1
|
Poudel I, Mita N, Babu RJ. 3D printed dosage forms, where are we headed? Expert Opin Drug Deliv 2024; 21:1595-1614. [PMID: 38993098 DOI: 10.1080/17425247.2024.2379943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION 3D Printing (3DP) is an innovative fabrication technology that has gained enormous popularity through its paradigm shifts in manufacturing in several disciplines, including healthcare. In this past decade, we have witnessed the impact of 3DP in drug product development. Almost 8 years after the first USFDA approval of the 3D printed tablet Levetiracetam (Spritam), the interest in 3DP for drug products is high. However, regulatory agencies have often questioned its large-scale industrial practicability, and 3DP drug approval/guidelines are yet to be streamlined. AREAS COVERED In this review, major technologies involved with the fabrication of drug products are introduced along with the prospects of upcoming technologies, including AI (Artificial Intelligence). We have touched upon regulatory updates and discussed the burning limitations, which require immediate focus, illuminating status, and future perspectives on the near future of 3DP in the pharmaceutical field. EXPERT OPINION 3DP offers significant advantages in rapid prototyping for drug products, which could be beneficial for personalizing patient-based pharmaceutical dispensing. It seems inevitable that the coming decades will be marked by exponential growth in personalization, and 3DP could be a paradigm-shifting asset for pharmaceutical professionals.
Collapse
Affiliation(s)
- Ishwor Poudel
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Nur Mita
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Faculty of Pharmacy, Mulawarman University, Samarinda, Kalimantan Timur, Indonesia
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Jin Z, Fu Y, Zhang Y, Guo S. Lesion-Adaptative Bionic Tracheal Stent with Local Paclitaxel Release for Enhanced Therapy of Tracheal Tumor and Stenosis. ACS Biomater Sci Eng 2024; 10:6677-6689. [PMID: 39325474 DOI: 10.1021/acsbiomaterials.4c01523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The efficacy of tracheal stents (TSs) in treating malignant tracheal stenosis is often compromised by tumor overgrowth, leading to restenosis and other stent-related complications that conventional chemotherapy and commercial stents fail to adequately address. Drug-loaded tracheal stents have the potential to deliver chemotherapeutics directly to tumors while relieving stenosis, but their effectiveness has yet to be studied in vivo. The design of drug-loaded tracheal stents adapting to lesions to achieve optimal antitumor effects and minimal side effects remains an area worth exploring. In this study, a lesion-adaptive bionic tracheal stent (PTX-TS) designed for the dual purpose of treating tracheal tumors and associated stenosis was developed. This novel PTX-TS was evaluated using an orthotopic rabbit model of malignant tracheal stenosis, newly established in this study. The rabbit lesions were precisely scanned using computed tomography (CT) for 3D reconstruction, enabling the design of a PTX-TS that fit both the tumor and airway dimensions to ensure complete tumor coverage and effective dilation of the stenotic airway. The PTX-TS featured a bilayer structure including a surface layer of PTX/ethylene-vinyl acetate copolymer (EVA) blends for sustained PTX release and an inner layer of polycaprolactone (PCL)/EVA blends for appropriate mechanical performance. The stent was fabricated layer by layer using a custom-built 3D printer, and the drug-loaded surface layer was printed using a novel liquid printing technique developed in our lab, achieving a high drug loading of up to 80%. The dose of the PTX-TS was investigated and set as 7.5 mg/cm2, which leads to maximum tissue permeation. With its bionic cross-sectional C-shaped structure, the PTX-TS demonstrated excellent radial flexibility, allowing successful implantation at the lesion site using a specially designed delivery apparatus, where it self-expanded to relieve stenosis. Additionally, the PTX-TS effectively delivered PTX directly to the tracheal tumor, resulting in superior antitumor efficacy without significant toxicity or complications.
Collapse
Affiliation(s)
- Zhu Jin
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiaotong University Chongqing Research Institute, Chongqing 401135, China
| | - Yuli Fu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujia Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengrong Guo
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Giri BR, Jakka D, Sandoval MA, Kulkarni VR, Bao Q. Advancements in Ocular Therapy: A Review of Emerging Drug Delivery Approaches and Pharmaceutical Technologies. Pharmaceutics 2024; 16:1325. [PMID: 39458654 PMCID: PMC11511072 DOI: 10.3390/pharmaceutics16101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Eye disorders affect a substantial portion of the global population, yet the availability of efficacious ophthalmic drug products remains limited. This can be partly ascribed to a number of factors: (1) inadequate understanding of physiological barriers, treatment strategies, drug and polymer properties, and delivery systems; (2) challenges in effectively delivering drugs to the anterior and posterior segments of the eye due to anatomical and physiological constraints; and (3) manufacturing and regulatory hurdles in ocular drug product development. The present review discusses innovative ocular delivery and treatments, encompassing implants, liposomes, nanoparticles, nanomicelles, microparticles, iontophoresis, in situ gels, contact lenses, microneedles, hydrogels, bispecific antibodies, and gene delivery strategies. Furthermore, this review also introduces advanced manufacturing technologies such as 3D printing and hot-melt extrusion (HME), aimed at improving bioavailability, reducing therapeutic dosages and side effects, facilitating the design of personalized ophthalmic dosage forms, as well as enhancing patient compliance. This comprehensive review lastly offers insights into digital healthcare, market trends, and industry and regulatory perspectives pertaining to ocular product development.
Collapse
Affiliation(s)
- Bhupendra Raj Giri
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Deeksha Jakka
- School of Pharmacy, The University of Mississippi, University, MS 38677, USA;
| | - Michael A. Sandoval
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Vineet R. Kulkarni
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Quanying Bao
- Synthetic Product Development, Alexion, AstraZeneca Rare Disease, 101 College Street, New Haven, CT 06510, USA
| |
Collapse
|
4
|
de Carvalho Rodrigues V, Guterres IZ, Pereira Savi B, Fongaro G, Silva IT, Vitor Salmoria G. Additive manufacturing of TPU devices for genital herpes treatment with sustained acyclovir release. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-16. [PMID: 39190633 DOI: 10.1080/09205063.2024.2396221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The treatment of recurrent genital herpes typically involves daily doses of acyclovir for extended periods. Additive manufacturing is an intriguing technique for creating personalised drug delivery systems, which can enhance the effectiveness of treatments for various diseases. The vaginal route offers a viable alternative for the systemic administration of drugs with low oral bioavailability. In this study, we produced different grades of thermoplastic polyurethane (TPU) filaments through hot-melt extrusion, with acyclovir concentrations of 0%, 10%, and 20% by weight. We used fused filament fabrication to manufacture matrix-based devices, including intrauterine devices and intravaginal rings. Our results, obtained through SEM, FTIR, and DSC analyses, confirm the successful incorporation of acyclovir into the matrix. Thermal analysis reveals that the manufacturing process alters the organization of the TPU chains, resulting in a slight reduction in crystallinity. In our in-vitro tests, we observed an initial burst release on the first day, followed by sustained release at reduced rates for up to 145 days, demonstrating their potential for long-term applications. Additionally, cytotoxicity analysis suggests the excellent biocompatibility of the printed devices, and biological assays show a remarkable 99% reduction in HSV-1 replication. In summary, TPU printed devices offer a promising alternative for long-term genital herpes treatment, with the results obtained potentially contributing to the advancement of pharmaceutical manufacturing.
Collapse
Affiliation(s)
| | - Iara Zanella Guterres
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Beatriz Pereira Savi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Izabella Thaís Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gean Vitor Salmoria
- Nimma, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Biomechanics Engineering Laboratory, University Hospital (HU), Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
5
|
Jewell CM, Stones JA. Rise of the (3D printing) machines in healthcare. Int J Pharm 2024; 661:124462. [PMID: 39002819 DOI: 10.1016/j.ijpharm.2024.124462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Three-dimensional printing (3D printing) or "additive manufacturing" first came to prominence in the field of engineering, in particular in the transport sector where the value of its fast and accurate prototyping and manufacture of spare parts was quickly recognised. However, over the last ten years, this revolutionary technology has disrupted established manufacture in an increasingly diverse range of technical areas. Perhaps the most unexpected of these is pharmaceuticals - not merely the manufacture of products such as surgically inserted implants, but also of dosage formulations themselves - now available in all manner of printed delivery forms and vehicles and showing promising control of release properties though 3D printing process choices. This review will provide an overview of how 3D printing technology has developed and expanded across technological boundaries during the past decade, with a closer look at the current opportunities and barriers to its widespread adoption, particularly in the medical and pharmaceutical sectors. Special attention has been paid to patents as a boost and barrier to the expansion of 3D printing in the medical and pharmaceutical sector, with a focus on the patent literature.
Collapse
Affiliation(s)
- Catherine M Jewell
- Beck Greener LLP, Fulwood House, 12 Fulwood Place, London WC1V 6HR, United Kingdom.
| | - James A Stones
- Beck Greener LLP, Fulwood House, 12 Fulwood Place, London WC1V 6HR, United Kingdom
| |
Collapse
|
6
|
Abdalla Y, Ferianc M, Awad A, Kim J, Elbadawi M, Basit AW, Orlu M, Rodrigues M. Smart laser Sintering: Deep Learning-Powered powder bed fusion 3D printing in precision medicine. Int J Pharm 2024; 661:124440. [PMID: 38972521 DOI: 10.1016/j.ijpharm.2024.124440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Medicines remain ineffective for over 50% of patients due to conventional mass production methods with fixed drug dosages. Three-dimensional (3D) printing, specifically selective laser sintering (SLS), offers a potential solution to this challenge, allowing the manufacturing of small, personalized batches of medication. Despite its simplicity and suitability for upscaling to large-scale production, SLS was not designed for pharmaceutical manufacturing and necessitates a time-consuming, trial-and-error adaptation process. In response, this study introduces a deep learning model trained on a variety of features to identify the best feature set to represent drugs and polymeric materials for the prediction of the printability of drug-loaded formulations using SLS. The proposed model demonstrates success by achieving 90% accuracy in predicting printability. Furthermore, explainability analysis unveils materials that facilitate SLS printability, offering invaluable insights for scientists to optimize SLS formulations, which can be expanded to other disciplines. This represents the first study in the field to develop an interpretable, uncertainty-optimized deep learning model for predicting the printability of drug-loaded formulations. This paves the way for accelerating formulation development, propelling us into a future of personalized medicine with unprecedented manufacturing precision.
Collapse
Affiliation(s)
- Youssef Abdalla
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Martin Ferianc
- Department of Electronic and Electrical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Atheer Awad
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Clinical Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Jeesu Kim
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Moe Elbadawi
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Mine Orlu
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Miguel Rodrigues
- Department of Electronic and Electrical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
7
|
Liu Z, Huang J, Fang D, Feng B, Luo J, Lei P, Chen X, Xie Q, Chen M, Chen P. Material extrusion 3D-printing technology: A new strategy for constructing water-soluble, high-dose, sustained-release drug formulations. Mater Today Bio 2024; 27:101153. [PMID: 39081462 PMCID: PMC11287018 DOI: 10.1016/j.mtbio.2024.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
The advantage of low-temperature forming through direct ink writing (DIW) 3D printing is becoming a strategy for the construction of innovative drug delivery systems (DDSs). Optimization of the complex formulation, including factors such as the printing ink, presence of solvents, and potential low mechanical strength, are challenges during process development. This study presents an application of DIW to fabricate water-soluble, high-dose, and sustained-release DDSs. Utilizing poorly compressible metformin hydrochloride as a model drug, a core-shell delivery system was developed, featuring a core composed of 96 % drug powder and 4 % binder, with a shell structure serving as a drug-release barrier. This design aligns with the sustained-release profile of traditional processes, achieving a 25.8 % reduction in volume and enhanced mechanical strength. The strategy facilitates sustained release of high-dose water-soluble formulations for over 12 h, potentially improving patient compliance by reducing formulation size. Process optimization and multi-batch flexibility were also explored in this study. Our findings provide a valuable reference for the development of innovative DDSs and 3D-printed drugs.
