1
|
Guo X, Song J, Liu M, Ou X, Guo Y. The interplay between the tumor microenvironment and tumor-derived small extracellular vesicles in cancer development and therapeutic response. Cancer Biol Ther 2024; 25:2356831. [PMID: 38767879 PMCID: PMC11110713 DOI: 10.1080/15384047.2024.2356831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
The tumor microenvironment (TME) plays an essential role in tumor cell survival by profoundly influencing their proliferation, metastasis, immune evasion, and resistance to treatment. Extracellular vesicles (EVs) are small particles released by all cell types and often reflect the state of their parental cells and modulate other cells' functions through the various cargo they transport. Tumor-derived small EVs (TDSEVs) can transport specific proteins, nucleic acids and lipids tailored to propagate tumor signals and establish a favorable TME. Thus, the TME's biological characteristics can affect TDSEV heterogeneity, and this interplay can amplify tumor growth, dissemination, and resistance to therapy. This review discusses the interplay between TME and TDSEVs based on their biological characteristics and summarizes strategies for targeting cancer cells. Additionally, it reviews the current issues and challenges in this field to offer fresh insights into comprehending tumor development mechanisms and exploring innovative clinical applications.
Collapse
Affiliation(s)
- Xuanyu Guo
- The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Jiajun Song
- Department of Clinical Laboratory Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Miao Liu
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Xinyi Ou
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| |
Collapse
|
2
|
Wang T, Zhang H. Exploring the roles and molecular mechanisms of RNA binding proteins in the sorting of noncoding RNAs into exosomes during tumor progression. J Adv Res 2024; 65:105-123. [PMID: 38030125 PMCID: PMC11518959 DOI: 10.1016/j.jare.2023.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND RNA binding proteins (RBPs) play a role in sorting non-coding RNAs (ncRNAs) into exosomes. These ncRNAs, carried by exosomes, are involved in regulating various aspects of tumor progression, including metastasis, angiogenesis, control of the tumor microenvironment, and drug resistance. Recent studies have emphasized the importance of the RBP-ncRNA-exosome mechanism in tumor regulation. AIM OF REVIEW This comprehensive review aims to explore the RBP-ncRNA-exosome mechanism and its influence on tumor development. By understanding this intricate mechanism provides novel insights into tumor regulation and may lead to innovative treatment strategies in the future. KEY SCIENTIFIC CONCEPTS OF REVIEW The review discusses the formation of exosomes and the complex relationships among RBPs, ncRNAs, and exosomes. The RBP-ncRNA-exosome mechanism is shown to affect various aspects of tumor biology, including metastasis, multidrug resistance, angiogenesis, the immunosuppressive microenvironment, and tumor progression. Tumor development relies on the transmission of information between cells, with RBPs selectively mediating sorting of ncRNAs into exosomes through various mechanisms, which in turn carry ncRNAs to regulate RBPs. The review also provides an overview of potential therapeutic strategies, such as targeted drug discovery and genetic engineering for modifying therapeutic exosomes, which hold great promise for improving cancer treatment.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Ge D, An R, Xue L, Qiu M, Zhu Y, Wen G, Shi Y, Ren H, Li W, Wang J. Developing Cell-Membrane-Associated Liposomes for Liver Diseases. ACS NANO 2024; 18:29421-29438. [PMID: 39404084 DOI: 10.1021/acsnano.4c12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Over the past decade, a marked escalation in the prevalence of hepatic pathologies has been observed, adversely impacting the quality of life for many. The predominant therapeutic strategy for liver diseases has been pharmacological intervention; however, its efficacy is often constrained. Currently, liposomes are tiny structures that can deliver drugs directly to targeted areas, enhancing their effectiveness. Specifically, cell membrane-associated liposomes have gained significant attention. Despite this, there is still much to learn about the binding mechanism of this type of liposome. Thus, this review comprehensively summarizes relevant information on cell membrane-associated liposomes, including their clinical applications and future development directions. First, we will briefly introduce the composition and types of cell membrane-associated liposomes. We will provide an overview of their structure and discuss the various types of liposomes associated with cell membranes. Second, we will thoroughly discuss various strategies of drug delivery using these liposomes. Lastly, we will discuss the application and clinical challenges associated with using cell membrane-associated liposomes in treating liver diseases. We will explore their potential benefits while also addressing the obstacles that need to be overcome. Furthermore, we will provide prospects for future development in this field. In summary, this review underscores the promise of cell membrane-associated liposomes in enhancing liver disease treatment and highlights the need for further research to optimize their utilization. In summary, this review underscores the promise of cell membrane-associated liposomes in enhancing liver disease treatment and highlights the need for further research to optimize their utilization.
