1
|
Yang X, Tang X, Yi S, Guo T, Liao Y, Wang Y, Zhang X. Maltodextrin-derived nanoparticles resensitize intracellular dormant Staphylococcus aureus to rifampicin. Carbohydr Polym 2025; 348:122843. [PMID: 39562116 DOI: 10.1016/j.carbpol.2024.122843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
Intracellular bacteria are recognized as a crucial factor in the persistence and recurrence of infections. The efficacy of current antibiotic treatments faces substantial challenges due to the dormant state formation of intracellular bacteria. In this study, we devised a strategy aimed at reverting intracellular dormant bacteria to a metabolically active state, thereby increasing their vulnerability to antibiotics. We found that oligosaccharides, especially maltodextrin (MD), can be absorbed by dormant S. aureus, leading to their revival and restoration of sensitivity to rifampicin (Rif). We then synthesized a reactive oxygen species (ROS)-responsive MD-prodrug by covalently binding MD with 4-(hydroxymethyl) phenylboronic acid pinacol ester (MD-PBAP) and prepared a ROS-responsive nanoparticles (MDNP) using a nanoprecipitation and self-assembly method. Once internalized by host cells, MDNP was degraded to MD, reactivating dormant S. aureus, and enhancing their susceptibility to Rif. More importantly, MDNP treatment restored the sensitivity of intracellular persistent S. aureus to Rif in both a reservoir transfer model and whole-body infection model. Additionally, MDNP have demonstrated excellent biocompatibility in both in vitro and in vivo settings. These results offer a promising therapeutic avenue for managing persistent intracellular bacterial infections by reviving and resensitizing intracellular dormant bacteria to conventional antibiotics.
Collapse
Affiliation(s)
- Xiaodi Yang
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Xiyu Tang
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Sisi Yi
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Tao Guo
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Yue Liao
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Yan Wang
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Xiangjun Zhang
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|
2
|
Amier Y, Ji W, Xun Y, Yu X, Zhu Z, Rao J. pH-Responsive Protein-Polycation Nanocarriers for Efficient Eradication of Bacterial Biofilms and Intracellular Bacteria. Macromol Rapid Commun 2024:e2400809. [PMID: 39555902 DOI: 10.1002/marc.202400809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Bacterial biofilms and intracellular pathogens pose significant challenges in eradication, often leading to persistent infections that are difficult to treat. To address this issue, the hydrophobic biofilm dispersant D-tyrosine is encapsulated within protein-polycation nanoparticles, designed using a mannose-terminated cationic polymer and concanavalin through electrostatic interactions. Thermodynamic studies reveal that free mannosyl groups on the nanoparticle surface promote spontaneous binding to receptor molecules mimicking those on bacterial biofilms and host cells. Under mildly acidic conditions, the nanoparticles reduce in size from 550 to ≈48 nm within 2 h, releasing 76% of encapsulated D-tyrosine. The combination of mannose targeting, particle size reduction, and controlled D-tyrosine release enable the nanoparticles to eliminate 70%-80% of the Pseudomonas aeruginosa and Staphylococcus aureus biofilm biomass at minimum bactericidal concentration (MBC) and 2MBC while eradicating 8 log of bacteria embedded within the biofilm. In an intracellular Pseudomonas aeruginosa infection model using RAW 264.7 macrophages, the nanoparticles at 2MBC eliminate over 95% of the intracellular bacteria without inducing an increase in the inflammatory cytokine interleukin-6. These protein-polycation nanoparticles, which activate their antimicrobial properties under acidic conditions, efficiently penetrate bacterial biofilms and host cell barriers via their mannose-rich surface, offering a promising strategy for the treatment of persistent infections.
Collapse
Affiliation(s)
- Yirixiatijiang Amier
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- State Key Laboratory of Materials Processing and Die & Mould Technology, and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wenke Ji
- State Key Laboratory of Materials Processing and Die & Mould Technology, and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xiao Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zhiyuan Zhu
- Taizhou Research Institute, Southern University of Science and Technology, Taizhou, Zhejiang, 318001, P. R. China
| | - Jingyi Rao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- State Key Laboratory of Materials Processing and Die & Mould Technology, and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
3
|
Yang J, Chen L, Cai Z, Pang L, Huang Y, Xiao P, Wang J, Huang W, Cui W, Hu N. Precise Clearance of Intracellular MRSA via Internally and Externally Mediated Bioorthogonal Activation of Micro/Nano Hydrogel Microspheres. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402370. [PMID: 39342650 PMCID: PMC11600240 DOI: 10.1002/advs.202402370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/25/2024] [Indexed: 10/01/2024]
Abstract
Traditional high-dose antibiotic treatments of intracellular methicillin-resistant staphylococcus aureus (MRSA) are highly inefficient and associated with a high rate of infection relapse. As an effective antibacterial technology, sonodynamic therapy (SDT) may be able to break the dilemma. However, indiscriminate reactive oxygen species (ROS) release leads to potential side effects. This study incorporates Staphylococcal Protein A antibody-modified Cu2+/tetracarboxyphenylporphyrin nanoparticles (Cu(II)NS-SPA) into hydrogel microspheres (HAMA@Cu(II)NS-SPA) to achieve precise eradication of intracellular bacteria. This eradication is under bioorthogonal activation mediated by bacillithiol (BSH) (internally) and ultrasound (US) (externally). To specify, the US responsiveness of Cu(II)NS-SPA is restored when it is reduced to Cu(I)NS-SPA by the BSH secreted characteristically by intracellular MRSA, thus forming a bioorthogonal activation with the external US, which confines ROS production within the infected MΦ. Under external US activation at 2 W cm-2, over 95% of intracellular MRSA can be cleared. In vivo, a single injection of HAMA@Cu(II)NS-SPA achieves up to two weeks of antibacterial sonodynamic therapy, reducing pro-inflammatory factor expression by 90%, and peri-implant bone trabeculae numbers exceed the control group by five times. In summary, these micro/nano hydrogel microspheres mediated by internal and external bioorthogonal activation can precisely eliminate intracellular MRSA, effectively treating multi-drug resistant intracellular bacterial infections.
Collapse
Affiliation(s)
- Jianye Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Li Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Libin Pang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yanran Huang
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Pengcheng Xiao
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wei Huang
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Ning Hu
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| |
Collapse
|
4
|
Zhao Y, Mao W, Liu B, Wang YF, Zhang SY, Guo LL, Qian YH, Gong ZG, Zhao JM, Yang XL, Qu GG, Hasi SR, Bai YT, Cao JS. Preparation of ceftiofur-encapsulated hen-egg low-density lipoproteins and their antibacterial effects on intracellular Staphylococcus aureus. Int J Biol Macromol 2024; 278:134840. [PMID: 39217040 DOI: 10.1016/j.ijbiomac.2024.134840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Hen egg low-density lipoprotein (heLDL), as alternative of serum-derived LDL, was used as drug delivery system of ceftiofur (CEF). The CEF-loaded hen egg low-density lipoprotein (CEF-heLDL) with complete apolipoprotein structure and high drug loading rate was synthesized, possesses suitable particle size. CEF-heLDL undergoes cellular uptake and colocalizes with lysosomes in vitro. An intracellular infection model of the bovine endometrial epithelial cells and a coeliac-induced inflammation model of mice by Staphylococcus aureus (S. aureus) were established, and significantly lower intracellular S. aureus levels of CEF-heLDL group than CEF-free group (P < 0.001) was observed. The antibacterial efficacy was sustained for 24 h. Up to 400 mg/kg of CEF-heLDL, 20 times the clinical practice, were intraperitoneally administrated, and no significant toxicity signs on mice were observed. HeLDLs is an effective, safe, and cheap drug carrier, and could also be used for transmembrane delivering other antibiotics.
Collapse
Affiliation(s)
- Yi Zhao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Wei Mao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Bo Liu
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Yong-Fei Wang
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Inner Mongolia Medical University, Hohhot 010030, China
| | - Shuang-Yi Zhang
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Li-Li Guo
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Ying-Hong Qian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Science, Hohhot 010010, China
| | - Zhi-Guo Gong
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Jia-Min Zhao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Xiao-Lin Yang
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Gang-Gang Qu
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Su-Rong Hasi
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China.
| | - Yu-Ting Bai
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China.
| | - Jin-Shan Cao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China.
| |
Collapse
|
5
|
Tang H, Chu W, Xiong J, Wu H, Cheng L, Cheng L, Luo J, Yin H, Li J, Li J, Yang J, Li J. Seeking Cells, Targeting Bacteria: A Cascade-Targeting Bacteria-Responsive Nanosystem for Combating Intracellular Bacterial Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311967. [PMID: 38712482 DOI: 10.1002/smll.202311967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
Intracellular bacteria pose a great challenge to antimicrobial therapy due to various physiological barriers at both cellular and bacterial levels, which impede drug penetration and intracellular targeting, thereby fostering antibiotic resistance and yielding suboptimal treatment outcomes. Herein, a cascade-target bacterial-responsive drug delivery nanosystem, MM@SPE NPs, comprising a macrophage membrane (MM) shell and a core of SPE NPs. SPE NPs consist of phenylboronic acid-grafted dendritic mesoporous silica nanoparticles (SP NPs) encapsulated with epigallocatechin-3-gallate (EGCG), a non-antibiotic antibacterial component, via pH-sensitive boronic ester bonds are introduced. Upon administration, MM@SPE NPs actively home in on infected macrophages due to the homologous targeting properties of the MM shell, which is subsequently disrupted during cellular endocytosis. Within the cellular environment, SPE NPs expose and spontaneously accumulate around intracellular bacteria through their bacteria-targeting phenylboronic acid groups. The acidic bacterial microenvironment further triggers the breakage of boronic ester bonds between SP NPs and EGCG, allowing the bacterial-responsive release of EGCG for localized intracellular antibacterial effects. The efficacy of MM@SPE NPs in precisely eliminating intracellular bacteria is validated in two rat models of intracellular bacterial infections. This cascade-targeting responsive system offers new solutions for treating intracellular bacterial infections while minimizing the risk of drug resistance.