Collapse
Affiliation(s)
- Zhiting Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiaying Huang
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- YUEBEI People’s Hospital, Shaoguan, 512026, China
| | - Danqiao Fang
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Bohua Feng
- Guangdong Province Engineering & Technology Research Center for Medical 3D Printer and Personalized Medicine, Guangzhou, 510006, China
| | - Jianxu Luo
- Guangdong Province Engineering & Technology Research Center for Medical 3D Printer and Personalized Medicine, Guangzhou, 510006, China
| | - Peixuan Lei
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaoling Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qingchun Xie
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Peihong Chen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Mihaylova A, Shopova D, Parahuleva N, Yaneva A, Bakova D. (3D) Bioprinting-Next Dimension of the Pharmaceutical Sector. Pharmaceuticals (Basel) 2024; 17:797. [PMID: 38931464 PMCID: PMC11206453 DOI: 10.3390/ph17060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
To create a review of the published scientific literature on the benefits and potential perspectives of the use of 3D bio-nitrification in the field of pharmaceutics. This work was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for reporting meta-analyses and systematic reviews. The scientific databases PubMed, Scopus, Google Scholar, and ScienceDirect were used to search and extract data using the following keywords: 3D bioprinting, drug research and development, personalized medicine, pharmaceutical companies, clinical trials, drug testing. The data points to several aspects of the application of bioprinting in pharmaceutics were reviewed. The main applications of bioprinting are in the development of new drug molecules as well as in the preparation of personalized drugs, but the greatest benefits are in terms of drug screening and testing. Growth in the field of 3D printing has facilitated pharmaceutical applications, enabling the development of personalized drug screening and drug delivery systems for individual patients. Bioprinting presents the opportunity to print drugs on demand according to the individual needs of the patient, making the shape, structure, and dosage suitable for each of the patient's physical conditions, i.e., print specific drugs for controlled release rates; print porous tablets to reduce swallowing difficulties; make transdermal microneedle patches to reduce patient pain; and so on. On the other hand, bioprinting can precisely control the distribution of cells and biomaterials to build organoids, or an Organ-on-a-Chip, for the testing of drugs on printed organs mimicking specified disease characteristics instead of animal testing and clinical trials. The development of bioprinting has the potential to offer customized drug screening platforms and drug delivery systems meeting a range of individualized needs, as well as prospects at different stages of drug development and patient therapy. The role of bioprinting in preclinical and clinical testing of drugs is also of significant importance in terms of shortening the time to launch a medicinal product on the market.
Collapse
Affiliation(s)
- Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Nikoleta Parahuleva
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| |
Collapse
|
9
|
Turac IR, Porfire A, Iurian S, Crișan AG, Casian T, Iovanov R, Tomuță I. Expanding the Manufacturing Approaches for Gastroretentive Drug Delivery Systems with 3D Printing Technology. Pharmaceutics 2024; 16:790. [PMID: 38931911 PMCID: PMC11207633 DOI: 10.3390/pharmaceutics16060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Gastroretentive drug delivery systems (GRDDSs) have gained substantial attention in the last 20 years due to their ability to retain the drug in the stomach for an extended time, thus promoting an extended release and high bioavailability for a broad range of active pharmaceutical ingredients (APIs) that are pH-sensitive and/or have a narrow absorption window. The currently existing GRDDSs include floating, expanding, mucoadhesive, magnetic, raft-forming, ion-exchanging, and high-density systems. Although there are seven types of systems, the main focus is on floating, expanding, and mucoadhesive systems produced by various techniques, 3D printing being one of the most revolutionary and currently studied ones. This review assesses the newest production technologies and briefly describes the in vitro and in vivo evaluation methods, with the aim of providing a better overall understanding of GRDDSs as a novel emerging strategy for targeted drug delivery.
Collapse
Affiliation(s)
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (I.-R.T.); (S.I.); (A.G.C.); (T.C.); (R.I.); (I.T.)
| | | | | | | | | | | |
Collapse
|
10
|
Pflieger T, Venkatesh R, Dachtler M, Cooke K, Laufer S, Lunter D. Influence of design parameters on sustained drug release properties of 3D-printed theophylline tablets. Int J Pharm 2024; 658:124207. [PMID: 38718971 DOI: 10.1016/j.ijpharm.2024.124207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
The application of three-dimensional printing (3DP) in the pharmaceutical industry brings a broad spectrum of benefits to patients by addressing individual needs and improve treatment success. This study investigates the sustained release properties of 3DP tablets containing Theophylline (TPH), which is commonly used to treat respiratory diseases and recently having a comeback due to its potential in the treatment of conditions like Covid-19. Since TPH is a narrow therapeutic window (NTW) drug with serious side effects in the event of overdose, the release properties must be observed particularly closely. We employed a state-of-the-art single screw extrusion 3D printer, which is fed with granules containing the drug. By employing a Taguchi orthogonal array design of experiments (DOE), tablet design parameters and factor related process stability were sought to be evaluated fundamentally. Following this, examinations regarding tailored TPH dosages were undertaken and a relationship between the real printed dose of selected tablet designs and their sustained drug release was established. The release profiles were analyzed using different mathematical model fits and compared in terms of mean dissolution times (MDT). Finally, in-vivo/in-vitro correlation (IVIVC) and physiologically based pharmacokinetic (PBPK) modeling showed that a paradigm patient group could be covered with the dosage forms produced.
Collapse
Affiliation(s)
- Thomas Pflieger
- DiHeSys Digital Health Systems GmbH, Marie-Curie-Strasse 19, 73529 Schwaebisch Gmuend, Germany; Chair of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72074 Tuebingen, Germany
| | - Rakesh Venkatesh
- DiHeSys Digital Health Systems GmbH, Marie-Curie-Strasse 19, 73529 Schwaebisch Gmuend, Germany
| | - Markus Dachtler
- DiHeSys Digital Health Systems GmbH, Marie-Curie-Strasse 19, 73529 Schwaebisch Gmuend, Germany
| | - Karin Cooke
- Gen-Plus GmbH & Co. KG, Staffelseestrasse 6, 81477 Munich, Germany
| | - Stefan Laufer
- Chair of Pharmaceutical Chemistry, Eberhard Karls University, Auf der Morgenstelle 8, 72074 Tuebingen, Germany
| | - Dominique Lunter
- Chair of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72074 Tuebingen, Germany.
| |
Collapse
|
11
|
Helmy AM, Lu A, Duggal I, Rodrigues KP, Maniruzzaman M. Electromagnetic drop-on-demand (DoD) technology as an innovative platform for amorphous solid dispersion production. Int J Pharm 2024; 658:124185. [PMID: 38703932 DOI: 10.1016/j.ijpharm.2024.124185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Production of amorphous solid dispersions (ASDs) is an effective strategy to promote the solubility and bioavailability of poorly water soluble medicinal substances. In general, ASD is manufactured using a variety of classic and modern techniques, most of which rely on either melting or solvent evaporation. This proof-of-concept study is the first ever to introduce electromagnetic drop-on-demand (DoD) technique as an alternative solvent evaporation-based method for producing ASDs. Herein 3D printing of ASDs for three drug-polymer combinations (efavirenz-Eudragit L100-55, lumefantrine-hydroxypropyl methylcellulose acetate succinate, and favipiravir-polyacrylic acid) was investigated to ascertain the reliability of this technique. Polarized light microscopy, differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Fourier Transform Infrared (FTIR) spectroscopy results supported the formation of ASDs for the three drugs by means of DoD 3D printing, which significantly increases the equilibrium solubility of efavirenz from 0.03 ± 0.04 µg/ml to 21.18 ± 4.20 µg/ml, and the equilibrium solubility of lumefantrine from 1.26 ± 1.60 µg/ml to 20.21 ± 6.91 µg/ml. Overall, the reported findings show how this new electromagnetic DoD technology can have a potential to become a cutting-edge 3D printing solvent-evaporation technique for on-demand and continuous manufacturing of ASDs for a variety of drugs.
Collapse
Affiliation(s)
- Abdelrahman M Helmy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Deraya University, Minya, Egypt
| | - Anqi Lu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ishaan Duggal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kristina P Rodrigues
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677-1848, USA.
| |
Collapse
|
12
|
Peralta G, Sánchez-Santiago B. Navigating the challenges of clinical trial professionals in the healthcare sector. Front Med (Lausanne) 2024; 11:1400585. [PMID: 38887672 PMCID: PMC11181308 DOI: 10.3389/fmed.2024.1400585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Clinical trials (CTs) are essential for medical advancements but face significant challenges, particularly in professional training and role clarity. Principal investigators, clinical research coordinators (CRCs), nurses, clinical trial pharmacists, and monitors are key players. Each faces unique challenges, such as maintaining protocol compliance, managing investigational products, and ensuring data integrity. Clinical trials' complexity and evolving nature demand specialized and ongoing training for these professionals. Addressing these challenges requires clear role delineation, continuous professional development, and supportive workplace environments to improve retention and trial outcomes. Enhanced training programs and a collaborative approach are essential for the successful conduct of clinical trials and the advancement of medical research.
Collapse
Affiliation(s)
- Galo Peralta
- Central Support Unit, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Blanca Sánchez-Santiago
- Clinical Pharmacology Service, Clinical Trials Unit, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| |
Collapse
|
13
|
Adhami M, Picco CJ, Detamornrat U, Anjani QK, Cornelius VA, Robles-Martinez P, Margariti A, Donnelly RF, Domínguez-Robles J, Larrañeta E. Clopidogrel-loaded vascular grafts prepared using digital light processing 3D printing. Drug Deliv Transl Res 2024; 14:1693-1707. [PMID: 38051475 PMCID: PMC11052781 DOI: 10.1007/s13346-023-01484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
The leading cause of death worldwide and a significant factor in decreased quality of life are the cardiovascular diseases. Endovascular operations like angioplasty, stent placement, or atherectomy are often used in vascular surgery to either dilate a narrowed blood artery or remove a blockage. As an alternative, a vascular transplant may be utilised to replace or bypass a dysfunctional or blocked blood vessel. Despite the advancements in endovascular surgery and its popularisation over the past few decades, vascular bypass grafting remains prevalent and is considered the best option for patients in need of long-term revascularisation treatments. Consequently, the demand for synthetic vascular grafts composed of biocompatible materials persists. To address this need, biodegradable clopidogrel (CLOP)-loaded vascular grafts have been fabricated using the digital light processing (DLP) 3D printing technique. A mixture of polylactic acid-polyurethane acrylate (PLA-PUA), low molecular weight polycaprolactone (L-PCL), and CLOP was used to achieve the required mechanical and biological properties for vascular grafts. The 3D printing technology provides precise detail in terms of shape and size, which lead to the fabrication of customised vascular grafts. The fabricated vascular grafts were fully characterised using different techniques, and finally, the drug release was evaluated. Results suggested that the performed 3D-printed small-diameter vascular grafts containing the highest CLOP cargo (20% w/w) were able to provide a sustained drug release for up to 27 days. Furthermore, all the CLOP-loaded 3D-printed materials resulted in a substantial reduction of the platelet deposition across their surface compared to the blank materials containing no drug. Haemolysis percentage for all the 3D-printed samples was lower than 5%. Moreover, 3D-printed materials were able to provide a supportive environment for cellular attachment, viability, and growth. A substantial increase in cell growth was detected between the blank and drug-loaded grafts.
