1
|
Bellotti P, Ladd Z, Leroy V, Su G, Sharma S, Hartman JB, Krebs J, Viscardi C, Maile R, Moldawer LL, Efron PA, Sharma AK, Upchurch GR. Resolvin D2/GPR18 signaling enhances monocytic myeloid-derived suppressor cell function to mitigate abdominal aortic aneurysm formation. FASEB J 2024; 38:e70067. [PMID: 39320982 PMCID: PMC11433576 DOI: 10.1096/fj.202400414rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Abdominal aortic aneurysm (AAA) formation is a chronic vascular pathology characterized by inflammation, leukocyte infiltration, and vascular remodeling. The aim of this study was to delineate the protective role of Resolvin D2 (RvD2), a bioactive isoform of specialized pro-resolving lipid mediators, via G-protein-coupled receptor 18 (GPR18) receptor signaling in attenuating AAAs. Importantly, RvD2 and GPR18 levels were significantly decreased in aortic tissue of AAA patients compared with controls. Furthermore, using an established murine model of AAA in C57BL/6 (WT) mice, we observed that treatment with RvD2 significantly attenuated aortic diameter, pro-inflammatory cytokine production, immune cell infiltration (neutrophils and macrophages), elastic fiber disruption, and increased smooth muscle cell α-actin expression as well as increased TGF-β2 and IL-10 expressions compared to untreated mice. Moreover, the RvD2-mediated protection from vascular remodeling and AAA formation was blocked when mice were previously treated with siRNA for GPR18 signifying the importance of RvD2/GPR18 signaling in vascular inflammation. Mechanistically, RvD2-mediated protection significantly enhanced infiltration and activation of monocytic myeloid-derived suppressor cells (M-MDSCs) by increasing TGF-β2 and IL-10 secretions in a GPR18-dependent manner to attenuate aortic inflammation and vascular remodeling. Collectively, this study demonstrates that RvD2 treatment induces an expansion of myeloid-lineage committed progenitors, such as M-MDSCs, activates GPR18-dependent signaling to enhance TGF-β2 and IL-10 secretion, and mitigates SMC activation that contributes to resolution of aortic inflammation and remodeling during AAA formation.
Collapse
Affiliation(s)
- Paolo Bellotti
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Zachary Ladd
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Victoria Leroy
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Gang Su
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Shiven Sharma
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Joseph B. Hartman
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan Krebs
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Chelsea Viscardi
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Robert Maile
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Lyle L. Moldawer
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Phillip A. Efron
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Ashish K. Sharma
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Gilbert R. Upchurch
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
2
|
Gu Y, Du L, Wu Y, Qin J, Gu X, Guo Z, Li Y. Biomembrane-Modified Biomimetic Nanodrug Delivery Systems: Frontier Platforms for Cardiovascular Disease Treatment. Biomolecules 2024; 14:960. [PMID: 39199348 PMCID: PMC11352341 DOI: 10.3390/biom14080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Despite significant advances in current drug therapies, issues such as poor drug targeting and severe side effects persist. In recent years, nanomedicine has been extensively applied in the research and treatment of CVDs. Among these, biomembrane-modified biomimetic nanodrug delivery systems (BNDSs) have emerged as a research focus due to their unique biocompatibility and efficient drug delivery capabilities. By modifying with biological membranes, BNDSs can effectively reduce recognition and clearance by the immune system, enhance biocompatibility and circulation time in vivo, and improve drug targeting. This review first provides an overview of the classification and pathological mechanisms of CVDs, then systematically summarizes the research progress of BNDSs in the treatment of CVDs, discussing their design principles, functional characteristics, and clinical application potential. Finally, it highlights the issues and challenges faced in the clinical translation of BNDSs.
Collapse
Affiliation(s)
- Yunan Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Yuxin Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Juan Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Xiang Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Zhihua Guo
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| |
Collapse
|
3
|
Kagaya H, Kim AS, Chen M, Lin P, Yin X, Spite M, Conte MS. Dynamic changes in proresolving lipid mediators and their receptors following acute vascular injury in male rats. Physiol Rep 2024; 12:e16178. [PMID: 39128880 PMCID: PMC11317191 DOI: 10.14814/phy2.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024] Open
Abstract
Acute vascular injury provokes an inflammatory response, resulting in neointimal hyperplasia (NIH) and downstream pathologies. The resolution of inflammation is an active process in which specialized proresolving lipid mediators (SPM) and their receptors play a central role. We sought to examine the acute phase response of SPM and their receptors in both circulating blood and the arterial wall in a rat angioplasty model. We found that the ratio of proresolving to pro-inflammatory lipid mediators (LM) in plasma decreased sharply 1 day after vascular injury, then increased slightly by day 7, while that in arteries remained depressed. Granulocyte expression of SPM receptors ALX/FPR2 and DRV2/GPR18, and a leukotriene B4 receptor BLT1 increased postinjury, while ERV1/ChemR23 expression was reduced early and then recovered by day 7. Importantly, we show unique arterial expression patterns of SPM receptors in the acute setting, with generally low levels through day 7 that contrasted sharply with that of the pro-inflammatory CCR2 receptor. Overall, these data document acute, time-dependent changes of LM biosynthesis and SPM receptor expression in plasma, leukocytes, and artery walls following acute vascular injury. A biochemical imbalance between inflammation and resolution LM pathways appears persistent 7 days after angioplasty in this model. These findings may help guide therapeutic approaches to accelerate vascular healing and improve the outcomes of vascular interventions for patients with advanced atherosclerosis.
