1
|
Li X, Chen H, Su Z, Zhao Q, Wang Y, Li N, Li S. Brightness Strategies toward NIR-II Emissive Conjugated Materials: Molecular Design, Application, and Future Prospects. ACS APPLIED BIO MATERIALS 2024; 7:8019-8039. [PMID: 38556979 DOI: 10.1021/acsabm.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Recent advances have been made in second near-infrared (NIR-II) fluorescence bioimaging and many related applications because of its advantages of deep penetration, high resolution, minimal invasiveness, and good dynamic visualization. To achieve high-performance NIR-II fluorescence bioimaging, various materials and probes with bright NIR-II emission have been extensively explored in the past few years. Among these NIR-II emissive materials, conjugated polymers and conjugated small molecules have attracted wide interest due to their native biosafety and tunable optical performance. This review summarizes the brightness strategies available for NIR-II emissive conjugated materials and highlights the recent developments in NIR-II fluorescence bioimaging. A concise, detailed overview of the molecular design and regulatory approaches is provided in terms of their high brightness, long wavelengths, and superior imaging performance. Then, various typical cases in which bright conjugated materials are used as NIR-II probes are introduced by providing step-by-step examples. Finally, the current problems and challenges associated with accessing NIR-II emissive conjugated materials for bright NIR-II fluorescence bioimaging are briefly discussed, and the significance and future prospects of these materials are proposed to offer helpful guidance for the development of NIR-II emissive materials.
Collapse
Affiliation(s)
- Xiliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Huan Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Zihan Su
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Yu Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
2
|
Liu H, Fukuyama M, Ogura Y, Kasuya M, Onose S, Imai A, Shigemura K, Tokeshi M, Hibara A. Sensitivity-improved blocking agent-free fluorescence polarization assay through surface modification using polyethylene glycol. Analyst 2024; 149:5139-5144. [PMID: 39247996 DOI: 10.1039/d4an00569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Fluorescence polarization (FP) assays are widely used to quantify biomolecules, and their combination with microfluidic devices has the potential for application in onsite analysis. However, the hydrophobic surface of polydimethylsiloxane (PDMS)-based microfluidic devices and the amphiphilicity of the blocking agents can cause the nonspecific adsorption of biomolecules, which in turn reduces the sensitivity of the FP assay. To address this, we demonstrated an FP assay with improved sensitivity in microfluidic devices using a polyethylene glycol-based surface modification to avoid the use of blocking agents. We evaluated the effectiveness of the modification in inhibiting nonspecific protein adsorption and demonstrated the improved sensitivity of the FP immunoassay (FPIA). Our study addressed the lack of sensitivity of FP assays in microfluidic devices, particularly for the quantification of low-abundance analytes.
Collapse
Affiliation(s)
- Hao Liu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
- School of Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Mao Fukuyama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Yu Ogura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Motohiro Kasuya
- Faculty of Production Systems Engineering and Sciences, Komatsu University, Nu 1-3 Shicho-machi, Komatsu, Ishikawa 923-8511, Japan
| | - Sho Onose
- Tianma Japan, Ltd., Shin-Kawasaki Mitsui Building West Tower 28F 1-1-2, Kashimada, Saiwai-ku, Kawasaki, Kanagawa 212-0058, Japan
| | - Ayuko Imai
- Tianma Japan, Ltd., Shin-Kawasaki Mitsui Building West Tower 28F 1-1-2, Kashimada, Saiwai-ku, Kawasaki, Kanagawa 212-0058, Japan
| | - Koji Shigemura
- Tianma Japan, Ltd., Shin-Kawasaki Mitsui Building West Tower 28F 1-1-2, Kashimada, Saiwai-ku, Kawasaki, Kanagawa 212-0058, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Akihide Hibara
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
3
|
Sun T, Zhao H, Hu L, Shao X, Lu Z, Wang Y, Ling P, Li Y, Zeng K, Chen Q. Enhanced optical imaging and fluorescent labeling for visualizing drug molecules within living organisms. Acta Pharm Sin B 2024; 14:2428-2446. [PMID: 38828150 PMCID: PMC11143489 DOI: 10.1016/j.apsb.2024.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 06/05/2024] Open
Abstract
The visualization of drugs in living systems has become key techniques in modern therapeutics. Recent advancements in optical imaging technologies and molecular design strategies have revolutionized drug visualization. At the subcellular level, super-resolution microscopy has allowed exploration of the molecular landscape within individual cells and the cellular response to drugs. Moving beyond subcellular imaging, researchers have integrated multiple modes, like optical near-infrared II imaging, to study the complex spatiotemporal interactions between drugs and their surroundings. By combining these visualization approaches, researchers gain supplementary information on physiological parameters, metabolic activity, and tissue composition, leading to a comprehensive understanding of drug behavior. This review focuses on cutting-edge technologies in drug visualization, particularly fluorescence imaging, and the main types of fluorescent molecules used. Additionally, we discuss current challenges and prospects in targeted drug research, emphasizing the importance of multidisciplinary cooperation in advancing drug visualization. With the integration of advanced imaging technology and molecular design, drug visualization has the potential to redefine our understanding of pharmacology, enabling the analysis of drug micro-dynamics in subcellular environments from new perspectives and deepening pharmacological research to the levels of the cell and organelles.
Collapse
Affiliation(s)
- Ting Sun
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huanxin Zhao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Luyao Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xintian Shao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- School of Life Sciences, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhiyuan Lu
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yuli Wang
- Tianjin Pharmaceutical DA REN TANG Group Corporation Limited Traditional Chinese Pharmacy Research Institute, Tianjin 300457, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Peixue Ling
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kewu Zeng
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qixin Chen
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
4
|
Smith HE, Mackenzie AM, Seddon C, Mould R, Kalampouka I, Malakar P, Needham SR, Beis K, Bell JD, Nunn A, Botchway SW. The use of NADH anisotropy to investigate mitochondrial cristae alignment. Sci Rep 2024; 14:5980. [PMID: 38472304 PMCID: PMC10933486 DOI: 10.1038/s41598-024-55780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Life may be expressed as the flow of electrons, protons, and other ions, resulting in large potential difference. It is also highly photo-sensitive, as a large proportion of the redox capable molecules it relies on are chromophoric. It is thus suggestive that a key organelle in eukaryotes, the mitochondrion, constantly adapt their morphology as part of the homeostatic process. Studying unstained in vivo nano-scale structure in live cells is technically very challenging. One option is to study a central electron carrier in metabolism, reduced nicotinamide adenine dinucleotide (NADH), which is fluorescent and mostly located within mitochondria. Using one and two-photon absorption (340-360 nm and 730 nm, respectively), fluorescence lifetime imaging and anisotropy spectroscopy of NADH in solution and in live cells, we show that mitochondria do indeed appear to be aligned and exhibit high anisotropy (asymmetric directionality). Aqueous solution of NADH showed an anisotropy of ~ 0.20 compared to fluorescein or coumarin of < 0.1 and 0.04 in water respectively and as expected for small organic molecules. The anisotropy of NADH also increased further to 0.30 in the presence of proteins and 0.42 in glycerol (restricted environment) following two-photon excitation, suggesting more ordered structures. Two-photon NADH fluorescence imaging of Michigan Cancer Foundation-7 (MCF7) also showed strong anisotropy of 0.25 to 0.45. NADH has a quantum yield of fluorescence of 2% compared to more than 40% for photoionisation (electron generation), when exposed to light at 360 nm and below. The consequence of such highly ordered and directional NADH patterns with respect to electron ejection upon ultra-violet (UV) excitation could be very informative-especially in relation to ascertaining the extent of quantum effects in biology, including electron and photonic cascade, communication and modulation of effects such as spin and tunnelling.