Collapse
Affiliation(s)
- Masoud Adhami
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Qonita K Anjani
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Victoria A Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | | | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
- Department of Pharmacy and Pharmaceutical Technology, University of Seville, Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
14
|
Kreft K, Fanous M, Möckel V. The potential of three-dimensional printing for pediatric oral solid dosage forms. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:229-248. [PMID: 38815205 DOI: 10.2478/acph-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 06/01/2024]
Abstract
Pediatric patients often require individualized dosing of medicine due to their unique pharmacokinetic and developmental characteristics. Current methods for tailoring the dose of pediatric medications, such as tablet splitting or compounding liquid formulations, have limitations in terms of dosing accuracy and palatability. This paper explores the potential of 3D printing as a solution to address the challenges and provide tailored doses of medication for each pediatric patient. The technological overview of 3D printing is discussed, highlighting various 3D printing technologies and their suitability for pharmaceutical applications. Several individualization options with the potential to improve adherence are discussed, such as individualized dosage, custom release kinetics, tablet shape, and palatability. To integrate the preparation of 3D printed medication at the point of care, a decentralized manufacturing model is proposed. In this setup, pharmaceutical companies would routinely provide materials and instructions for 3D printing, while specialized compounding centers or hospital pharmacies perform the printing of medication. In addition, clinical opportunities of 3D printing for dose-finding trials are emphasized. On the other hand, current challenges in adequate dosing, regulatory compliance, adherence to quality standards, and maintenance of intellectual property need to be addressed for 3D printing to close the gap in personalized oral medication.
Collapse
Affiliation(s)
- Klemen Kreft
- 1Lek Pharmaceuticals d.d., a Sandoz Company, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
15
|
Alzhrani RF, Alyahya MY, Algahtani MS, Fitaihi RA, Tawfik EA. Trend of pharmaceuticals 3D printing in the Middle East and North Africa (MENA) region: An overview, regulatory perspective and future outlook. Saudi Pharm J 2024; 32:102098. [PMID: 38774811 PMCID: PMC11107368 DOI: 10.1016/j.jsps.2024.102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
The traditional method of producing medicine using the "one-size fits all" model is becoming a major issue for pharmaceutical manufacturers due to its inability to produce customizable medicines for individuals' needs. Three-dimensional (3D) printing is a new disruptive technology that offers many benefits to the pharmaceutical industry by revolutionizing the way pharmaceuticals are developed and manufactured. 3D printing technology enables the on-demand production of personalized medicine with tailored dosage, shape and release characteristics. Despite the lack of clear regulatory guidance, there is substantial interest in adopting 3D printing technology in the large-scale manufacturing of medicine. This review aims to evaluate the research efforts of 3D printing technology in the Middle East and North Africa (MENA) region, with a particular emphasis on pharmaceutical research and development. Our analysis indicates an upsurge in the overall research activity of 3D printing technology but there is limited progress in pharmaceuticals research and development. While the MENA region still lags, there is evidence of the regional interest in expanding the 3D printing technology applications in different sectors including pharmaceuticals. 3D printing holds great promise for pharmaceutical development within the MENA region and its advancement will require a strong collaboration between academic researchers and industry partners in parallel with drafting detailed guidelines from regulatory authorities.
Collapse
Affiliation(s)
- Riyad F. Alzhrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Y. Alyahya
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Rawan A. Fitaihi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
16
|
Biswas AA, Dhondale MR, Agrawal AK, Serrano DR, Mishra B, Kumar D. Advancements in microneedle fabrication techniques: artificial intelligence assisted 3D-printing technology. Drug Deliv Transl Res 2024; 14:1458-1479. [PMID: 38218999 DOI: 10.1007/s13346-023-01510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
Microneedles (MNs) are micron-scale needles that are a painless alternative to injections for delivering drugs through the skin. MNs find applications as biosensing devices and could serve as real-time diagnosis tools. There have been numerous fabrication techniques employed for producing quality MN-based systems, prominent among them is the three-dimensional (3D) printing. 3D printing enables the production of quality MNs of tuneable characteristics using a variety of materials. Further, the possible integration of artificial intelligence (AI) tools such as machine learning (ML) and deep learning (DL) with 3D printing makes it an indispensable tool for fabricating microneedles. Provided that these AI tools can be trained and act with minimal human intervention to control the quality of products produced, there is also a possibility of mass production of MNs using these tools in the future. This work reviews the specific role of AI in the 3D printing of MN-based devices discussing the use of AI in predicting drug release patterns, its role as a quality control tool, and in predicting the biomarker levels. Additionally, the autonomous 3D printing of microneedles using an integrated system of the internet of things (IoT) and machine learning (ML) is discussed in brief. Different categories of machine learning including supervised learning, semi-supervised learning, unsupervised learning, and reinforced learning have been discussed in brief. Lastly, a brief section is dedicated to the biosensing applications of MN-based devices.
Collapse
Affiliation(s)
- Anuj A Biswas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India
| | - Madhukiran R Dhondale
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India
| | - Ashish K Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India
| | | | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India.
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India.
| |
Collapse
|
17
|
Rodríguez-Pombo L, de Castro-López MJ, Sánchez-Pintos P, Giraldez-Montero JM, Januskaite P, Duran-Piñeiro G, Dolores Bóveda M, Alvarez-Lorenzo C, Basit AW, Goyanes A, Couce ML. Paediatric clinical study of 3D printed personalised medicines for rare metabolic disorders. Int J Pharm 2024; 657:124140. [PMID: 38643809 DOI: 10.1016/j.ijpharm.2024.124140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Rare diseases are infrequent, but together they affect up to 6-10 % of the world's population, mainly children. Patients require precise doses and strict adherence to avoid metabolic or cardiac failure in some cases, which cannot be addressed in a reliable way using pharmaceutical compounding. 3D printing (3DP) is a disruptive technology that allows the real-time personalization of the dose and the modulation of the dosage form to adapt the medicine to the therapeutic needs of each patient. 3D printed chewable medicines containing amino acids (citrulline, isoleucine, valine, and isoleucine and valine combinations) were prepared in a hospital setting, and the efficacy and acceptability were evaluated in comparison to conventional compounded medicines in six children. The inclusion of new flavours (lemon, vanilla and peach) to obtain more information on patient preferences and the implementation of a mobile app to obtain patient feedback in real-time was also used. The 3D printed medicines controlled amino acid levels within target levels as well as the conventional medicines. The deviation of citrulline levels was narrower and closer within the target concentration with the chewable formulations. According to participants' responses, the chewable formulations were well accepted and can improve adherence and quality of life. For the first time, 3DP enabled two actives to be combined in the same formulation, reducing the number of administrations. This study demonstrated the benefits of preparing 3D printed personalized treatments for children diagnosed with rare metabolic disorders using a novel technology in real clinical practice.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María José de Castro-López
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Paula Sánchez-Pintos
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Jose Maria Giraldez-Montero
- Pharmacy Department, Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Travesía Choupana s/n, Santiago de Compostela 15706, Spain
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Goretti Duran-Piñeiro
- Pharmacy Department, Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Travesía Choupana s/n, Santiago de Compostela 15706, Spain
| | - M Dolores Bóveda
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), CP 27543, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), CP 27543, Spain.
| | - Maria L Couce
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain.
| |
Collapse
|
18
|
Rodríguez-Pombo L, Carou-Senra P, Rodríguez-Martínez E, Januskaite P, Rial C, Félix P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Customizable orodispersible films: Inkjet printing and data matrix encoding for personalized hydrocortisone dosing. Int J Pharm 2024; 655:124005. [PMID: 38493841 DOI: 10.1016/j.ijpharm.2024.124005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The aim of this study was to exploit the versatility of inkjet printing to develop flexible doses of drug-loaded orodispersible films that encoded information in a data matrix pattern, and to introduce a specialised data matrix-generator software specifically focused on the healthcare sector. Pharma-inks (drug-loaded inks) containing hydrocortisone (HC) were developed and characterised based on their rheological properties and drug content. Different strategies were investigated to improve HC solubility: formation of β-cyclodextrin complexes, Soluplus® based micelles, and the use of co-solvent systems. The software automatically adapted the data matrix size and identified the number of layers for printing. HC content deposited in each film layer was measured, and it was found that the proportion of co-solvent used directly affected the drug solubility and simultaneously played a role in the modification of the viscosity and surface tension of the inks. The formation of β-cyclodextrin complexes improved the drug quantity deposited in each layer. On the contrary, micelle-based inks were not suitable for printing. Orodispersible films containing flexible and low doses of personalised HC were successfully prepared, and the development of a code generator software oriented to medical use provided an additional, innovative, and revolutionary advantage to personalised medicine safety and accessibility.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Erea Rodríguez-Martínez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Carlos Rial
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain
| | - Paulo Félix
- CiTIUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain.
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain.
| |
Collapse
|
19
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
20
|
Chacko IA, Ramachandran G, Sudheesh MS. Unmet technological demands in orodispersible films for age-appropriate paediatric drug delivery. Drug Deliv Transl Res 2024; 14:841-857. [PMID: 37957474 DOI: 10.1007/s13346-023-01451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/15/2023]
Abstract
Age-appropriateness of a formulation is the ability to deliver variable but accurate doses to the paediatric population in a safe and acceptable manner to improve medical adherence and reduce medication errors. Paediatric drug delivery is a challenging area of formulation research due to the existing gap in knowledge. This includes the unknown safety of excipients in the paediatric population, the need for an age-appropriate formulation, the lack of an effective taste-masking method and the lack of paediatric pharmacokinetic data and patient acceptability. It is equally important to establish methods for predicting the biopharmaceutical performance of a paediatric formulation as a function of age. Overcoming the challenges of existing technologies and providing custom-made solutions for the development of age-appropriate formulation is, therefore, a daunting task. Orodispersible films (ODF) are promising as age-appropriate formulations, an unmet need in paediatric drug delivery. New technological improvements in taste masking, improving solubility and rate of dissolution of insoluble drugs, the flexibility of dosing and extemporaneous preparation of these films in a hospital good manufacturing practises (GMP) setup using 3D printing can increase its acceptance among clinicians, patients and caregivers. The current review discusses the problems and possibilities in ODF technology to address the outstanding issues of age-appropriateness, which is the hallmark of patient acceptance and medical adherence in paediatrics.