Collapse
Affiliation(s)
- Hideo Kagaya
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Alexander S. Kim
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mian Chen
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Pei‐Yu Lin
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Xuanzhi Yin
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Michael S. Conte
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
4
|
Lv J, Yang C, Yang X. The global burden of cardiovascular disease attributable to diet high in sugar-sweetened beverages among people aged 60 years and older: an analysis for the global burden of disease study 2019. Front Public Health 2024; 12:1366286. [PMID: 39100957 PMCID: PMC11295280 DOI: 10.3389/fpubh.2024.1366286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Objectives This study aimed to quantify the global cardiovascular disease (CVD) burden attributable to diet high in sugar-sweetened beverages (SSB) among adults aged 60 years and older using data from the Global Burden of Disease (GBD) Study 2019. Methods We extracted data on CVD mortality, disability-adjusted life-years (DALYs), and risk-factor exposures from the GBD 2019 study for people aged 60 and older. Age-period-cohort models were used to estimate the overall annual percentage change in mortality and DALY rate (net drift, % per year), mortality and DALY rate for each age group from 1990 to 2019 (local drift, % per year), longitudinal age-specific rate corrected for period bias (age effect), and mortality and Daly rate for each age group from 1990 to 2019 (local drift, % per year). And period/cohort relative risk (period/cohort effect). Results Between 1990 and 2019, global age-standardized CVD mortality (ASMR) and disability-adjusted life years (DALY) rates attributable to high SSB intake decreased, with larger reductions in high-SDI regions. ASMR declined from 19.5 to 13 per 100,000 (estimated annual percentage change (EAPC): -1.46%) and ASDR declined from 345.8 to 220.6 per 100,000 (EAPC: -1.66%). Age-period-cohort analysis showed CVD deaths and DALYs increased exponentially with age, peaking at 85-89 years. Period effects indicated declining CVD mortality and DALY rates since 1999, especially in higher-SDI regions. Cohort effects demonstrated consistent risk declines across successive generations born between 1900 and 1959. Predictions suggest continuing decreases through 2045 globally, but slower declines in lower-SDI regions. Conclusion In conclusion, this comprehensive assessment of global CVD burden among older adults attributable to high SSB intake highlights major achievements but also persistent areas needing attention. Favorable declining mortality and DALY rate trends reflect substantial progress in CVD control amid population growth and aging.
Collapse
Affiliation(s)
- Jiajie Lv
- Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Xitao Yang
- Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
6
|
Rodrigues-Diez R, Ballesteros-Martinez C, Moreno-Carriles RM, Nistal F, Díaz Del Campo LS, Cachofeiro V, Dalli J, García-Redondo AB, Redondo JM, Salaices M, Briones AM. Resolvin D2 prevents vascular remodeling, hypercontractility and endothelial dysfunction in obese hypertensive mice through modulation of vascular and proinflammatory factors. Biomed Pharmacother 2024; 174:116564. [PMID: 38608525 DOI: 10.1016/j.biopha.2024.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
During resolution of inflammation, specialized proresolving mediators (SPMs), including resolvins, are produced to restore tissue homeostasis. We hypothesized that there might be a dysregulation of SPMs pathways in pathological vascular remodeling and that resolvin D2 (RvD2) might prevent vascular remodeling and contractile and endothelial dysfunction in a model of obesity and hypertension. In aortic samples of patients with or without abdominal aortic aneurysms (AAA), we evaluated gene expression of enzymes involved in SPMs synthesis (ALOXs), SPMs receptors and pro-inflammatory genes. In an experimental model of aortic dilation induced by high fat diet (HFD, 60%, eighteen weeks) and angiotensin II (AngII) infusion (four weeks), we studied the effect of RvD2 administration in aorta and small mesenteric arteries structure and function and markers of inflammation. In human macrophages we evaluated the effects of AngII and RvD2 in macrophages function and SPMs profile. In patients, we found positive correlations between AAA and obesity, and between AAA and expression of ALOX15, RvD2 receptor GPR18, and pro-inflammatory genes. There was an inverse correlation between the expression of aortic ALOX15 and AAA growth rate. In the mice model, RvD2 partially prevented the HFD plus AngII-induced obesity and adipose tissue inflammation, hypertension, aortic and mesenteric arteries remodeling, hypercontratility and endothelial dysfunction, and the expression of vascular proinflammatory markers and cell apoptosis. In human macrophages, RvD2 prevented AngII-induced impaired efferocytosis and switched SPMs profile. RvD2 might represent a novel protective strategy in preventing vascular damage associated to hypertension and obesity likely through effects in vascular and immune cells.
Collapse
MESH Headings
- Animals
- Male
- Humans
- Docosahexaenoic Acids/pharmacology
- Hypertension/metabolism
- Hypertension/drug therapy
- Mice, Inbred C57BL
- Obesity/complications
- Obesity/metabolism
- Vascular Remodeling/drug effects
- Mice
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Diet, High-Fat/adverse effects
- Angiotensin II
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/drug therapy
- Inflammation Mediators/metabolism
- Mice, Obese
- Vasoconstriction/drug effects
- Inflammation/pathology
- Inflammation/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Raquel Rodrigues-Diez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - Constanza Ballesteros-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain
| | | | - Francisco Nistal
- CIBER de Enfermedades Cardiovasculares, Spain; Cirugía Cardiovascular. Hospital Universitario "Marqués de Valdecilla", IDIVAL, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Lucía S Díaz Del Campo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain
| | - Victoria Cachofeiro
- CIBER de Enfermedades Cardiovasculares, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Ana B García-Redondo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Juan M Redondo
- CIBER de Enfermedades Cardiovasculares, Spain; Grupo de Regulación Génica en remodelado cardiovascular e inflamación, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Cell-cell communication & inflammation unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain.
| |
Collapse
|
7
|
Bellotti P, Ladd Z, Leroy V, Su G, Sharma S, Hartman JB, Krebs J, Viscardi C, Maile R, Moldawer LL, Efron P, Sharma AK, Upchurch GR. Resolvin D2/GPR18 signaling enhances monocytic myeloid-derived suppressor cell function to mitigate abdominal aortic aneurysm formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581672. [PMID: 38464077 PMCID: PMC10925138 DOI: 10.1101/2024.02.23.581672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Abdominal aortic aneurysm (AAA) formation is a chronic vascular pathology characterized by inflammation, leukocyte infiltration and vascular remodeling. The aim of this study was to delineate the protective role of Resolvin D2 (RvD2), a bioactive isoform of specialized proresolving lipid mediators, via G-protein coupled receptor 18 (GPR18) receptor signaling in attenuating AAAs. Importantly, RvD2 and GPR18 levels were significantly decreased in aortic tissue of AAA patients compared with controls. Furthermore, using an established murine model of AAA in C57BL/6 (WT) mice, we observed that treatment with RvD2 significantly attenuated aortic diameter, pro-inflammatory cytokine production, immune cell infiltration (neutrophils and macrophages), elastic fiber disruption and increased smooth muscle cell α-actin expression as well as increased TGF-β2 and IL-10 expressions compared to untreated mice. Moreover, the RvD2-mediated protection from vascular remodeling and AAA formation was blocked when mice were previously treated with siRNA for GPR18 signifying the importance of RvD2/GPR18 signaling in vascular inflammation. Mechanistically, RvD2-mediated protection significantly enhanced infiltration and activation of monocytic myeloid-derived suppressor cells (M-MDSCs) by increasing TGF-β2 and IL-10 secretions that mitigated smooth muscle cell activation in a GPR18-dependent manner to attenuate aortic inflammation and vascular remodeling via this intercellular crosstalk. Collectively, this study demonstrates RvD2 treatment induces an expansion of myeloid-lineage committed progenitors, such as M-MDSCs, and activates GPR18-dependent signaling to enhance TGF-β2 and IL-10 secretion that contributes to resolution of aortic inflammation and remodeling during AAA formation.