Collapse
Affiliation(s)
- Dongxue Ge
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Ran An
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Lingling Xue
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Mengdi Qiu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Yawen Zhu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Gaolin Wen
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Yunpeng Shi
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| |
Collapse
|
4
|
Padzińska-Pruszyńska I, Kucharzewska P, Matejuk A, Górczak M, Kubiak M, Taciak B, Król M. Macrophages: Key Players in the Battle against Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:10781. [PMID: 39409110 PMCID: PMC11476577 DOI: 10.3390/ijms251910781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a challenging subtype of breast cancer characterized by the absence of estrogen and progesterone receptors and HER2 expression, leading to limited treatment options and a poorer prognosis. TNBC is particularly prevalent in premenopausal African-descent women and is associated with aggressive tumor behavior and higher metastatic potential. Tumor-associated macrophages (TAMs) are abundantly present within the TNBC microenvironment and play pivotal roles in promoting tumor growth, progression, and metastasis through various mechanisms, including immune suppression and enhancement of angiogenesis. This review provides an in-depth overview of TNBC, focusing on its epidemiology, its molecular characteristics, and the critical influence of TAMs. It discusses the pathological and molecular aspects that define TNBC's aggressive nature and reviews current and emerging therapeutic strategies aimed at targeting these dynamics. Special attention is given to the role of TAMs, exploring their potential as therapeutic targets due to their significant impact on tumor behavior and patient outcomes. This review aims to highlight the complexities of the TNBC landscape and to present the innovative approaches that are currently being pursued to improve therapeutic efficacy and patient survival.
Collapse
Affiliation(s)
- Irena Padzińska-Pruszyńska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland;
| | - Małgorzata Górczak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Małgorzata Kubiak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| |
Collapse
|
5
|
Wu L, Qiao L, Zhang S, Qiu J, Du Z, Sun Y, Chang X, Li L, Li C, Qiao X, Yin X, Hua Z. Dual-Engineered Macrophage-Microbe Encapsulation for Metastasis Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406140. [PMID: 39023382 DOI: 10.1002/adma.202406140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Lung metastases are the leading cause of death among cancer patients. The challenges of inefficient drug delivery, compounded by a robust immunosuppressive microenvironment, make effective treatment difficult. Here, an innovative dual-engineered macrophage-microbe encapsulation (Du-EMME) therapy is developed that integrates modified macrophages and engineered antitumor bacteria. These engineered macrophages, termed R-GEM cells, are designed to express RGD peptides on extracellular membranes, enhancing their tumor cell binding and intratumor enrichment. R-GEM cells are cocultured with attenuated Salmonella typhimurium VNP20009, producing macrophage-microbe encapsulation (R-GEM/VNP cells). The intracellular bacteria maintain bioactivity for more than 24 h, and the bacteria released from R-GEM/VNP cells within the tumor continue to exert bacteria-mediated antitumor effects. This is further supported by macrophage-based chemotaxis and camouflage, which enhance the intratumoral enrichment and biocompatibility of the bacteria. Additionally, R-GEM cells loaded with IFNγ-secreting strains (VNP-IFNγ) form R-GEM/VNP-IFNγ cells. Treatment with these cells effectively halts lung metastatic tumor progression in three mouse models (breast cancer, melanoma, and colorectal cancer). R-GEM/VNP-IFNγ cells vigorously activate the tumor microenvironment, suppressing tumor-promoting M2-type macrophages, MDSCs, and Tregs, and enhancing tumor-antagonizing M1-type macrophages, mature DCs, and Teffs. Du-EMME therapy offers a promising strategy for targeted and enhanced antitumor immunity in treating cancer metastases.