Collapse
Affiliation(s)
- Indhu Annie Chacko
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India
| | - Gayathri Ramachandran
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India.
| |
Collapse
|
21
|
Curti C, Kirby DJ, Russell CA. Systematic screening of photopolymer resins for stereolithography (SLA) 3D printing of solid oral dosage forms: Investigation of formulation factors on printability outcomes. Int J Pharm 2024; 653:123862. [PMID: 38307399 DOI: 10.1016/j.ijpharm.2024.123862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Pharmaceutical three-dimensional printing (3DP) is now in its golden age. Recent years have seen a dramatic increase in the research in 3D printed pharmaceuticals due to their potential to deliver highly personalised medicines, thus revolutionising the way medicines are designed, manufactured, and dispensed. A particularly attractive 3DP technology used to manufacture medicines is stereolithography (SLA), which features key advantages in terms of printing resolution and compatibility with thermolabile drugs. Nevertheless, the enthusiasm for pharmaceutical SLA has not been followed by the introduction of novel excipients specifically designed for the fabrication of medicines; hence, the choice of biocompatible polymers and photoinitiators available is limited. This work provides an insight on how to maximise the usefulness of the limited materials available by evaluating how different formulation factors affect printability outcomes of SLA 3D printed medicines. 156 photopolymer formulations were systematically screened to evaluate the influence of factors including photoinitiator amount, photopolymer molecular size, and type and amount of liquid filler on the printability outcomes. Collectively, these factors were found highly influential in modulating the print quality of the final dosage forms. Findings provide enhanced understanding of formulation parameters informing the future of SLA 3D printed medicines and the personalised medicines revolution.
Collapse
Affiliation(s)
- Carlo Curti
- School of Pharmacy, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Daniel J Kirby
- School of Pharmacy, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Craig A Russell
- School of Pharmacy, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
22
|
Tong H, Zhang J, Ma J, Zhang J. Perspectives on 3D printed personalized medicines for pediatrics. Int J Pharm 2024; 653:123867. [PMID: 38310991 DOI: 10.1016/j.ijpharm.2024.123867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
In recent years, the rapid advancement of three-dimensional (3D) printing technology has yielded distinct benefits across various sectors, including pharmaceuticals. The pharmaceutical industry has particularly experienced advantages from the utilization of 3D-printed medications, which have invigorated the development of tailored drug formulations. The approval of 3D-printed drugs by the U.S. Food and Drug Administration (FDA) has significantly propelled personalized drug delivery. Additionally, 3D printing technology can accommodate the precise requirements of pediatric drug dosages and the complexities of multiple drug combinations. This review specifically concentrates on the application of 3D printing technology in pediatric preparations, encompassing a broad spectrum of uses and refined pediatric formulations. It compiles and evaluates the fundamental principles associated with the application of 3D printing technology in pediatric preparations, including its merits and demerits, and anticipates its future progression. The objective is to furnish theoretical underpinning for 3D printing technology to facilitate personalized drug delivery in pediatrics and to advocate for its implementation in clinical settings.
Collapse
Affiliation(s)
- Haixu Tong
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Jing Ma
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China.
| |
Collapse
|
23
|
Milliken RL, Quinten T, Andersen SK, Lamprou DA. Application of 3D printing in early phase development of pharmaceutical solid dosage forms. Int J Pharm 2024; 653:123902. [PMID: 38360287 DOI: 10.1016/j.ijpharm.2024.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Three-dimensional printing (3DP) is an emerging technology, offering the possibility for the development of dose-customized, effective, and safe solid oral dosage forms (SODFs). Although 3DP has great potential, it does come with certain limitations, and the traditional drug manufacturing platforms remain the industry standard. The consensus appears to be that 3DP technology is expected to benefit personalized medicine the most, but that it is unlikely to replace conventional manufacturing for mass production. The 3DP method, on the other hand, could prove well-suited for producing small batches as an adaptive manufacturing technique for enabling adaptive clinical trial design for early clinical studies. The purpose of this review is to discuss recent advancements in 3DP technologies for SODFs and to focus on the applications for SODFs in the early clinical development stages, including a discussion of current regulatory challenges and quality controls.
Collapse
Affiliation(s)
- Rachel L Milliken
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thomas Quinten
- Janssen Pharmaceutica, Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Sune K Andersen
- Janssen Pharmaceutica, Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
24
|
Aguilar-de-Leyva Á, Casas M, Ferrero C, Linares V, Caraballo I. 3D Printing Direct Powder Extrusion in the Production of Drug Delivery Systems: State of the Art and Future Perspectives. Pharmaceutics 2024; 16:437. [PMID: 38675099 PMCID: PMC11054165 DOI: 10.3390/pharmaceutics16040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The production of tailored, on-demand drug delivery systems has gained attention in pharmaceutical development over the last few years, thanks to the application of 3D printing technology in the pharmaceutical field. Recently, direct powder extrusion (DPE) has emerged among the extrusion-based additive manufacturing techniques. It is a one-step procedure that allows the direct processing of powdered formulations. The aim of this systematic literature review is to analyze the production of drug delivery systems using DPE. A total of 27 articles have been identified through scientific databases (Scopus, PubMed, and ScienceDirect). The main characteristics of the three types of 3D printers based on DPE have been discussed. The selection of polymers and auxiliary excipients, as well as the flowability of the powder mixture, the rheological properties of the molten material, and the printing temperatures have been identified as the main critical parameters for successful printing. A wide range of drug delivery systems with varied geometries and different drug release profiles intended for oral, buccal, parenteral, and transdermal routes have been produced. The ability of this technique to manufacture personalized, on-demand drug delivery systems has been proven. For all these reasons, its implementation in hospital settings in the near future seems promising.
Collapse
Affiliation(s)
| | - Marta Casas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.A.-d.-L.); (C.F.) (V.L.); (I.C.)
| | | | | | | |
Collapse
|
25
|
Lin AC, Lee J, Gabriel MK, Arbet RN, Ghawaa Y, Ferguson AM. The Pharmacy 5.0 framework: A new paradigm to accelerate innovation for large-scale personalized pharmacy care. Am J Health Syst Pharm 2024; 81:e141-e147. [PMID: 37672000 DOI: 10.1093/ajhp/zxad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 09/07/2023] Open
Affiliation(s)
- Alex C Lin
- Division of Pharmacy Practice and Administrative Sciences, The James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Jay Lee
- A. James Clark School of Engineering, Maryland Robotics Center, University of Maryland, Baltimore, Maryland
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Mina K Gabriel
- Division of Pharmacy Practice and Administrative Sciences, The James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | | | - Yazeed Ghawaa
- Division of Pharmacy Practice and Administrative Sciences, The James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Andrew M Ferguson
- Division of Pharmacy Practice and Administrative Sciences, The James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH
- The Center for Addiction Research, Division of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
26
|
Couți N, Porfire A, Iovanov R, Crișan AG, Iurian S, Casian T, Tomuță I. Polyvinyl Alcohol, a Versatile Excipient for Pharmaceutical 3D Printing. Polymers (Basel) 2024; 16:517. [PMID: 38399895 PMCID: PMC10893462 DOI: 10.3390/polym16040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Three-dimensional (3D) printing in the pharmaceutical field allows rapid manufacturing of a diverse range of pharmaceutical dosage forms, including personalized items. The application of this technology in dosage form manufacturing requires the judicious selection of excipients because the selected materials must be appropriate to the working principle of each technique. Most techniques rely on the use of polymers as the main material. Among the pharmaceutically approved polymers, polyvinyl alcohol (PVA) is one of the most used, especially for fused deposition modeling (FDM) technology. This review summarizes the physical and chemical properties of pharmaceutical-grade PVA and its applications in the manufacturing of dosage forms, with a particular focus on those fabricated through FDM. The work provides evidence on the diversity of dosage forms created using this polymer, highlighting how formulation and processing difficulties may be overcome to get the dosage forms with a suitable design and release profile.
Collapse
Affiliation(s)
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (N.C.); (R.I.); (A.G.C.); (S.I.); (T.C.); (I.T.)
| | | | | | | | | | | |
Collapse
|
27
|
Pinho LAG, Lima AL, Chen Y, Sa-Barreto LL, Marreto RN, Gelfuso GM, Gratieri T, Cunha-Filho M. Customizable Three-Dimensional Printed Earring Tap for Treating Affections Caused by Aesthetic Perforations. Pharmaceutics 2024; 16:77. [PMID: 38258088 PMCID: PMC10818553 DOI: 10.3390/pharmaceutics16010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This work aimed to develop a three-dimensional (3D) wearable drug-loaded earring tap to treat affections caused by aesthetic perforations. The initial phase involved a combination of polymers to prepare filaments for fused deposition modeling (FDM) 3D printing using a centroid mixture design. Optimized filament compositions were used in the second phase to produce 3D printed earring taps containing the anti-inflammatory naringenin. Next, samples were assessed via physicochemical assays followed by in vitro skin permeation studies with porcine ear skin. Two filament compositions were selected for the study's second phase: one to accelerate drug release and another with slow drug dissolution. Both filaments demonstrated chemical compatibility and amorphous behavior. The use of the polymer blend to enhance printability has been confirmed by rheological analysis. The 3D devices facilitated naringenin skin penetration, improving drug recovery from the skin's most superficial layer (3D device A) or inner layers (3D device B). Furthermore, the devices significantly decreased transdermal drug delivery compared to the control containing the free drug. Thus, the resulting systems are promising for producing 3D printed earring taps with topical drug delivery and reinforcing the feasibility of patient-centered drug administration through wearable devices.
Collapse
Affiliation(s)
- Ludmila A. G. Pinho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasilia 70910-900, DF, Brazil; (L.A.G.P.); (A.L.L.); (L.L.S.-B.); (G.M.G.); (T.G.)
| | - Ana Luiza Lima
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasilia 70910-900, DF, Brazil; (L.A.G.P.); (A.L.L.); (L.L.S.-B.); (G.M.G.); (T.G.)
| | - Yong Chen
- Laboratory for Drug Delivery & Translational Medicine, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China;
| | - Livia L. Sa-Barreto
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasilia 70910-900, DF, Brazil; (L.A.G.P.); (A.L.L.); (L.L.S.-B.); (G.M.G.); (T.G.)
| | - Ricardo N. Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goias, Goiania 74605-170, GO, Brazil;
| | - Guilherme M. Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasilia 70910-900, DF, Brazil; (L.A.G.P.); (A.L.L.); (L.L.S.-B.); (G.M.G.); (T.G.)
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasilia 70910-900, DF, Brazil; (L.A.G.P.); (A.L.L.); (L.L.S.-B.); (G.M.G.); (T.G.)