Collapse
Affiliation(s)
- Holly E Smith
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK
| | - Alasdair M Mackenzie
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK
| | - Chloe Seddon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK
| | - Rhys Mould
- School of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| | - Ifi Kalampouka
- School of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| | - Partha Malakar
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK
| | - Sarah R Needham
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK
| | - Jimmy D Bell
- School of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| | - Alistair Nunn
- School of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK.
| |
Collapse
|
5
|
Huang W, Cheng Y, Zhai J, Qin Y, Zhang W, Xie X. Expanded single-color barcoding in microspheres with fluorescence anisotropy for multiplexed biochemical detection. Analyst 2023; 148:4406-4413. [PMID: 37552039 DOI: 10.1039/d3an00938f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Single-color barcoding strategies could break the limits of spectral crosstalk in conventional intensity-based fluorescence barcodes. Fluorescence anisotropy (FA), a self-referencing quantity able to differentiate spectrally similar fluorophores, is highly attractive in designing fluorescent barcodes within a limited emission window. In this study, FA-based encoding of polystyrene (PS) microspheres was realized for the first time. The FA signals of fluorophores were stabilized inside PS microspheres owing to hampered rotational motion. Fluorescent labels were incorporated with similar emission but different structures, symmetries, and lifetimes. On the one hand, Förster Resonance Energy Transfer (FRET) including homo-FRET and hetero-FRET resulted in a decrease of steady-state FA with increasing dye loading, converting conventional intensity-based codes into FA-based codes. On the other hand, mixing dyes with different intrinsic FA values generated different FA values at the same fluorescence intensity level. Single color 5-plex FA-encoded microspheres were demonstrated and decoded on a homemade microscopic FA imaging platform in real time. The FA-encoded microspheres were successfully applied to detect the oligonucleotide of the foodborne bacterium, Bacillus cereus, without spectral crosstalk between the encoding and reporting dyes. Overall, FA-based encoding with an expanded coding capacity in the FA dimension holds great potential in multiplexed high-throughput chemical and biological analyses.
Collapse
Affiliation(s)
- Wenyu Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yu Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuemin Qin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Weian Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Zeng S, Liu X, Kafuti YS, Kim H, Wang J, Peng X, Li H, Yoon J. Fluorescent dyes based on rhodamine derivatives for bioimaging and therapeutics: recent progress, challenges, and prospects. Chem Soc Rev 2023; 52:5607-5651. [PMID: 37485842 DOI: 10.1039/d2cs00799a] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since their inception, rhodamine dyes have been extensively applied in biotechnology as fluorescent markers or for the detection of biomolecules owing to their good optical physical properties. Accordingly, they have emerged as a powerful tool for the visualization of living systems. In addition to fluorescence bioimaging, the molecular design of rhodamine derivatives with disease therapeutic functions (e.g., cancer and bacterial infection) has recently attracted increased research attention, which is significantly important for the construction of molecular libraries for diagnostic and therapeutic integration. However, reviews focusing on integrated design strategies for rhodamine dye-based diagnosis and treatment and their wide application in disease treatment are extremely rare. In this review, first, a brief history of the development of rhodamine fluorescent dyes, the transformation of rhodamine fluorescent dyes from bioimaging to disease therapy, and the concept of optics-based diagnosis and treatment integration and its significance to human development are presented. Next, a systematic review of several excellent rhodamine-based derivatives for bioimaging, as well as for disease diagnosis and treatment, is presented. Finally, the challenges in practical integration of rhodamine-based diagnostic and treatment dyes and the future outlook of clinical translation are also discussed.
Collapse
Affiliation(s)
- Shuang Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaosheng Liu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Yves S Kafuti
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning 110042, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
7
|
Dossou AS, Mantsch ME, Kapic A, Burnett WL, Sabnis N, Coffer JL, Berg RE, Fudala R, Lacko AG. Mannose-Coated Reconstituted Lipoprotein Nanoparticles for the Targeting of Tumor-Associated Macrophages: Optimization, Characterization, and In Vitro Evaluation of Effectiveness. Pharmaceutics 2023; 15:1685. [PMID: 37376134 DOI: 10.3390/pharmaceutics15061685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Reconstituted high-density lipoprotein nanoparticles (rHDL NPs) have been utilized as delivery vehicles to a variety of targets, including cancer cells. However, the modification of rHDL NPs for the targeting of the pro-tumoral tumor-associated macrophages (TAMs) remains largely unexplored. The presence of mannose on nanoparticles can facilitate the targeting of TAMs which highly express the mannose receptor at their surface. Here, we optimized and characterized mannose-coated rHDL NPs loaded with 5,6-dimethylxanthenone-4-acetic acid (DMXAA), an immunomodulatory drug. Lipids, recombinant apolipoprotein A-I, DMXAA, and different amounts of DSPE-PEG-mannose (DPM) were combined to assemble rHDL-DPM-DMXAA NPs. The introduction of DPM in the nanoparticle assembly altered the particle size, zeta potential, elution pattern, and DMXAA entrapment efficiency of the rHDL NPs. Collectively, the changes in physicochemical characteristics of rHDL NPs upon the addition of the mannose moiety DPM indicated that the rHDL-DPM-DMXAA NPs were successfully assembled. The rHDL-DPM-DMXAA NPs induced an immunostimulatory phenotype in macrophages pre-exposed to cancer cell-conditioned media. Furthermore, rHDL-DPM NPs delivered their payload more readily to macrophages than cancer cells. Considering the effects of the rHDL-DPM-DMXAA NPs on macrophages, the rHDL-DPM NPs have the potential to serve as a drug delivery platform for the selective targeting of TAMs.
Collapse
Affiliation(s)
- Akpedje S Dossou
- Department of Microbiology, Immunology and Genetics, UNT Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Morgan E Mantsch
- College of Natural Sciences, University of Texas at Austin, Austin, TX 78705, USA
| | - Ammar Kapic
- Department of Microbiology, Immunology and Genetics, UNT Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - William L Burnett
- College of Science and Engineering, Texas Christian University (TCU), Fort Worth, TX 76129, USA
| | - Nirupama Sabnis
- Department of Microbiology, Immunology and Genetics, UNT Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Jeffery L Coffer
- College of Science and Engineering, Texas Christian University (TCU), Fort Worth, TX 76129, USA
| | - Rance E Berg
- Department of Microbiology, Immunology and Genetics, UNT Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Rafal Fudala
- Department of Microbiology, Immunology and Genetics, UNT Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Andras G Lacko
- Department of Microbiology, Immunology and Genetics, UNT Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| |
Collapse
|
8
|
Esteruelas G, Ortiz A, Prat J, Vega E, Muñoz-Juncosa M, López MLG, Ettcheto M, Camins A, Sánchez-López E, Pujol M. Novel customized age-dependent corneal membranes and interactions with biodegradable nanoparticles loaded with dexibuprofen. Colloids Surf B Biointerfaces 2023; 228:113394. [PMID: 37301018 DOI: 10.1016/j.colsurfb.2023.113394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Ocular inflammation is one of the most prevalent diseases in ophthalmology and it is currently treated using eye drops of nonsteroidal antiinflammatory drugs such as dexibuprofen (DXI). However, their bioavailability is low and therefore, PLGA nanoparticles constitute a suitable approach to be administered as eyedrops. Therefore, DXI has been encapsulated into PLGA nanoparticles (DXI-NPs). Although the eye, and specifically the cornea, suffers from age-related changes in its composition, current medications are not focused on these variations. Therefore, to elucidate the interaction mechanism of DXI-NPs with the cornea in relation with age, two different corneal membrane models have been developed (corresponding to adult and elder population) using lipid monolayers, large and giant unilamellar vesicles. Interactions of both DXI and DXI-NPs were studied with these models by means of Langmuir balance technique, dipole potential, anisotropy and confocal microscopy. In addition, fluorescently labelled nanoparticles were administered to mice in order to corroborate these data obtained in vitro. It was observed that DXI-NPs interact with lipid membranes through an adhesion process, mainly in the rigid regions and afterwards DXI-NPs are internalized by a wrapping process. Furthermore, differences on the dipole potential caused by DXI-NPs in each corneal membrane have been obtained due to the increase of membrane rigidity on the ECMM. Additionally, it can be confirmed that DXI-NPs adhere to Lo phase and also inside the lipid membrane. Finally, in vitro and in vivo results corroborate that DXI-NPs are adhered to the more ordered phase. Finally, differences between interactions of DXI-NPs with the elder and adult corneal tissue were observed.
