Preclinical Evaluation of the Safety and Efficacy of Cryopreserved Bone Marrow Mesenchymal Stromal Cells for Corneal Repair. Transl Vis Sci Technol 2021; 10:3. [PMID: 34383879 PMCID: PMC8362636 DOI: 10.1167/tvst.10.10.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Mesenchymal stromal cells (MSCs) have been shown to enhance tissue repair as a cell-based therapy. In preparation for a phase I clinical study, we evaluated the safety, dosing, and efficacy of bone marrow–derived MSCs after subconjunctival injection in preclinical animal models of mice, rats, and rabbits. Methods Human bone marrow–derived MSCs were expanded to passage 4 and cryopreserved. Viability of MSCs after thawing and injection through small-gauge needles was evaluated by vital dye staining. The in vivo safety of human and rabbit MSCs was studied by subconjunctivally injecting MSCs in rabbits with follow-up to 90 days. The potency of MSCs on accelerating wound healing was evaluated in vitro using a scratch assay and in vivo using 2-mm corneal epithelial debridement wounds in mice. Human MSCs were tracked after subconjunctival injection in rat and rabbit eyes. Results The viability of MSCs after thawing and immediate injection through 27- and 30-gauge needles was 93.1% ± 2.1% and 94.9% ± 1.3%, respectively. Rabbit eyes demonstrated mild self-limiting conjunctival inflammation at the site of injection with human but not rabbit MSCs. In scratch assay, the mean wound healing area was 93.5% ± 12.1% in epithelial cells co-cultured with MSCs compared with 40.8% ± 23.1% in controls. At 24 hours after wounding, all MSC-injected murine eyes had 100% corneal wound closure compared with 79.9% ± 5.5% in controls. Human MSCs were detectable in the subconjunctival area and peripheral cornea at 14 days after injection. Conclusions Subconjunctival administration of MSCs is safe and effective in promoting corneal epithelial wound healing in animal models. Translational Relevance These results provide preclinical data to support a phase I clinical study.
Collapse
Affiliation(s)
- Ilham Putra
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Behnam Rabiee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ravand Samaeekia
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Enmar Almazyad
- Department of Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Pushpanjali Giri
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammed R Hayat
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Abdelrahman M Elhusseiny
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahmood Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nadim Mahmud
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak P Edward
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.,Department of Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Charlotte E Joslin
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Peiman Hematti
- Department of Medicine and University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Hyaluronic acid in ocular drug delivery. Carbohydr Polym 2021; 264:118006. [DOI: 10.1016/j.carbpol.2021.118006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
|
34
|
Integration and remodelling of a collagen anterior lamellar keratoplasty graft in an animal model - A preliminary report. Exp Eye Res 2021; 209:108661. [PMID: 34102207 DOI: 10.1016/j.exer.2021.108661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/24/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
There is an international shortage of donor corneas for transplantation to treat the 1.5-2.0 million new cases of blindness secondary to corneal disease. Research has therefore been directed towards the development of artificial corneas using alternative materials such as collagen. The biocompatibility of an acellular collagen-based scaffold for anterior lamellar keratoplasty was investigated in vivo in a rabbit model. This scaffold has previously shown promise as a corneal substitute in vitro. Slit-lamp and Optical Coherence Tomography examinations were carried out at 2 weeks, 1, 2, 3, and 6 months post-operatively. Graft-host integration was investigated using immunohistochemistry of the cornea at 6 months. Results showed that the graft was biocompatible, supported corneal re-epithelialisation, and showed no signs of rejection. Migration of stromal cells into areas of the graft was observed, however this was accompanied by extensive graft digestion. Whilst the scaffold was biocompatible, further modifications to the material or supplementation with matrix metalloproteinase inhibitors are required to bring us closer to a stable and fully integrated corneal substitute.