Collapse
Affiliation(s)
- Haiqin Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wenlin Chu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jingdi Xiong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jun Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Han Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinlin Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianshu Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
6
|
Costabile G, Baldassi D, Müller C, Groß B, Ungaro F, Schubert S, Firestine SM, Merkel OM. Antibiotic-loaded nanoparticles for the treatment of intracellular methicillin-resistant Staphylococcus Aureus infections: In vitro and in vivo efficacy of a novel antibiotic. J Control Release 2024; 374:454-465. [PMID: 39181163 DOI: 10.1016/j.jconrel.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Antimicrobial resistance is considered one of the biggest threats to public health worldwide. Methicillin-resistant S. aureus is the causative agent of a number of infections and lung colonization in people suffering from cystic fibrosis. Moreover, a growing body of evidence links the microbiome to the development of cancer, as well as to the success of the treatment. In this view, the development of novel antibiotics is of critical importance, and SV7, a novel antibiotic active against MRSA at low concentrations, represents a promising candidate. However, the low aqueous solubility of SV7 hampers its therapeutic translation. In this study, SV7 was encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to improve the solubility profile, to ensure sustained release and eventually support deposition in the airways. Furthermore, PLGA NPs were formulated as dry powder to extend their shelf-life and were shown to efficiently target intracellular infections. After identifying a formulation with suitable physico-chemical characteristics, SV7-loaded NPs were investigated in vitro in terms of inhibitory activity against MRSA, and their safety profile in lung epithelial cells. Subsequently, the activity against MRSA intracellular infections was investigated in a co-culture model of MRSA and macrophages. To test the translatability of our findings, SV7-loaded NPs were tested in vivo in a Galleria mellonella infection model. In conclusion, SV7-loaded NPs showed a safe profile and efficient inhibitory activity against MRSA at low concentrations. Furthermore, their activity against intracellular infections was confirmed, and was retained in vivo, rendering them a promising candidate for treatment of MRSA lung infections.
Collapse
Affiliation(s)
- Gabriella Costabile
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, DE, Germany; Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, IT, Italy
| | - Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, DE, Germany
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, DE, Germany
| | - Birgit Groß
- Max von Pettenkofer-Institut Munich für Hygiene und Medizinische Mikrobiologie, Elisabeth-Winterhalter-Weg 6, 81377 Munich, DE, Germany
| | - Francesca Ungaro
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, IT, Italy
| | - Sören Schubert
- Max von Pettenkofer-Institut Munich für Hygiene und Medizinische Mikrobiologie, Elisabeth-Winterhalter-Weg 6, 81377 Munich, DE, Germany
| | - Steven M Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Detroit, MI 48201, USA
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, DE, Germany.
| |
Collapse
|
7
|
Hughes KJ, Cheng J, Iyer KA, Ralhan K, Ganesan M, Hsu CW, Zhan Y, Wang X, Zhu B, Gao M, Wang H, Zhang Y, Huang J, Zhou QA. Unveiling Trends: Nanoscale Materials Shaping Emerging Biomedical Applications. ACS NANO 2024; 18:16325-16342. [PMID: 38888229 DOI: 10.1021/acsnano.4c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The realm of biomedical materials continues to evolve rapidly, driven by innovative research across interdisciplinary domains. Leveraging big data from the CAS Content Collection, this study employs quantitative analysis through natural language processing (NLP) to identify six emerging areas within nanoscale materials for biomedical applications. These areas encompass self-healing, bioelectronic, programmable, lipid-based, protein-based, and antibacterial materials. Our Nano Focus delves into the multifaceted utilization of nanoscale materials in these domains, spanning from augmenting physical and electronic properties for interfacing with human tissue to facilitating intricate functionalities like programmable drug delivery.
Collapse
Affiliation(s)
- Kevin J Hughes
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Jianjun Cheng
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Kavita A Iyer
- ACS International India Pvt. Ltd., Pune 411044, India
| | | | | | - Chia-Wei Hsu
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Yutao Zhan
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Xinning Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Bowen Zhu
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Menghua Gao
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Huaimin Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Yue Zhang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Jiaxing Huang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | | |
Collapse
|
8
|
Subramaniam S, Joyce P, Conn CE, Prestidge CA. Cellular uptake and in vitro antibacterial activity of lipid-based nanoantibiotics are influenced by protein corona. Biomater Sci 2024; 12:3411-3422. [PMID: 38809118 DOI: 10.1039/d4bm00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Bacteria have evolved survival mechanisms that enable them to live within host cells, triggering persistent intracellular infections that present significant clinical challenges due to the inability for conventional antibiotics to permeate cell membranes. In recent years, antibiotic nanocarriers or 'nanoantibiotics' have presented a promising strategy for overcoming intracellular infections by facilitating cellular uptake of antibiotics, thus improving targeting to the bacteria. However, prior to reaching host cells, nanocarriers experience interactions with proteins that form a corona and alter their physiological response. The influence of this protein corona on the cellular uptake, drug release and efficacy of nanoantibiotics for intracellular infections is poorly understood and commonly overlooked in preclinical studies. In this study, protein corona influence on cellular uptake was investigated for two nanoparticles; liposomes and cubosomes in macrophage and epithelial cells that are commonly infected with pathogens. Studies were conducted in presence of fetal bovine serum (FBS) to form a biologically relevant protein corona in an in vitro setting. Protein corona impact on cellular uptake was shown to be nanoparticle-dependent, where reduced internalization was observed for liposomes, the opposite was observed for cubosomes. Subsequently, vancomycin-loaded cubosomes were explored for their drug delivery performance against intracellular small colony variants of Staphylococcus aureus. We demonstrated improved bacterial killing in macrophages, with greater reduction in bacterial viability upon internalization of cubosomes mediated by the protein corona. However, no differences in efficacy were observed in epithelial cells. Thus, this study provides insights and evidence to the role of protein corona in modulating the performance of nanoparticles in a dynamic manner; these findings will facilitate improved understanding and translation of future investigations from in vitro to in vivo.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide 5000, South Australia, Australia.
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide 5000, South Australia, Australia.
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide 5000, South Australia, Australia.
| |
Collapse
|
9
|
Aparicio-Blanco J, Vishwakarma N, Lehr CM, Prestidge CA, Thomas N, Roberts RJ, Thorn CR, Melero A. Antibiotic resistance and tolerance: What can drug delivery do against this global threat? Drug Deliv Transl Res 2024; 14:1725-1734. [PMID: 38341386 PMCID: PMC11052818 DOI: 10.1007/s13346-023-01513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/12/2024]
Abstract
Antimicrobial resistance and tolerance (AMR&T) are urgent global health concerns, with alarmingly increasing numbers of antimicrobial drugs failing and a corresponding rise in related deaths. Several reasons for this situation can be cited, such as the misuse of traditional antibiotics, the massive use of sanitizing measures, and the overuse of antibiotics in agriculture, fisheries, and cattle. AMR&T management requires a multifaceted approach involving various strategies at different levels, such as increasing the patient's awareness of the situation and measures to reduce new resistances, reduction of current misuse or abuse, and improvement of selectivity of treatments. Also, the identification of new antibiotics, including small molecules and more complex approaches, is a key factor. Among these, novel DNA- or RNA-based approaches, the use of phages, or CRISPR technologies are some potent strategies under development. In this perspective article, emerging and experienced leaders in drug delivery discuss the most important biological barriers for drugs to reach infectious bacteria (bacterial bioavailability). They explore how overcoming these barriers is crucial for producing the desired effects and discuss the ways in which drug delivery systems can facilitate this process.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur, 482003, Madhya Pradesh, India
| | - Claus-Michael Lehr
- Department Drug Delivery across Biological Barriers (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123, Saarbrücken, Germany
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Nicky Thomas
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | | | - Chelsea R Thorn
- Biotherapeutics Pharmaceutical Research and Development, Pfizer, Inc., 1 Burtt Road, Andover, MA, 01810, USA.
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
10
|
Dai X, Li Y, Liu X, Zhang Y, Gao F. Intracellular infection-responsive macrophage-targeted nanoparticles for synergistic antibiotic immunotherapy of bacterial infection. J Mater Chem B 2024; 12:5248-5260. [PMID: 38712662 DOI: 10.1039/d4tb00409d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Intracellular bacteria are considered to play a key role in the failure of bacterial infection therapy and increase of antibiotic resistance. Nanotechnology-based drug delivery carriers have been receiving increasing attention for improving the intracellular antibacterial activity of antibiotics, but are accompanied by disadvantages such as complex preparation procedures, lack of active targeting, and monotherapy, necessitating further design improvements. Herein, nanoparticles targeting bacteria-infected macrophages are fabricated to eliminate intracellular bacterial infections via antibiotic release and upregulation of intracellular reactive oxygen species (ROS) levels and proinflammatory responses. These nanoparticles were formed through the reaction of the amino group on selenocystamine dihydrochloride and the aldehyde group on oxidized dextran (ox-Dex), which encapsulates vancomycin (Van) through hydrophobic interactions. These nanoparticles could undergo targeted uptake by macrophages via endocytosis and respond to the bacteria-infected intracellular microenvironment (ROS and glutathione (GSH)) for controlled release of antibiotics. Furthermore, these nanoparticles could consume intracellular GSH and promote a significant increase in the level of ROS in macrophages, subsequently up-regulating the proinflammatory response to reinforce antibacterial activity. These nanoparticles can accelerate bacteria-infected wound healing. In this work, nanoparticles were fabricated for bacteria-infected macrophage-targeted and microenvironment-responsive antibiotic delivery, cellular ROS generation, and proinflammatory up-regulation activity to eliminate intracellular bacteria, which opens up a new possibility for multifunctional drug delivery against intracellular infection.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Yongjie Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
11
|
Gohari S, Hosseini SM, Nouri F, Yousefimashouf R, Arabestani MR, Taheri M. Co-delivery of doxycycline and rifampicin using CdTe-labeled poly (lactic-co-glycolic) acid for treatment of Brucella melitensis infection. BMC Chem 2024; 18:100. [PMID: 38750589 PMCID: PMC11097527 DOI: 10.1186/s13065-024-01200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Brucellosis poses a significant challenge in the medical field as a systemic infection with a propensity for relapse. This study presented a novel approach to brucellosis treatment, enhancing the efficacy of doxycycline and rifampicin through the use of poly (lactic-co-glycolic) acid coupled with cadmium-telluride quantum dots (Dox-Rif-PLGA@CdTe). The double emulsion solvent evaporation method was employed to prepare Dox-Rif-PLGA@CdTe. The study scrutinized the physicochemical attributes of these nanoparticles. The impact of antibiotic-loaded nanoparticles on Brucella melitensis was evaluated through well diffusion, minimum inhibitory concentration (MIC), and cell culture. The chemical analysis results demonstrated a possibility of chemical reactions occurring among the constituents of nanoparticles. Assessments using the well diffusion and MIC methods indicated that the impact of free drugs and nanoparticles on bacteria was equivalent. However, the drug-loaded nanoparticles significantly decreased the colony-forming units (CFUs) within the cell lines compared to free drugs. In conclusion, the synthesis of nanoparticles adhered to environmentally friendly practices and demonstrated safety. The sustained drug release over 100 h facilitated drug accumulation at the bacterial site, resulting in a heightened therapeutic effect on B. melitensis and improved outcomes in brucellosis treatment. The application of these synthesized nanodrugs exhibited promising therapeutic potential.