Collapse
Affiliation(s)
- Leyang Wu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
- Nanjing Generecom Biotechnology Co., Ltd., Nanjing, Jiangsu, 210023, P. R. China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories, Inc., Changzhou, Jiangsu, 213164, P. R. China
| | - Liyuan Qiao
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Shuhui Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Jiahui Qiu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zengzheng Du
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Ying Sun
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Xiaoyao Chang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Lin Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Chenyang Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Xinyue Qiao
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Xingpeng Yin
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
- Nanjing Generecom Biotechnology Co., Ltd., Nanjing, Jiangsu, 210023, P. R. China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories, Inc., Changzhou, Jiangsu, 213164, P. R. China
- Faculty of Pharmaceutical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453002, P. R. China
| |
Collapse
|
6
|
Li Z, Han B, Qi M, Li Y, Duan Y, Yao Y. Modulating macrophage-mediated programmed cell removal: An attractive strategy for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189172. [PMID: 39151808 DOI: 10.1016/j.bbcan.2024.189172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Macrophage-mediated programmed cell removal (PrCR) is crucial for the identification and elimination of needless cells that maintain tissue homeostasis. The efficacy of PrCR depends on the balance between pro-phagocytic "eat me" signals and anti-phagocytic "don't eat me" signals. Recently, a growing number of studies have shown that tumourigenesis and progression are closely associated with PrCR. In the tumour microenvironment, PrCR activated by the "eat me" signal is counterbalanced by the "don't eat me" signal of CD47/SIRPα, resulting in tumour immune escape. Therefore, targeting exciting "eat me" signalling while simultaneously suppressing "don't eat me" signalling and eventually inducing macrophages to produce effective PrCR will be a very attractive antitumour strategy. Here, we comprehensively review the functions of PrCR-activating signal molecules (CRT, PS, Annexin1, SLAMF7) and PrCR-inhibiting signal molecules (CD47/SIRPα, MHC-I/LILRB1, CD24/Siglec-10, SLAMF3, SLAMF4, PD-1/PD-L1, CD31, GD2, VCAM1), the interactions between these molecules, and Warburg effect. In addition, we highlight the molecular regulatory mechanisms that affect immune system function by exciting or suppressing PrCR. Finally, we review the research advances in tumour therapy by activating PrCR and discuss the challenges and potential solutions to smooth the way for tumour treatment strategies that target PrCR.
Collapse
Affiliation(s)
- Zhenzhen Li
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingqian Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menghui Qi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongtao Duan
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yongfang Yao
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Yang T, Liu Z, Zhang T, Liu Y. Hybrid nano-stimulator for specific amplification of oxidative stress and precise tumour treatment. J Drug Target 2024; 32:756-769. [PMID: 38832845 DOI: 10.1080/1061186x.2024.2349112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The use of reactive oxygen species (ROS) to target cancer cells has become a hot topic in tumor therapy. PURPOSE Although ROS has strong cytotoxicity against tumor cells, the key issue currently is how to generate a large amount of ROS within tumor cells. METHODS Organic/inorganic hybrid nanoreactor materials combine the advantages of organic and inorganic components and can amplify cancer treatment by increasing targeting and material self-action. The multifunctional organic / inorganic hybrid nanoreactor is helpful to overcome the shortcomings of current reactive oxygen species in cancer treatment. It can realize the combination of in situ dynamic therapy and immunotherapy strategies, and has a synergistic anti-tumor effect. RESULTS This paper reviews the research progress of organic/inorganic hybrid nanoreactor materials using tumor components to amplify reactive oxygen species for cancer treatment. The article reviews the tumor treatment strategies of nanohybrids from the perspectives of cancer cells, immune cells, tumor microenvironment, as well as 3D printing and electrospinning techniques, which are different from traditional nanomaterial technologies, and will arouse interest among scientists in tumor therapy and nanomedicine.