Collapse
Affiliation(s)
- Gerard Esteruelas
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Alba Ortiz
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Josefina Prat
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Estefania Vega
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Montserrat Muñoz-Juncosa
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maria Luisa Garcia López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, 28031 Madrid, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, 28031 Madrid, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, 28031 Madrid, Spain; Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain.
| | - Montserrat Pujol
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
9
|
Lu YH, Jenkins MC, Richardson KG, Palui S, Islam MS, Tripathy J, Finn MG, Dickson RM. Sequential Two-Photon Delayed Fluorescence Anisotropy for Macromolecular Size Determination. J Phys Chem B 2023; 127:3861-3869. [PMID: 37096986 PMCID: PMC10165651 DOI: 10.1021/acs.jpcb.3c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Time-resolved fluorescence anisotropy (FA) uses the fluorophore depolarization rate to report on rotational diffusion, conformation changes, and intermolecular interactions in solution. Although FA is a rapid, sensitive, and nondestructive tool for biomolecular interaction studies, the short (∼ns) fluorescence lifetime of typical dyes largely prevents the application of FA on larger macromolecular species and complexes. By using triplet shelving and recovery of optical excitation, we introduce optically activated delayed fluorescence anisotropy (OADFA) measurements using sequential two-photon excitation, effectively stretching fluorescence anisotropy measurement times from the nanosecond scale to hundreds of microseconds. We demonstrate this scheme for measuring slow depolarization processes of large macromolecular complexes, derive a quantitative rate model, and perform Monte Carlo simulations to describe the depolarization process of OADFA at the molecular level. This setup has great potential to enable future biomacromolecular and colloidal studies.
Collapse
Affiliation(s)
- Yi-Han Lu
- School of Chemistry and Biochemistry and Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Matthew C Jenkins
- School of Chemistry and Biochemistry and Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Katherine G Richardson
- School of Chemistry and Biochemistry and Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Sayan Palui
- School of Chemistry and Biochemistry and Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Md Shariful Islam
- School of Chemistry and Biochemistry and Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Jagnyaseni Tripathy
- School of Chemistry and Biochemistry and Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- Department of Physics, School of Applied Sciences, KIIT University, Bhubaneswar 751024, India
| | - M G Finn
- School of Chemistry and Biochemistry and Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Robert M Dickson
- School of Chemistry and Biochemistry and Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
10
|
Wang Y, Wang P, Li C. Fluorescence microscopic platforms imaging mitochondrial abnormalities in neurodegenerative diseases. Adv Drug Deliv Rev 2023; 197:114841. [PMID: 37088402 DOI: 10.1016/j.addr.2023.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Neurodegenerative diseases (NDs) are progressive disorders that cause the degeneration of neurons. Mitochondrial dysfunction is a common symptom in NDs and plays a crucial role in neuronal loss. Mitochondrial abnormalities can be observed in the early stages of NDs and evolve throughout disease progression. Visualizing mitochondrial abnormalities can help understand ND progression and develop new therapeutic strategies. Fluorescence microscopy is a powerful tool for dynamically imaging mitochondria due to its high sensitivity and spatiotemporal resolution. This review discusses the relationship between mitochondrial dysfunction and ND progression, potential biomarkers for imaging dysfunctional mitochondria, advances in fluorescence microscopy for detecting organelles, the performance of fluorescence probes in visualizing ND-associated mitochondria, and the challenges and opportunities for developing new generations of fluorescence imaging platforms for monitoring mitochondria in NDs.
Collapse
Affiliation(s)
- Yicheng Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengwei Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University Shanghai 201203, China.
| |
Collapse
|
11
|
Esmaeili Y, Mohammadi Z, Khavani M, Sanati A, Shariati L, Seyedhosseini Ghaheh H, Bidram E, Zarrabi A. Fluorescence anisotropy cytosensing of folate receptor positive tumor cells using 3D polyurethane-GO-foams modified with folic acid: molecular dynamics and in vitro studies. Mikrochim Acta 2023; 190:44. [PMID: 36602637 DOI: 10.1007/s00604-022-05558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/29/2022] [Indexed: 01/06/2023]
Abstract
Integrated polyurethane (PU)-based foams modified with PEGylated graphene oxide and folic acid (PU@GO-PEG-FA) were developed with the goal of capturing and detecting tumor cells with precision. The detection of the modified PU@GO-PEG surface through FA against folate receptor-overexpressed tumor cells is the basis for tumor cell capture. Molecular dynamics (MD) simulations were applied to study the strength of FA interactions with the folate receptor. Based on the obtained results, the folate receptor has intense interactions with FA, which leads to the reduction in the FA interactions with PEG, and so decreases the fluorescence intensity of the biosensor. The synergistic interactions offer the FA-modified foams a high efficiency for capturing the tumor cell. Using a turn-off fluorescence technique based on the complicated interaction of FA-folate receptor generated by target recognition, the enhanced capture tumor cells could be directly read out at excitation-emission wavelengths of 380-450 nm. The working range is between 1×10 2 to 2×10 4 cells mL -1 with a detection limit of 25 cells mL -1 and good reproducibility with relative standard deviation of 2.35%. Overall, findings demonstrate that the fluorescence-based biosensor has a significant advantage for early tumor cell diagnosis.
Collapse
Affiliation(s)
- Yasaman Esmaeili
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Mohammadi
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Alireza Sanati
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Ave, 8174673461, Isfahan, Iran
| | - Hooria Seyedhosseini Ghaheh
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bidram
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey.
| |
Collapse
|
12
|
Nawalage S, Wathudura P, Wang A, Wamsley M, Zou S, Zhang D. Effects of Cascading Optical Processes: Part I: Impacts on Quantification of Sample Scattering Extinction, Intensity, and Depolarization. Anal Chem 2023; 95:1899-1907. [PMID: 36598877 DOI: 10.1021/acs.analchem.2c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Light scattering is a universal matter property that is especially prominent in nanoscale or larger materials. However, the effects of scattering-based cascading optical processes on experimental quantification of sample absorption, scattering, and emission intensities, as well as scattering and emission depolarization, have not been adequately addressed. Using a series of polystyrene nanoparticles (PSNPs) of different sizes as model analytes, we present a computational and experimental study on the effects of cascading light scattering on experimental quantification of NP scattering activities (scattering cross-section or molar coefficient), intensity, and depolarization. Part II and Part III of this series of companion articles explore the effects of cascading optical processes on sample absorption and fluorescence measurements, respectively. A general theoretical model is developed on how forward scattered light complicates the general applicability of Beer's law to the experimental UV-vis spectrum of scattering samples. The correlation between the scattering intensity and PSNP concentration is highly complicated with no robust linearity even when the scatterers' concentration is very low. Such complexity arises from the combination of concentration-dependence of light scattering depolarization and the scattering inner filter effects (IFEs). Scattering depolarization increases with the PSNP scattering extinction (thereby, its concentration) but can never reach unity (isotropic) due to the polarization dependence of the scattering IFE. The insights from this study are important for understanding the strengths and limitations of various scattering-based techniques for material characterization including nanoparticle quantification. They are also foundational for quantitative mechanistic understanding on the effects of light scattering on sample absorption and fluorescence measurements.