Collapse
Affiliation(s)
- Saeideh Gohari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Andima M, Boese A, Paul P, Koch M, Loretz B, Lehr CM. Targeting Intracellular Bacteria with Dual Drug-loaded Lactoferrin Nanoparticles. ACS Infect Dis 2024; 10:1696-1710. [PMID: 38577780 PMCID: PMC11091908 DOI: 10.1021/acsinfecdis.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Treatment of microbial infections is becoming daunting because of widespread antimicrobial resistance. The treatment challenge is further exacerbated by the fact that certain infectious bacteria invade and localize within host cells, protecting the bacteria from antimicrobial treatments and the host's immune response. To survive in the intracellular niche, such bacteria deploy surface receptors similar to host cell receptors to sequester iron, an essential nutrient for their virulence, from host iron-binding proteins, in particular lactoferrin and transferrin. In this context, we aimed to target lactoferrin receptors expressed by macrophages and bacteria; as such, we prepared and characterized lactoferrin nanoparticles (Lf-NPs) loaded with a dual drug combination of antimicrobial natural alkaloids, berberine or sanguinarine, with vancomycin or imipenem. We observed increased uptake of drug-loaded Lf-NPs by differentiated THP-1 cells with up to 90% proportion of fluorescent cells, which decreased to about 60% in the presence of free lactoferrin, demonstrating the targeting ability of Lf-NPs. The encapsulated antibiotic drug cocktail efficiently cleared intracellular Staphylococcus aureus (Newman strain) compared to the free drug combinations. However, the encapsulated drugs and the free drugs alike exhibited a bacteriostatic effect against the hard-to-treat Mycobacterium abscessus (smooth variant). In conclusion, the results of this study demonstrate the potential of lactoferrin nanoparticles for the targeted delivery of antibiotic drug cocktails for the treatment of intracellular bacteria.
Collapse
Affiliation(s)
- Moses Andima
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
- Department
of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo 21435, Uganda
| | - Annette Boese
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Pascal Paul
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Marcus Koch
- INM-Leibniz
Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
| | - Brigitta Loretz
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Claus-Micheal Lehr
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
13
|
Su M, Yin M, Zhou Y, Xiao S, Yi J, Tang R. Freeze-Thaw Microfluidic System Produces "Themis" Nanocomplex for Cleaning Persisters-Infected Macrophages and Enhancing Uninfected Macrophages. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311436. [PMID: 38181783 DOI: 10.1002/adma.202311436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Macrophages are the primary effectors against potential pathogen infections. They can be "parasitized" by intracellular bacteria, serving as "accomplices", protecting intracellular bacteria and even switching them to persisters. Here, using a freeze-thaw strategy-based microfluidic chip, a "Themis" nanocomplex (TNC) is created. The TNC consists of Lactobacillus reuteri-derived membrane vesicles, heme, and vancomycin, which cleaned infected macrophages and enhanced uninfected macrophages. In infected macrophages, TNC releases heme that led to the reconstruction of the respiratory chain complexes of intracellular persisters, forcing them to regrow. The revived bacteria produces virulence factors that destroyed host macrophages (accomplices), thereby being externalized and becoming vulnerable to immune responses. In uninfected macrophages, TNC upregulates the TCA cycle and oxidative phosphorylation (OXPHOS), contributing to immunoenhancement. The combined effect of TNC of cleaning the accomplice (infected macrophages) and reinforcing uninfected macrophages provides a promising strategy for intracellular bacterial therapy.
Collapse
Affiliation(s)
- Mingyue Su
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Mengying Yin
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Yifu Zhou
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Shuya Xiao
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Jundan Yi
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Rongbing Tang
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
14
|
Maringolo Ribeiro C, Augusto Roque-Borda C, Carolina Franzini M, Fernanda Manieri K, Manaia Demarqui F, Leite Campos D, Temperani Amaral Machado R, Cristiane da Silva I, Tavares Luiz M, Delello Di Filippo L, Bento da Silva P, Cristina Oliveira da Rocha M, Nair Báo S, Masci D, Fernandes GFS, Castagnolo D, Chorilli M, Rogério Pavan F. Liposome-siderophore conjugates loaded with moxifloxacin serve as a model for drug delivery against Mycobacterium tuberculosis. Int J Pharm 2024; 655:124050. [PMID: 38537924 DOI: 10.1016/j.ijpharm.2024.124050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Tuberculosis (TB) is an infectious disease that annually affects millions of people, and resistance to available antibiotics has exacerbated this situation. Another notable characteristic of Mycobacterium tuberculosis, the primary causative agent of TB, is its ability to survive inside macrophages, a key component of the immune system. In our quest for an effective and safe treatment that facilitates the targeted delivery of antibiotics to the site of infection, we have proposed a nanotechnology approach based on an iron chelator. Iron chelators are the primary mechanism by which bacteria acquire iron, a metal essential for their metabolism. Four liposomes were synthesized and characterized using the dynamic light scattering technique (DLS), nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). All of these methods revealed the presence of spherical particles, approximately 200 nm in size. NTA indicated a concentration of around 1011 particles/mL. We also developed and validated a high-performance liquid chromatography method for quantifying Moxifloxacin to determine encapsulation efficiency (EE) and release profiles (RF). The EE was 51.31 % for LipMox and 45.76 % for LipIchMox. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the phagocytosis of liposomal vesicles by macrophages. Functionalizing liposomes with iron chelators can offer significant benefits for TB treatment, such as targeted drug delivery to intracellular bacilli through the phagocytosis of liposomal particles by cells like macrophages.
Collapse
Affiliation(s)
- Camila Maringolo Ribeiro
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | | | - Maria Carolina Franzini
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Karyn Fernanda Manieri
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Fernanda Manaia Demarqui
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Débora Leite Campos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Rachel Temperani Amaral Machado
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Isabel Cristiane da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Marcela Tavares Luiz
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Patrícia Bento da Silva
- Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | | | - Sônia Nair Báo
- Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Domiziana Masci
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH London, United Kingdom
| | - Guilherme F S Fernandes
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH London, United Kingdom; Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Daniele Castagnolo
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH London, United Kingdom; Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, Brazil.
| |
Collapse
|
15
|
Chu G, Guan M, Jin J, Luo Y, Luo Z, Shi T, Liu T, Zhang C, Wang Y. Mechanochemically Reprogrammed Interface Orchestrates Neutrophil Bactericidal Activity and Apoptosis for Preventing Implant-Associated Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311855. [PMID: 38164817 DOI: 10.1002/adma.202311855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Indexed: 01/03/2024]
Abstract
The onset of implant-associated infection (IAI) triggers a cascade of immune responses, which are initially dominated by neutrophils. Bacterial aggregate formation and hypoxic microenvironment, which occur shortly after implantation, may be two major risk factors that impair neutrophil function and lead to IAI. Here, the implant surface with phytic acid-Zn2+ coordinated TiO2 nanopillar arrays (PA-Zn@TiNPs) and oxygen self-supporting CaO2 nanoparticles, named as CPZTs, is mechanochemically reprogrammed. The engineered CPZTs interface integrates multiple properties to inhibit the formation of nascent biofilm, encompassing antibacterial adhesion, mechanobactericidal effect, and chemobiocidal effect. Meanwhile, continuous oxygenation fuels the neutrophils with reactive oxygen species (ROS) for efficient bacterial elimination on the implant surface and inside the neutrophils. Furthermore, this surface modulation strategy accelerates neutrophil apoptosis and promotes M2 macrophage-mediated osteogenesis both in vitro and in a rat model of IAI. In conclusion, targeting neutrophils for immunomodulation is a practical and effective strategy to prevent IAI and promote bone-implant integration.
Collapse
Affiliation(s)
- Guangyu Chu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ming Guan
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiale Jin
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yao Luo
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tingwang Shi
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tao Liu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
16
|
Zhou W, Da X, Jian Y, Peng Y, Liu X, Xu Y, Wu Y, Wang X, Zhou Q. Nitroreductase-Responsive Photosensitizers for Selective Imaging and Photo-Inactivation of Intracellular Bacteria. Chemistry 2024; 30:e202303766. [PMID: 38233363 DOI: 10.1002/chem.202303766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Intracellular Staphylococcus aureus (S. aureus), especially the methicillin resistant staphylococcus aureus (MRSA), are difficult to detect and eradicate due to the protection by the host cells. Antibacterial photodynamic therapy (aPDT) offers promise in treating intracellular bacteria, provided that selective damage to the bacteria ranther than host cells can be realized. According to the different nitroreductase (NTR) levels in mammalian cells and S. aureus, herein NTR-responsive photosensitizers (PSs) (T)CyI-NO2 were designed and synthesized. The emission and 1O2 generation of (T)CyI-NO2 are quenched by the 4-nitrobenzyl group, but can be specifically switched on by bacterial NTR. Therefore, selective imaging and photo-inactivation of intracellular S. aureus and MRSA were achieved. Our findings may pave the way for the development of more efficient and selective aPDT agents to combat intractable intracellular infections.