Collapse
|
8
|
Levy ES, Kim AS, Werlin E, Chen M, Sansbury BE, Spite M, Desai TA, Conte MS. Tissue factor targeting peptide enhances nanoparticle binding and delivery of a synthetic specialized pro-resolving lipid mediator to injured arteries. JVS Vasc Sci 2023; 4:100126. [PMID: 38045567 PMCID: PMC10692706 DOI: 10.1016/j.jvssci.2023.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/17/2023] [Indexed: 12/05/2023] Open
Abstract
Background Specialized pro-resolving lipid mediators (SPM) such as resolvin D1 (RvD1) attenuate inflammation and exhibit vasculo-protective properties. Methods We investigated poly-lactic-co-glycolic acid (PLGA)-based nanoparticles (NP), containing a peptide targeted to tissue factor (TF) for delivery of 17R-RvD1 and a synthetic analog 17-R/S-benzo-RvD1 (benzo-RvD1) using in vitro and in vivo models of acute vascular injury. NPs were characterized in vitro by size, drug loading, drug release, TF binding, and vascular smooth muscle cell migration assays. NPs were also characterized in a rat model of carotid angioplasty. Results PLGA NPs based on a 75/25 lactic to glycolic acid ratio demonstrated optimal loading (507.3 pg 17R-RvD1/mg NP; P = ns) and release of RvD1 (153.1 pg 17R-RvD1/mg NP; P < .05). NPs incorporating the targeting peptide adhered to immobilized TF with greater avidity than NPs with scrambled peptide (50 nM: 41.6 ± 0.52 vs 32.66 ± 0.34; 100 nM: 35.67 ± 0.95 vs 23.5 ± 0.39; P < .05). NPs loaded with 17R-RvD1 resulted in a trend toward blunted vascular smooth muscle cell migration in a scratch assay. In a rat model of carotid angioplasty, 16-fold more NPs were present after treatment with TF-targeted NPs compared with scrambled NPs (P < .01), with a corresponding trend toward higher tissue levels of 17R-RvD1 (P = .06). Benzo-RvD1 was also detectable in arteries treated with targeted NP delivery and accumulated at 10 times higher levels than NP loaded with 17R-RvD1. There was a trend toward decreased CD45 immunostaining in vessels treated with NP containing benzo-RvD1 (0.76 ± 0.38 cells/mm2 vs 122.1 ± 22.26 cells/mm2; P = .06). There were no significant differences in early arterial inflammatory and cytokine gene expression by reverse transcription-polymerase chain reaction. Conclusions TF-targeting peptides enhanced NP-mediated delivery of SPM to injured artery. TF-targeted delivery of SPMs may be a promising therapeutic approach to attenuate the vascular injury response.
Collapse
Affiliation(s)
- Elizabeth S. Levy
- Department of Bioengineering and Therapeutics, University of California San Francisco, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham, San Francisco, CA
- Small Molecules Pharmaceutics, Genentech, South San Francisco, CA
| | - Alexander S. Kim
- Department of Surgery and Cardiovascular Institute, University of California San Francisco, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham, San Francisco, CA
| | - Evan Werlin
- Department of Surgery and Cardiovascular Institute, University of California San Francisco, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham, San Francisco, CA
| | - Mian Chen
- Department of Surgery and Cardiovascular Institute, University of California San Francisco, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham, San Francisco, CA
| | | | - Matthew Spite
- Women's Hospital and Harvard Medical School, Boston, MA
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutics, University of California San Francisco, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham, San Francisco, CA
- School of Engineering, Brown University, Providence, RI
| | - Michael S. Conte
- Department of Surgery and Cardiovascular Institute, University of California San Francisco, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham, San Francisco, CA
| |
Collapse
|
9
|
Zhao M, Zheng Z, Yin Z, Zhang J, Qin J, Wan J, Wang M. Resolvin D2 and its receptor GPR18 in cardiovascular and metabolic diseases: A promising biomarker and therapeutic target. Pharmacol Res 2023; 195:106832. [PMID: 37364787 DOI: 10.1016/j.phrs.2023.106832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Accumulating evidence suggests that inflammation plays an important role in the pathophysiology of the initiation and progression of cardiovascular and metabolic diseases (CVMDs). Anti-inflammation strategies and those that promote inflammation resolution have gradually become potential therapeutic approaches for CVMDs. Resolvin D2 (RvD2), a specialized pro-resolving mediator, exerts anti-inflammatory and pro-resolution effects through its receptor GPR18, a G protein-coupled receptor. Recently, the RvD2/GPR18 axis has received more attention due to its protective role in CVMDs, including atherosclerosis, hypertension, ischaemiareperfusion, and diabetes. Here, we introduce basic information about RvD2 and GPR18, summarize their roles in different immune cells, and review the therapeutic potential of the RvD2/GPR18 axis in CVMDs. In summary, RvD2 and its receptor GPR18 play an important role in the occurrence and development of CVMDs and are potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Juanjuan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430060, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan 430060, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
10
|
Chi J, Cheng J, Wang S, Li C, Chen M. Promising Anti-Inflammatory Tools: Biomedical Efficacy of Lipoxins and Their Synthetic Pathways. Int J Mol Sci 2023; 24:13282. [PMID: 37686088 PMCID: PMC10487465 DOI: 10.3390/ijms241713282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Lipoxins (LXs) have attracted widespread attention as a class of anti-inflammatory lipid mediators that are produced endogenously by the organism. LXs are arachidonic acid (ARA) derivatives that include four different structures: lipoxin A4 (LXA4), lipoxin B4 (LXB4), and the aspirin-induced differential isomers 15-epi-LXA4 and 15-epi-LXB4. Because of their unique biological activity of reducing inflammation in the body, LXs have great potential for neuroprotection, anti-inflammatory treatment of COVID-19, and other related diseases. The synthesis of LXs in vivo is achieved through the action of lipoxygenase (LO). As a kind of important enzyme, LO plays a major role in the physiological processes of living organisms in mammals and functions in some bacteria and fungi. This suggests new options for the synthesis of LXs in vitro. Meanwhile, there are other chemical and biochemical methods to synthesize LXs. In this review, the recent progress on physiological activity and synthetic pathways of LXs is summarized, and new insights into the synthesis of LXs in vitro are provided.