Collapse
|
35
|
Measurement of In Vivo Biomechanical Changes Attributable to Epithelial Removal in Keratoconus Using a Noncontact Tonometer. Cornea 2021; 39:946-951. [PMID: 32355111 DOI: 10.1097/ico.0000000000002344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE To compare the biomechanical properties of the cornea after epithelial removal in eyes with keratoconus undergoing corneal cross-linking. METHODS Prospective interventional case series at a university hospital tertiary referral center. Corneal biomechanical properties were measured in patients with keratoconus undergoing corneal cross-linking, immediately before and after epithelial debridement by using a dynamic ultrahigh-speed Scheimpflug camera equipped with a noncontact tonometer. RESULTS The study comprised 45 eyes of 45 patients with a mean age of 19.6 ± 4.9 years (range 14-34). The cornea was found to be 23.7 ± 15.7 μm thinner after epithelial removal (P < 0.01). Corneal stiffness was reduced after epithelial removal as demonstrated by a significant decrease of parameters such as stiffness parameter A1 (12.31, P < 0.01), stiffness parameter-highest concavity (2.25, P < 0.01), A1 length (0.13 mm, P = 0.04), highest concavity radius of curvature (0.26 mm, P = 0.01), highest concavity time (0.22 ms, P = 0.04) and an increase in A1 velocity (-0.01 m/s, P = 0.01), A1 deformation amplitude (-0.03 mm, P ≤ 0.01), A1 deflection length (-0.32 mm, P < 0.01), A2 deformation amplitude (-0.03 mm, P = 0.01), and A2 deflection length (-1.00 mm, P < 0.01). There were no significant differences in biomechanical intraocular pressure (0.15 mm Hg, P = 0.78), deformation amplitude (0.03, P = 0.54), maximum inverse radius (-0.01 mm, P = 0.57), and whole eye movement length (-0.02 mm, P = 0.12). CONCLUSIONS Dynamic ultrahigh-speed Scheimpflug camera equipped with a noncontact tonometer offers an alternative method for in vivo measurements of the epithelial layer's contribution to corneal biomechanical properties. Our results suggest that corneal epithelium may play a more significant role in corneal biomechanical properties in patients with keratoconus than previously described.
Collapse
|
36
|
Alvarado-Villacorta R, Davila-Alquisiras JH, Hernández-Quintela E, Ramos-Betancourt N. Solid Platelet‑rich Plasma Combined with Silicone-hydrogel Soft Contact Lens for Non-healing Corneal Ulcers: A Case Series. Ocul Immunol Inflamm 2021; 30:1123-1128. [PMID: 33793367 DOI: 10.1080/09273948.2020.1871492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: To present a case series of non-healing corneal ulcers treated by solid activated platelet-rich plasma (PRP) combined with silicone-hydrogel soft contact lens.Methods: Three eyes from three patients with unresponsive corneal ulcers were included. A clot of PRP was applied directly onto the corneal ulcer and covered with a soft contact lens. The primary outcome was corneal healing. Changes in corneal ulcer area were measured by analyzing slit-lamp photographs taken using ImageJ software.Results: Successful corneal healing was achieved in all patients within two weeks, with no recurrences or signs of infection through the last follow-up. In two of the three cases, treatment was applied twice.Conclusions: This novel procedure was easy to perform, economically advantageous, and a possible alternative to surgical approaches for enhancing epithelial wound healing in patients with non-healing corneal ulcers. Further prospective and comparative studies are needed to assess the efficacy of this treatment.