Collapse
Affiliation(s)
- Wanpeng Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 1000490, P.R. China
| | - Xuwen Da
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Yao Jian
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Yatong Peng
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 1000490, P.R. China
| | - Xiulian Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 1000490, P.R. China
| | - Yunli Xu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 1000490, P.R. China
| | - Yao Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 1000490, P.R. China
| | - Xuesong Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 1000490, P.R. China
| | - Qianxiong Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| |
Collapse
|
17
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2024:1-40. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
18
|
Subramaniam S, Joyce P, Ogunniyi AD, Dube A, Sampson SL, Lehr CM, Prestidge CA. Minimum Information for Conducting and Reporting In Vitro Intracellular Infection Assays. ACS Infect Dis 2024; 10:337-349. [PMID: 38295053 DOI: 10.1021/acsinfecdis.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Bacterial pathogens are constantly evolving to outsmart the host immune system and antibiotics developed to eradicate them. One key strategy involves the ability of bacteria to survive and replicate within host cells, thereby causing intracellular infections. To address this unmet clinical need, researchers are adopting new approaches, such as the development of novel molecules that can penetrate host cells, thus exerting their antimicrobial activity intracellularly, or repurposing existing antibiotics using nanocarriers (i.e., nanoantibiotics) for site-specific delivery. However, inconsistency in information reported across published studies makes it challenging for scientific comparison and judgment of experiments for future direction by researchers. Together with the lack of reproducibility of experiments, these inconsistencies limit the translation of experimental results beyond pre-clinical evaluation. Minimum information guidelines have been instrumental in addressing such challenges in other fields of biomedical research. Guidelines and recommendations provided herein have been designed for researchers as essential parameters to be disclosed when publishing their methodology and results, divided into four main categories: (i) experimental design, (ii) establishing an in vitro model, (iii) assessment of efficacy of novel therapeutics, and (iv) statistical assessment. These guidelines have been designed with the intention to improve the reproducibility and rigor of future studies while enabling quantitative comparisons of published studies, ultimately facilitating translation of emerging antimicrobial technologies into clinically viable therapies that safely and effectively treat intracellular infections.
Collapse
Affiliation(s)
- Santhni Subramaniam
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Abiodun D Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Bellville, 7535 Cape Town, South Africa
| | - Samantha L Sampson
- South African Medical Research Council Centre for Tuberculosis Research, and Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, 7602 Cape Town, South Africa
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Clive A Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
19
|
Xiong J, Tang H, Sun L, Zhu J, Tao S, Luo J, Li J, Li J, Wu H, Yang J. A macrophage cell membrane-coated cascade-targeting photothermal nanosystem for combating intracellular bacterial infections. Acta Biomater 2024; 175:293-306. [PMID: 38159895 DOI: 10.1016/j.actbio.2023.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Current antibacterial interventions encounter formidable challenges when confronting intracellular bacteria, attributable to their clustering within phagocytes, particularly macrophages, evading host immunity and resisting antibiotics. Herein, we have developed an intelligent cell membrane-based nanosystem, denoted as MM@DAu NPs, which seamlessly integrates cascade-targeting capabilities with controllable antibacterial functions for the precise elimination of intracellular bacteria. MM@DAu NPs feature a core comprising D-alanine-functionalized gold nanoparticles (DAu NPs) enveloped by a macrophage cell membrane (MM) coating. Upon administration, MM@DAu NPs harness the intrinsic homologous targeting ability of their macrophage membrane to infiltrate bacteria-infected macrophages. Upon internalization within these host cells, exposed DAu NPs from MM@DAu NPs selectively bind to intracellular bacteria through the bacteria-targeting agent, D-alanine present on DAu NPs. This intricate process establishes a cascade mechanism that efficiently targets intracellular bacteria. Upon exposure to near-infrared irradiation, the accumulated DAu NPs surrounding intracellular bacteria induce local hyperthermia, enabling precise clearance of intracellular bacteria. Further validation in animal models infected with the typical intracellular bacteria, Staphylococcus aureus, substantiates the exceptional cascade-targeting efficacy and photothermal antibacterial potential of MM@DAu NPs in vivo. Therefore, this integrated cell membrane-based cascade-targeting photothermal nanosystem offers a promising approach for conquering persistent intracellular infections without drug resistance risks. STATEMENT OF SIGNIFICANCE: Intracellular bacterial infections lead to treatment failures and relapses because intracellular bacteria could cluster within phagocytes, especially macrophages, evading the host immune system and resisting antibiotics. Herein, we have developed an intelligent cell membrane-based nanosystem MM@DAu NPs, which is designed to precisely eliminate intracellular bacteria through a controllable cascade-targeting photothermal antibacterial approach. MM@DAu NPs combine D-alanine-functionalized gold nanoparticles with a macrophage cell membrane coating. Upon administration, MM@DAu NPs harness the homologous targeting ability of macrophage membrane to infiltrate bacteria-infected macrophages. Upon internalization, exposed DAu NPs from MM@DAu NPs selectively bind to intracellular bacteria through the bacteria-targeting agent, enabling precise clearance of intracellular bacteria through local hyperthermia. This integrated cell membrane-based cascade-targeting photothermal nanosystem offers a promising avenue for conquering persistent intracellular infections without drug resistance risks.
Collapse
Affiliation(s)
- Jingdi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Haiqin Tang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lizhong Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jieyu Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
20
|
Jiang H, Li L, Li Z, Chu X. Metal-based nanoparticles in antibacterial application in biomedical field: Current development and potential mechanisms. Biomed Microdevices 2024; 26:12. [PMID: 38261085 PMCID: PMC10806003 DOI: 10.1007/s10544-023-00686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
The rise in drug resistance in pathogenic bacteria greatly endangers public health in the post-antibiotic era, and drug-resistant bacteria currently pose a great challenge not only to the community but also to clinical procedures, including surgery, stent implantation, organ transplantation, and other medical procedures involving any open wound and compromised human immunity. Biofilm-associated drug failure, as well as rapid resistance to last-resort antibiotics, necessitates the search for novel treatments against bacterial infection. In recent years, the flourishing development of nanotechnology has provided new insights for exploiting promising alternative therapeutics for drug-resistant bacteria. Metallic agents have been applied in antibacterial usage for several centuries, and the functional modification of metal-based biomaterials using nanotechnology has now attracted great interest in the antibacterial field, not only for their intrinsic antibacterial nature but also for their ready on-demand functionalization and enhanced interaction with bacteria, rendering them with good potential in further translation. However, the possible toxicity of MNPs to the host cells and tissue still hinders its application, and current knowledge on their interaction with cellular pathways is not enough. This review will focus on recent advances in developing metallic nanoparticles (MNPs), including silver, gold, copper, and other metallic nanoparticles, for antibacterial applications, and their potential mechanisms of interaction with pathogenic bacteria as well as hosts.
Collapse
Affiliation(s)
- Hao Jiang
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lingzhi Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhong Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xiang Chu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Emergency, Daping Hospital, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
21
|
Otri I, Medaglia S, Martínez-Máñez R, Aznar E, Sancenón F. Exploring the Synergy between Nano-Formulated Linezolid and Polymyxin B as a Gram-Negative Effective Antibiotic Delivery System Based on Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:228. [PMID: 38276746 PMCID: PMC10818268 DOI: 10.3390/nano14020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Antimicrobial resistance is a current silent pandemic that needs new types of antimicrobial agents different from the classic antibiotics that are known to lose efficiency over time. Encapsulation of antibiotics inside nano-delivery systems could be a promising, effective strategy that is able to delay the capability of pathogens to develop resistance mechanisms against antimicrobials. These systems can be adapted to deliver already discovered antibiotics to specific infection sites in a more successful way. Herein, mesoporous silica nanomaterials are used for an efficient delivery of a linezolid gram-positive antibiotic that acts synergistically with gram-negative antimicrobial polymyxin B. For this purpose, linezolid is encapsulated in the pores of the mesoporous silica, whose outer surface is coated with a polymyxin B membrane disruptor. The nanomaterial showed a good controlled-release performance in the presence of lipopolysaccharide, found in bacteria cell membranes, and the complete bacteria E. coli DH5α. The performed studies demonstrate that when the novel formulation is near bacteria, polymyxin B interacts with the cell membrane, thereby promoting its permeation. After this step, linezolid can easily penetrate the bacteria and act with efficacy to kill the microorganism. The nano-delivery system presents a highly increased antimicrobial efficacy against gram-negative bacteria, where the use of free linezolid is not effective, with a fractional inhibitory concentration index of 0.0063 for E. coli. Moreover, enhanced toxicity against gram-positive bacteria was confirmed thanks to the combination of both antibiotics in the same nanoparticles. Although this new nanomaterial should be further studied to reach clinical practice, the obtained results pave the way to the development of new nanoformulations which could help in the fight against bacterial infections.
Collapse
Affiliation(s)
- Ismael Otri
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (I.O.); (S.M.); (R.M.-M.)
| | - Serena Medaglia
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (I.O.); (S.M.); (R.M.-M.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (I.O.); (S.M.); (R.M.-M.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 46022 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46026 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (I.O.); (S.M.); (R.M.-M.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 46022 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46026 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (I.O.); (S.M.); (R.M.-M.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 46022 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46026 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
22
|
Bai S, Song J, Pu H, Yu Y, Song W, Chen Z, Wang M, Campbell-Valois FX, Wong WL, Cai Q, Wan M, Zhang C, Bai Y, Feng X. Chemical Biology Approach to Reveal the Importance of Precise Subcellular Targeting for Intracellular Staphylococcus aureus Eradication. J Am Chem Soc 2023; 145:23372-23384. [PMID: 37838963 DOI: 10.1021/jacs.3c09587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.
Collapse
Affiliation(s)
- Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yue Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | | | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
23
|
Maghrebi S, Thomas N, Prestidge CA, Joyce P. Inulin-lipid hybrid (ILH) microparticles promote pH-triggered release of rifampicin within infected macrophages. Drug Deliv Transl Res 2023; 13:1716-1729. [PMID: 36630076 PMCID: PMC10126022 DOI: 10.1007/s13346-022-01287-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/12/2023]
Abstract
Intracellular bacteria serve as a problematic source of infection due to their ability to evade biological immune responses and the inability for conventional antibiotics to efficiently penetrate cellular membranes. Subsequently, new treatment approaches are urgently required to effectively eradicate intracellular pathogens residing within immune cells (e.g. macrophages). In this study, the poorly soluble and poorly permeable antibiotic, rifampicin, was re-purposed via micro-encapsulation within inulin-lipid hybrid (ILH) particles for the treatment of macrophages infected with small colony variants of Staphylococcus aureus (SCV S. aureus). Rifampicin-encapsulated ILH (Rif-ILH) microparticles were synthesized by spray drying a lipid nano-emulsion, with inulin dissolved throughout the aqueous phase and rifampicin pre-loaded within the lipid phase. Rif-ILH were strategically designed and engineered with pH-responsive properties to promote lysosomal drug release upon cellular internalization, while preventing premature rifampicin release in plasma-simulating media. The pH-responsiveness of Rif-ILH was controlled by the acid-mediated hydrolysis of the inulin coating, where exposure to acidic media simulating the lysosomal environment of macrophages triggered hydrolysis of the oligofructose chain and the subsequent diffusion of rifampicin from Rif-ILH. This pH-provoked release mechanism, as well as the ability for ILH microparticles to be more readily internalized by macrophages, was found to be influential in triggering a 2.9-fold increase in intracellular rifampicin concentration within infected macrophages, compared to the pure drug. The subsequent increase in exposure of intracellular pathogens to rifampicin leads to a ~ 2-log improvement in antibacterial activity for Rif-ILH, at a rifampicin dose of 2.5 µg/mL. Thus, the reduction in viability of intracellular SCV S. aureus, in the absence of cellular toxicity, is indicative of ILH microparticles serving as a unique approach for the safe and efficacious delivery of antibiotics to phagocytic cells for the treatment of intracellular infections.