Collapse
Affiliation(s)
| | | | | | | | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
11
|
Beyer MP, Videla LA, Farías C, Valenzuela R. Potential Clinical Applications of Pro-Resolving Lipids Mediators from Docosahexaenoic Acid. Nutrients 2023; 15:3317. [PMID: 37571256 PMCID: PMC10421104 DOI: 10.3390/nu15153317] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Docosahexaenoic acid (C22:6n-3, DHA) is the precursor of specialized pro-resolving lipid mediators (SPMs), such as resolvin, protectin, and maresin families which have been considered therapeutic bioactive compounds for human health. Growing evidence indicates that DHA and SPMs are beneficial strategies in the amelioration, regulation, and duration of inflammatory processes through different biological actions. The present review discusses the reported therapeutic benefits of SPMs on various diseases and their potential clinical applications.
Collapse
Affiliation(s)
- María Paz Beyer
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 7810000, Chile;
| | - Camila Farías
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| |
Collapse
|
12
|
Li X, Sun C, Zhang J, Hu L, Yu Z, Zhang X, Wang Z, Chen J, Wu M, Liu L. Protective effects of paeoniflorin on cardiovascular diseases: A pharmacological and mechanistic overview. Front Pharmacol 2023; 14:1122969. [PMID: 37324475 PMCID: PMC10267833 DOI: 10.3389/fphar.2023.1122969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/10/2023] [Indexed: 06/17/2023] Open
Abstract
Background and ethnopharmacological relevance: The morbidity and mortality of cardiovascular diseases (CVDs) are among the highest of all diseases, necessitating the search for effective drugs and the improvement of prognosis for CVD patients. Paeoniflorin (5beta-[(Benzoyloxy)methyl] tetrahydro-5-hydroxy-2-methyl-2,5-methano-1H-3,4-dioxacyclobuta [cd] pentalen-1alpha (2H)-yl-beta-D-glucopyranoside, C23H28O11) is mostly derived from the plants of the family Paeoniaceae (a single genus family) and is known to possess multiple pharmacological properties in the treatment of CVDs, making it a promising agent for the protection of the cardiovascular system. Aim of the study: This review evaluates the pharmacological effects and potential mechanisms of paeoniflorin in the treatment of CVDs, with the aim of advancing its further development and application. Methods: Various relevant literatures were searched in PubMed, ScienceDirect, Google Scholar and Web of Science. All eligible studies were analyzed and summarized in this review. Results: Paeoniflorin is a natural drug with great potential for development, which can protect the cardiovascular system by regulating glucose and lipid metabolism, exerting anti-inflammatory, anti-oxidative stress, and anti-arteriosclerotic activities, improving cardiac function, and inhibiting cardiac remodeling. However, paeoniflorin was found to have low bioavailability, and its toxicology and safety must be further studied and analyzed, and clinical studies related to it must be carried out. Conclusion: Before paeoniflorin can be used as an effective therapeutic drug for CVDs, further in-depth experimental research, clinical trials, and structural modifications or development of new preparations are required.
Collapse
Affiliation(s)
- Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changxin Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lanqing Hu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zeping Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Perretti M, Dalli J. Resolution Pharmacology: Focus on Pro-Resolving Annexin A1 and Lipid Mediators for Therapeutic Innovation in Inflammation. Annu Rev Pharmacol Toxicol 2023; 63:449-469. [PMID: 36151051 DOI: 10.1146/annurev-pharmtox-051821-042743] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic diseases that affect our society are made more complex by comorbidities and are poorly managed by the current pharmacology. While all present inflammatory etiopathogeneses, there is an unmet need for better clinical management of these diseases and their multiple symptoms. We discuss here an innovative approach based on the biology of the resolution of inflammation. Studying endogenous pro-resolving peptide and lipid mediators, how they are formed, and which target they interact with, can offer innovative options through augmenting the expression or function of pro-resolving pathways or mimicking their actions with novel targeted molecules. In all cases, resolution offers innovation for the treatment of the primary cause of a given disease and/or for the management of its comorbidities, ultimately improving patient quality of life. By implementing resolution pharmacology, we harness the whole physiology of inflammation, with the potential to bring a marked change in the management of inflammatory conditions.
Collapse
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| | - Jesmond Dalli
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| |
Collapse
|
14
|
Díaz Del Campo LS, García-Redondo AB, Rodríguez C, Zaragoza C, Duro-Sánchez S, Palmas F, de Benito-Bueno A, Socuéllamos PG, Peraza DA, Rodrigues-Díez R, Valenzuela C, Dalli J, Salaices M, Briones AM. Resolvin D2 Attenuates Cardiovascular Damage in Angiotensin II-Induced Hypertension. Hypertension 2023; 80:84-96. [PMID: 36337053 DOI: 10.1161/hypertensionaha.122.19448] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Resolution of inflammation is orchestrated by specialized proresolving lipid mediators (SPMs), and this would be impaired in some cardiovascular diseases. Among SPMs, resolvins (Rv) have beneficial effects in cardiovascular pathologies, but little is known about their effect on cardiovascular damage in hypertension. METHODS Aorta, small mesenteric arteries, heart, and peritoneal macrophages were taken from C57BL/6J mice, infused or not with angiotensin II (AngII; 1.44 mg/kg/day, 14 days) in presence or absence of resolvin D2 (RvD2) (100 ng/mice, every second day) starting 1 day before or 7 days after AngII infusion. RESULTS Enzymes and receptors involved in SPMs biosynthesis and signaling were increased in aorta or heart from AngII-infused mice. We also observed a differential regulation of SPMs in heart from these mice. Preventive treatment with RvD2 partially avoided AngII-induced hypertension and protected the heart and large and small vessels against functional and structural alterations induced by AngII. RvD2 increased the availability of vasoprotective factors, modified SPMs profile, decreased cardiovascular fibrosis, and increased the infiltration of pro-resolving macrophages. When administered in hypertensive animals with established cardiovascular damage, RvD2 partially improved cardiovascular function and structure, decreased fibrosis, reduced the infiltration of neutrophils, and shifted macrophage phenotype toward a pro-resolving phenotype. CONCLUSIONS There is a disbalance between proinflammatory and resolution mediators in hypertension. RvD2 protects cardiovascular function and structure when administered before and after the development of hypertension by modulating vascular factors, fibrosis and inflammation. Activating resolution mechanisms by treatment with RvD2 may represent a novel therapeutic strategy for the treatment of hypertensive cardiovascular disease.