Collapse
Affiliation(s)
- Samadhi Nawalage
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Pathum Wathudura
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Ankai Wang
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Max Wamsley
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Shengli Zou
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Dongmao Zhang
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
13
|
Huang W, Guo C, Zhai J, Xie X. Fluorescence Anisotropy as a Self-Referencing Readout for Ion-Selective Sensing and Imaging Using Homo-FRET between Chromoionophores. Anal Chem 2022; 94:9793-9800. [PMID: 35772106 DOI: 10.1021/acs.analchem.2c01532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence anisotropy has been widely used in developing biosensors and immunoassays, by virtue of the self-reference and environment-sensitive properties. However, fluorescence anisotropic chemical sensors on inorganic ions are limited by the total anisotropy change. To this end, we demonstrate here fluorescence anisotropic ion-selective optodes based on the homo-FRET (Förster resonance energy transfer) of the crowded chromoionophores. The conventional fluorescence on-off mode is transformed into the anisotropic mode. Variation of the target ion concentration changes the inter-chromoionophore distance in the organic sensing phase, leading to different extents of homo-FRET and steady-state anisotropy. A theoretical model is developed by coupling homo-FRET and anisotropy. Anisotropic detections of pH, K+, and Na+ are demonstrated as examples based on the different ionophores for H+, K+, and Na+, respectively. Further, fluorescence imaging of the nano-optodes, plasticized poly(vinyl chloride) sensing films, and live cells are demonstrated using a homemade fluorescence anisotropic imaging platform. The results form the basis of an ion-selective analytical method operating in the fluorescence anisotropic mode, which could potentially be applied to other fluorescence on-off probes based on homo-FRET.
Collapse
Affiliation(s)
- Wenyu Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chao Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingying Zhai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Khanlarkhani S, Akbarzadeh AR, Rahimi R. A retrospective-prospective survey of porphyrinoid fluorophores: towards new architectures as an electron transfer systems promoter. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Pang H, Li H, Zhang W, Mao J, Zhang L, Zhang Z, Zhang Q, Wang D, Jiang J, Li P. Fullerenol Quantum Dots-Based Highly Sensitive Fluorescence Aptasensor for Patulin in Apple Juice. Toxins (Basel) 2022; 14:272. [PMID: 35448881 PMCID: PMC9024875 DOI: 10.3390/toxins14040272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
A highly selective and sensitive aptasensor for detecting patulin (PAT) was constructed based on the fluorescence quenching of fullerenol quantum dots (FOQDs) towards carboxytetramethylrhodamine (TAMRA) through PET mechanism. The π-π stacking interaction between PAT aptamer and FOQDs closed the distance between TAMRA and FOQDs and the fluorescence of TAMRA was quenched with maximum quenching efficiency reaching 85%. There was no non-specific fluorescence quenching caused by FOQDs. In the presence of PAT, the PAT aptamer was inclined to bind with PAT and its conformation was changed. Resulting in the weak π-π stacking interaction between PAT aptamer and FOQDs. Therefore, the fluorescence of TAMRA recovered and was linearly correlated to the concentration of PAT in the range of 0.02-1 ng/mL with a detection limit of 0.01 ng/mL. This PAT aptasensor also performed well in apple juice with linear dynamic range from 0.05-1 ng/mL. The homogeneous fluorescence aptasensor shows broad application prospect in the detection of various food pollutants.
Collapse
Affiliation(s)
- Hua Pang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
| | - Hui Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Zhaowei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Du Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jun Jiang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.P.); (W.Z.); (J.M.); (L.Z.); (Z.Z.); (Q.Z.); (D.W.); (J.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
16
|
Langer A, Lüdecke A, Bartoschik T, Cehlar O, Duhr S, Baaske P, Streicher W. A New Spectral Shift-Based Method to Characterize Molecular Interactions. Assay Drug Dev Technol 2022; 20:83-94. [PMID: 35171002 PMCID: PMC8968852 DOI: 10.1089/adt.2021.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
There are many fluorescence-based applications that can be used to characterize molecular interactions. However, available methods often depend on site-specific labeling techniques or binding-induced changes in conformation or size of the probed target molecule. To overcome these limitations, we applied a ratiometric dual-emission approach that quantifies ligand-induced spectral shifts with sub-nanometer sensitivity. The use of environment-sensitive near-infrared dyes with the method we describe enables affinity measurements and thermodynamic characterization without the explicit need for site-specific labeling or ligand-induced conformational changes. We demonstrate that in-solution spectral shift measurements enable precise characterization of molecular interactions for a variety of biomolecules, including proteins, antibodies, and nucleic acids. Thereby, the described method is not limited to a subset of molecules since even the most challenging samples of research and drug discovery projects like membrane proteins and intrinsically disordered proteins can be analyzed.
Collapse
Affiliation(s)
| | | | | | - Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stefan Duhr
- NanoTemper Technologies GmbH, Munich, Germany
| | | | | |
Collapse
|
17
|
Yahav G, Weber Y, Duadi H, Pawar S, Fixler D. Classification of fluorescent anisotropy decay based on the distance approach in the frequency domain. OPTICS EXPRESS 2022; 30:6176-6192. [PMID: 35209559 DOI: 10.1364/oe.453108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Frequency-domain (FD) fluorometry is a widely utilized tool to probe unique features of complex biological structures, which may serve medical diagnostic purposes. The conventional data analysis approaches used today to extract the fluorescence intensity or fluorescence anisotropy (FA) decay data suffer from several drawbacks and are inherently limited by the characteristics and complexity of the decay models. This paper presents the squared distance (D2) technique, which categorized samples based on the direct frequency response data (FRD) of the FA decay. As such, it improves the classification ability of the FD measurements of the FA decay as it avoids any distortion that results from the challenged translation into time domain data. This paper discusses the potential use of the D2 approach to classify biological systems. Mathematical formulation of D2 technique adjusted to the FRD of the FA decay is described. In addition, it validates the D2 approach using 2 simulated data sets of 6 groups with similar widely and closely spaced FA decay data as well as in experimental data of 4 samples of a fluorophore-solvent (fluorescein-glycerol) system. In the simulations, the classification accuracy was above 95% for all 6 groups. In the experimental data, the classification accuracy was 100%. The D2 approach can help classify samples whose FA decay data are difficult to extract making FA in the FD a realistic diagnostic tool. The D2 approach offers an advanced method for sorting biological samples with differences beyond the practical temporal resolution limit in a reliable and efficient manner based on the FRD of their time-resolved fluorescence measurements thereby achieving better diagnostic quality in a shorter time.
Collapse
|
18
|
Greytak AB, Abiodun SL, Burrell JM, Cook EN, Jayaweera NP, Islam MM, Shaker AE. Thermodynamics of nanocrystal–ligand binding through isothermal titration calorimetry. Chem Commun (Camb) 2022; 58:13037-13058. [DOI: 10.1039/d2cc05012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Manipulations of nanocrystal (NC) surfaces have propelled the applications of colloidal NCs across various fields such as bioimaging, catalysis, electronics, and sensing applications.