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasilia 70910-900, DF, Brazil; (L.A.G.P.); (A.L.L.); (L.L.S.-B.); (G.M.G.); (T.G.)
| |
Collapse
|
28
|
Anjani QK, Cárcamo-Martínez Á, Wardoyo LAH, Moreno-Castellanos N, Sabri AHB, Larrañeta E, Donnelly RF. MAP-box: a novel, low-cost and easy-to-fabricate 3D-printed box for the storage and transportation of dissolving microneedle array patches. Drug Deliv Transl Res 2024; 14:208-222. [PMID: 37477867 PMCID: PMC10746783 DOI: 10.1007/s13346-023-01393-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Research on the use of microarray patches (MAPs) has progressed at an unprecedented rate over the years, leading to the development of many novel drug delivery systems. As the technology approaches patients, there are several key aspects that ought to be addressed in order to facilitate the smooth translation of MAPs from bench to bedside. One integral factor includes the choice of devices and packaging for the storage of MAPs. In the current work, a slide-and-seal box, MAP-box, was developed for the storage of dissolving MAPs, using fused-deposition modelling. The device has been designed to act as a pill-box for MAPs not only to provide protection for MAPs from the environment, but also to improve patient's adherence to treatment. The overall design of the MAP-box was simple, yet offers the capability of sealing and protecting dissolving MAPs up to 30 days. Donepezil HCl was formulated into a dissolvable MAP, which was used to treat dementia related to Alzheimer's disease. This compound was used as a model formulation to evaluate the utility of the 3D printed MAP-box when placed under three storage conditions: 5 °C and ambient humidity, 25 °C and 65% relative humidity and 40 °C and 75% relative humidity. It was shown that the slide-and-seal box was able to confer protection to MAPs for up to 30 days under accelerated stability study conditions as the drug loading, mechanical properties and insertion properties of MAPs remained unaffected when compared to the unpackaged MAPs stored under these same parameters. These preliminary data provide evidence that the MAP-box prototype may be of great utility for the storage of single or multiple MAPs. Nevertheless, future work will be needed to evaluate their patient usability and its application to different types of MAP systems to fully validate the overall robustness of the prototype.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Álvaro Cárcamo-Martínez
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an Der Riss, Germany
| | - Luki Ahmadi Hari Wardoyo
- Fakultas Seni Rupa Dan Desain, Institut Teknologi Bandung, Jl. Ganesa No.10, Bandung, 40132, Indonesia
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga, 680001, Colombia
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
29
|
Seoane-Viaño I, Pérez-Ramos T, Liu J, Januskaite P, Guerra-Baamonde E, González-Ramírez J, Vázquez-Caruncho M, Basit AW, Goyanes A. Visualizing disintegration of 3D printed tablets in humans using MRI and comparison with in vitro data. J Control Release 2024; 365:348-357. [PMID: 37972762 DOI: 10.1016/j.jconrel.2023.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Three-dimensional (3D) printing is revolutionising the way that medicines are manufactured today, paving the way towards more personalised medicine. However, there is limited in vivo data on 3D printed dosage forms, and no studies to date have been performed investigating the intestinal behaviour of these drug products in humans, hindering the complete translation of 3D printed medications into clinical practice. Furthermore, it is unknown whether conventional in vitro release tests can accurately predict the in vivo performance of 3D printed formulations in humans. In this study, selective laser sintering (SLS) 3D printing technology has been used to produce two placebo torus-shaped tablets (printlets) using different laser scanning speeds. The printlets were administered to 6 human volunteers, and in vivo disintegration times were assessed using magnetic resonance imaging (MRI). In vitro disintegration tests were performed using a standard USP disintegration apparatus, as well as an alternative method based on the use of reduced media volume and minimal agitation. Printlets fabricated at a laser scanning speed of 90 mm/s exhibited an average in vitro disintegration time of 7.2 ± 1 min (measured using the USP apparatus) and 25.5 ± 4.1 min (measured using the alternative method). In contrast, printlets manufactured at a higher laser scanning speed of 130 mm/s had an in vitro disintegration time of 2.8 ± 0.8 min (USP apparatus) and 18.8 ± 1.9 min (alternative method). When tested in humans, printlets fabricated at a laser scanning speed of 90 mm/s showed an average disintegration time of 17.3 ± 7.2 min, while those manufactured at a laser scanning speed of 130 mm/s exhibited a shorter disintegration time of 12.7 ± 6.8 min. Although the disintegration times obtained using the alternative method more closely resembled those obtained in vivo, no clear correlation was observed between the in vitro and in vivo disintegration times, highlighting the need to develop better in vitro methodology for 3D printed drug products.
Collapse
Affiliation(s)
- Iria Seoane-Viaño
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Paraquasil Group (GI-2109), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Tania Pérez-Ramos
- Radiology Department, University Hospital Lucus Augusti (HULA), Rúa Dr. Ulises Romero, 1, Lugo 27003, Spain
| | - Jiaqi Liu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Elena Guerra-Baamonde
- Radiology Department, University Hospital Lucus Augusti (HULA), Rúa Dr. Ulises Romero, 1, Lugo 27003, Spain
| | - Jorge González-Ramírez
- Radiology Department, University Hospital Lucus Augusti (HULA), Rúa Dr. Ulises Romero, 1, Lugo 27003, Spain
| | - Manuel Vázquez-Caruncho
- Radiology Department, University Hospital Lucus Augusti (HULA), Rúa Dr. Ulises Romero, 1, Lugo 27003, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK.
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782, Spain.
| |
Collapse
|
30
|
Rahimkhoei V, Padervand M, Hedayat M, Seidi F, Dawi EA, Akbari A. Biomedical applications of electrospun polycaprolactone-based carbohydrate polymers: A review. Int J Biol Macromol 2023; 253:126642. [PMID: 37657575 DOI: 10.1016/j.ijbiomac.2023.126642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Carbohydrate used in biomedical applications is influenced by numerous factors. One of the most appealing characteristic of carbohydrates is their ability to reproduce from natural resources which makes them ecologically friendly. Due to their abundance, biocompatibility, and no contamination by residual initiators, the desire for polysaccharides in medical uses is growing. Research on fiber-based materials, with a variety of medical applications including bio-functional scaffolds, continues to yield novel and intriguing findings. Almost all biopolymers of diverse structural compositions are electrospun to fulfill biomedical usage criteria, and the electrospinning technique is widely employed in biomedical technologies for both in-vivo and in-vitro therapies. Due to its biocompatibility and biodegradability, polycaprolactone (PCL) is employed in medical applications like tissue engineering and drug delivery. Although PCL nanofibers have established effects in vitro, more research is needed before their potential therapeutic application in the clinic. Here we tried to focus mainly on the carbohydrate incorporated PCL-based nanofibers production techniques, structures, morphology, and physicochemical properties along with their usage in biomedicine.
Collapse
Affiliation(s)
- Vahid Rahimkhoei
- Solid Tumor Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohsen Padervand
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O Box 55181-83111, Maragheh, Iran
| | - Mohaddeseh Hedayat
- Department of Phramacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - E A Dawi
- Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
31
|
Song D, Husari A, Kotz-Helmer F, Tomakidi P, Rapp BE, Rühe J. Two-Photon Direct Laser Writing of 3D Scaffolds through C, H-Insertion Crosslinking in a One-Component Material System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306682. [PMID: 38059850 DOI: 10.1002/smll.202306682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Indexed: 12/08/2023]
Abstract
The popularity of two-photon direct laser writing in biological research is remarkable as this technique is capable of 3D fabrication of microstructures with unprecedented control, flexibility and precision. Nevertheless, potential impurities such as residual monomers and photoinitiators remaining unnoticed from the photopolymerization in the structures pose strong challenges for biological applications. Here, the first use of high-precision 3D microstructures fabricated from a one-component material system (without monomers and photoinitiators) as a 3D cell culture platform is demonstrated. The material system consists of prepolymers with built- in crosslinker motieties, requiring only aliphatic C, H units as reaction partners following two-photon excitation. The material is written by direct laser writing using two-photon processes in a solvent-free state, which enables the generation of structures at a rapid scan speed of up to 500 mm s-1 with feature sizes scaling down to few micrometers. The generated structures possess stiffnesses close to those of common tissue and demonstrate excellent biocompatibility and cellular adhesion without any additional modification. The demonstrated approach holds great promise for fabricating high-precision complex 3D cell culture scaffolds that are safe in biological environments.
Collapse
Affiliation(s)
- Dan Song
- Cluster of Excellence livMatS @ FIT-Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Chemistry & Physics of Interfaces (CPI), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Frederik Kotz-Helmer
- Laboratory of Process Technology (NeptunLab), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Bastian E Rapp
- Cluster of Excellence livMatS @ FIT-Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Process Technology (NeptunLab), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Cluster of Excellence livMatS @ FIT-Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Chemistry & Physics of Interfaces (CPI), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| |
Collapse
|
32
|
Rodríguez-Pombo L, Martínez-Castro L, Xu X, Ong JJ, Rial C, García DN, González-Santos A, Flores-González J, Alvarez-Lorenzo C, Basit AW, Goyanes A. Simultaneous fabrication of multiple tablets within seconds using tomographic volumetric 3D printing. Int J Pharm X 2023; 5:100166. [PMID: 36880028 PMCID: PMC9984549 DOI: 10.1016/j.ijpx.2023.100166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
3D printing is driving a shift in patient care away from a generalised model and towards personalised treatments. To complement fast-paced clinical environments, 3D printing technologies must provide sufficiently high throughputs for them to be feasibly implemented. Volumetric printing is an emerging 3D printing technology that affords such speeds, being capable of producing entire objects within seconds. In this study, for the first time, rotatory volumetric printing was used to simultaneously produce two torus- or cylinder-shaped paracetamol-loaded Printlets (3D printed tablets). Six resin formulations comprising paracetamol as the model drug, poly(ethylene glycol) diacrylate (PEGDA) 575 or 700 as photoreactive monomers, water and PEG 300 as non-reactive diluents, and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as the photoinitiator were investigated. Two printlets were successfully printed in 12 to 32 s and exhibited sustained drug release profiles. These results support the use of rotary volumetric printing for efficient and effective manufacturing of various personalised medicines at the same time. With the speed and precision it affords, rotatory volumetric printing has the potential to become one of the most promising alternative manufacturing technologies in the pharmaceutical industry.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Laura Martínez-Castro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Carlos Rial
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Daniel Nieto García
- Complex Tissue Regeneration Department, MERLIN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Alejandro González-Santos
- Facultad de Física, Centro de Investigación en Tecnologías Inteligentes (CITIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Julian Flores-González
- Facultad de Física, Centro de Investigación en Tecnologías Inteligentes (CITIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.,FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.,FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| |
Collapse
|
33
|
Seoane-Viaño I, Xu X, Ong JJ, Teyeb A, Gaisford S, Campos-Álvarez A, Stulz A, Marcuta C, Kraschew L, Mohr W, Basit AW, Goyanes A. A case study on decentralized manufacturing of 3D printed medicines. Int J Pharm X 2023; 5:100184. [PMID: 37396623 PMCID: PMC10314212 DOI: 10.1016/j.ijpx.2023.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Pharmaceutical 3D printing (3DP) is one of the emerging enabling technologies of personalised medicines as it affords the ability to fabricate highly versatile dosage forms. In the past 2 years, national medicines regulatory authorities have held consultations with external stakeholders to adapt regulatory frameworks to embrace point-of-care manufacturing. The proposed concept of decentralized manufacturing (DM) involves the provision of feedstock intermediates (pharma-inks) prepared by pharmaceutical companies to DM sites for manufacturing into the final medicine. In this study, we examine the feasibility of this model, with respect to both manufacturing and quality control. Efavirenz-loaded granulates (0-35%w/w) were produced by a manufacturing partner and shipped to a 3DP site in a different country. Direct powder extrusion (DPE) 3DP was subsequently used to prepare printlets (3D printed tablets), with mass ranging 266-371 mg. All printlets released more than 80% drug load within the first 60 min of the in vitro drug release test. An in-line near-infrared spectroscopy system was used as a process analytical technology (PAT) to quantify the printlets' drug load. Calibration models were developed using partial least squares regression, which showed excellent linearity (R2 = 0.9833) and accuracy (RMSE = 1.0662). Overall, this work is the first to report the use of an in-line NIR system to perform real-time analysis of printlets prepared using pharma-inks produced by a pharmaceutical company. By demonstrating the feasibility of the proposed distribution model through this proof-of-concept study, this work paves the way for investigation of further PAT tools for quality control in 3DP point-of-care manufacturing.