Collapse
Affiliation(s)
- Lucia S Díaz Del Campo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.)
| | - Ana B García-Redondo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.).,Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.B.G.-R., R.R.-D, M.S., A.M.B.).,CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.)
| | - Cristina Rodríguez
- CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.).,Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain (C.R.)
| | - Carlos Zaragoza
- CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.).,Unidad de Investigación Cardiovascular, Departamento de Cardiología, Hospital Ramón y Cajal (IRYCIS), Universidad Francisco de Vitoria, Madrid, Spain (C.Z.)
| | - Santiago Duro-Sánchez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.)
| | - Francesco Palmas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom (F.P., J.D.)
| | - Angela de Benito-Bueno
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom (J.D.)
| | - Paula G Socuéllamos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (A.d.B.-B., P.G.S., D.A.P., C.V.)
| | - Diego A Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (A.d.B.-B., P.G.S., D.A.P., C.V.)
| | - Raquel Rodrigues-Díez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.B.G.-R., R.R.-D, M.S., A.M.B.).,CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.)
| | - Carmen Valenzuela
- CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.).,Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (A.d.B.-B., P.G.S., D.A.P., C.V.)
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom (F.P., J.D.).,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom (J.D.)
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.B.G.-R., R.R.-D, M.S., A.M.B.).,CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.)
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.B.G.-R., R.R.-D, M.S., A.M.B.).,CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.)
| |
Collapse
|
15
|
Anand S, Azam Ansari M, Kumaraswamy Sukrutha S, Alomary MN, Anwar Khan A, Elderdery AY. Resolvins Lipid Mediators: Potential Therapeutic Targets in Alzheimer and Parkinson Disease. Neuroscience 2022; 507:139-148. [PMID: 36372297 DOI: 10.1016/j.neuroscience.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Inflammation and resolution are highly programmed processes involving a plethora of immune cells. Lipid mediators synthesized from arachidonic acid metabolism play a pivotal role in orchestrating the signaling cascades in the game of inflammation. The majority of the studies carried out so far on inflammation were aimed at inhibiting the generation of inflammatory molecules, whereas recent research has shifted more towards understanding the resolution of inflammation. Owing to chronic inflammation as evident in neuropathophysiology, the resolution of inflammation together with the class of lipid mediators actively involved in its regulation has attracted the attention of the scientific community as therapeutic targets. Both omega-three polyunsaturated fatty acids, eicosapentaenoic acid and docosahexaenoic acid, orchestrate a vital regulatory role in inflammation development. Resolvins derived from these fatty acids comprise the D-and E-series resolvins. A growing body of evidence using in vitro and in vivo models has revealed the pro-resolving and anti-inflammatory potential of resolvins. This systematic review sheds light on the synthesis, specialized receptors, and resolution of inflammation mediated by resolvins in Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Sambamurthy Kumaraswamy Sukrutha
- Department of Microbiology, Biotechnology and Food Technology, Jnana Bharathi Campus, Bangalore University, Bengaluru, Karnataka, India
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Anmar Anwar Khan
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Saudi Arabia
| |
Collapse
|
16
|
Screening for Lipid-Metabolism-Related Genes and Identifying the Diagnostic Potential of ANGPTL6 for HBV-Related Early-Stage Hepatocellular Carcinoma. Biomolecules 2022; 12:biom12111700. [DOI: 10.3390/biom12111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Lipid metabolic reprogramming is one of the hallmarks of hepatocarcinogenesis and development. Therefore, lipid-metabolism-related genes may be used as potential biomarkers for hepatocellular carcinoma (HCC). This study aimed to screen for genes with dysregulated expression related to lipid metabolism in HCC and explored the clinical value of these genes. We screened differentially expressed proteins between tumorous and adjacent nontumorous tissues of hepatitis B virus (HBV)-related HCC patients using a Nanoscale Liquid Chromatography–Tandem Mass Spectrometry platform and combined it with transcriptomic data of lipid-metabolism-related genes from the GEO and HPA databases to identify dysregulated genes that may be involved in lipid metabolic processes. The potential clinical values of these genes were explored by bioinformatics online analysis tools (GEPIA, cBioPortal, SurvivalMeth, and TIMER). The expression levels of the secreted protein (angiopoietin-like protein 6, ANGPTL6) in serum were analyzed by ELISA. The ability of serum ANGPTL6 to diagnose early HCC was assessed by ROC curves. The results showed that serum ANGPTL6 could effectively differentiate between HBV-related early HCC patients with normal serum alpha-fetoprotein (AFP) levels and the noncancer group (healthy participants and chronic hepatitis B patients) (AUC = 0.717, 95% CI: from 0.614 to 0.805). Serum ANGPTL6 can be used as a potential second-line biomarker to supplement serum AFP in the early diagnosis of HBV-related HCC.
Collapse
|
17
|
Zhou L, Jiang Y, Lin Z, Chen R, Niu Y, Kan H. Mechanistic insights into the health benefits of fish-oil supplementation against fine particulate matter air pollution: a randomized controlled trial. Environ Health 2022; 21:104. [PMID: 36309727 PMCID: PMC9617415 DOI: 10.1186/s12940-022-00908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/03/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Dietary fish-oil supplementation might attenuate the associations between fine particulate matter (PM2.5) and subclinical biomarkers. However, the molecular mechanisms remain to be elucidated. This study aimed to explore the molecular mechanisms of fish-oil supplementation against the PM2.5-induced health effects. METHODS We conducted a randomized, double-blinded, and placebo-controlled trial among healthy college students in Shanghai, China, from September 2017 to January 2018. A total of 70 participants from the Fenglin campus of Fudan University were included. We randomly assigned participants to either supplementation of 2.5-gram fish oil (n = 35) or sunflower-seed oil (placebo) (n = 35) per day and conducted four rounds of health measurements in the last two months of the trial. As a post hoc exploratory study, the present untargeted metabolomics analysis used remaining blood samples collected in the previous trial and applied a Metabolome-Wide Association Study framework to compare the effects of PM2.5 on the metabolic profile between the sunflower-seed oil and fish oil groups. RESULTS A total of 65 participants completed the trial (34 of the fish oil group and 31 of the sunflower-seed oil group). On average, ambient PM2.5 concentration on the day of health measurements was 34.9 µg/m3 in the sunflower-seed oil group and 34.5 µg/m3 in the fish oil group, respectively. A total of 3833 metabolites were significantly associated with PM2.5 in the sunflower-seed oil group and 1757 in the fish oil group. Of these, 1752 metabolites showed significant between-group differences. The identified differential metabolites included arachidonic acid derivatives, omega-3 fatty acids, omega-6 fatty acids, and omega-9 fatty acids that were related to unsaturated fatty acid metabolism, which plays a role in the inflammatory responses. CONCLUSION This trial suggests fish-oil supplementation could mitigate the PM2.5-induced inflammatory responses via modulating fatty acid metabolism, providing biological plausibility for the health benefits of fish-oil supplementation against PM2.5 exposure. TRIAL REGISTRATION This study is registered at ClinicalTrails.gov (NCT03255187).