Collapse
Affiliation(s)
- Andrew B. Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Sakiru L. Abiodun
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Jennii M. Burrell
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Emily N. Cook
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Nuwanthaka P. Jayaweera
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Md Moinul Islam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Abdulla E Shaker
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
19
|
Yuan Y, Almohammadi H, Probst J, Mezzenga R. Plasmonic Amyloid Tactoids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106155. [PMID: 34658087 PMCID: PMC11468577 DOI: 10.1002/adma.202106155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Despite their link to neurodegenerative diseases, amyloids of natural and synthetic sources can also serve as building blocks for functional materials, while possessing intrinsic photonic properties. Here, it is demonstrated that orientationally ordered amyloid fibrils exhibit polarization-dependent fluorescence, and can mechanically align rod-shaped plasmonic nanoparticles codispersed with them. The coupling between the photonic fibrils in liquid crystalline phases and the plasmonic effect of the nanoparticles leads to selective activation of plasmonic extinctions as well as enhanced fluorescence from the hybrid material. These findings are consistent with numerical simulations of the near-field plasmonic enhancement around the nanoparticles. The study provides an approach to synthesize the intrinsic photonic and mechanical properties of amyloid into functional hybrid materials, and may help improve the detection of amyloid deposits based on their enhanced intrinsic luminescence.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
| | - Hamed Almohammadi
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
| | - Julie Probst
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8093Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
- Department of MaterialsETH ZürichZürich8093Switzerland
| |
Collapse
|
20
|
Lee CY, Degani I, Cheong J, Weissleder R, Lee JH, Cheon J, Lee H. Development of Integrated Systems for On-Site Infection Detection. Acc Chem Res 2021; 54:3991-4000. [PMID: 34677927 DOI: 10.1021/acs.accounts.1c00498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The modern healthcare system faces an unrelenting threat from microorganisms, as evidenced by global outbreaks of new viral diseases, emerging antimicrobial resistance, and the rising incidence of healthcare-associated infections (HAIs). An effective response to these threats requires rapid and accurate diagnostic tests that can identify causative pathogens at the point of care (POC). Such tests could eliminate diagnostic uncertainties, facilitating patient triaging, minimizing the empiric use of antimicrobial drugs, and enabling targeted treatments. Current standard methods, however, often fail to meet the needs of rapid diagnosis in POC settings. Culture-based assays entail long processing times and require specialized laboratory infrastructure; nucleic acid (NA) tests are often limited to centralized hospitals due to assay complexity and high costs. Here we discuss two new POC tests developed in our groups to enable the rapid diagnosis of infection. The first is nanoPCR that takes advantages of core-shell magnetoplasmonic nanoparticles (MPNs): (i) Au shell significantly accelerates thermocycling via volumetric, plasmonic light-to-heat conversion and (ii) a magnetic core enables sensitive in situ fluorescent detection via magnetic clearing. By adopting a Ferris wheel module, the system expedites multisamples in parallel with a minimal setup. When applied to COVID-19 diagnosis, nanoPCR detected SARS-CoV-2 RNA down to 3.2 copy/μL within 17 min. In particular, nanoPCR diagnostics accurately identified COVID-19 cases in clinical samples (n = 150), validating its clinical applicability. The second is a polarization anisotropy diagnostic (PAD) system that exploits the principle of fluorescence polarization (FP) as a detection modality. Fluorescent probes were designed to alter their molecular weight upon recognizing target NAs. This event modulates the probes' tumbling rate (Brownian motion), which leads to changes in FP. The approach is robust against environmental noise and benefits from the ratiometric nature of the signal readout. We applied PAD to detect clinically relevant HAI bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus). The PAD assay demonstrated detection sensitivity down to the single bacterium level and determined both drug resistance and virulence status. In summary, these new tests have the potential to become powerful tools for rapid diagnosis in the infectious disease space. They do not require highly skilled personnel or labor-intensive analyses, and the assays are quick and cost-effective. These attributes will make nanoPCR and PAD well-aligned with a POC workflow to aid physicians to initiate prompt and informed patient treatment.
Collapse
Affiliation(s)
- Chang Yeol Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ismail Degani
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02142, United States
| | - Jiyong Cheong
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Department of Systems Biology, Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jae-Hyun Lee
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jinwoo Cheon
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
21
|
Cao J, Lian G, Qi X, Jin G. Design synthesis and photophysical properties of a novel antitumor fluorescence agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Payne NC, Kalyakina AS, Singh K, Tye MA, Mazitschek R. Bright and stable luminescent probes for target engagement profiling in live cells. Nat Chem Biol 2021; 17:1168-1177. [PMID: 34675420 PMCID: PMC8555866 DOI: 10.1038/s41589-021-00877-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023]
Abstract
The pace of progress in biomedical research directly depends on techniques that enable the quantitative interrogation of interactions between proteins and other biopolymers, or with their small-molecule ligands. Time-resolved Förster resonance energy transfer (TR-FRET) assay platforms offer high sensitivity and specificity. However, the paucity of accessible and biocompatible luminescent lanthanide complexes, which are essential reagents for TR-FRET-based approaches, and their poor cellular permeability have limited broader adaptation of TR-FRET beyond homogeneous and extracellular assay applications. Here, we report the development of CoraFluors, a new class of macrotricyclic terbium complexes, which are synthetically readily accessible, stable in biological media and exhibit photophysical and physicochemical properties that are desirable for biological studies. We validate the performance of CoraFluors in cell-free systems, identify cell-permeable analogs and demonstrate their utility in the quantitative domain-selective characterization of Keap1 ligands, as well as in isoform-selective target engagement profiling of HDAC1 inhibitors in live cells.
Collapse
Affiliation(s)
- N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alena S Kalyakina
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Karlsruhe, Germany
| | - Kritika Singh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Mark A Tye
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
23
|
Jain P, Aida T, Motosuke M. Fluorescence Anisotropy as a Temperature-Sensing Molecular Probe Using Fluorescein. MICROMACHINES 2021; 12:1109. [PMID: 34577751 PMCID: PMC8469510 DOI: 10.3390/mi12091109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 01/28/2023]
Abstract
Fluorescence anisotropy, a technique to study the folding state of proteins or affinity of ligands, is used in this present work as a temperature sensor, to measure the microfluidic temperature field, by adding fluorophore in the liquid. Fluorescein was used as a temperature-sensing probe, while glycerol-aq. ammonia solution was used as a working fluid. Fluorescence anisotropy of fluorescein was measured by varying various parameters. Apart from this, a comparison of fluorescence anisotropy and fluorescence intensity is also performed to demonstrate the validity of anisotropy to be applied in a microfluidic field with non-uniform liquid thickness. Viscosity dependence and temperature dependence on the anisotropy are also clarified; the results indicate an appropriate selection of relation between molecule size and viscosity is important to obtain a large temperature coefficient in anisotropy. Furthermore, a practical calibration procedure of the apparatus constant is proposed. In addition, the potential of temperature imaging is confirmed by the measurement of temperature distribution under focused laser heating.
Collapse
Affiliation(s)
- Puneet Jain
- Department of Mechanical Engineering, Faculty of Engineering, Tokyo University of Science, 6-3-1, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (T.A.); (M.M.)
| | - Takuya Aida
- Department of Mechanical Engineering, Faculty of Engineering, Tokyo University of Science, 6-3-1, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (T.A.); (M.M.)
| | - Masahiro Motosuke
- Department of Mechanical Engineering, Faculty of Engineering, Tokyo University of Science, 6-3-1, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (T.A.); (M.M.)