Collapse
Affiliation(s)
- Rosa Alvarado-Villacorta
- Cornea and Refractive Surgery Department, Asociación Para Evitar la Ceguera en México, Mexico City, Mexico
| | - Jesus H Davila-Alquisiras
- Cornea and Refractive Surgery Department, Asociación Para Evitar la Ceguera en México, Mexico City, Mexico
| | | | - Nallely Ramos-Betancourt
- Cornea and Refractive Surgery Department, Asociación Para Evitar la Ceguera en México, Mexico City, Mexico
| |
Collapse
|
37
|
Wang Y, Gao G, Wu Y, Wang Y, Wu X, Zhou Q. S100A4 Silencing Facilitates Corneal Wound Healing After Alkali Burns by Promoting Autophagy via Blocking the PI3K/Akt/mTOR Signaling Pathway. Invest Ophthalmol Vis Sci 2021; 61:19. [PMID: 32926102 PMCID: PMC7490227 DOI: 10.1167/iovs.61.11.19] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose This study investigated the role of S100 calcium binding protein A4 (S100A4) in corneal wound healing and the underlying mechanism of the S100A4-mediated PI3K/Akt/mammalian target of rapamycin (mTOR) pathway. Methods The rabbit corneal alkali burn model was established in vivo. S100A4 expression, wound healing, inflammation, and autophagy in rabbit cornea after alkali burn were detected. The NaOH-treated rabbit corneal stromal cells (rCSCs) were transfected with overexpressed S100A4 or silencing S100A4 to examine the effect of S100A4 on corneal wound healing in vitro. The effect of S100A4 on cell viability, proliferation, migration, invasion, fibrosis, and autophagy of rCSCs after alkali burn was analyzed. Then the functional rescue experiments were carried out. The PI3K inhibitor, LY294002, was used to elucidate the PI3K/Akt/mTOR signaling pathway in rCSCs. Results S100A4 silencing promoted rabbit corneal wound healing by inhibiting fibrosis and inflammation and promoting autophagy in alkali-burned cornea, corresponding to increased levels of LC3, Beclin 1, and Atg4B but lowered α-smooth muscle actin, TNF-ɑ, and p62 levels. Moreover, silencing S100A4 inhibited proliferation, migration, invasion, and fibrosis of NaOH-treated rCSCs and promoted the differentiation of rCSCs into corneal cells and the autophagy of damaged rCSCs. The inhibitory role of S100A4 in wound healing was achieved via activation of the PI3K/Akt/mTOR pathway. Conclusions S100A4 silencing confers a promising effect on wound healing of alkali-burned cornea by blocking the PI3K/Akt/mTOR pathway, supporting the advancement of corneal gene therapies for wound healing.
Collapse
Affiliation(s)
- Yulin Wang
- Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Guiping Gao
- Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Ying Wu
- Department of Otolaryngology, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Yuqin Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Xiaorong Wu
- Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Qiong Zhou
- Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
38
|
Abstract
Neurotrophic Keratitis (NK) is a degenerative disorder of the cornea characterized by decreased or absent sensory corneal innervation, corneal epitheliopathy and impaired healing.The clinical presentation of NK can range from persistent epithelial defects to corneal perforation and management is often both challenging and protracted. Historically, the management of NK has consisted of non-specific strategies to facilitate corneal epithelial healing such as lubrication, bandage contact lenses and tarsorrhaphy. Recent advances in the development of therapeutics for NK have provided new and efficacious targeted strategies for its management.In this article, we review recombinant human nerve growth factor (Cenegermin), currently approved for clinical use in the United States and Europe, as well as other promising therapeutic options that are in pre-clinical development such as thymosine β4, connexin43 inhibitors, and artificial extracellular matrix components.
Collapse
Affiliation(s)
- Thomas H Dohlman
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rohan Bir Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Trufanov SV, Subbot AM, Shakhbazyan NP. [Modern biotechnological treatment methods of persistent corneal epithelial defects]. Vestn Oftalmol 2020; 136:277-282. [PMID: 33063977 DOI: 10.17116/oftalma2020136052277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article reviews modern methods of treatment of persistent corneal epithelial defects and considers the factors involved in the development of this pathology, including the limbal stem cell deficiency, which is likely to play the main role. The most promising treatment methods are described, particularly the use of blood derivatives and cell therapy.