Collapse
Affiliation(s)
- Ting Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zihan Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Tong Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan, China
| |
Collapse
|
8
|
Wei F, Liu H, Wang Y, Li Y, Han S. Engineering macrophages and their derivatives: A new hope for antitumor therapy. Biomed Pharmacother 2024; 177:116925. [PMID: 38878637 DOI: 10.1016/j.biopha.2024.116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
Macrophages are central to the immune system and are found in nearly all tissues. Recently, the development of therapies based on macrophages has attracted significant interest. These therapies utilize macrophages' key roles in immunity, their ability to navigate biological barriers, and their tendency to accumulate in tumors. This review explores the advancement of macrophage-based treatments. We discuss the bioengineering of macrophages for improved anti-tumor effects, the use of CAR macrophage therapy for targeting cancer cells, and macrophages as vehicles for therapeutic delivery. Additionally, we examine engineered macrophage products, like extracellular vesicles and membrane-coated nanoparticles, for their potential in precise and less toxic tumor therapy. Challenges in moving these therapies from research to clinical practice are also highlighted. The aim is to succinctly summarize the current status, challenges, and future directions of engineered macrophages in cancer therapy.
Collapse
Affiliation(s)
- Fang Wei
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China
| | - Haiyang Liu
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China
| | - Yuxiao Wang
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China
| | - Yan Li
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China.
| | - Shuo Han
- Department of Cardiology, the Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China.
| |
Collapse
|
9
|
Guo Q, Qian ZM. Macrophage based drug delivery: Key challenges and strategies. Bioact Mater 2024; 38:55-72. [PMID: 38699242 PMCID: PMC11061709 DOI: 10.1016/j.bioactmat.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
As a natural immune cell and antigen presenting cell, macrophages have been studied and engineered to treat human diseases. Macrophages are well-suited for use as drug carriers because of their biological characteristics, such as excellent biocompatibility, long circulation, intrinsic inflammatory homing and phagocytosis. Meanwhile, macrophages' uniquely high plasticity and easy re-education polarization facilitates their use as part of efficacious therapeutics for the treatment of inflammatory diseases or tumors. Although recent studies have demonstrated promising advances in macrophage-based drug delivery, several challenges currently hinder further improvement of therapeutic effect and clinical application. This article focuses on the main challenges of utilizing macrophage-based drug delivery, from the selection of macrophage sources, drug loading, and maintenance of macrophage phenotypes, to drug migration and release at target sites. In addition, corresponding strategies and insights related to these challenges are described. Finally, we also provide perspective on shortcomings on the road to clinical translation and production.
Collapse
Affiliation(s)
- Qian Guo
- Laboratory of Drug Delivery, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226019, China
- National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China
| |
Collapse
|
10
|
Chu X, Tian Y, Lv C. Decoding the spatiotemporal heterogeneity of tumor-associated macrophages. Mol Cancer 2024; 23:150. [PMID: 39068459 PMCID: PMC11282869 DOI: 10.1186/s12943-024-02064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are pivotal in cancer progression, influencing tumor growth, angiogenesis, and immune evasion. This review explores the spatial and temporal heterogeneity of TAMs within the tumor microenvironment (TME), highlighting their diverse subtypes, origins, and functions. Advanced technologies such as single-cell sequencing and spatial multi-omics have elucidated the intricate interactions between TAMs and other TME components, revealing the mechanisms behind their recruitment, polarization, and distribution. Key findings demonstrate that TAMs support tumor vascularization, promote epithelial-mesenchymal transition (EMT), and modulate extracellular matrix (ECM) remodeling, etc., thereby enhancing tumor invasiveness and metastasis. Understanding these complex dynamics offers new therapeutic targets for disrupting TAM-mediated pathways and overcoming drug resistance. This review underscores the potential of targeting TAMs to develop innovative cancer therapies, emphasizing the need for further research into their spatial characteristics and functional roles within the TME.
Collapse
Affiliation(s)
- Xiangyuan Chu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China.
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China.
| |
Collapse
|
11
|
Xu R, Liu X, Zhang Y, Wu G, Huang L, Li R, Xu X. Antibody-Decorated Nanoplatform to Reprogram Macrophage and Block Immune Checkpoint LSECtin for Effective Cancer Immunotherapy. NANO LETTERS 2024; 24:8723-8731. [PMID: 38968148 DOI: 10.1021/acs.nanolett.4c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Repolarizing tumor-associated macrophages (TAMs) into tumor-inhibiting M1 macrophages has been considered a promising strategy for enhanced cancer immunotherapy. However, several immunosuppressive ligands (e.g., LSECtin) can still be highly expressed on M1 macrophages, inducing unsatisfactory therapeutic outcomes. We herein developed an antibody-decorated nanoplatform composed of PEGylated iron oxide nanoparticles (IONPs) and LSECtin antibody conjugated onto the surface of IONPs via the hydrazone bond for enhanced cancer immunotherapy. After intravenous administration, the tumor microenvironment (TME) pH could trigger the hydrazone bond breakage and induce the disassociation of the nanoplatform into free LSECtin antibodies and IONPs. Consequently, the IONPs could repolarize TAMs into M1 macrophages to remodel immunosuppressive TME and provide an additional anticancer effect via secreting tumoricidal factors (e.g., interlukin-12). Meanwhile, the LSECtin antibody could further block the activity of LSECtin expressed on M1 macrophages and relieve its immunosuppressive effect on CD8+ T cells, ultimately leading to significant inhibition of tumor growth.