- Water Frontier Research Center, Research Institute for Science and Technology, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 125-8585, Japan
| |
Collapse
|
24
|
Shepherd JW, Payne-Dwyer AL, Lee JE, Syeda A, Leake MC. Combining single-molecule super-resolved localization microscopy with fluorescence polarization imaging to study cellular processes. JPHYS PHOTONICS 2021. [DOI: 10.1088/2515-7647/ac015d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Super-resolution microscopy has catalyzed valuable insights into the sub-cellular, mechanistic details of many different biological processes across a wide range of cell types. Fluorescence polarization spectroscopy tools have also enabled important insights into cellular processes through identifying orientational changes of biological molecules typically at an ensemble level. Here, we combine these two biophysical methodologies in a single home-made instrument to enable the simultaneous detection of orthogonal fluorescence polarization signals from single fluorescent protein molecules used as common reporters on the localization of proteins in cellular processes. These enable measurement of spatial location to a super-resolved precision better than the diffraction-limited optical resolution, as well as estimation of molecular stoichiometry based on the brightness of individual fluorophores. In this innovation we have adapted a millisecond timescale microscope used for single-molecule detection to enable splitting of fluorescence polarization emissions into two separate imaging channels for s- and p-polarization signals, which are imaged onto separate halves of the same high sensitivity back-illuminated CMOS camera detector. We applied this fluorescence polarization super-resolved imaging modality to a range of test fluorescent samples relevant to the study of biological processes, including purified monomeric green fluorescent protein, single combed DNA molecules, and protein assemblies and complexes from live Escherichia coli and Saccharomyces cerevisiae cells. Our findings are qualitative but demonstrate promise in showing how fluorescence polarization and super-resolved localization microscopy can be combined on the same sample to enable simultaneous measurements of polarization and stoichiometry of tracked molecular complexes, as well as the translational diffusion coefficient.
Collapse
|
25
|
Determination of Fraction Unbound and Unbound Partition Coefficient to Estimate Intracellular Free Drug Concentration. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2021. [DOI: 10.1007/978-1-0716-1250-7_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Feruglio PF, Vinegoni C, Weissleder R. Extended dynamic range imaging for noise mitigation in fluorescence anisotropy imaging. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200159R. [PMID: 32820624 PMCID: PMC7439791 DOI: 10.1117/1.jbo.25.8.086003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Fluorescence polarization (FP) and fluorescence anisotropy (FA) microscopy are powerful imaging techniques that allow to translate the common FP assay capabilities into the in vitro and in vivo cellular domain. As a result, they have found potential for mapping drug-protein or protein-protein interactions. Unfortunately, these imaging modalities are ratiometric in nature and as such they suffer from excessive noise even under regular imaging conditions, preventing accurate image-feature analysis of fluorescent molecules behaviors. AIM We present a high dynamic range (HDR)-based FA imaging modality for improving image quality in FA microscopy. APPROACH The method exploits ad hoc acquisition schemes to extend the dynamic range of individual FP channels, allowing to obtain FA images with increased signal-to-noise ratio. RESULTS A direct comparison between FA images obtained with our method and the standard, clearly indicates how an HDR-based FA imaging approach allows to obtain high-quality images, with the ability to correctly resolve image features at different values of FA and over a substantially higher range of fluorescence intensities. CONCLUSION The method presented is shown to outperform standard FA imaging microscopy narrowing the spread of the propagated error and yielding higher quality images. The method can be effectively and routinely used on any commercial imaging system and could be also translated to other microscopy ratiometric imaging modalities.
Collapse
Affiliation(s)
- Paolo Fumene Feruglio
- Massachusetts General Hospital, Harvard Medical School, Center for Systems Biology, Boston, Massachusetts, United States
- University of Verona, Department of Neuroscience, Biomedicine, and Movement Sciences, Verona, Italy
- ITS Meccatronico Veneto, Vicenza, Italy
| | - Claudio Vinegoni
- Massachusetts General Hospital, Harvard Medical School, Center for Systems Biology, Boston, Massachusetts, United States
| | - Ralph Weissleder
- Massachusetts General Hospital, Harvard Medical School, Center for Systems Biology, Boston, Massachusetts, United States
- Harvard Medical School, Department of Systems Biology, Boston, Massachusetts, United States
| |
Collapse
|
27
|
Wilson BAP, Thornburg CC, Henrich CJ, Grkovic T, O'Keefe BR. Creating and screening natural product libraries. Nat Prod Rep 2020; 37:893-918. [PMID: 32186299 PMCID: PMC8494140 DOI: 10.1039/c9np00068b] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2020The National Cancer Institute of the United States (NCI) has initiated a Cancer Moonshot program entitled the NCI Program for Natural Product Discovery. As part of this effort, the NCI is producing a library of 1 000 000 partially purified natural product fractions which are being plated into 384-well plates and provided to the research community free of charge. As the first 326 000 of these fractions have now been made available, this review seeks to describe the general methods used to collect organisms, extract those organisms, and create a prefractionated library. Importantly, this review also details both cell-based and cell-free bioassay methods and the adaptations necessary to those methods to productively screen natural product libraries. Finally, this review briefly describes post-screen dereplication and compound purification and scale up procedures which can efficiently identify active compounds and produce sufficient quantities of natural products for further pre-clinical development.
Collapse
Affiliation(s)
- Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, USA.
| | | | | | | | | |
Collapse
|
28
|
Bai Y, Shu T, Su L, Zhang X. Functional nucleic acid-based fluorescence polarization/anisotropy biosensors for detection of biomarkers. Anal Bioanal Chem 2020; 412:6655-6665. [PMID: 32601896 DOI: 10.1007/s00216-020-02754-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 01/03/2023]
Abstract
The sensitive and selective detection of biomarkers plays a crucial role in disease diagnostics, drug discovery, and early screening of cancers. The achievement of this goal highly depends on the continuous development of biosensing technologies. Among them, fluorescence anisotropy/polarization (FA/FP) analysis receives increasing interest due to the advantage of simple operation, fast response, and no background interference. In recent decades, great progress has been achieved in FA/FP sensors thanks to the development of functional nucleic acids (FNAs) including aptamers and nucleic acid enzymes. This review focuses on FNA-based FA/FP sensors for the quantitative detection of biomarkers, such as nucleic acid, small molecules, and proteins. The design strategies, recognition elements, and practical applications are fully highlighted. The article also discusses the challenges of applying FNA-based FA/FP sensors in the next generation and the potential solutions along with future prospects. Graphical abstract.
Collapse
Affiliation(s)
- Yunlong Bai
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Shu
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China. .,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| | - Lei Su
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China. .,School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
29
|
Fluorescence Anisotropy Sensor Comprising a Dual Hollow-Core Antiresonant Fiber Polarization Beam Splitter. SENSORS 2020; 20:s20113321. [PMID: 32545205 PMCID: PMC7308924 DOI: 10.3390/s20113321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/23/2022]
Abstract
Fluorescence anisotropy imaging and sensing is a widely recognized method for studying molecular orientation and mobility. However, introducing this technique to in vivo systems is a challenging task, especially when one considers multiphoton excitation methods. Past two decades have brought a possible solution to this issue in the form of hollow-core antiresonant fibers (HC-ARFs). The continuous development of their fabrication technology has resulted in the appearance of more and more sophisticated structures. One of the most promising concepts concerns dual hollow-core antiresonant fibers (DHC-ARFs), which can be used to split and combine optical signals, effectively working as optical fiber couplers. In this paper, the design of a fluorescence anisotropy sensor based on a DHC-ARF structure is presented. The main purpose of the proposed DHC-ARF is multiphoton-excited fluorescence spectroscopy; however, other applications are also possible.