Collapse
Affiliation(s)
- S V Trufanov
- Research Institute of Eye Diseases, Moscow, Russia
| | - A M Subbot
- Research Institute of Eye Diseases, Moscow, Russia
| | - N P Shakhbazyan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
40
|
Ziaei M, Gokul A, Vellara H, Patel D, McGhee CN. Prospective two year study of changes in corneal density following transepithelial pulsed, epithelium-off continuous and epithelium-off pulsed, corneal crosslinking for keratoconus. Cont Lens Anterior Eye 2020; 43:458-464. [DOI: 10.1016/j.clae.2020.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
|
41
|
Diaz-Valle D, Burgos-Blasco B, Gegundez-Fernandez JA, Garcia-Caride S, Puebla-Garcia V, Peña-Urbina P, Benitez-Del-Castillo JM. Topical insulin for refractory persistent corneal epithelial defects. Eur J Ophthalmol 2020; 31:2280-2286. [PMID: 32951459 DOI: 10.1177/1120672120958307] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate insulin eye drops for persistent epithelial defects (PEDs) that are refractory to usual treatment in clinical practice and to analyze how it may improve epithelization. METHODS A prospective non-randomized hospital-based study was performed. Patients with PEDs that were refractory to conventional treatment were treated with insulin eye drops four times a day. Patients' demographics, PED etiology, concomitant treatments, and comorbidities were reviewed. The rate of PED closure and epithelial healing time were considered the primary outcome measures. RESULTS 21 patients were treated with insulin drops (12 females and 9 males; mean age 72.2 years). Mean PED area before treatment was 17.6 ± 16.5 mm2 (median 13.2; range 3.9-70.6). PED comorbidities included seven eyes with infectious keratitis (33%), five eyes with calcium keratopathy (24%), ocular surgery on three eyes (14%), three eyes with lagophthalmos (14%), two eyes with bullous keratopathy (10%), and one patient with herpetic eye disease (5%). The eyes of 17 patients (81%) with refractory PEDs had reepithelized and four patients (19%) had still presented an epithelial defect by the end of the study follow-up period, although it had decreased in size. In patients where PED closure was achieved, mean time until reepithelization was 34.8 ± 29.9 days (median 23; range 7-114). In the remaining patients, a mean area reduction of 91.5% was achieved for the PEDs. CONCLUSION Topical insulin can promote and accelerate corneal reepithelization of refractory PEDs. It also offers many other advantages, including excellent tolerance, availability, and cost-effectiveness.
Collapse
Affiliation(s)
- David Diaz-Valle
- Opthalmology Department and Health Research Institute (IdISSC), Hospital Clinico San Carlos, Madrid, Spain
| | - Barbara Burgos-Blasco
- Opthalmology Department and Health Research Institute (IdISSC), Hospital Clinico San Carlos, Madrid, Spain
| | - Jose A Gegundez-Fernandez
- Opthalmology Department and Health Research Institute (IdISSC), Hospital Clinico San Carlos, Madrid, Spain
| | - Sara Garcia-Caride
- Opthalmology Department and Health Research Institute (IdISSC), Hospital Clinico San Carlos, Madrid, Spain
| | | | - Pilar Peña-Urbina
- Opthalmology Department and Health Research Institute (IdISSC), Hospital Clinico San Carlos, Madrid, Spain
| | | |
Collapse
|
42
|
Cao Q, Xu W, Chen W, Peng D, Liu Q, Dong J, Reinach PS, Yan D. MicroRNA-184 negatively regulates corneal epithelial wound healing via targeting CDC25A, CARM1, and LASP1. EYE AND VISION 2020; 7:35. [PMID: 32766356 PMCID: PMC7395415 DOI: 10.1186/s40662-020-00202-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/15/2020] [Indexed: 11/10/2022]
Abstract
Background MicroRNAs (miRNAs) play critical roles in corneal development and functional homeostasis. Our previous study identified miR-184 as one of the most highly expressed miRNAs in the corneal epithelium. Even though its expression level plummeted dramatically during corneal epithelial wound healing (CEWH), its precise role in mediating corneal epithelial renewal was unresolved. The present study aimed to reveal the function and mechanism of miR-184 in regulating CEWH. Methods Quantitative RT-PCR analysis characterized the miR-184 expression pattern during CEWH in mice. Ectopic miR-184 injection determined its effect on this process in vivo. We evaluated the effects of miR-184 and its target genes on the proliferation, cell cycle, and migration of human corneal epithelial cells (HCECs) using MTS, flow cytometry, and wound-healing assay, respectively. Bioinformatic analysis, in conjunction with gene microarray analysis and cell-based luciferase assays, pinpointed gene targets of miR-184 contributing to CEWH. Results MiR-184 underwent marked downregulation during mouse CEWH. Ectopic miR-184 overexpression delayed this process in mice. Furthermore, miR-184 transfection into HCECs significantly inhibited cell proliferation, cell cycle progression, and cell migration. MiR-184 directly targeted CDC25A, CARM1, and LASP1, and downregulated their expression in HCECs. CARM1 downregulation inhibited both HCEC proliferation and migration, whereas a decrease in LASP1 gene expression only inhibited migration. Conclusions Our results demonstrate that miR-184 inhibits corneal epithelial cell proliferation and migration via targeting CDC25A, CARM1, and LASP1, suggesting it acts as a negative modulator during CEWH. Therefore, identifying strategies to suppress miR-184 expression levels has the potential to promote CEWH.