Collapse
Affiliation(s)
- Sajedeh Maghrebi
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Nicky Thomas
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Clive A Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| | - Paul Joyce
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
24
|
Sarkar S, Dyett B, Lakic B, Ball AS, Yeo LY, White JF, Soni S, Drummond CJ, Conn CE. Cubosome Lipid Nanocarriers As a Drug Delivery Vehicle for Intracellular Mycobacterium tuberculosis Infections. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21819-21829. [PMID: 37018059 DOI: 10.1021/acsami.3c00101] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mycobacterium tuberculosis (MTB) causes the infectious disease tuberculosis (TB), responsible for more deaths than any other single infectious disease in history. Intracellular MTB are slow growing and difficult to target with traditional antitubercular drugs, leading to the emergence of multidrug resistance in TB infection, which is a major global public health issue. Recent advances in innovative lipid nanotechnologies for drug delivery have demonstrated promising outcomes for chronic infectious diseases but have not yet been tested as potential delivery systems for intracellular infections such as TB. The current study evaluates the potential of monoolein (MO)-based cationic cubosomes for the encapsulation and delivery of the first line antitubercular drug rifampicin (RIF) against an MTB-H37Ra in vitro culture model. In particular, we show that the use of cationic cubosomes as delivery vehicles reduced the minimum inhibitory concentration (MIC) of RIF by 2-fold against actively replicating MTB-H37Ra (compared to that of the free drug) and also shortened the lifecycle duration of axenic MTB-H37Ra from 5 to 3 days. The cubosome-mediated delivery was also found to be effective against intracellular MTB-H37Ra within THP-1 human macrophages, with a 2.8 log reduction in viability of the bacilli after 6 days incubation at the MIC. The killing time was also reduced from 8 to 6 days without distressing the host macrophages. Mechanistic studies on the uptake of RIF-loaded cationic cubosomes using total internal reflection fluorescence microscopy (TIRFM) demonstrated the capacity of these lipid particles to effectively target intracellular bacteria. Overall, these results demonstrate that cationic cubosomes are a potent delivery system for the antitubercular drug RIF for therapeutic management of TB.
Collapse
Affiliation(s)
- Sampa Sarkar
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Brendan Dyett
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Biserka Lakic
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Andrew S Ball
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Leslie Y Yeo
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Jacinta F White
- The Commonwealth Scientific and Industrial Research Organisation, Manufacturing, Clayton, Victoria 3169, Australia
| | - Sarvesh Soni
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
25
|
Cesaro A, Lin S, Pardi N, de la Fuente-Nunez C. Advanced delivery systems for peptide antibiotics. Adv Drug Deliv Rev 2023; 196:114733. [PMID: 36804008 PMCID: PMC10771258 DOI: 10.1016/j.addr.2023.114733] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Antimicrobial peptides (AMPs) hold promise as alternatives to traditional antibiotics for preventing and treating multidrug-resistant infections. Although they have potent antimicrobial efficacy, AMPs are mainly limited by their susceptibility to proteases and potential off-site cytotoxicity. Designing the right delivery system for peptides can help to overcome such limitations, thus improving the pharmacokinetic and pharmacodynamic profiles of these drugs. The versatility of peptides and their genetically encodable structure make them suitable for both conventional and nucleoside-based formulations. In this review, we describe the main drug delivery procedures developed so far for peptide antibiotics: lipid nanoparticles, polymeric nanoparticles, hydrogels, functionalized surfaces, and DNA- and RNA-based delivery systems.
Collapse
Affiliation(s)
- Angela Cesaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Shuangzhe Lin
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
26
|
Subramaniam S, Joyce P, Prestidge CA. Liquid crystalline lipid nanoparticles improve the antibacterial activity of tobramycin and vancomycin against intracellular Pseudomonas aeruginosa and Staphylococcus aureus. Int J Pharm 2023; 639:122927. [PMID: 37059243 DOI: 10.1016/j.ijpharm.2023.122927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
The intracellular survival of bacteria is a significant challenge in the fight against antimicrobial resistance. Currently available antibiotics suffer from limited penetration across host cell membranes, resulting in suboptimal treatment against the internalised bacteria. Liquid crystalline nanoparticles (LCNP) are gaining significant research interest in promoting the cellular uptake of therapeutics due to their fusogenic properties; however, they have not been reported for targeting intracellular bacteria. Herein, the cellular internalisation of LCNPs in RAW 264.7 macrophages and A549 epithelial cells was investigated and optimized through the incorporation of a cationic lipid, dimethyldioctadecylammonium bromide (DDAB). LCNPs displayed a honeycomb-like structure, while the inclusion of DDAB resulted into an onion-like organisation with larger internal pores. Cationic LCNPs enhanced the cellular uptake in both cells, reaching up to ∼90% uptake in cells. Further, LCNPs were encapsulated with tobramycin or vancomycin to improve their activity against intracellular gram-negative, Pseudomonas aeruginosa (P. aeruginosa) and gram-positive, Staphylococcus aureus (S. aureus) bacteria. The enhanced cellular uptake of cationic LCNP resulted in significant reduction of intracellular bacterial load (up to 90% reduction), compared to antibiotic dosed in its free form; with reduced performance observed for epithelial cells infected with S. aureus. Specifically engineered LCNP can re-sensitise antibiotics against both intracellular Gram positive and negative bacteria in diverse cell lines.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA, 5000, Australia
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, SA, 5000, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA, 5000, Australia.
| |
Collapse
|
27
|
Wang X, Zhang M, Zhu T, Wei Q, Liu G, Ding J. Flourishing Antibacterial Strategies for Osteomyelitis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206154. [PMID: 36717275 PMCID: PMC10104653 DOI: 10.1002/advs.202206154] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Osteomyelitis is a destructive disease of bone tissue caused by infection with pathogenic microorganisms. Because of the complex and long-term abnormal conditions, osteomyelitis is one of the refractory diseases in orthopedics. Currently, anti-infective therapy is the primary modality for osteomyelitis therapy in addition to thorough surgical debridement. However, bacterial resistance has gradually reduced the benefits of traditional antibiotics, and the development of advanced antibacterial agents has received growing attention. This review introduces the main targets of antibacterial agents for treating osteomyelitis, including bacterial cell wall, cell membrane, intracellular macromolecules, and bacterial energy metabolism, focuses on their mechanisms, and predicts prospects for clinical applications.
Collapse
Affiliation(s)
- Xukai Wang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Mingran Zhang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Tongtong Zhu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Qiuhua Wei
- Department of Disinfection and Infection ControlChinese PLA Center for Disease Control and Prevention20 Dongda StreetBeijing100071P. R. China
| | - Guangyao Liu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
28
|
Lokhande AS, Panchal F, Munshi R, Madkaikar M, Malshe VC, Devarajan PV. pH-responsive microparticles of rifampicin for augmented intramacrophage uptake and enhanced antitubercular efficacy. Int J Pharm 2023; 635:122729. [PMID: 36803923 DOI: 10.1016/j.ijpharm.2023.122729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
In this study we present pH-responsive rifampicin (RIF) microparticles comprising lecithin and a biodegradable hydrophobic polymer, polyethylene sebacate (PES), to achieve high intramacrophage delivery and enhanced antitubercular efficacy. PES and PES-lecithin combination microparticles (PL MPs) prepared by single step precipitation revealed average size of 1.5 to 2.7 µm, entrapment efficiency ∼ 60 %, drug loading 12-15 % and negative zeta potential. Increase in lecithin concentration enhanced hydrophilicity. PES MPs demonstrated faster release in simulated lung fluid pH 7.4, while lecithin MPs facilitated faster and concentration dependent release in acidic artificial lysosomal fluid (ALF) pH 4.5 due to swelling and destabilization confirmed by TEM. PES and PL (1:2) MPs exhibited comparable macrophage uptake which was ∼ 5-fold superior than free RIF, in the RAW 264.7 macrophage cells. Confocal microscopy depicted intensified accumulation of the MPs in the lysosomal compartment, with augmented release of coumarin dye from the PL MPs, confirming pH-triggered increased intracellular release. Although, PES MPs and PL (1:2) MPs displayed comparable and high macrophage uptake, antitubercular efficacy against macrophage internalised M. tuberculosis was significantly higher with PL (1:2) MPs. This suggested great promise of the pH-sensitive PL (1:2) MPs for enhanced antitubercular efficacy.