Collapse
Affiliation(s)
- Iria Seoane-Viaño
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Paraquasil Group (GI-2109), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ahmed Teyeb
- Brunel Innovation Centre, Brunel University London, Uxbridge UB8 3PH, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - André Campos-Álvarez
- FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), CP 27543, Spain
- FABRX Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK
| | - Anja Stulz
- Losan Pharma GmbH, Otto-Hahn-Strasse 13, 79395 Neuenburg, Germany
| | - Carmen Marcuta
- Losan Pharma GmbH, Otto-Hahn-Strasse 13, 79395 Neuenburg, Germany
| | - Lilia Kraschew
- Losan Pharma GmbH, Otto-Hahn-Strasse 13, 79395 Neuenburg, Germany
| | - Wolfgang Mohr
- Losan Pharma GmbH, Otto-Hahn-Strasse 13, 79395 Neuenburg, Germany
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), CP 27543, Spain
- FABRX Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), CP 27543, Spain
- FABRX Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| |
Collapse
|
34
|
Sun S, Alkahtani ME, Gaisford S, Basit AW, Elbadawi M, Orlu M. Virtually Possible: Enhancing Quality Control of 3D-Printed Medicines with Machine Vision Trained on Photorealistic Images. Pharmaceutics 2023; 15:2630. [PMID: 38004607 PMCID: PMC10674815 DOI: 10.3390/pharmaceutics15112630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Three-dimensional (3D) printing is an advanced pharmaceutical manufacturing technology, and concerted efforts are underway to establish its applicability to various industries. However, for any technology to achieve widespread adoption, robustness and reliability are critical factors. Machine vision (MV), a subset of artificial intelligence (AI), has emerged as a powerful tool to replace human inspection with unprecedented speed and accuracy. Previous studies have demonstrated the potential of MV in pharmaceutical processes. However, training models using real images proves to be both costly and time consuming. In this study, we present an alternative approach, where synthetic images were used to train models to classify the quality of dosage forms. We generated 200 photorealistic virtual images that replicated 3D-printed dosage forms, where seven machine learning techniques (MLTs) were used to perform image classification. By exploring various MV pipelines, including image resizing and transformation, we achieved remarkable classification accuracies of 80.8%, 74.3%, and 75.5% for capsules, tablets, and films, respectively, for classifying stereolithography (SLA)-printed dosage forms. Additionally, we subjected the MLTs to rigorous stress tests, evaluating their scalability to classify over 3000 images and their ability to handle irrelevant images, where accuracies of 66.5% (capsules), 72.0% (tablets), and 70.9% (films) were obtained. Moreover, model confidence was also measured, and Brier scores ranged from 0.20 to 0.40. Our results demonstrate promising proof of concept that virtual images exhibit great potential for image classification of SLA-printed dosage forms. By using photorealistic virtual images, which are faster and cheaper to generate, we pave the way for accelerated, reliable, and sustainable AI model development to enhance the quality control of 3D-printed medicines.
Collapse
Affiliation(s)
- Siyuan Sun
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (S.S.); (M.E.A.); (S.G.)
| | - Manal E. Alkahtani
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (S.S.); (M.E.A.); (S.G.)
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (S.S.); (M.E.A.); (S.G.)
| | - Abdul W. Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (S.S.); (M.E.A.); (S.G.)
| | - Moe Elbadawi
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (S.S.); (M.E.A.); (S.G.)
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4DQ, UK
| | - Mine Orlu
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (S.S.); (M.E.A.); (S.G.)
| |
Collapse
|
35
|
Johannesson J, Wu M, Johansson M, Bergström CAS. Quality attributes for printable emulsion gels and 3D-printed tablets: Towards production of personalized dosage forms. Int J Pharm 2023; 646:123413. [PMID: 37726040 DOI: 10.1016/j.ijpharm.2023.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
3D-printing technology offers a flexible manufacturing platform with the potential to address the need of personalized dosage forms. However, quality aspects of such small-scale, on-demand production of pharmaceutical products intended for personalization is still limited. The aim of this study was therefore to study critical quality control attributes of lipid tablets produced by semi-solid extrusion (SSE) 3D printing from emulsion gels incorporating a poorly water-soluble drug. Quality attributes for both the printable emulsion gel and the printed dosage forms were assessed. The emulsion gel was shown to be printable with accurate dosing for at least one month of storage at 4 °C. Tablets were 3D printed in different sizes and a correlation, R2 value of 0.99, was found between the weight and the drug content. The 3D-printed tablets complied with the mass and drug content uniformity requirements described in the European Pharmacopoeia.. Solid-state characterization of the tablets during short-term storage revealed no signs of crystallinity of the drug. Lastly, the lipid digestion and drug release were unchanged after short-term storage of the tablets. This study demonstrates the potential of SSE 3D printing for personalized dosing of a lipid-based formulation strategy and discusses central quality attributes for the printable formulation and the 3D-printed dosage form.
Collapse
Affiliation(s)
- Jenny Johannesson
- Department of Pharmacy, Uppsala University, SE 751 23 Uppsala, Sweden
| | - Mingjun Wu
- Department of Pharmacy, Uppsala University, SE 751 23 Uppsala, Sweden
| | - Mathias Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), SE 750 07 Uppsala, Sweden
| | | |
Collapse
|
36
|
Jennotte O, Koch N, Lechanteur A, Rosoux F, Emmerechts C, Beeckman E, Evrard B. Feasibility study of the use of a homemade direct powder extrusion printer to manufacture printed tablets with an immediate release of a BCS II molecule. Int J Pharm 2023; 646:123506. [PMID: 37832701 DOI: 10.1016/j.ijpharm.2023.123506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Among the various 3D printing techniques, FDM is the most studied in pharmaceutical research. However, it requires the fabrication of filaments with suitable mechanical properties using HME, which can be laborious and time-consuming. DPE has emerged as a single-step printing technique that can overcome FDM limits as it enables the direct printing of powder blends without the need of filaments. This study demonstrated the manufacturing of cylindrical-shaped printed tablets containing CBD, a BCS II molecule, with an immediate release. Different blends of PEO/E100 and PEO/SOL, each with 10 % of CBD, were printed and tested according to the Eur. Ph. for uncoated tablets. Each printed cylinder met the Eur. Ph. specifications for friability, mass variation and mass uniformity. However, only the E100-based formulations enabled a CBD immediate release, as formulations containing SOL formed a gel once in contact with the dissolution medium, reducing the drug dissolution rate.
Collapse
Affiliation(s)
- O Jennotte
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium.
| | - N Koch
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| | - A Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| | - F Rosoux
- SIRRIS, Collective Centre of the Belgian Technology Industry, 4102 Liege Science Park, Belgium
| | - C Emmerechts
- SIRRIS, Collective Centre of the Belgian Technology Industry, 4102 Liege Science Park, Belgium
| | - E Beeckman
- SIRRIS, Collective Centre of the Belgian Technology Industry, 4102 Liege Science Park, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| |
Collapse
|
37
|
Demartis S, Rassu G, Mazzarello V, Larrañeta E, Hutton A, Donnelly RF, Dalpiaz A, Roldo M, Guillot AJ, Melero A, Giunchedi P, Gavini E. Delivering hydrosoluble compounds through the skin: what are the chances? Int J Pharm 2023; 646:123457. [PMID: 37788729 DOI: 10.1016/j.ijpharm.2023.123457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Affiliation(s)
- S Demartis
- Department of Chemical, Mathematical, Natural and Physical Sciences, University of Sassari, Sassari 07100, Italy
| | - G Rassu
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - V Mazzarello
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - E Larrañeta
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, UK
| | - A Hutton
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, UK
| | - R F Donnelly
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, UK
| | - A Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy
| | - M Roldo
- School of Pharmacy and Biomedical Sciences, St Michael's Building, White Swan Road, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - A J Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - A Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - P Giunchedi
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - E Gavini
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy.
| |
Collapse
|
38
|
Li Y, Chen K, Pang Y, Zhang J, Wu M, Xu Y, Cao S, Zhang X, Wang S, Sun Y, Ning X, Wang X, Kong D. Multifunctional Microneedle Patches via Direct Ink Drawing of Nanocomposite Inks for Personalized Transdermal Drug Delivery. ACS NANO 2023; 17:19925-19937. [PMID: 37805947 DOI: 10.1021/acsnano.3c04758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Additive manufacturing, commonly known as 3D printing, allows decentralized drug fabrication of orally administered tablets. Microneedles are comparatively favorable for self-administered transdermal drug delivery with improved absorption and bioavailability. Due to the cross-scale geometric characteristics, 3D-printed microneedles face a significant trade-off between the feature resolution and production speed in conventional layer-wise deposition sequences. In this study, we introduce an economical and scalable direct ink drawing strategy to create drug-loaded microneedles. A freestanding microneedle is efficiently generated upon each pneumatic extrusion and controlled drawing process. Sharp tips of ∼5 μm are formed with submillimeter nozzles, representing 2 orders of magnitude improved resolution. As the key enabler of this fabrication strategy, the yield-stress fluid inks are formulated by simply filling silica nanoparticles into regular polymer solutions. The approach is compatible with various microneedles based on dissolvable, biodegradable, and nondegradable polymers. Various matrices are readily adopted to adjust the release behaviors of the drug-loaded microneedles. Successful fabrication of multifunctional patches with heterogeneously integrated microneedles allows the treatment of melanoma via synergistic photothermal therapy and combination chemotherapy. The personalized patches are designed for cancer severity to achieve high therapeutic efficacy with minimal side effects. The direct ink drawing reported here provides a facile and low-cost fabrication strategy for multifunctional microneedle patches for self-administering transdermal drug delivery.
Collapse
Affiliation(s)
- Yanyan Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Kerong Chen
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210046, China
| | - Yushuang Pang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Ming Wu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Yurui Xu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210046, China
| | - Shitai Cao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Xinxin Zhang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shaolei Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Xinghai Ning
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210046, China
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
39
|
Isaakidou A, Apachitei I, Fratila-Apachitei LE, Zadpoor AA. High-Precision 3D Printing of Microporous Cochlear Implants for Personalized Local Drug Delivery. J Funct Biomater 2023; 14:494. [PMID: 37888159 PMCID: PMC10607433 DOI: 10.3390/jfb14100494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Hearing loss is a highly prevalent multifactorial disorder affecting 20% of the global population. Current treatments using the systemic administration of drugs are therapeutically ineffective due to the anatomy of the cochlea and the existing blood-labyrinth barrier. Local drug delivery systems can ensure therapeutic drug concentrations locally while preventing adverse effects caused by high dosages of systemically administered drugs. Here, we aimed to design, fabricate, and characterize a local drug delivery system for the human cochlea. The design was relevant to the size of the human ear, included two different shapes, and incorporated two different microporous structures acting as reservoirs for drug loading and release. The four cochlear implant designs were printed using the two-photon polymerization (2PP) technique and the IP-Q photoresist. The optimized 2PP process enabled the fabrication of the cochlear implants with great reproducibility and shape fidelity. Rectangular and cylindrical implants featuring cylindrical and tapered tips, respectively, were successfully printed. Their outer dimensions were 0.6 × 0.6 × 2.4 mm3 (L × W × H). They incorporated internal porous networks that were printed with high accuracy, yielding pore sizes of 17.88 ± 0.95 μm and 58.15 ± 1.62 μm for the designed values of 20 μm and 60 μm, respectively. The average surface roughness was 1.67 ± 0.24 μm, and the water contact angle was 72.3 ± 3.0°. A high degree of polymerization (~90%) of the IP-Q was identified after printing, and the printed material was cytocompatible with murine macrophages. The cochlear implants designed and 3D printed in this study, featuring relevant sizes for the human ear and tunable internal microporosity, represent a novel approach for personalized treatment of hearing loss through local drug delivery.