Collapse
Affiliation(s)
- Qiongjie Cao
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang China
| | - Weiwei Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang China
| | - Weiwei Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang China
| | - Dewei Peng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang China
| | - Qi Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang China
| | - Jing Dong
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang China
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang China
| | - Dongsheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang China
| |
Collapse
|
43
|
Ziaei M, Gokul A, Vellara H, Patel DV, McGhee CNJ. Measurement of refractive, wavefront, topographic, and keratometric changes attributable to epithelial removal in keratoconus. Can J Ophthalmol 2020; 56:6-11. [PMID: 32777204 DOI: 10.1016/j.jcjo.2020.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The corneal epithelium is able to mask topographic and keratometric abnormalities of the underlying Bowman layer in keratoconus, but its contribution to refractive and wavefront parameters has not yet been studied. This study compared the refractive and aberrometric features of the corneal epithelium and Bowman layer in eyes with keratoconus before and after epithelial debridement. METHODS Corneal refractive and wavefront variables were measured in patients with keratoconus undergoing corneal crosslinking-immediately before and after epithelial debridement using a third-generation combined corneal topographer, autorefractor, and aberrometer. RESULTS After epithelial debridement, there were significant changes in spherical equivalent (-1.37 D; p < 0.01) and asphericity (-0.64; p = 0.03). The mean difference in the magnitude of epithelium-induced astigmatism in the 3rd and 5th central millimeter rings was 0.44 ± 3.20 D × 8 and 0.43 ± 2.75 D × 21 (positive cylinder), respectively. Corneal astigmatism axis shifted in the against-the-rule orientation after epithelial debridement. There were no significant changes in any corneal higher-order aberration parameter after epithelial debridement (p > 0.05). CONCLUSIONS In eyes with keratoconus, epithelial debridement increased the magnitude of anterior corneal prolateness and tended to increase astigmatism and shift its axis toward the against-the-rule orientation. This study supports the notion that the corneal epithelium smooths underlying Bowman layer irregularity in keratoconus.
Collapse
Affiliation(s)
- Mohammed Ziaei
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand..
| | - Akilesh Gokul
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Hans Vellara
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Dipika V Patel
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Charles N J McGhee
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
44
|
A Systematic Review of Emerging Therapeutic Strategies in the Management of Chemical Injuries of the Ocular Surface. Eye Contact Lens 2020; 46:329-340. [PMID: 32452924 DOI: 10.1097/icl.0000000000000715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate recent in vivo studies on emerging therapies for managing corneal epithelial injuries. METHODS The search was conducted on PubMed for articles published between January 2015 and September 2019 and in English language. RESULTS Thirty studies were identified for evaluation, including those on mesenchymal stem cells, amniotic membrane-derived therapies, endogenous peptides and their inhibitors, as well as hydrogel therapies. Intermediate to strong levels of evidence are presented regarding the use of these strategies on chemically injured cornea, including their effects on healing of corneal epithelial defect, anti-inflammatory properties, prevention of corneal neovascularization, as well as restoration of anatomy and functions of the anterior eye, although clinical trials are needed to determine the safety and efficacy of these strategies on humans. CONCLUSION Recent advances and understanding in various novel therapeutic methods for corneal epithelial chemical injuries should provide potential alternatives to current standard treatment regimens and help reduce risks of complications, hence improve patient outcomes.