Collapse
Affiliation(s)
- Amit S Lokhande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Falguni Panchal
- Department of Clinical Pharmacology, Topiwala National Medical College and B. Y. L. Nair Charitable Hospital, Dr A. L. Nair Road, Mumbai Central, Mumbai 400008, Maharashtra, India
| | - Renuka Munshi
- Department of Clinical Pharmacology, Topiwala National Medical College and B. Y. L. Nair Charitable Hospital, Dr A. L. Nair Road, Mumbai Central, Mumbai 400008, Maharashtra, India
| | - Manisha Madkaikar
- Department of Paediatric Immunology and Leukemia Biology, ICMR-National Institute of Immunohaematology, KEM Hospital campus, Parel, Mumbai 400012, Maharashtra, India
| | - Vinod C Malshe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
29
|
Jambhrunkar M, Maghrebi S, Doddakyathanahalli D, Wignall A, Prestidge CA, Bremmell KE. Mesoporous Organosilica Nanoparticles to Fight Intracellular Staphylococcal Aureus Infections in Macrophages. Pharmaceutics 2023; 15:pharmaceutics15041037. [PMID: 37111523 PMCID: PMC10146421 DOI: 10.3390/pharmaceutics15041037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Intracellular bacteria are inaccessible and highly tolerant to antibiotics, hence are a major contributor to the global challenge of antibiotic resistance and recalcitrant clinical infections. This, in tandem with stagnant antibacterial discovery, highlights an unmet need for new delivery technologies to treat intracellular infections more effectively. Here, we compare the uptake, delivery, and efficacy of rifampicin (Rif)-loaded mesoporous silica nanoparticles (MSN) and organo-modified (ethylene-bridged) MSN (MON) as an antibiotic treatment against small colony variants (SCV) Staphylococcus aureus (SA) in murine macrophages (RAW 264.7). Macrophage uptake of MON was five-fold that of equivalent sized MSN and without significant cytotoxicity on human embryonic kidney cells (HEK 293T) or RAW 264.7 cells. MON also facilitated increased Rif loading with sustained release, and seven-fold increased Rif delivery to infected macrophages. The combined effects of increased uptake and intracellular delivery of Rif by MON reduced the colony forming units of intracellular SCV-SA 28 times and 65 times compared to MSN-Rif and non-encapsulated Rif, respectively (at a dose of 5 µg/mL). Conclusively, the organic framework of MON offers significant advantages and opportunities over MSN for the treatment of intracellular infections.
Collapse
Affiliation(s)
- Manasi Jambhrunkar
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sajedeh Maghrebi
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Divya Doddakyathanahalli
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Anthony Wignall
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
30
|
Li X, Ma Y, Xin Y, Ma F, Gao H. Tumor-Targeting Nanoassembly for Enhanced Colorectal Cancer Therapy by Eliminating Intratumoral Fusobacterium nucleatum. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36916659 DOI: 10.1021/acsami.3c01210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fusobacterium nucleatum (Fn) has long been found to be related to colorectal cancer (CRC), which could promote colorectal tumor progression and cause cancer resistance to chemotherapy. Great efforts have been made to understand the relationship between Fn and CRC, but how to efficiently eliminate intratumoral Fn and overcome chemoresistance remains a critical challenge. Here, an active tumor-targeting acidity-responsive nanomaterial toward eliminating intratumoral Fn is developed for enhancing the treatment of cancer. Lauric acid and phenylboric acid are conjugated to oligomethyleneimine to form OLP followed by interacting with oxaliplatin prodrug-modified polyglycidyl ether (PP) to obtain the OLP/PP nanoassembly. The nanoassembly shows good structural stability under the simulated physiological conditions and has a pH-responsive drug release in an acidic tumor microenvironment. More attractively, the nanoassembly can specifically target the tumor cell, guide cellular uptake, and efficiently eliminate tumor-resident extracellular and intracellular Fn. Through the on-site drug delivery, the nanoassembly can overcome chemoresistance and significantly inhibit tumor growth. Both in vitro and vivo studies show that the prepared nanoassembly presents good biocompatibility. Therefore, this biocompatible nanoassembly possessing efficient antibacterial and antitumor activities provides new promise for the therapy of bacterial infected tumors.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yanmei Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Youtao Xin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
31
|
Arya SS, Morsy NK, Islayem DK, Alkhatib SA, Pitsalidis C, Pappa AM. Bacterial Membrane Mimetics: From Biosensing to Disease Prevention and Treatment. BIOSENSORS 2023; 13:bios13020189. [PMID: 36831955 PMCID: PMC9953710 DOI: 10.3390/bios13020189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 05/31/2023]
Abstract
Plasma membrane mimetics can potentially play a vital role in drug discovery and immunotherapy owing to the versatility to assemble facilely cellular membranes on surfaces and/or nanoparticles, allowing for direct assessment of drug/membrane interactions. Recently, bacterial membranes (BMs) have found widespread applications in biomedical research as antibiotic resistance is on the rise, and bacteria-associated infections have become one of the major causes of death worldwide. Over the last decade, BM research has greatly benefited from parallel advancements in nanotechnology and bioelectronics, resulting in multifaceted systems for a variety of sensing and drug discovery applications. As such, BMs coated on electroactive surfaces are a particularly promising label-free platform to investigate interfacial phenomena, as well as interactions with drugs at the first point of contact: the bacterial membrane. Another common approach suggests the use of lipid-coated nanoparticles as a drug carrier system for therapies for infectious diseases and cancer. Herein, we discuss emerging platforms that make use of BMs for biosensing, bioimaging, drug delivery/discovery, and immunotherapy, focusing on bacterial infections and cancer. Further, we detail the synthesis and characteristics of BMs, followed by various models for utilizing them in biomedical applications. The key research areas required to augment the characteristics of bacterial membranes to facilitate wider applicability are also touched upon. Overall, this review provides an interdisciplinary approach to exploit the potential of BMs and current emerging technologies to generate novel solutions to unmet clinical needs.
Collapse
Affiliation(s)
- Sagar S. Arya
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Nada K. Morsy
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Deema K. Islayem
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Sarah A. Alkhatib
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Charalampos Pitsalidis
- Department of Physics Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB30AS, UK
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB30AS, UK
| |
Collapse
|
32
|
Wang C, Yang Y, Cao Y, Liu K, Shi H, Guo X, Liu W, Hao R, Song H, Zhao R. Nanocarriers for the delivery of antibiotics into cells against intracellular bacterial infection. Biomater Sci 2023; 11:432-444. [PMID: 36503914 DOI: 10.1039/d2bm01489k] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The barrier function of host cells enables intracellular bacteria to evade the lethality of the host immune system and antibiotics, thereby causing chronic and recurrent infections that seriously threaten human health. Currently, the main clinical strategy for the treatment of intracellular bacterial infections involves the use of long-term and high-dose antibiotics. However, insufficient intracellular delivery of antibiotics along with various resistance mechanisms not only weakens the efficacy of current therapies but also causes serious adverse drug reactions, further increasing the disease and economic burden. Improving the delivery efficiency, intracellular accumulation, and action time of antibiotics remains the most economical and effective way to treat intracellular bacterial infections. The rapid development of nanotechnology provides a strategy to efficiently deliver antibiotics against intracellular bacterial infections into cells. In this review, we summarize the types of common intracellular pathogens, the difficulties faced by antibiotics in the treatment of intracellular bacterial infections, and the research progress of several types of representative nanocarriers for the delivery of antibiotics against intracellular bacterial infections that have emerged in recent years. This review is expected to provide a reference for further elucidating the intracellular transport mechanism of nanocarrier-drug complexes, designing safer and more effective nanocarriers and establishing new strategies against intracellular bacterial infection.
Collapse
Affiliation(s)
- Chao Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Yi Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Kaixin Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Hua Shi
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Xudong Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Wanying Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Rongzhang Hao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Hongbin Song
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Rongtao Zhao
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| |
Collapse
|
33
|
Feng W, Chittò M, Moriarty TF, Li G, Wang X. Targeted Drug Delivery Systems for Eliminating Intracellular Bacteria. Macromol Biosci 2023; 23:e2200311. [PMID: 36189899 DOI: 10.1002/mabi.202200311] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Indexed: 01/19/2023]
Abstract
The intracellular survival of pathogenic bacteria requires a range of survival strategies and virulence factors. These infections are a significant clinical challenge, wherein treatment frequently fails because of poor antibiotic penetration, stability, and retention in host cells. Drug delivery systems (DDSs) are promising tools to overcome these shortcomings and enhance the efficacy of antibiotic therapy. In this review, the classification and the mechanisms of intracellular bacterial persistence are elaborated. Furthermore, the systematic design strategies applied to DDSs to eliminate intracellular bacteria are also described, and the strategies used for internalization, intracellular activation, bacterial targeting, and immune enhancement are highlighted. Finally, this overview provides guidance for constructing functionalized DDSs to effectively eliminate intracellular bacteria.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,AO Research Institute Davos, Davos, 7270, Switzerland
| | - Marco Chittò
- AO Research Institute Davos, Davos, 7270, Switzerland
| | | | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
34
|
Huang H, Ali A, Liu Y, Xie H, Ullah S, Roy S, Song Z, Guo B, Xu J. Advances in image-guided drug delivery for antibacterial therapy. Adv Drug Deliv Rev 2023; 192:114634. [PMID: 36503884 DOI: 10.1016/j.addr.2022.114634] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
The emergence of antibiotic-resistant bacterial strains is seriously endangering the global healthcare system. There is an urgent need for combining imaging with therapies to realize the real-time monitoring of pathological condition and treatment progress. It also provides guidance on exploring new medicines and enhance treatment strategies to overcome the antibiotic resistance of existing conventional antibiotics. In this review, we provide a thorough overview of the most advanced image-guided approaches for bacterial diagnosis (e.g., computed tomography imaging, magnetic resonance imaging, photoacoustic imaging, ultrasound imaging, fluorescence imaging, positron emission tomography, single photon emission computed tomography imaging, and multiple imaging), and therapies (e.g., photothermal therapy, photodynamic therapy, chemodynamic therapy, sonodynamic therapy, immunotherapy, and multiple therapies). This review focuses on how to design and fabricate photo-responsive materials for improved image-guided bacterial theranostics applications. We present a potential application of different image-guided modalities for both bacterial diagnosis and therapies with representative examples. Finally, we highlighted the current challenges and future perspectives image-guided approaches for future clinical translation of nano-theranostics in bacterial infections therapies. We envision that this review will provide for future development in image-guided systems for bacterial theranostics applications.
Collapse
Affiliation(s)
- Haiyan Huang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Arbab Ali
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano Safety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yi Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Xie
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sana Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box: 33, PC: 616, Oman
| | - Shubham Roy
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
35
|
Yu YJ, Yan JH, Chen QW, Qiao JY, Peng SY, Cheng H, Chen M, Zhang XZ. Polymeric nano-system for macrophage reprogramming and intracellular MRSA eradication. J Control Release 2023; 353:591-610. [PMID: 36503071 DOI: 10.1016/j.jconrel.2022.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Intracellular Methicillin-Resistant Staphylococcus aureus (MRSA) remains a major factor of refractory and recurrent infections, which cannot be well addressed by antibiotic therapy. Here, we design a cellular infectious microenvironment-activatable polymeric nano-system to mediate targeted intracellular drug delivery for macrophage reprogramming and intracellular MRSA eradication. The polymeric nano-system is composed of a ferrocene-decorated polymeric nanovesicle formulated from poly(ferrocenemethyl methacrylate)-block-poly(2-methacryloyloxyethyl phosphorylcholine) (PFMMA-b-PMPC) copolymer with co-encapsulation of clofazimine (CFZ) and interferon-γ (IFN-γ). The cellular-targeting PMPC motifs render specific internalization by macrophages and allow efficient intracellular accumulation. Following the internalization, the ferrocene-derived polymer backbone sequentially undergoes hydrophobic-to-hydrophilic transition, charge reversal and Fe release in response to intracellular hydrogen peroxide over-produced upon infection, eventually triggering endosomal escape and on-site cytosolic drug delivery. The released IFN-γ reverses the immunosuppressive status of infected macrophages by reprogramming anti-inflammatory M2 to pro-inflammatory M1 phenotype. Meanwhile, intracellular Fe2+-mediated Fenton reaction together with antibiotic CFZ contributes to increased intracellular hydroxyl radical (•OH) generation. Ultimately, the nano-system achieves robust potency in ablating intracellular MRSA and antibiotic-tolerant persisters by synchronous immune modulation and efficient •OH killing, providing an innovative train of thought for intracellular MRSA control.