Collapse
Affiliation(s)
- Lu Zhou
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China.
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Typhoon Institute/CMA, 200030, Shanghai, China.
- Department of Environmental Health, School of Public Health, Fudan University, 200032, Shanghai, China.
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China.
- Department of Environmental Health, School of Public Health, Fudan University, 200032, Shanghai, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China
| |
Collapse
|
18
|
Higher Total Cholesterol Concentration May Be Associated with Better Cognitive Performance among Elderly Females. Nutrients 2022; 14:nu14194198. [PMID: 36235850 PMCID: PMC9571708 DOI: 10.3390/nu14194198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The brain contains the highest level of cholesterol in the body, and the total amount of serum cholesterol in the blood has a huge impact on brain aging and cognitive performance. However, the association of total serum cholesterol with cognitive function remains uncertain. This study determines whether there is an association between the total amount of cholesterol in the blood and cognitive performance in elderly females without a history of stroke. METHODS This population-based cross-sectional study was conducted on elderly (over 60 years old) females and males without a history of stroke from 2011 to 2014 in the US National Health and Nutrition Examination Survey (NHANES). The primary exposure was total blood cholesterol, and the main outcome was cognitive performance; this association was assessed with logistic regression analysis and restricted cubic splines. RESULTS 1309 female and 1272 male participants were included. In females, higher total cholesterol was significantly associated with higher cognitive scores, particularly in the digit symbol substitution test (OR 0.51, 95% CI (0.36-0.72)) and the animal fluency test (OR 0.64, 95% CI (0.45-0.91)). This association remained significant in models adjusted for age, race, smoking status, education level, and chronic conditions (OR 0.40, 95% CI (0.25-0.63)). This association was not significant in males, however. CONCLUSIONS A higher concentration of total cholesterol measured in later life may be a protective factor for cognitive performance among females over 60 years old without a history of stroke. Further, this association was more pronounced among women with higher levels of education than women with lower or no education.
Collapse
|
19
|
Hao J, Feng Y, Xu X, Li L, Yang K, Dai G, Gao W, Zhang M, Fan Y, Yin T, Wang J, Yang B, Jiao L, Zhang L. Plasma Lipid Mediators Associate With Clinical Outcome After Successful Endovascular Thrombectomy in Patients With Acute Ischemic Stroke. Front Immunol 2022; 13:917974. [PMID: 35865524 PMCID: PMC9295711 DOI: 10.3389/fimmu.2022.917974] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNeuroinflammatory response contributes to early neurological deterioration (END) and unfavorable long-term functional outcome in patients with acute ischemic stroke (AIS) who recanalized successfully by endovascular thrombectomy (EVT), but there are no reliable biomarkers for their accurate prediction. Here, we sought to determine the temporal plasma profiles of the bioactive lipid mediators lipoxin A4 (LXA4), resolvin D1 (RvD1), and leukotriene B4 (LTB4) for their associations with clinical outcome.MethodsWe quantified levels of LXA4, RvD1, and LTB4 in blood samples retrospectively and longitudinally collected from consecutive AIS patients who underwent complete angiographic recanalization by EVT at admission (pre-EVT) and 24 hrs post-EVT. The primary outcome was unfavorable long-term functional outcome, defined as a 90-day modified Rankin Scale score of 3-6. Secondary outcome was END, defined as an increase in National Institutes of Health Stroke Scale (NIHSS) score ≥4 points at 24 hrs post-EVT.ResultsEighty-one consecutive AIS patients and 20 healthy subjects were recruited for this study. Plasma levels of LXA4, RvD1, and LTB4 were significantly increased in post-EVT samples from AIS patients, as compared to those of healthy controls. END occurred in 17 (20.99%) patients, and 38 (46.91%) had unfavorable 90-day functional outcome. Multiple logistic regression analyses demonstrated that post-EVT levels of LXA4 (adjusted odd ratio [OR] 0.992, 95% confidence interval [CI] 0.987-0.998), ΔLXA4 (adjusted OR 0.995, 95% CI 0.991-0.999), LTB4 (adjusted OR 1.003, 95% CI 1.001-1.005), ΔLTB4 (adjusted OR 1.004, 95% CI 1.002-1.006), and post-EVT LXA4/LTB4 (adjusted OR 0.023, 95% CI 0.001-0.433) and RvD1/LTB4 (adjusted OR 0.196, 95% CI 0.057-0.682) ratios independently predicted END, and post-EVT LXA4 levels (adjusted OR 0.995, 95% CI 0.992-0.999), ΔLXA4 levels (adjusted OR 0.996, 95% CI 0.993-0.999), and post-EVT LXA4/LTB4 ratio (adjusted OR 0.285, 95% CI 0.096-0.845) independently predicted unfavorable 90-day functional outcome. These were validated using receiver operating characteristic curve analyses.ConclusionsPlasma lipid mediators measured 24 hrs post-EVT were independent predictors for early and long-term outcomes. Further studies are needed to determine their causal-effect relationship, and whether the imbalance between anti-inflammatory/pro-resolving and pro-inflammatory lipid mediators could be a potential adjunct therapeutic target.