Collapse
Affiliation(s)
- Aikaterini Isaakidou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands; (I.A.); (A.A.Z.)
| | | | - Lidy Elena Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands; (I.A.); (A.A.Z.)
| | | |
Collapse
|
40
|
Bendicho-Lavilla C, Seoane-Viaño I, Santos-Rosales V, Díaz-Tomé V, Carracedo-Pérez M, Luzardo-Álvarez AM, García-González CA, Otero-Espinar FJ. Intravitreal implants manufactured by supercritical foaming for treating retinal diseases. J Control Release 2023; 362:342-355. [PMID: 37633363 DOI: 10.1016/j.jconrel.2023.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Chronic retinal diseases, such as age-related macular degeneration (AMD), are a major cause of global visual impairment. However, current treatment methods involving repetitive intravitreal injections pose financial and health burdens for patients. The development of controlled drug release systems, particularly for biological drugs, is still an unmet need in prolonging drug release within the vitreous chamber. To address this, green supercritical carbon dioxide (scCO2) foaming technology was employed to manufacture porous poly(lactic-co-glycolic acid) (PLGA)-based intravitreal implants loaded with dexamethasone. The desired implant dimensions were achieved through 3D printing of customised moulds. By varying the depressurisation rates during the foaming process, implants with different porosities and dexamethasone release rates were successfully obtained. These implants demonstrated controlled drug release for up to four months, surpassing the performance of previously developed implants. In view of the positive results obtained, a pilot study was conducted using the monoclonal antibody bevacizumab to explore the feasibility of this technology for preparing intraocular implants loaded with biologic drug molecules. Overall, this study presents a greener and more sustainable alternative to conventional implant manufacturing techniques, particularly suited for drugs that are susceptible to degradation under harsh conditions.
Collapse
Affiliation(s)
- Carlos Bendicho-Lavilla
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, and Materials Institute iMATUS, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; Paraquasil Group (GI-2109), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, and Materials Institute iMATUS, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; Paraquasil Group (GI-2109), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Víctor Santos-Rosales
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Victoria Díaz-Tomé
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, and Materials Institute iMATUS, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María Carracedo-Pérez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Asteria M Luzardo-Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, and Materials Institute iMATUS, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; Paraquasil Group (GI-2109), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Carlos A García-González
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, and Materials Institute iMATUS, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; Paraquasil Group (GI-2109), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
41
|
Madadian Bozorg N, Leclercq M, Lescot T, Bazin M, Gaudreault N, Dikpati A, Fortin MA, Droit A, Bertrand N. Design of experiment and machine learning inform on the 3D printing of hydrogels for biomedical applications. BIOMATERIALS ADVANCES 2023; 153:213533. [PMID: 37392520 DOI: 10.1016/j.bioadv.2023.213533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
In the biomedical field, 3D printing has the potential to deliver on some of the promises of personalized therapy, notably by enabling point-of-care fabrication of medical devices, dosage forms and bioimplants. To achieve this full potential, a better understanding of the 3D printing processes is necessary, and non-destructive characterization methods must be developed. This study proposes methodologies to optimize the 3D printing parameters for soft material extrusion. We hypothesize that combining image processing with design of experiment (DoE) analyses and machine learning could help obtaining useful information from a quality-by-design perspective. Herein, we investigated the impact of three critical process parameters (printing speed, printing pressure and infill percentage) on three critical quality attributes (gel weight, total surface area and heterogeneity) monitored with a non-destructive methodology. DoE and machine learning were combined to obtain information on the process. This work paves the way for a rational approach to optimize 3D printing parameters in the biomedical field.
Collapse
Affiliation(s)
- Neda Madadian Bozorg
- Faculté de Pharmacie, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Université Laval, Axe Endocrinologie et Néphrologie, Quebec City, QC G1V 4G2, Canada
| | - Mickael Leclercq
- Centre de Recherche du CHU de Québec, Université Laval, Axe Endocrinologie et Néphrologie, Quebec City, QC G1V 4G2, Canada
| | - Théophraste Lescot
- Faculté des Sciences et Génie, Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec City G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Université Laval, Axe Médecine Régénératrice, Quebec City, QC G1V 4G2, Canada
| | - Marc Bazin
- Centre de Recherche du CHU de Québec, Université Laval, Axe Neurosciences, Quebec City, QC G1V 4G2, Canada
| | - Nicolas Gaudreault
- Faculté de Pharmacie, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Université Laval, Axe Endocrinologie et Néphrologie, Quebec City, QC G1V 4G2, Canada
| | - Amrita Dikpati
- Faculté de Pharmacie, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Université Laval, Axe Endocrinologie et Néphrologie, Quebec City, QC G1V 4G2, Canada
| | - Marc-André Fortin
- Faculté des Sciences et Génie, Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec City G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Université Laval, Axe Médecine Régénératrice, Quebec City, QC G1V 4G2, Canada
| | - Arnaud Droit
- Centre de Recherche du CHU de Québec, Université Laval, Axe Endocrinologie et Néphrologie, Quebec City, QC G1V 4G2, Canada; Faculté de Médicine, Département de Médecine Moléculaire, Université Laval, Québec City G1V 0A6, Canada
| | - Nicolas Bertrand
- Faculté de Pharmacie, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Université Laval, Axe Endocrinologie et Néphrologie, Quebec City, QC G1V 4G2, Canada.
| |
Collapse
|
42
|
Frankowski J, Kurzątkowska M, Sobczak M, Piotrowska U. Utilization of 3D bioprinting technology in creating human tissue and organoid models for preclinical drug research - State-of-the-art. Int J Pharm 2023; 644:123313. [PMID: 37579828 DOI: 10.1016/j.ijpharm.2023.123313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Rapid development of tissue engineering in recent years has increased the importance of three-dimensional (3D) bioprinting technology as novel strategy for fabrication functional 3D tissue and organoid models for pharmaceutical research. 3D bioprinting technology gives hope for eliminating many problems associated with traditional cell culture methods during drug screening. However, there is a still long way to wider clinical application of this technology due to the numerous difficulties associated with development of bioinks, advanced printers and in-depth understanding of human tissue architecture. In this review, the work associated with relatively well-known extrusion-based bioprinting (EBB), jetting-based bioprinting (JBB), and vat photopolymerization bioprinting (VPB) is presented and discussed with the latest advances and limitations in this field. Next we discuss state-of-the-art research of 3D bioprinted in vitro models including liver, kidney, lung, heart, intestines, eye, skin as well as neural and bone tissue that have potential applications in the development of new drugs.
Collapse
Affiliation(s)
- Joachim Frankowski
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Matylda Kurzątkowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Urszula Piotrowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland.
| |
Collapse
|
43
|
Rosch M, Gutowski T, Baehr M, Eggert J, Gottfried K, Gundler C, Nürnberg S, Langebrake C, Dadkhah A. Development of an immediate release excipient composition for 3D printing via direct powder extrusion in a hospital. Int J Pharm 2023; 643:123218. [PMID: 37467818 DOI: 10.1016/j.ijpharm.2023.123218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
3D printing offers the possibility to prepare personalized tablets on demand, making it an intriguing technology for hospital pharmacies. For the implementation of 3D-printed tablets into the digital Closed Loop Medication Management system, the required tablet formulation and development of the manufacturing process as well as the pharmaceutical validation were conducted. The goal of the formulation development was to enable an optimal printing process and rapid dissolution of the printed tablets for the selected model drugs Levodopa/Carbidopa. The 3D printed tablets were prepared by direct powder extrusion. Printability, thermal properties, disintegration, dissolution, physical properties and storage stability were investigated by employing analytical methods such as HPLC-UV, DSC and TGA. The developed formulation shows a high dose accuracy and an immediate drug release for Levodopa. In addition, the tablets exhibit high crushing strength and very low friability. Unfortunately, Carbidopa did not tolerate the printing process. This is the first study to develop an immediate release excipient composition via direct powder extrusion in a hospital pharmacy setting. The developed process is suitable for the implementation in Closed-Loop Medication Management systems in hospital pharmacies and could therefore contribute to medication safety.
Collapse
Affiliation(s)
- Moritz Rosch
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Gutowski
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Baehr
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Eggert
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl Gottfried
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Gundler
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sylvia Nürnberg
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Langebrake
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrin Dadkhah
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
44
|
Nguyen KTT, Zillen D, van Heijningen FFM, van Bommel KJC, van Ee RJ, Frijlink HW, Hinrichs WLJ. Surface Engineering Methods for Powder Bed Printed Tablets to Optimize External Smoothness and Facilitate the Application of Different Coatings. Pharmaceutics 2023; 15:2193. [PMID: 37765163 PMCID: PMC10537163 DOI: 10.3390/pharmaceutics15092193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
In a previous attempt to achieve ileo-colonic targeting of bovine intestinal alkaline phosphatase (BIAP), we applied a pH-dependent coating, the ColoPulse coating, directly on powder bed printed (PBP) tablets. However, the high surface roughness necessitated an additional sub-coating layer [Nguyen, K. T. T., Pharmaceutics 2022]. In this study, we aimed to find a production method for PBP tablets containing BIAP that allows the direct application of coating systems. Alterations of the printing parameters, binder content, and printing layer height, when combined, were demonstrated to create visually less rough PBP tablets. The addition of ethanol vapor treatment further improved the surface's smoothness significantly. These changes enabled the direct application of the ColoPulse, or enteric coating, without a sub-coating. In vitro release testing showed the desired ileo-colonic release or upper-intestinal release for ColoPulse or enteric-coated tablets, respectively. Tablets containing BIAP, encapsulated within an inulin glass, maintained a high enzymatic activity (over 95%) even after 2 months of storage at 2-8 °C. Importantly, the coating process did not affect the activity of BIAP. In this study, we demonstrate, for the first time, the successful production of PBP tablets with surfaces that are directly coatable with the ColoPulse coating while preserving the stability of the encapsulated biopharmaceutical, BIAP.
Collapse
Affiliation(s)
- Khanh T. T. Nguyen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, The Netherlands; (K.T.T.N.); (D.Z.); (H.W.F.)
| | - Daan Zillen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, The Netherlands; (K.T.T.N.); (D.Z.); (H.W.F.)
| | - Franca F. M. van Heijningen
- The Netherlands Organization for Applied Scientific Research (TNO), 5656 AE Eindhoven, The Netherlands; (F.F.M.v.H.); (K.J.C.v.B.); (R.J.v.E.)
| | - Kjeld J. C. van Bommel
- The Netherlands Organization for Applied Scientific Research (TNO), 5656 AE Eindhoven, The Netherlands; (F.F.M.v.H.); (K.J.C.v.B.); (R.J.v.E.)
| | - Renz J. van Ee
- The Netherlands Organization for Applied Scientific Research (TNO), 5656 AE Eindhoven, The Netherlands; (F.F.M.v.H.); (K.J.C.v.B.); (R.J.v.E.)