Collapse
|
30
|
Steinmark IE, Chung PH, Ziolek RM, Cornell B, Smith P, Levitt JA, Tregidgo C, Molteni C, Yahioglu G, Lorenz CD, Suhling K. Time-Resolved Fluorescence Anisotropy of a Molecular Rotor Resolves Microscopic Viscosity Parameters in Complex Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907139. [PMID: 32363742 DOI: 10.1002/smll.201907139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Understanding viscosity in complex environments remains a largely unanswered question despite its importance in determining reaction rates in vivo. Here, time-resolved fluorescence anisotropy imaging (TR-FAIM) is combined with fluorescent molecular rotors (FMRs) to simultaneously determine two non-equivalent viscosity-related parameters in complex heterogeneous environments. The parameters, FMR rotational correlation time and lifetime, are extracted from fluorescence anisotropy decays, which in heterogeneous environments show dip-and-rise behavior due to multiple dye populations. Decays of this kind are found both in artificially constructed adiposomes and in live cell lipid droplet organelles. Molecular dynamics simulations are used to assign each population to nano-environments within the lipid systems. The less viscous population corresponds to the state showing an average 25° tilt to the lipid membrane normal, and the more viscous population to the state showing an average 55° tilt. This combined experimental and simulation approach enables a comprehensive description of the FMR probe behavior within viscous nano-environments in complex, biological systems.
Collapse
Affiliation(s)
| | | | | | | | - Paul Smith
- Department of Physics, King's College London, UK
| | - James A Levitt
- Randall Centre for Cell & Molecular Biophysics, King's College London, UK
| | - Carolyn Tregidgo
- Department of Physics, King's College London, UK
- Genomics England, London, EC1M 6BQ, UK
| | | | | | | | | |
Collapse
|
31
|
Robers MB, Friedman-Ohana R, Huber KVM, Kilpatrick L, Vasta JD, Berger BT, Chaudhry C, Hill S, Müller S, Knapp S, Wood KV. Quantifying Target Occupancy of Small Molecules Within Living Cells. Annu Rev Biochem 2020; 89:557-581. [PMID: 32208767 DOI: 10.1146/annurev-biochem-011420-092302] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The binding affinity and kinetics of target engagement are fundamental to establishing structure-activity relationships (SARs) for prospective therapeutic agents. Enhancing these binding parameters for operative targets, while minimizing binding to off-target sites, can translate to improved drug efficacy and a widened therapeutic window. Compound activity is typically assessed through modulation of an observed phenotype in cultured cells. Quantifying the corresponding binding properties under common cellular conditions can provide more meaningful interpretation of the cellular SAR analysis. Consequently, methods for assessing drug binding in living cells have advanced and are now integral to medicinal chemistry workflows. In this review, we survey key technological advancements that support quantitative assessments of target occupancy in cultured cells, emphasizing generalizable methodologies able to deliver analytical precision that heretofore required reductionist biochemical approaches.
Collapse
Affiliation(s)
- M B Robers
- Promega Corporation, Madison, Wisconsin 53711, USA; , ,
| | | | - K V M Huber
- Target Discovery Institute and Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom; .,Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - L Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, United Kingdom
| | - J D Vasta
- Promega Corporation, Madison, Wisconsin 53711, USA; , ,
| | - B-T Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; ,
| | - C Chaudhry
- Lead Discovery and Optimization, Bristol-Myers Squibb, Princeton, New Jersey 08648, USA;
| | - S Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, United Kingdom
| | - S Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; , .,Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, 60438 Frankfurt, Germany;
| | - S Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; , .,Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, 60438 Frankfurt, Germany; .,German Cancer Network (DKTK), Frankfurt/Mainz, 60438 Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Goethe University, 60596 Frankfurt am Main, Germany
| | - K V Wood
- Promega Corporation, Madison, Wisconsin 53711, USA; , , .,Current affiliation: Light Bio, Inc., Mount Horeb, Wisconsin 53572, USA;
| |
Collapse
|
32
|
Rehman KU, Das S, Chen YF, Kao FJ. High temporal resolution and polarization resolved fluorescence lifetime measurements through stimulated emission. Methods Appl Fluoresc 2020; 8:024008. [DOI: 10.1088/2050-6120/ab7c36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Ng TS, Garlin MA, Weissleder R, Miller MA. Improving nanotherapy delivery and action through image-guided systems pharmacology. Theranostics 2020; 10:968-997. [PMID: 31938046 PMCID: PMC6956809 DOI: 10.7150/thno.37215] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022] Open
Abstract
Despite recent advances in the translation of therapeutic nanoparticles (TNPs) into the clinic, the field continues to face challenges in predictably and selectively delivering nanomaterials for the treatment of solid cancers. The concept of enhanced permeability and retention (EPR) has been coined as a convenient but simplistic descriptor of high TNP accumulation in some tumors. However, in practice EPR represents a number of physiological variables rather than a single one (including dysfunctional vasculature, compromised lymphatics and recruited host cells, among other aspects of the tumor microenvironment) — each of which can be highly heterogenous within a given tumor, patient and across patients. Therefore, a clear need exists to dissect the specific biophysical factors underlying the EPR effect, to formulate better TNP designs, and to identify patients with high-EPR tumors who are likely to respond to TNP. The overall pharmacology of TNP is governed by an interconnected set of spatially defined and dynamic processes that benefit from a systems-level quantitative approach, and insights into the physiology have profited from the marriage between in vivo imaging and quantitative systems pharmacology (QSP) methodologies. In this article, we review recent developments pertinent to image-guided systems pharmacology of nanomedicines in oncology. We first discuss recent developments of quantitative imaging technologies that enable analysis of nanomaterial pharmacology at multiple spatiotemporal scales, and then examine reports that have adopted these imaging technologies to guide QSP approaches. In particular, we focus on studies that have integrated multi-scale imaging with computational modeling to derive insights about the EPR effect, as well as studies that have used modeling to guide the manipulation of the EPR effect and other aspects of the tumor microenvironment for improving TNP action. We anticipate that the synergistic combination of imaging with systems-level computational methods for effective clinical translation of TNPs will only grow in relevance as technologies increase in resolution, multiplexing capability, and in the ability to examine heterogeneous behaviors at the single-cell level.
Collapse
|
34
|
Zhu S, Tian R, Antaris AL, Chen X, Dai H. Near-Infrared-II Molecular Dyes for Cancer Imaging and Surgery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900321. [PMID: 31025403 PMCID: PMC6555689 DOI: 10.1002/adma.201900321] [Citation(s) in RCA: 506] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/03/2019] [Indexed: 05/05/2023]
Abstract
Fluorescence bioimaging affords a vital tool for both researchers and surgeons to molecularly target a variety of biological tissues and processes. This review focuses on summarizing organic dyes emitting at a biological transparency window termed the near-infrared-II (NIR-II) window, where minimal light interaction with the surrounding tissues allows photons to travel nearly unperturbed throughout the body. NIR-II fluorescence imaging overcomes the penetration/contrast bottleneck of imaging in the visible region, making it a remarkable modality for early diagnosis of cancer and highly sensitive tumor surgery. Due to their convenient bioconjugation with peptides/antibodies, NIR-II molecular dyes are desirable candidates for targeted cancer imaging, significantly overcoming the autofluorescence/scattering issues for deep tissue molecular imaging. To promote the clinical translation of NIR-II bioimaging, advancements in the high-performance small molecule-derived probes are critically important. Here, molecules with clinical potential for NIR-II imaging are discussed, summarizing the synthesis and chemical structures of NIR-II dyes, chemical and optical properties of NIR-II dyes, bioconjugation and biological behavior of NIR-II dyes, whole body imaging with NIR-II dyes for cancer detection and surgery, as well as NIR-II fluorescence microscopy imaging. A key perspective on the direction of NIR-II molecular dyes for cancer imaging and surgery is also discussed.