Collapse
Affiliation(s)
- Rui Xu
- Department of Pharmacy and Pharmacology and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Xiangya Liu
- Department of Pharmacy and Pharmacology and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Yuxuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Guo Wu
- Department of Pharmacy and Pharmacology and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Linzhuo Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Rong Li
- Department of Pharmacy and Pharmacology and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Xiaoding Xu
- Department of Pharmacy and Pharmacology and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| |
Collapse
|
12
|
Hao J, Zhao X, Wang C, Cao X, Liu Y. Recent Advances in Nanoimmunotherapy by Modulating Tumor-Associated Macrophages for Cancer Therapy. Bioconjug Chem 2024; 35:867-882. [PMID: 38919067 DOI: 10.1021/acs.bioconjchem.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cancer immunotherapy has yielded remarkable results across a variety of tumor types. Nevertheless, the complex and immunosuppressive microenvironment within solid tumors poses significant challenges to established therapies such as immune checkpoint blockade (ICB) and chimeric antigen receptor T-cell (CAR-T) therapy. Within the milieu, tumor-associated macrophages (TAMs) play a significant role by directly suppressing T-cell functionality and fostering an immunosuppressive environment. Effective regulation of TAMs is, therefore, crucial to enhancing the efficacy of immunotherapies. Various therapeutic strategies targeting TAM modulation have emerged, including blocking TAM recruitment, direct elimination, promoting repolarization toward the M1 phenotype, and enhancing phagocytic capacity against tumor cells. The recently introduced CAR macrophage (CAR-M) therapy opens new possibilities for macrophage-based immunotherapy. Compared with CAR-T, CAR-M may demonstrate superior targeting and infiltration capabilities toward solid tumors. This review predominantly delves into the origin and development process of TAMs, their role in promoting tumor growth, and provides a comprehensive overview of immunotherapies targeting TAMs. It underscores the significance of regulating TAMs in bolstering antitumor therapies while discussing the potential and challenges of developing TAMs as targets for immunotherapy.
Collapse
Affiliation(s)
- Jialei Hao
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinzhi Zhao
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chun Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xianghui Cao
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Xu K, Dong M, Wu Z, Luo L, Xie F, Li F, Huang H, Wang F, Xiong X, Wen Z. Single-Cell RNA Sequencing Identifies Crucial Genes Influencing the Polarization of Tumor-Associated Macrophages in Liver Cancer. Int J Genomics 2024; 2024:7263358. [PMID: 38938448 PMCID: PMC11208785 DOI: 10.1155/2024/7263358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024] Open
Abstract
Background In the context of hepatocellular carcinoma (HCC), tumor-associated macrophages (TAMs) are pivotal for the immunosuppressive nature of the tumor microenvironment (TME). This investigation delves into the functional transformations of TAMs within the TME by leveraging single-cell transcriptomics to pinpoint critical genes influencing TAM subset polarization. Methods We procured single-cell and bulk transcriptomic data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), implementing quality assurance, dimensional reduction, clustering, and annotation on the single-cell sequencing data. To examine cellular interactions, CellChat was utilized, while single-cell regulatory network inference and clustering (SCENIC) was applied to deduce transcription factors (TFs) and their associated targets. Through gene enrichment, survival, and immune infiltration correlation analyses, we sought to pinpoint and validate influential