Collapse
Affiliation(s)
- Yun-Jian Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Jian-Hua Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Si-Yuan Peng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Han Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, PR China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
36
|
Intracellular infection-responsive release of NO and peptides for synergistic bacterial eradication. J Control Release 2022; 352:87-97. [PMID: 36243236 DOI: 10.1016/j.jconrel.2022.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Bacteria have the ability to invade and survive in host cells to form intracellular bacteria (ICBs), and challenges remain in the intracellular delivery of sufficient antibiotics to remove ICBs. Herein, antimicrobial peptide of epsilon-poly-l-lysine (ePL) and nitric oxide (NO) donors are integrated into nanoparticles (NPs) for ICB treatment without using any antibiotics. ePL was grafted with dodecyl alcohol through ethyl dichlorophosphate to prepare ePL-C12, followed by conjugation of nitrate-functionalized NO donors to obtain ePL-C12NO. PNO/C NPs were prepared from mixtures of ePL-C12NO and ePL-C12 and the optimal ePL-C12NO ratio was 7% in terms of bactericidal effect and macrophage toxicity. Once being engulfed by bacteria-infected macrophages (BIMs), NPs are disintegrated when encountering with ICB-secreted phosphatase, and the NP degradation accelerates intracellular NO release in response to the elevated glutathione levels in BIMs. The selective and abrupt release of NO and ePL with different antimicrobial mechanisms exhibits synergistic eradication of ICBs and no apparent toxicity to macrophages. ICB-infected mice show persistent weight loss and 100% of mortality rate after treatment with ePL-C12 NPs for 7 days, while PNO/C treatment causes entire survival of infected mice and full recovery of body weights to normal values. ICB-infected mice are also accompanied with apparent hepatomegaly and splenomegaly, which are only eliminated by PNO/C treatment without associated any pathological abnormality. PNO/C treatment reduces bacterial burdens in livers (2.45 log), spleens (2.16 log) and kidneys (3.46 log) and restores hepatic and renal function to normal levels. Thus, this study provides a feasible strategy to selectively release NO and cationic peptides in response to intracellular infection-derived signals, achieving synergistic eradication of ICBs and function restoration of the main tissues.
Collapse
|
37
|
Gourkhede DP, Dani Nishanth MA, Ram VP, Abishad P, Yasur J, Pollumahanti N, Vergis J, Singh Malik SV, Barbuddhe SB, Rawool DB. Antimicrobial efficacy of chitosan encapsulated Cecropin- A (1–7)- melittin-cell-penetrating peptide against multi-drug-resistant Salmonella Enteritidis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Batista A, Bellettini IC, Brondani PB. Pain and nociception bioinspiration for the development of a micellar-based screening test for antinociceptive drugs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
39
|
Nazli A, He DL, Liao D, Khan MZI, Huang C, He Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv Drug Deliv Rev 2022; 189:114502. [PMID: 35998828 DOI: 10.1016/j.addr.2022.114502] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023]
Abstract
Antibiotic resistance is a global health issue and a potential risk for society. Antibiotics administered through conventional formulations are devoid of targeting effect and often spread to various undesired body sites, leading to sub-lethal concentrations at the site of action and thus resulting in emergence of resistance, as well as side effects. Moreover, we have a very slim antibiotic pipeline. Drug-delivery systems have been designed to control the rate, time, and site of drug release, and innovative approaches for antibiotic delivery provide a glint of hope for addressing these issues. This review elaborates different delivery strategies and approaches employed to overcome the limitations of conventional antibiotic therapy. These include antibiotic conjugates, prodrugs, and nanocarriers for local and targeted antibiotic release. In addition, a wide range of stimuli-responsive nanocarriers and biological carriers for targeted antibiotic delivery are discussed. The potential advantages and limitations of targeted antibiotic delivery strategies are described along with possible solutions to avoid these limitations. A number of antibiotics successfully delivered through these approaches with attained outcomes and potentials are reviewed.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - David L He
- College of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Dandan Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | | | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
40
|
Qu X, Wang M, Wang M, Tang H, Zhang S, Yang H, Yuan W, Wang Y, Yang J, Yue B. Multi-Mode Antibacterial Strategies Enabled by Gene-Transfection and Immunomodulatory Nanoparticles in 3D-Printed Scaffolds for Synergistic Exogenous and Endogenous Treatment of Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200096. [PMID: 35267223 DOI: 10.1002/adma.202200096] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
As research on refractory Staphylococcus aureus-related implant infection intensifies, certain challenges remain, including low antibiotic concentrations within infected areas, immune escape achieved by intracellular bacteria, myeloid-derived suppressor cells (MDSCs) inducing regional immunosuppression, and recurrence of residual pathogenic bacteria after drug suspension. Herein, a novel antimicrobial system to simultaneously address these issues is proposed. Specifically, an oxygen-species-responsive 3D-printed scaffold with shell-core nanoparticles is designed, which are loaded with an antimicrobial peptide plasmid (LL37 plasmid) and have LL37 grafted on their surface (LL37@ZIF8-LL37). The surface-grafted LL37 directly kills S. aureus and, following entry into cells, the nanoparticles kill intracellular bacteria. Moreover, in vitro and in vivo, following translation of the LL37 plasmid, cells function as factories of the antimicrobial peptide, thereby generating a continuous, prolonged antibacterial effect at the site of infection. This system significantly reduces the abnormal increase in MDSCs within the infected microenvironment, thus relieving the immunosuppressive state and restoring a protective antimicrobial immune response. Hence, this proposed antimicrobial system provides an antimicrobial immune response and a novel strategy for S. aureus-related infections by offering a combined active antimicrobial and immunotherapeutic strategy, thereby significantly reducing the recurrence rate following recovery from implant-associated infections.
Collapse
Affiliation(s)
- Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Miaochen Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Hongtao Yang
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Weien Yuan
- Pharm-X Center, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - You Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| |
Collapse
|
41
|
Khorenko M, Rand U, Cicin-Sain L, Feldmann C. Foscarnet-Type Inorganic-Organic Hybrid Nanoparticles for Effective Antiviral Therapy. ACS Biomater Sci Eng 2022; 8:1596-1603. [PMID: 35344659 PMCID: PMC9007112 DOI: 10.1021/acsbiomaterials.2c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[ZrO]2+[(FCN)0.4(OH)0.8]2- and Gd3+[FCN]3- inorganic-organic hybrid nanoparticles (IOH-NPs) are novel saline antiviral nanocarriers with foscarnet (FCN) as a drug anion. FCN as a pyrophosphate analogue serves as a prototype of a viral DNA polymerase inhibitor. FCN is used for the treatment of herpesvirus infections, including the drug-resistant cytomegalovirus (CMV) and herpes simplex viruses, HSV-1 and HSV-2. The novel [ZrO]2+[(FCN)0.4(OH)0.8]2- and Gd3+[FCN]3- IOH-NPs are characterized by aqueous synthesis, small size (20-30 nm), low material complexity, high biocompatibility, and high drug load (up to 44 wt % FCN per nanoparticle). The antiviral activity of the FCN-type IOH-NPs is probed for the human cytomegalovirus (HCMV). Moreover, the uptake of FCN-type IOH-NPs into vesicles, cytoplasm, and nuclei of nonphagocytic lung epithelial cells is evaluated. As a result, a promising antiviral activity of the FCN-type IOH-NPs that significantly outperforms freely dissolved FCN at the level of clinical formulations is observed, encouraging a future use of FCN-type IOH-NPs for the delivery of antivirals against respiratory viruses.
Collapse
Affiliation(s)
- Mikhail Khorenko
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, D-76131 Karlsruhe, Germany
| | - Ulfert Rand
- Helmholtz Center for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Luka Cicin-Sain
- Helmholtz Center for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Claus Feldmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, D-76131 Karlsruhe, Germany
| |
Collapse
|
42
|
Medhasi S, Chindamporn A, Worasilchai N. A Review: Antimicrobial Therapy for Human Pythiosis. Antibiotics (Basel) 2022; 11:antibiotics11040450. [PMID: 35453202 PMCID: PMC9029071 DOI: 10.3390/antibiotics11040450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/14/2023] Open
Abstract
Human pythiosis is associated with poor prognosis with significant mortality caused by Pythium insidiosum. Antimicrobials’ in vitro and in vivo results against P. insidiosum are inconsistent. Although antimicrobials are clinically useful, they are not likely to achieve therapeutic success alone without surgery and immunotherapy. New therapeutic options are therefore needed. This non-exhaustive review discusses the rationale antimicrobial therapy, minimum inhibitory concentrations, and efficacy of antibacterial and antifungal agents against P. insidiosum. This review further provides insight into the immunomodulating effects of antimicrobials that can enhance the immune response to infections. Current data support using antimicrobial combination therapy for the pharmacotherapeutic management of human pythiosis. Also, the success or failure of antimicrobial treatment in human pythiosis might depend on the immunomodulatory effects of drugs. The repurposing of existing drugs is a safe strategy for anti-P. insidiosum drug discovery. To improve patient outcomes in pythiosis, we suggest further research and a deeper understanding of P. insidiosum virulence factors, host immune response, and host immune system modification by antimicrobials.