Collapse
|
45
|
Kasus-Jacobi A, Land CA, Stock AJ, Washburn JL, Pereira HA. Antimicrobial Peptides Derived from the Immune Defense Protein CAP37 Inhibit TLR4 Activation by S100A9. Invest Ophthalmol Vis Sci 2020; 61:16. [PMID: 32298435 PMCID: PMC7401491 DOI: 10.1167/iovs.61.4.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Corneal abrasion is a common eye injury, and its resolution can be seriously complicated by bacterial infection. We showed that topical application of the cationic antimicrobial protein of 37 kDa (CAP37) promotes corneal re-epithelialization in mice, and peptides derived from CAP37 can recapitulate the antibacterial and wound-healing effects of the full-length protein. The current study was designed to identify the molecular mechanisms mediating the wound-healing effect of CAP37 and derived bioactive peptides. Methods We used a TriCEPS-based, ligand-receptor glycocapture method to identify the binding partners of CAP37 on live human corneal epithelial cells using the hTCEpi cell line. We used an ELISA method to confirm binding with identified partners and test the binding with CAP37-derived peptides. We used a reporter cell line to measure activation of the identified membrane receptor by CAP37 and derived peptides. Results We pulled down S100 calcium-binding protein A9 (S100A9) as a binding partner of CAP37 and found that CAP37 and four derived peptides encompassing two regions of CAP37 bind S100A9 with high affinities. We found that CAP37 and the S100A9-binding peptides could also directly interact with the Toll-like receptor 4 (TLR4), a known receptor for S100A9. CAP37 and one peptide partially activated TLR4. The other three peptides did not activate TLR4. Finally, we found that CAP37 and all four peptides could inhibit the activation of TLR4 by S100A9. Conclusions This study identifies a mechanism of action for CAP37 and derived antimicrobial peptides that may restrain inflammatory responses to corneal injury and favor corneal re-epithelialization.
Collapse
Affiliation(s)
- Anne Kasus-Jacobi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Craig A. Land
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Amanda J. Stock
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Jennifer L. Washburn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - H. Anne Pereira
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
46
|
Zhou Y, Wang T, Wang Y, Meng F, Ying M, Han R, Hao P, Wang L, Li X. Blockade of extracellular high-mobility group box 1 attenuates inflammation-mediated damage and haze grade in mice with corneal wounds. Int Immunopharmacol 2020; 83:106468. [PMID: 32279044 DOI: 10.1016/j.intimp.2020.106468] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the expression of extracellular high mobility group box 1 (HMGB1) and the effect of its inhibitor glycyrrhizin (GL) in corneal wound healing. METHODS We treated C57BL/6J mice with GL or PBS before and after establishing a corneal injury model. Fluorescein staining, Ki-67 expression, haze grade, and haematoxylin/eosin (H&E) staining were used to assess treatment efficacy. The expression of HMGB1, NF-κB-p65, the NLRP3 inflammasome, IL-1β, CCL2, CXCL2, TGF-β1, α-SMA, fibronectin, and collagen III and neutrophil influx were examined by immunohistochemical staining, western blot, and RT-qPCR at various time points after corneal injury. RESULTS After corneal injury, HMGB1 transferred from the nucleus to the cytoplasm and was passively released or actively secreted into the corneal stroma from epithelial cells and inflammatory cells; however, this increase was attenuated by GL treatment. Furthermore, GL indirectly attenuated the expression of IL-1β by directly inhibiting extracellular HMGB1 functions, which activated the NF-κB-p65/NLRP3/IL-1β signalling pathway. Moreover, application of GL alleviated the neutrophil infiltration that delays wound healing, accompanied by the downregulation of expression of the chemokines CCL2 and CXCL2. More interestingly, application of GL reduced the degree of haze grade through inactivating extracellular HMGB1 functions that induced TGF-β1 release and myofibroblast differentiation. In addition, fluorescein and H&E staining and Ki-67 levels suggest that GL promotes regeneration of corneal epithelium. CONCLUSIONS After corneal injury, extracellular HMGB1 can be an essential driver to trigger a neutrophil- and cytokine-mediated inflammatory injury amplification loop. The application of GL promotes the cornea to restore transparency and integrity, which may be related to the attenuation of extracellular HMGB1 levels and function.
Collapse
Affiliation(s)
- Yongying Zhou
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Ting Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yuchuan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China; Nankai University Eye Hospital, Tianjin, China
| | - Fanlan Meng
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ming Ying
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China; Nankai University Eye Hospital, Tianjin, China
| | - Ruifang Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China; Nankai University Eye Hospital, Tianjin, China
| | - Peng Hao
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China; Nankai University Eye Hospital, Tianjin, China
| | - Liming Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China; Nankai University Eye Hospital, Tianjin, China
| | - Xuan Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China; Nankai University Eye Hospital, Tianjin, China.