genes. A TAM model under HCC conditions was then established to confirm the expression levels of these key genes. Results Our analysis encompassed 74,742 cells and 23,110 genes. Through postdimensional reduction and clustering, we identified seven distinct cell types and nine TAM subtypes. Analysis via CellChat highlighted a predominance of M2-phenotype-inclined TAM subsets within the tumor's core. SCENIC pinpointed the transcription factor PRDM1 and its target genes as pivotal in this region. Further analysis indicated these genes' involvement in macrophage polarization. Employing trajectory analysis, survival analysis, and immune infiltration correlation, we scrutinized and validated genes likely directing M2 polarization. Experimental validation confirmed PRDM1's heightened expression in TAMs conditioned by HCC. Conclusions Our findings suggest the PRDM1 gene is a key regulator of M2 macrophage polarization, contributing to the immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Kedong Xu
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mingyi Dong
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhengqiang Wu
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Linfei Luo
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fei Xie
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fan Li
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hongyan Huang
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fenfen Wang
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaofeng Xiong
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhili Wen
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Zheng P, He J, Fu Y, Yang Y, Li S, Duan B, Yang Y, Hu Y, Yang Z, Wang M, Liu Q, Zheng X, Hua L, Li W, Li D, Ding Y, Yang X, Bai H, Long Q, Huang W, Ma Y. Engineered Bacterial Biomimetic Vesicles Reprogram Tumor-Associated Macrophages and Remodel Tumor Microenvironment to Promote Innate and Adaptive Antitumor Immune Responses. ACS NANO 2024; 18:6863-6886. [PMID: 38386537 DOI: 10.1021/acsnano.3c06987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Tumor-associated macrophages (TAMs) are among the most abundant infiltrating leukocytes in the tumor microenvironment (TME). Reprogramming TAMs from protumor M2 to antitumor M1 phenotype is a promising strategy for remodeling the TME and promoting antitumor immunity; however, the development of an efficient strategy remains challenging. Here, a genetically modified bacterial biomimetic vesicle (BBV) with IFN-γ exposed on the surface in a nanoassembling membrane pore structure was constructed. The engineered IFN-γ BBV featured a nanoscale structure of protein and lipid vesicle, the existence of rich pattern-associated molecular patterns (PAMPs), and the costimulation of introduced IFN-γ molecules. In vitro, IFN-γ BBV reprogrammed M2 macrophages to M1, possibly through NF-κB and JAK-STAT signaling pathways, releasing nitric oxide (NO) and inflammatory cytokines IL-1β, IL-6, and TNF-α and increasing the expression of IL-12 and iNOS. In tumor-bearing mice, IFN-γ BBV demonstrated a targeted enrichment in tumors and successfully reprogrammed TAMs into the M1 phenotype; notably, the response of antigen-specific cytotoxic T lymphocyte (CTL) in TME was promoted while the immunosuppressive myeloid-derived suppressor cell (MDSC) was suppressed. The tumor growth was found to be significantly inhibited in both a TC-1 tumor and a CT26 tumor. It was indicated that the antitumor effects of IFN-γ BBV were macrophage-dependent. Further, the modulation of TME by IFN-γ BBV produced synergistic effects against tumor growth and metastasis with an immune checkpoint inhibitor in an orthotopic 4T1 breast cancer model which was insensitive to anti-PD-1 mAb alone. In conclusion, IFN-γ-modified BBV demonstrated a strong capability of efficiently targeting tumor and tuning a cold tumor hot through reprogramming TAMs, providing a potent approach for tumor immunotherapy.