Collapse
Affiliation(s)
- Sadeep Medhasi
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Navaporn Worasilchai
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Immunomodulation of Natural Products Research Group, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2218-1065
| |
Collapse
|
43
|
Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2388. [PMID: 35407720 PMCID: PMC8999898 DOI: 10.3390/ma15072388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Microbial infections caused by a variety of drug-resistant microorganisms are more common, but there are fewer and fewer approved new antimicrobial chemotherapeutics for systemic administration capable of acting against these resistant infectious pathogens. Formulation innovations of existing drugs are gaining prominence, while the application of nanotechnologies is a useful alternative for improving/increasing the effect of existing antimicrobial drugs. Nanomaterials represent one of the possible strategies to address this unfortunate situation. This review aims to summarize the most current results of nanoformulations of antibiotics and antibacterial active nanomaterials. Nanoformulations of antimicrobial peptides, synergistic combinations of antimicrobial-active agents with nitric oxide donors or combinations of small organic molecules or polymers with metals, metal oxides or metalloids are discussed as well. The mechanisms of actions of selected nanoformulations, including systems with magnetic, photothermal or photodynamic effects, are briefly described.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
44
|
Feng W, Li G, Kang X, Wang R, Liu F, Zhao D, Li H, Bu F, Yu Y, Moriarty TF, Ren Q, Wang X. Cascade-Targeting Poly(amino acid) Nanoparticles Eliminate Intracellular Bacteria via On-Site Antibiotic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109789. [PMID: 35066925 DOI: 10.1002/adma.202109789] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Intracellular bacteria in latent or dormant states tolerate high-dose antibiotics. Fighting against these opportunistic bacteria has been a long-standing challenge. Herein, the design of a cascade-targeting drug delivery system (DDS) that can sequentially target macrophages and intracellular bacteria, exhibiting on-site drug delivery, is reported. The DDS is fabricated by encapsulating rifampicin (Rif) into mannose-decorated poly(α-N-acryloyl-phenylalanine)-block-poly(β-N-acryloyl-d-aminoalanine) nanoparticles, denoted as Rif@FAM NPs. The mannose units on Rif@FAM NPs guide the initial macrophage-specific uptake and intracellular accumulation. After the uptake, the detachment of mannose in acidic phagolysosome via Schiff base cleavage exposes the d-aminoalanine moieties, which subsequently steer the NPs to escape from lysosomes and target intracellular bacteria through peptidoglycan-specific binding, as evidenced by the in situ/ex situ co-localization using confocal, flow cytometry, and transmission electron microscopy. Through the on-site Rif delivery, Rif@FAM NPs show superior in vitro and in vivo elimination efficiency than the control groups of free Rif or the DDSs lacking the macrophages- or bacteria-targeting moieties. Furthermore, Rif@FAM NPs remodel the innate immune response of the infected macrophages by upregulating M1/M2 polarization, resulting in a reinforced antibacterial capacity. Therefore, this biocompatible DDS enabling macrophages and bacteria targeting in a cascade manner provides a new outlook for the therapy of intracellular pathogen infection.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ruibai Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, P. R. China
| | - Fang Liu
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haofei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanqiang Bu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | | | - Qun Ren
- Empa, the Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
45
|
Shin S, Kwon S, Yeo Y. Meta-Analysis of Drug Delivery Approaches for Treating Intracellular Infections. Pharm Res 2022; 39:1085-1114. [PMID: 35146592 PMCID: PMC8830998 DOI: 10.1007/s11095-022-03188-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
Abstract
This meta-analysis aims to evaluate the trend, methodological quality and completeness of studies on intracellular delivery of antimicrobial agents. PubMed, Embase, and reference lists of related reviews were searched to identify original articles that evaluated carrier-mediated intracellular delivery and pharmacodynamics (PD) of antimicrobial therapeutics against intracellular pathogens in vitro and/or in vivo. A total of 99 studies were included in the analysis. The most commonly targeted intracellular pathogens were bacteria (62.6%), followed by viruses (16.2%) and parasites (15.2%). Twenty-one out of 99 (21.2%) studies performed neither microscopic imaging nor flow cytometric analysis to verify that the carrier particles are present in the infected cells. Only 31.3% of studies provided comparative inhibitory concentrations against a free drug control. Approximately 8% of studies, albeit claimed for intracellular delivery of antimicrobial therapeutics, did not provide any experimental data such as microscopic imaging, flow cytometry, and in vitro PD. Future research on intracellular delivery of antimicrobial agents needs to improve the methodological quality and completeness of supporting data in order to facilitate clinical translation of intracellular delivery platforms for antimicrobial therapeutics.
Collapse
Affiliation(s)
- Sooyoung Shin
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea. .,Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea.
| | - Soonbum Kwon
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47906, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47906, USA. .,Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
46
|
Zhang Y, Lai L, Liu Y, Chen B, Yao J, Zheng P, Pan Q, Zhu W. Biomineralized Cascade Enzyme-Encapsulated ZIF-8 Nanoparticles Combined with Antisense Oligonucleotides for Drug-Resistant Bacteria Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6453-6464. [PMID: 35094518 DOI: 10.1021/acsami.1c23808] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The unrestrained use of antibiotics accelerates the development of drug-resistant bacteria and leads to an increasing threat to human health. Therefore, there is an urgent need to explore novel and effective strategies for the treatment of bacterial infections. Herein, zeolite imidazole framework-8 (ZIF-8) material was utilized to construct biomineralized nanomaterial (GOx&HRP@ZIF-8/ASO) by encapsulating biological cascade enzymes and combining with antisense oligonucleotides (ASOs), which achieved effective and synergistic antidrug-resistant bacteria therapy. Various in vitro assays confirmed that GOx&HRP@ZIF-8/ASO exhibited excellent antibacterial properties against Escherichia coli, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA) during catalysis of glucose (Glu), especially the minimum inhibitory concentration (MIC) against MRSA was only 16 μg/mL. Compared with simple ZIF-8 (32.85%) and ftsZ ASO (58.65%), GOx&HRP@ZIF-8/ASO+Glu exhibited superb biofilm destruction ability, and the bacteria removal efficiency of the MRSA biofilm could be as high as 88.2%, indicating that the reactive oxygen species (ROS) produced by the cascade enzyme reaction imparted the main synergistic antibacterial capability, and simultaneously, ftsZ ASO significantly enhanced the antibacterial effect by inhibiting the expression of the ftsZ gene. In vivo anti-infection treatment experiments revealed that GOx&HRP@ZIF-8/ASO exhibited the best wound repairing performance and excellent biocompatibility in the presence of Glu. These findings suggested that GOx&HRP@ZIF-8/ASO has favorably realized high-efficiency treatment of MRSA infection and filled the gap in the antibacterial application of biological enzymes.
Collapse
Affiliation(s)
- Yan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Luogen Lai
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Yijun Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Beini Chen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Jing Yao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| |
Collapse
|
47
|
Biomimetic Citrate-Coated Luminescent Apatite Nanoplatforms for Diclofenac Delivery in Inflammatory Environments. NANOMATERIALS 2022; 12:nano12030562. [PMID: 35159907 PMCID: PMC8838995 DOI: 10.3390/nano12030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Luminescent nanoparticles are innovative tools for medicine, allowing the imaging of cells and tissues, and, at the same time, carrying and releasing different types of molecules. We explored and compared the loading/release ability of diclofenac (COX-2 antagonist), in both undoped- and luminescent Terbium3+ (Tb3+)-doped citrate-coated carbonated apatite nanoparticles at different temperatures (25, 37, 40 °C) and pHs (7.4, 5.2). The cytocompatibility was evaluated on two osteosarcoma cell lines and primary human osteoblasts. Biological effects of diclofenac-loaded-nanoparticles were monitored in an in vitro osteoblast’s cytokine–induced inflammation model by evaluating COX-2 mRNA expression and production of PGE2. Adsorption isotherms fitted the multilayer Langmuir-Freundlich model. The maximum adsorbed amounts at 37 °C were higher than at 25 °C, and particularly when using the Tb3+ -doped particles. Diclofenac-release efficiencies were higher at pH 5.2, a condition simulating a local inflammation. The luminescence properties of diclofenac-loaded Tb3+ -doped particles were affected by pH, being the relative luminescence intensity higher at pH 5.2 and the luminescence lifetime higher at pH 7.4, but not influenced either by the temperature or by the diclofenac-loaded amount. Both undoped and Tb3+-doped nanoparticles were cytocompatible. In addition, diclofenac release increased COX-2 mRNA expression and decreased PGE2 production in an in vitro inflammation model. These findings evidence the potential of these nanoparticles for osteo-localized delivery of anti-inflammatory drugs and the possibility to localize the inflammation, characterized by a decrease in pH, by changes in luminescence.
Collapse
|
48
|
Khodabakhshi MR, Baghersad MH. Enhanced antimicrobial treatment by a clay-based drug nanocarrier conjugated to a guanidine-rich cell penetrating peptide. RSC Adv 2021; 11:38961-38976. [PMID: 35492451 PMCID: PMC9044475 DOI: 10.1039/d1ra07821f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
In this study, a novel and efficient drug delivery system is proposed for the enhancement of antimicrobial properties of antibiotic medications such as vancomycin (VCM) and levofloxacin (OFX). The architecture of the designed drug carrier is based on halloysite nanotubes (HNTs) with a rolled-laminate shape, suitable for the encapsulation of drug and further release. In order to make them capable for magnetic direction to the target tissue, the exterior surface of the tubes is composed of iron oxide nanoparticles (Fe3O4 NPs), via an in situ process. The main role in the antimicrobial activity enhancement is played by a cell-penetrating peptide (CPP) sequence synthesized in the solid phase, which contains three arginine-tryptophan blocks plus a cysteine as the terminal amino acid (C(WR)3). The drug content values for the prepared nanocargoes named as VCM@Fe3O4/HNT-C(WR)3 and OFX@Fe3O4/HNT-C(WR)3, have been estimated at ca. 10 wt% and 12 wt%, respectively. Also, the drug release investigations have shown that above 90% of the encapsulated drug is released in acetate buffer (pH = 4.6), during a 90 minutes process. Confocal microscopy has corroborated good adhesion and co-localization of the particles and the stained living cells. Moreover, in vitro antimicrobial assessments (optical density, zone of inhibition, and minimum inhibitory concentration) have revealed that the bacterial cell growth rate is significantly inhibited by suggested nanocargoes, in comparison with the individual drugs in the same dosage. Hence, administration of the presented nanocargoes is recommended for the clinical treatment of the infected target organ.
Collapse
Affiliation(s)
| | - Mohammad Hadi Baghersad
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|