| |
Collapse
|
47
|
Han Y, Jiang N, Su T, Yang QC, Yan CC, Ye L, Yuan Q, Zhu PW, Li W, Liu ZG, Shao Y. Netrin-1 promotes epithelium repair in corneal injury. Int J Ophthalmol 2020; 13:206-212. [PMID: 32090028 DOI: 10.18240/ijo.2020.02.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/25/2019] [Indexed: 11/23/2022] Open
Abstract
AIM To explore netrin-1 functions on corneal epithelium in vitro and in vivo. METHODS In vitro the human corneal epithelial (HCE) cells were treated with serum free DMEM-F12 basic media containing 0, 50, 100, 200, 300, 500, 800, and 1000 ng/mL of netrin-1, respectively. The cells viability was detected by cell counting kit-8 (CCK-8). The wound-healing assay was applied to assess the migration proficiency of HCE cells. Flow cytometry was used to analyze the cell-cycle distribution and apoptosis. In vivo, normal c57 (6wk) mice were demarcated with a trephine in the middle of the cornea to produce a 3-mm circular wound. Mice corneas were inflicted no epithelium with a 3-mm wound displayed, but remained the limbal epithelium intact. A blunt scalpel blade was used to remove the corneal epithelian cells, followed by topical netrin-1 application (200 ng/mL), and the group treated by PBS as control. The treated group was injected netrin-1 into the normal c57 mice inferior subconjunctival 4h before trauma. Mouse corneal inflammation and neovascularization were observed under slit lamp microscope. The apoptosis of corneal cells was determined by TUNEL staining. RESLUTS A concentration of 200 ng/mL netrin-1 enhanced 25% of the HCE viability. The relative migration rates were 76.3% and 100% in control and netrin-1 treated group after cultured 72h. Treated with netrin-1 (200 ng/mL) decreased the apoptosis of HCE cells, as well as decreased their percentage from 19.3%±0.57% to 12.7%±0.42% of the total. The remaining wound area was 1.22 mm2 in control group but 0.22 mm2 in the netrin-1 treated group. Exogenous Netrin-1 inhibits apoptosis of corneal epithelial cells of c57 mice. TUNEL-positive cells at the epithelial layer of the corneas of the control and netrin-1 treated c57 mice at 24h after wounding were 43.3% and 16.7% respectively. CONCLUSION Netrin-1 can reduce HCE apoptosis as well as promote its proliferation and migration. Topical application of netrin-1 promotes the injuryed cornea epithelial wound repair and inhibits apoptosis of corneal epithelial cells. These findings may offer potential therapies to repair the defects of corneal epithelial based on netrin-1.
Collapse
Affiliation(s)
- Yun Han
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Nan Jiang
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Ting Su
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Qi-Chen Yang
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Cong-Cong Yan
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Lei Ye
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qing Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Pei-Wen Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wei Li
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Zu-Guo Liu
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
48
|
Wu S, Zhou R, Zhou F, Streubel PN, Chen S, Duan B. Electrospun thymosin Beta-4 loaded PLGA/PLA nanofiber/ microfiber hybrid yarns for tendon tissue engineering application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110268. [PMID: 31753373 PMCID: PMC7061461 DOI: 10.1016/j.msec.2019.110268] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 01/08/2023]
Abstract
Microfiber yarns (MY) have been widely employed to construct tendon tissue grafts. However, suboptimal ultrastructure and inappropriate environments for cell interactions limit their clinical application. Herein, we designed a modified electrospinning device to coat poly(lactic-co-glycolic acid) PLGA nanofibers onto polylactic acid (PLA) MY to generate PLGA/PLA hybrid yarns (HY), which had a well-aligned nanofibrous structure, resembling the ultrastructure of native tendon tissues and showed enhanced failure load compared to PLA MY. PLGA/PLA HY significantly improved the growth, proliferation, and tendon-specific gene expressions of human adipose derived mesenchymal stem cells (HADMSC) compared to PLA MY. Moreover, thymosin beta-4 (Tβ4) loaded PLGA/PLA HY presented a sustained drug release manner for 28 days and showed an additive effect on promoting HADMSC migration, proliferation, and tenogenic differentiation. Collectively, the combination of Tβ4 with the nano-topography of PLGA/PLA HY might be an efficient strategy to promote tenogenesis of adult stem cells for tendon tissue engineering.
Collapse
Affiliation(s)
- Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; College of Textiles & Clothing, Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao, China
| | - Rong Zhou
- College of Textiles & Clothing, Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao, China; Industrial Research Institute of Nonwoven & Technical Textiles, Qingdao University, Qingdao, China
| | - Fang Zhou
- College of Textiles & Clothing, Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao, China
| | - Philipp N Streubel
- Department of Orthopedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaojuan Chen
- College of Textiles & Clothing, Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao, China.