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, The Netherlands; (K.T.T.N.); (D.Z.); (H.W.F.)
| | - Wouter L. J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, The Netherlands; (K.T.T.N.); (D.Z.); (H.W.F.)
| |
Collapse
|
45
|
Vasile C, Baican M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers (Basel) 2023; 15:3177. [PMID: 37571069 PMCID: PMC10420922 DOI: 10.3390/polym15153177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in many fields in which it acts both as promising biopolymer and bioactive compound. This comprehensive review gives brief insights into the recent research and technological trends on the potential of lignin development and utilization. It is divided into ten main sections, starting with an outlook on its diversity; main properties and possibilities to be used as a raw material for fuels, aromatic chemicals, plastics, or thermoset substitutes; and new developments in the use of lignin as a bioactive compound and in nanoparticles, hydrogels, 3D-printing-based lignin biomaterials, new sustainable biomaterials, and energy production and storage. In each section are presented recent developments in the preparation of lignin-based biomaterials, especially the green approaches to obtaining nanoparticles, hydrogels, and multifunctional materials as blends and bio(nano)composites; most suitable lignin type for each category of the envisaged products; main properties of the obtained lignin-based materials, etc. Different application categories of lignin within various sectors, which could provide completely sustainable energy conversion, such as in agriculture and environment protection, food packaging, biomedicine, and cosmetics, are also described. The medical and therapeutic potential of lignin-derived materials is evidenced in applications such as antimicrobial, antiviral, and antitumor agents; carriers for drug delivery systems with controlled/targeting drug release; tissue engineering and wound healing; and coatings, natural sunscreen, and surfactants. Lignin is mainly used for fuel, and, recently, studies highlighted more sustainable bioenergy production technologies, such as the supercapacitor electrode, photocatalysts, and photovoltaics.
Collapse
Affiliation(s)
- Cornelia Vasile
- Romanian Academy, “P. Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department 41A Grigore Ghica Voda Alley, RO700487 Iaşi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, Faculty of Pharmacy, Pharmaceutical Sciences I Department, Laboratory of Pharmaceutical Physics, 16 University Street, RO700115 Iaşi, Romania;
| |
Collapse
|
46
|
Enke M, Schwarz N, Gruschwitz F, Winkler D, Hanf F, Jescheck L, Seyferth S, Fischer D, Schneeberger A. 3D screen printing technology enables fabrication of oral drug dosage forms with freely tailorable release profiles. Int J Pharm 2023; 642:123101. [PMID: 37295568 DOI: 10.1016/j.ijpharm.2023.123101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
3D printing offers new opportunities to customize oral dosage forms of pharmaceuticals for different patient populations, improving patient safety, care, and compliance. Although several notable 3D print technologies have been developed, such as inkjet printing, powder-based printing, selective laser sintering (SLS) printing, and fused deposition modelling (FDM), among others, their capacity is often limited by the number of printing heads. 3D screen-printing (3DSP) is based on a classic flatbed screen printing that is widely used in industrial applications for technical applications. 3DSP can build up thousands of units per screen simultaneously, enabling mass customization of pharmaceuticals. Here, we use 3DSP to investigate two novel paste formulations: immediate-release (IR) and extended-release (ER) using Paracetamol (acetaminophen) as the active pharmaceutical ingredient (API). Both disk-shaped and donut-shaped tablets were fabricated using one or both pastes to design drug delivery systems (DDS) with tailored API release profiles. The size and mass of the produced tablets demonstrated high uniformity. Characterization of the tablets physical properties, such as breaking force (25-39 N) and friability (0.002-0.237%), adhering to Ph. Eur (10th edition). Finally, drug release tests with a phosphate buffer at pH 5.8 showed Paracetamol release depended on the IR- and ER paste materials and their respective compartment size of the composite DDS, which can be readily varied using 3DSP. This work further demonstrates the potential of 3DSP to manufacture complex oral dosage forms exhibiting custom release functionalities for mass production.
Collapse
Affiliation(s)
- Marcel Enke
- Laxxon Medical GmbH, Hans-Knöll-Str. 6, 07745 Jena, Germany
| | | | | | | | - Felix Hanf
- Laxxon Medical GmbH, Hans-Knöll-Str. 6, 07745 Jena, Germany
| | - Lisa Jescheck
- Laxxon Medical GmbH, Hans-Knöll-Str. 6, 07745 Jena, Germany
| | - Stefan Seyferth
- Division of Pharmaceutical Technology and Biopharmacy, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany
| | - Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany; FAU NeW, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | | |
Collapse
|
47
|
Yuste I, Luciano FC, Anaya BJ, Sanz-Ruiz P, Ribed-Sánchez A, González-Burgos E, Serrano DR. Engineering 3D-Printed Advanced Healthcare Materials for Periprosthetic Joint Infections. Antibiotics (Basel) 2023; 12:1229. [PMID: 37627649 PMCID: PMC10451995 DOI: 10.3390/antibiotics12081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
The use of additive manufacturing or 3D printing in biomedicine has experienced fast growth in the last few years, becoming a promising tool in pharmaceutical development and manufacturing, especially in parenteral formulations and implantable drug delivery systems (IDDSs). Periprosthetic joint infections (PJIs) are a common complication in arthroplasties, with a prevalence of over 4%. There is still no treatment that fully covers the need for preventing and treating biofilm formation. However, 3D printing plays a major role in the development of novel therapies for PJIs. This review will provide a deep understanding of the different approaches based on 3D-printing techniques for the current management and prophylaxis of PJIs. The two main strategies are focused on IDDSs that are loaded or coated with antimicrobials, commonly in combination with bone regeneration agents and 3D-printed orthopedic implants with modified surfaces and antimicrobial properties. The wide variety of printing methods and materials have allowed for the manufacture of IDDSs that are perfectly adjusted to patients' physiognomy, with different drug release profiles, geometries, and inner and outer architectures, and are fully individualized, targeting specific pathogens. Although these novel treatments are demonstrating promising results, in vivo studies and clinical trials are required for their translation from the bench to the market.
Collapse
Affiliation(s)
- Iván Yuste
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Francis C. Luciano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Brayan J. Anaya
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Pablo Sanz-Ruiz
- Orthopaedic and Trauma Department, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
- Department of Surgery, Faculty of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Almudena Ribed-Sánchez
- Hospital Pharmacy Unit, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
- Instituto Universitario de Farmacia Industrial, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
48
|
Huanbutta K, Burapapadh K, Sriamornsak P, Sangnim T. Practical Application of 3D Printing for Pharmaceuticals in Hospitals and Pharmacies. Pharmaceutics 2023; 15:1877. [PMID: 37514063 PMCID: PMC10385973 DOI: 10.3390/pharmaceutics15071877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Three-dimensional (3D) printing is an unrivaled technique that uses computer-aided design and programming to create 3D products by stacking materials on a substrate. Today, 3D printing technology is used in the whole drug development process, from preclinical research to clinical trials to frontline medical treatment. From 2009 to 2020, the number of research articles on 3D printing in healthcare applications surged from around 10 to 2000. Three-dimensional printing technology has been applied to several kinds of drug delivery systems, such as oral controlled release systems, micropills, microchips, implants, microneedles, rapid dissolving tablets, and multiphase release dosage forms. Compared with conventional manufacturing methods of pharmaceutical products, 3D printing has many advantages, including high production rates due to the flexible operating systems and high drug loading with the desired precision and accuracy for potent drugs administered in small doses. The cost of production via 3D printing can be decreased by reducing material wastage, and the process can be adapted to multiple classes of pharmaceutically active ingredients, including those with poor solubility. Although several studies have addressed the benefits of 3D printing technology, hospitals and pharmacies have only implemented this process for a small number of practical applications. This article discusses recent 3D printing applications in hospitals and pharmacies for medicinal preparation. The article also covers the potential future applications of 3D printing in pharmaceuticals.
Collapse
Affiliation(s)
- Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Kanokporn Burapapadh
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, 169, Saensook, Muang, Chonburi 20131, Thailand
| |
Collapse
|
49
|
Díaz-Torres E, Suárez-González J, Monzón-Rodríguez CN, Santoveña-Estévez A, Fariña JB. Characterization and Validation of a New 3D Printing Ink for Reducing Therapeutic Gap in Pediatrics through Individualized Medicines. Pharmaceutics 2023; 15:1642. [PMID: 37376090 DOI: 10.3390/pharmaceutics15061642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
3D printing technology can be used to develop individualized medicines in hospitals and pharmacies, allowing a high degree of personalization and the possibility to adjust the dose of the API based on the quantity of material extruded. The main goal of incorporating this technology is to have a stock of API-load print cartridges that could be used at different storage times and for different patients. However, it is necessary to study the extrudability, stability, and buildability of these print cartridges during storage time. A paste-like formulation containing hydrochlorothiazide as a model drug was prepared and distributed in five print cartridges, each of which was studied for different storage times (0 h-72 h) and conditions, for repeated use on different days. For each print cartridge, an extrudability analysis was performed, and subsequently, 100 unit forms of 10 mg hydrochlorothiazide were printed. Finally, various dosage units containing different doses were printed, taking into account the optimized printing parameters based on the results of the extrudability analysis carried out previously. An appropriate methodology for the rapid development of appropriate SSE 3DP inks for pediatrics was established and evaluated. The extrudability analysis and several parameters allowed the detection of changes in the mechanical behavior of the printing inks, the pressure interval of the steady flow, and the selection of the volume of ink to be extruded to obtain each of the required doses. The print cartridges were stable for up to 72 h after processing, and orodispersible printlets containing 6 mg to 24 mg of hydrochlorothiazide can be produced using the same print cartridge and during the same printing process with guaranteed content and chemical stability. The proposed workflow for the development of new printing inks containing APIs will allow the optimization of feedstock material and human resources in pharmacy or hospital pharmacy services, thus speeding up their development and reducing costs.
Collapse
Affiliation(s)
- Eduardo Díaz-Torres
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
- Programa de Doctorado en Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Javier Suárez-González
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
| | - Cecilia N Monzón-Rodríguez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
| | - Ana Santoveña-Estévez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
| | - José B Fariña
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
| |
Collapse
|
50
|
Jørgensen AK, Ong JJ, Parhizkar M, Goyanes A, Basit AW. Advancing non-destructive analysis of 3D printed medicines. Trends Pharmacol Sci 2023; 44:379-393. [PMID: 37100732 DOI: 10.1016/j.tips.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023]
Abstract
Pharmaceutical 3D printing (3DP) has attracted significant interest over the past decade for its ability to produce personalised medicines on demand. However, current quality control (QC) requirements for traditional large-scale pharmaceutical manufacturing are irreconcilable with the production offered by 3DP. The US Food and Drug Administration (FDA) and the UK Medicines and Healthcare Products Regulatory Agency (MHRA) have recently published documents supporting the implementation of 3DP for point-of-care (PoC) manufacturing along with regulatory hurdles. The importance of process analytical technology (PAT) and non-destructive analytical tools in translating pharmaceutical 3DP has experienced a surge in recognition. This review seeks to highlight the most recent research on non-destructive pharmaceutical 3DP analysis, while also proposing plausible QC systems that complement the pharmaceutical 3DP workflow. In closing, outstanding challenges in integrating these analytical tools into pharmaceutical 3DP workflows are discussed.
Collapse
Affiliation(s)
- Anna Kirstine Jørgensen
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Maryam Parhizkar
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK; FabRx Artificial Intelligence, Carretera de Escairón 14, 27543 Currelos (O Saviñao) Lugo, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK; FabRx Artificial Intelligence, Carretera de Escairón 14, 27543 Currelos (O Saviñao) Lugo, Spain.
| |
Collapse
|