Collapse
Affiliation(s)
- Jiheng Hao
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- *Correspondence: Xin Xu, ; Liqun Jiao, ; Liyong Zhang,
| | - Long Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Kun Yang
- Department of Evidence-based Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gaolei Dai
- Department of Intervention, Liaocheng People’s hospital, Liaocheng, China
| | - Weiwei Gao
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Meng Zhang
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
| | - Yaming Fan
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
| | - Tengkun Yin
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
| | - Bin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical Universit, Beijing, China
- *Correspondence: Xin Xu, ; Liqun Jiao, ; Liyong Zhang,
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
- *Correspondence: Xin Xu, ; Liqun Jiao, ; Liyong Zhang,
| |
Collapse
|
20
|
Kotlyarov S, Kotlyarova A. Molecular Pharmacology of Inflammation Resolution in Atherosclerosis. Int J Mol Sci 2022; 23:ijms23094808. [PMID: 35563200 PMCID: PMC9104781 DOI: 10.3390/ijms23094808] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Atherosclerosis is one of the most important problems of modern medicine as it is the leading cause of hospitalizations, disability, and mortality. The key role in the development and progression of atherosclerosis is the imbalance between the activation of inflammation in the vascular wall and the mechanisms of its control. The resolution of inflammation is the most important physiological mechanism that is impaired in atherosclerosis. The resolution of inflammation has complex, not fully known mechanisms, in which lipid mediators derived from polyunsaturated fatty acids (PUFAs) play an important role. Specialized pro-resolving mediators (SPMs) represent a group of substances that carry out inflammation resolution and may play an important role in the pathogenesis of atherosclerosis. SPMs include lipoxins, resolvins, maresins, and protectins, which are formed from PUFAs and regulate many processes related to the active resolution of inflammation. Given the physiological importance of these substances, studies examining the possibility of pharmacological effects on inflammation resolution are of interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
21
|
Specialized Pro-Resolving Lipid Mediators: New Therapeutic Approaches for Vascular Remodeling. Int J Mol Sci 2022; 23:ijms23073592. [PMID: 35408952 PMCID: PMC8998739 DOI: 10.3390/ijms23073592] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
Vascular remodeling is a typical feature of vascular diseases, such as atherosclerosis, aneurysms or restenosis. Excessive inflammation is a key mechanism underlying vascular remodeling via the modulation of vascular fibrosis, phenotype and function. Recent evidence suggests that not only augmented inflammation but unresolved inflammation might also contribute to different aspects of vascular diseases. Resolution of inflammation is mediated by a family of specialized pro-resolving mediators (SPMs) that limit immune cell infiltration and initiate tissue repair mechanisms. SPMs (lipoxins, resolvins, protectins, maresins) are generated from essential polyunsaturated fatty acids. Synthases and receptors for SPMs were initially described in immune cells, but they are also present in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), where they regulate processes important for vascular physiology, such as EC activation and VSMC phenotype. Evidence from genetic models targeting SPM pathways and pharmacological supplementation with SPMs have demonstrated that these mediators may play a protective role against the development of vascular remodeling in atherosclerosis, aneurysms and restenosis. This review focuses on the latest advances in understanding the role of SPMs in vascular cells and their therapeutic effects in the vascular remodeling associated with different cardiovascular diseases.
Collapse
|
22
|
Kim AS, Werlin EC, Kagaya H, Chen M, Wu B, Mottola G, Jan M, Conte MS. 17R/S-Benzo-RvD1, a synthetic resolvin D1 analogue, attenuates neointimal hyperplasia in a rat model of acute vascular injury. PLoS One 2022; 17:e0264217. [PMID: 35226675 PMCID: PMC8884511 DOI: 10.1371/journal.pone.0264217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/05/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Persistent inflammation following vascular injury drives neointimal hyperplasia (NIH). Specialized lipid mediators (SPM) mediate resolution which attenuates inflammation and downstream NIH. We investigated the effects of a synthetic analogue of resolvin D1 (RvD1) on vascular cells and in a model of rat carotid angioplasty. METHODS Human venous VSMC and endothelial cells (EC) were employed in migration, cell shape, toxicity, proliferation and p65 nuclear translocation assays. Murine RAW 264.7 cells were utilized to test the effect of pro-resolving compounds on phagocytic activity. A model of rat carotid angioplasty was used to evaluate the effects of 17R/S-benzo-RvD1 (benzo-RvD1) and 17R-RvD1 applied to the adventitia via 25% Pluronic gel. Immunostaining was utilized to examine Ki67 expression and leukocyte recruitment. Morphometric analysis was performed on arteries harvested 14 days after injury. RESULTS Exposure to benzo-RvD1 attenuated PDGF- stimulated VSMC migration across a range of concentrations (0.1-100 nM), similar to that observed with 17R-RvD1. Pre-treatment with either Benzo-RvD1 or 17R-RvD1 (10, 100nM) attenuated PDGF-BB-induced VSMC cytoskeletal changes to nearly baseline dimensions. Benzo-RvD1 demonstrated modest anti-proliferative activity on VSMC and EC at various concentrations, without significant cytotoxicity. Benzo-RvD1 (10nM) inhibited p65 nuclear translocation in cytokine-stimulated EC by 21% (p<0.05), similar to 17R-RvD1. Consistent with pro-resolving activities of other SPM, both 17R-RvD1 and benzo-RvD1 increased the phagocytic activity of RAW 264.7 cells against S. Aureus and Zymosan particles. There were no significant differences in Ki-67 or CD45 staining observed on day 3 after angioplasty. Periadventitial treatment with benzo-RvD1 reduced carotid neointimal area at 14 days compared to control (0.08 mm2 v. 0.18 mm2; p<0.05), with similar efficacy to 17R-RvD1. CONCLUSIONS 17R/S-benzo-RvD1 and 17R-RvD1 exhibit similar pro-resolving and anti-migratory activity in cell-based assays, and both compounds attenuated NIH following acute arterial injury in rats. Further studies of the mechanisms of resolution following vascular injury, and the translational potential of SPM analogues, are indicated.
Collapse
Affiliation(s)
- Alexander S. Kim
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| | - Evan C. Werlin
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| | - Hideo Kagaya
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| | - Mian Chen
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| | - Bian Wu
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| | - Giorgio Mottola
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| | - Masood Jan
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| | - Michael S. Conte
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| |
Collapse
|
23
|
Beegun I, Koenis DS, Alusi G, Dalli J. Dysregulated Maresin Concentrations in Plasma and Nasal Secretions From Patients With Chronic Rhinosinusitis. Front Immunol 2021; 12:733019. [PMID: 34531873 PMCID: PMC8438229 DOI: 10.3389/fimmu.2021.733019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
The mechanisms that lead to disease onset and propagation in patients with chronic rhinosinusitis (CRS) are not fully elucidated. Maresins (MaR) are a family of essential fatty acid-derived lipid mediators that play a central role in the regulation of inflammation with several studies demonstrating that these mediators display protective activities in airway inflammation. Therefore, in the present studies we evaluated whether concentrations of these mediators were altered in both peripheral blood and nasal secretions from CRS patients. Herein, we focused on patients with CRS that also develop nasal polyps (CRSwNP), given that therapeutic options for the treatment of these patients are limited. Thereby, insights into disease mechanisms in these patients may help design more effective treatments. For this purpose, we compared maresin concentrations from CRSwNP patients with those found in healthy volunteers or patients with an upper respiratory tract infection (URTI), as a self-resolving inflammatory condition. Using liquid chromatography tandem mass spectrometry, we found that MaR concentrations were significantly decreased in plasma from patients with CRSwNP when compared to healthy volunteers. MaR concentrations were observed to be significantly upregulated in nasal secretions from patients with CRSwNP when compared with both healthy volunteers and URTI subjects. Concentration of these mediators in both plasma and nasal secretions from CRSwNP patients were positively correlated with quality-of-life scores in these patients. Assessment of the concentrations of other pro-resolving and pro-inflammatory lipid mediators (LM) demonstrated that there was a general shift in LM levels in both plasma and nasal secretions from CRSwNP when compared with healthy volunteers and URTI subjects. Of note, incubation of peripheral blood cells from CRSwNP patients with MaR1 downregulated the expression of activation markers on peripheral blood phagocytes, including CD41 and CD62P, markers of platelet-leukocyte heterotypic aggregates. Together these findings demonstrate that both local and systemic LM concentrations, in particularly those of the MaR family, become altered in patients with CRSwNP. They also suggest that therapeutics designed around MaR1 may be useful in regulating the activation of phagocytes in patients with CRSwNP thereby potentially also limiting the local inflammatory response in these patients.