Collapse
Affiliation(s)
- Shoujun Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
35
|
Suhling K. Multidimensional Fluorescence Microscopy for Simultaneous Functional and Structural Imaging. Biophys J 2019; 116:1787-1789. [PMID: 31053256 DOI: 10.1016/j.bpj.2019.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/16/2023] Open
Affiliation(s)
- Klaus Suhling
- Department of Physics, King's College London, London, United Kingdom.
| |
Collapse
|
36
|
Xu J, Liu M, Athukorale S, Zou S, Zhang D. Linear Extrapolation of the Analyte-Specific Light Scattering and Fluorescence Depolarization in Turbid Samples. ACS OMEGA 2019; 4:4739-4747. [PMID: 31459660 PMCID: PMC6648588 DOI: 10.1021/acsomega.8b03354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/19/2019] [Indexed: 05/14/2023]
Abstract
Anisotropy and depolarization are two interconvertible parameters in fluorescence and light scattering spectroscopy that describe the polarization distribution of emitted and scattered photons generated with linearly polarized excitation light. Whereas anisotropy is more frequently used in fluorescence literature for studying association/dissociation of fluorophore-bearing reagents, depolarization is more popular in the light-scattering literature for investigating the effect of scatterers' geometries and chemical compositions. Presented herein is a combined computational and experimental study of the scattering and fluorescence depolarization enhancement induced by light scattering in turbid samples. The most important finding is that sample light scattering and fluorescence depolarization increases linearly with sample light-scattering extinction. Therefore, one can extrapolate the analyte-specific scattering and fluorescence depolarization through linear curve fitting of the sample light scattering and fluorescence depolarization as a function of the sample concentration or the path length of the sampling cuvettes. An example application of this linear extrapolation method is demonstrated for quantifying the fluorophore-specific fluorescence depolarization and consequently its anisotropy for an aggregation-induced-emission sample. This work should be important for a wide range of macromolecular, supramolecular, and nanoscale fluorescent materials that are often strong light scatterers due to their large sizes.
Collapse
Affiliation(s)
- Joanna
Xiuzhu Xu
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Muqiong Liu
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Sumudu Athukorale
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Shengli Zou
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Dongmao Zhang
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
- Department
of Chemistry, Xihua University, Chengdu 610039, China
| |
Collapse
|
37
|
Steinmark IE, James AL, Chung PH, Morton PE, Parsons M, Dreiss CA, Lorenz CD, Yahioglu G, Suhling K. Targeted fluorescence lifetime probes reveal responsive organelle viscosity and membrane fluidity. PLoS One 2019; 14:e0211165. [PMID: 30763333 PMCID: PMC6375549 DOI: 10.1371/journal.pone.0211165] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/08/2019] [Indexed: 11/19/2022] Open
Abstract
The only way to visually observe cellular viscosity, which can greatly influence biological reactions and has been linked to several human diseases, is through viscosity imaging. Imaging cellular viscosity has allowed the mapping of viscosity in cells, and the next frontier is targeted viscosity imaging of organelles and their microenvironments. Here we present a fluorescent molecular rotor/FLIM framework to image both organellar viscosity and membrane fluidity, using a combination of chemical targeting and organelle extraction. For demonstration, we image matrix viscosity and membrane fluidity of mitochondria, which have been linked to human diseases, including Alzheimer's Disease and Leigh's syndrome. We find that both are highly dynamic and responsive to small environmental and physiological changes, even under non-pathological conditions. This shows that neither viscosity nor fluidity can be assumed to be fixed and underlines the need for single-cell, and now even single-organelle, imaging.
Collapse
Affiliation(s)
| | - Arjuna L. James
- Department of Physics, King’s College London, London, United Kingdom
| | - Pei-Hua Chung
- Department of Physics, King’s College London, London, United Kingdom
| | - Penny E. Morton
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Cécile A. Dreiss
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | | | - Gokhan Yahioglu
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Klaus Suhling
- Department of Physics, King’s College London, London, United Kingdom
| |
Collapse
|
38
|
Lin C, Chi B, Xu C, Zhang C, Tian F, Xu Z, Li L, Whittaker AK, Wang J. Multifunctional drug carrier on the basis of 3d–4f Fe/La-MOFs for drug delivery and dual-mode imaging. J Mater Chem B 2019; 7:6612-6622. [DOI: 10.1039/c9tb01509d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Multifunctional drug carriers for simultaneous imaging and drug delivery have emerged as an important new direction for the treatment of cancer.
Collapse
Affiliation(s)
- Caixue Lin
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Hubei University 430062
- People's Republic of China
| | - Bin Chi
- Department of Radiology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Chen Xu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Hubei University 430062
- People's Republic of China
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- Brisbane Qld 4072
- Australia
| | - Feng Tian
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Hubei University 430062
- People's Republic of China
| | - Zushun Xu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Hubei University 430062
- People's Republic of China
| | - Ling Li
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Hubei University 430062
- People's Republic of China
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- Brisbane Qld 4072
- Australia
| | - Jing Wang
- Department of Radiology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| |
Collapse
|
39
|
Vinegoni C, Feruglio PF, Weissleder R. High dynamic range fluorescence imaging. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2019; 25:6801507. [PMID: 31598059 PMCID: PMC6785194 DOI: 10.1109/jstqe.2018.2881608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fluorescence acquisition and image display over a high dynamic range is highly desirable. However, the limited dynamic range of current photodetectors and imaging CCDs impose a limit on the fluorescence intensities that can be simultaneously captured during a single image acquisition. This is particularly troublesome when imaging biological samples, where protein expression fluctuates considerably. As a result, biological images will often contain regions with signal that is either saturated or hidden within background noise, causing information loss. In this manuscript we summarize recent work from our group and others, to extended conventional to high dynamic range fluorescence imaging. These strategies have many biological applications, such as mapping of neural connections, vascular imaging, bio-distribution studies or pharmacologic imaging at the single cell and organ level.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA and with the Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
| |
Collapse
|
40
|
Zhao Y, Zhou J, Lan Y, Li P, Du F, Lei F, Li H, Huang Q. Progressive Relaxation Behavior and Relaxation Dynamics of sPS Gels upon Controlled Heating. Polymers (Basel) 2018; 10:E526. [PMID: 30966560 PMCID: PMC6415395 DOI: 10.3390/polym10050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/04/2022] Open
Abstract
Progressive relaxation behavior of syndiotactic polystyrene (sPS) chains in sPS gel was detected in the course of melting via the application of intrinsic fluorescence and fluorescence anisotropy techniques. The melting process included a dissociative process of the network at lower temperature and a relaxation process from helix to worm-like chains at higher temperature. The dynamics of structural relaxation behavior was discovered by intrinsic fluorescence technique, and an abrupt bend emerged at 58 °C on the Arrhenius plot. At temperatures lower than 58 °C, only the dissociation of the helical structure existed and the rate of relaxation from helix to worm-like conformation was negligible. At temperatures higher than 58 °C, the transition from helical chain to worm-like chain was the rate-determining step. The intrinsic fluorescence technique demonstrated its practicability in detecting kinetic processes of sPS/chloroform gel in the course of melting.
Collapse
Affiliation(s)
- Yanzhi Zhao
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| | - Juying Zhou
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| | - Yanjiao Lan
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| | - Pengfei Li
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| | - Fangkai Du
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| | - Fuhou Lei
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| | - Hao Li
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| | - Qin Huang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| |
Collapse
|