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
49
|
Grimaudo MA, Amato G, Carbone C, Diaz-Rodriguez P, Musumeci T, Concheiro A, Alvarez-Lorenzo C, Puglisi G. Micelle-nanogel platform for ferulic acid ocular delivery. Int J Pharm 2019; 576:118986. [PMID: 31870956 DOI: 10.1016/j.ijpharm.2019.118986] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Corneal wound healing after a trauma or a chemical injury has been shown to correlate with antioxidant levels at the ocular surface. However, ocular bioavailability of efficient antioxidants (e.g. ferulic acid) after topical administration is limited by their poor solubility, low stability and short residence time. The aim of this work was to formulate ferulic acid in a nanocomposite platform composed of nanogels and micelles for efficient delivery to cornea. Solubility enhancement factor of ferulic acid was found to be equal to 1.9 ± 0.3 and 3.4 ± 0.3 for 50 and 100 mg/ml Pluronic® F68 micellar solutions. Hyaluronan was added to blank and ferulic acid loaded micelles, and then cross-linked with ε-polylysine. Hyaluronan nanogels showed dimensions of ~300 nm with positive zeta potential values. The formulations were characterized in terms of rheological behavior, biocompatibility, wound healing properties, ferulic acid release pattern and penetration into excised bovine corneas. In comparison to Pluronic® micelles that released ferulic acid rapidly, micelle-nanogel composites sustained the release up to 2 days. Furthermore, the micelle-nanogel formulation favored in vitro wound closure promoting fibroblasts growth and ex vivo accumulation of ferulic acid into both healthy and damaged corneas (>100 µg/cm2).
Collapse
Affiliation(s)
- Maria Aurora Grimaudo
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Giovanni Amato
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy.
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy
| | - Patricia Diaz-Rodriguez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Giovanni Puglisi
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy
| |
Collapse
|
50
|
Bremond-Gignac D, Daruich A, Robert MP, Chiambaretta F. Recent innovations with drugs in clinical trials for neurotrophic keratitis and refractory corneal ulcers. Expert Opin Investig Drugs 2019; 28:1013-1020. [PMID: 31596151 DOI: 10.1080/13543784.2019.1677605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Corneal ulcers normally resolve spontaneously because of the proliferative ability of the corneal epithelium; however, sometimes, epithelial healing is diminished, even when standard treatments are administered. Hence, the treatment of refractory corneal ulcers is challenging and is the subject of ongoing efforts in preclinical and clinical development. Emerging treatment approaches include thymosine β4, CODA001, and topical insulin. Cenegermin eye drops, containing recombinant human nerve growth factor and ReGenerating Agent, a matrix therapy agent, have recently been commercialized for the treatment of moderate to severe neurotrophic keratitis in adults.Areas covered: We describe emerging therapeutic approaches for the management of refractory corneal ulcers and treatments recently introduced to the market. Pubmed and Clinicaltrial.gov databases were first searched including the terms: "corneal ulcer" or "neurotrophic keratopathy" and "treatment." Each treatment was searched in the same databases separately.Expert opinion: Affections of the sensory corneal nerves are the main factor contributing to the pathophysiology of neurotrophic keratopathy; this explains the healing difficulties of this form of ulcer. Cenegermin is a promising therapy acting as a neurotrophic agent for corneal healing. ReGenerating Agent has led to rapid pain relief and corneal healing, but randomized clinical trials are still necessary for further assessment.
Collapse
Affiliation(s)
- Dominique Bremond-Gignac
- Ophthalmology Department, University Hospital Necker-Enfants malades, Paris, France.,INSERM UMRS 1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, Paris, France
| | - Alejandra Daruich
- Ophthalmology Department, University Hospital Necker-Enfants malades, Paris, France.,INSERM UMRS 1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, Paris, France
| | - Matthieu P Robert
- Ophthalmology Department, University Hospital Necker-Enfants malades, Paris, France
| | - Frederic Chiambaretta
- Ophthalmology Department, University Hospital Gabriel Monpied, Clermont-Ferrand, France
| |
Collapse
|