Collapse
Affiliation(s)
- Issa Beegun
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Duco S Koenis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ghassan Alusi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
Lammers T, Noels H. Lipids in disease pathology, diagnosis & therapy. Adv Drug Deliv Rev 2021; 159:1-3. [PMID: 33308647 DOI: 10.1016/j.addr.2020.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Noels H, Lehrke M, Vanholder R, Jankowski J. Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations. Nat Rev Nephrol 2021; 17:528-542. [PMID: 33972752 DOI: 10.1038/s41581-021-00423-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) induces modifications in lipid and lipoprotein metabolism and homeostasis. These modifications can promote, modulate and/or accelerate CKD and secondary cardiovascular disease (CVD). Lipid and lipoprotein abnormalities - involving triglyceride-rich lipoproteins, LDL and/or HDL - not only involve changes in concentration but also changes in molecular structure, including protein composition, incorporation of small molecules and post-translational modifications. These alterations modify the function of lipoproteins and can trigger pro-inflammatory and pro-atherogenic processes, as well as oxidative stress. Serum fatty acid levels are also often altered in patients with CKD and lead to changes in fatty acid metabolism - a key process in intracellular energy production - that induce mitochondrial dysfunction and cellular damage. These fatty acid changes might not only have a negative impact on the heart, but also contribute to the progression of kidney damage. The presence of these lipoprotein alterations within a biological environment characterized by increased inflammation and oxidative stress, as well as the competing risk of non-atherosclerotic cardiovascular death as kidney function declines, has important therapeutic implications. Additional research is needed to clarify the pathophysiological link between lipid and lipoprotein modifications, and kidney dysfunction, as well as the genesis and/or progression of CVD in patients with kidney disease.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, University Hospital, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Michael Lehrke
- Department of Internal Medicine I, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Pediatrics, University Hospital, Ghent, Belgium
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, University Hospital, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
26
|
Pils V, Terlecki-Zaniewicz L, Schosserer M, Grillari J, Lämmermann I. The role of lipid-based signalling in wound healing and senescence. Mech Ageing Dev 2021; 198:111527. [PMID: 34174292 DOI: 10.1016/j.mad.2021.111527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Lipid-based signalling modulates several cellular processes and intercellular communication during wound healing and tissue regeneration. Bioactive lipids include but are not limited to the diverse group of eicosanoids, phospholipids, and extracellular vesicles and mediate the attraction of immune cells, initiation of inflammatory responses, and their resolution. In aged individuals, wound healing and tissue regeneration are greatly impaired, resulting in a delayed healing process and non-healing wounds. Senescent cells accumulate with age in vivo, preferably at sites implicated in age-associated pathologies and their elimination was shown to alleviate many age-associated diseases and disorders. In contrast to these findings, the transient presence of senescent cells in the process of wound healing exerts beneficial effects and limits fibrosis. Hence, clearance of senescent cells during wound healing was repeatedly shown to delay wound closure in vivo. Recent findings established a dysregulated synthesis of eicosanoids, phospholipids and extracellular vesicles as part of the senescent phenotype. This intriguing connection between cellular senescence, lipid-based signalling, and the process of wound healing and tissue regeneration prompts us to compile the current knowledge in this review and propose future directions for investigation.
Collapse
Affiliation(s)
- Vera Pils
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lucia Terlecki-Zaniewicz
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz and Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Ingo Lämmermann
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
27
|
Qi A, Li Y, Yan S, Sun H, Zhao M, Chen Y. Effect of postoperative chemotherapy on blood glucose and lipid metabolism in patients with invasive breast cancer. Gland Surg 2021; 10:1470-1477. [PMID: 33968698 DOI: 10.21037/gs-21-141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Chemotherapy can lead to abnormal metabolism and affect the quality of life of patients after operation. Here we explore the effect of postoperative chemotherapy on blood glucose and lipid metabolism in patients with invasive breast cancer and thus provide evidence for the prevention and treatment of blood glucose and lipid disorders after surgery. Methods From January 2019 to December 2020, data from 141 patients with invasive breast cancer in our hospital were retrospectively collected. The levels of fasting blood glucose and blood lipid profiles [including total cholesterol, triglyceride, high-density lipoprotein (HDL), and low-density lipoprotein (LDL)] were compared before and after chemotherapy. Meanwhile, the metabolic risk factors for abnormal blood glucose and lipid profiles were analyzed. Results Fasting blood glucose levels significantly increased after treatment (5.21±0.89 vs. 4.87±0.71 mmol/L, P=0.000), as did those of triglyceride (1.81±1.02 vs. 1.26±0.67 mmol/L, P=0.000), while HDL significantly decreased (1.11±0.29 vs. 1.32±0.33 mmol/L, P=0.000). There were no significant differences in the levels of total cholesterol and LDL before and after treatment (P>0.05). Multivariate logistic regression analysis showed that anthracycline-based chemotherapy was a protective factor for elevated fasting blood glucose [P=0.035, 95% CI: 0.248 (0.068-0.908)], whereas receiving >6 cycles of chemotherapy was a risk factor for elevated fasting blood glucose (P=0.026, 95% CI: 4.036 (1.178-13.825)]. Conclusions Postoperative chemotherapy can lead to the elevated triglyceride and fasting blood glucose and decreased HDL in patients with breast cancer. Anthracycline-based chemotherapy is a protective factor for the increase of fasting blood glucose, and more than 6 cycles of chemotherapy is a risk factor for the increase of fasting blood glucose.
Collapse
Affiliation(s)
- Aiying Qi
- Department of General Surgery, the First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yanping Li
- Department of General Surgery, the First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Susu Yan
- Department of General Surgery, the First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huiying Sun
- Department of General Surgery, the First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Meiling Zhao
- Department of General Surgery, the First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuhui Chen
- Department of General Surgery, the First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|