Collapse
Affiliation(s)
- Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Jinrong He
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yuting Fu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Ying Yang
- Cell Biology & Molecular Biology Laboratory of Experimental Teaching Center, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Shuqin Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Biao Duan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Yongmao Hu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Mengzhen Wang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Qingwen Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Liangqun Hua
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Duo Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centers for Disease Control and Prevention, Kunming 530112, People's Republic of China
| | - Yiting Ding
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Qiong Long
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| |
Collapse
|
15
|
Sofias AM, Guo B, Xu J, Lammers T. Image-guided drug delivery: Biomedical and imaging advances. Adv Drug Deliv Rev 2024; 206:115187. [PMID: 38272184 DOI: 10.1016/j.addr.2024.115187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
16
|
Li Y, Qiu J, Meng Z, Yin S, Ruan M, Zhang W, Wu Z, Ding T, Huang F, Wang W. MFG-E8 promotes M2 polarization of macrophages and is associated with poor prognosis in patients with gastric cancer. Heliyon 2024; 10:e23917. [PMID: 38192793 PMCID: PMC10772258 DOI: 10.1016/j.heliyon.2023.e23917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
Background Milk Fat Globule-Epidermal Growth Factor 8 (MFG-E8) has been reported to play an oncogenic role in a variety of tumors. However, its involvement in gastric cancer (GC) development has not been described. Methods The cancer genome atlas (TCGA) and the gene expression omnibus database (GEO) databases were used to analyze the expression of MFG-E8 in GC. These findings were further validated using immunohistochemistry (IHC) and western blotting assay (WB). Kaplan-Meier method, univariate logistic regression, and Christopher Cox regression were used to study the relationship between MFG-E8 and clinical pathology. In addition, the potential signaling pathways involved in MFG-E8 and its potential correlation with levels of immune cell infiltration were investigated. Finally, the biological function of MFG-E8 in GC cells was revealed. Results MFG-E8 was highly expressed in GC patients and cells, and the high level of MFG-E8 was associated with poor overall survival (OS). KEGG analysis indicated that MFG-E8 may play an important role in the cAMP signaling pathway. The expression of MFG-E8 was positively correlated with the infiltration of M2 macrophages. The patients with high MFG-E8 were easy to develop chemotherapy resistance. Furthermore, the knockdown of MFG-E8 significantly inhibited the proliferation and invasion of GC cells. Conclusion MFG-E8 in GC may serve as a prognostic marker and a potential immunotherapy target for GC.
Collapse
Affiliation(s)
- Yang Li
- Department of Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, People's Republic of China
| | - Jianda Qiu
- Department of Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, People's Republic of China
| | - Ziyu Meng
- Department of Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, People's Republic of China
| | - Shiyuan Yin
- Department of Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, People's Republic of China
| | - Mingxuan Ruan
- Department of Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, People's Republic of China
| | - Wenbiao Zhang
- Department of Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, People's Republic of China
| | - Zhiwei Wu
- Department of Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, People's Republic of China
| | - Tao Ding
- Department of Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, People's Republic of China
| | - Fei Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Wenbin Wang
- Department of Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, People's Republic of China
| |
Collapse
|
17
|
Shen Z, Liu X, Fan G, Na J, Liu Q, Lin F, Zhang Z, Zhong L. Improving the therapeutic efficacy of oncolytic viruses for cancer: targeting macrophages. J Transl Med 2023; 21:842. [PMID: 37993941 PMCID: PMC10666393 DOI: 10.1186/s12967-023-04709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
Oncolytic viruses (OVs) for cancer treatment are in a rapid stage of development, and the direct tumor lysis and activation of a comprehensive host immune response are irreplaceable advantages of cancer immunotherapy. However, excessive antiviral immune responses also restrict the spread of OVs in vivo and the infection of tumor cells. Macrophages are functionally diverse innate immune cells that phagocytose tumor cells and present antigens to activate the immune response, while also limiting the delivery of OVs to tumors. Studies have shown that the functional propensity of macrophages between OVs and tumor cells affects the overall therapeutic effect of oncolytic virotherapy. How to effectively avoid the restrictive effect of macrophages on OVs and reshape the function of tumor-associated macrophages in oncolytic virotherapy is an important challenge we are now facing. Here, we review and summarize the complex dual role of macrophages in oncolytic virotherapy, highlighting how the functional characteristics of macrophage plasticity can be utilized to cooperate with OVs to enhance anti-tumor effects, as well as highlighting the importance of designing and optimizing delivery modalities for OVs in the future.
Collapse
Affiliation(s)
- Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Guixiang Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Qiaoqiao Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Faquan Lin
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
18
|
Shang L, Zhong Y, Yao Y, Liu C, Wang L, Zhang W, Liu J, Wang X, Sun C. Subverted macrophages in the triple-negative breast cancer ecosystem. Biomed Pharmacother 2023; 166:115414. [PMID: 37660651 DOI: 10.1016/j.biopha.2023.115414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the most critical effector cells of innate immunity and the most abundant tumor-infiltrating immune cells. They play a key role in the clearance of apoptotic bodies, regulation of inflammation, and tissue repair to maintain homeostasis in vivo. With the progression of triple-negative breast cancer(TNBC), TAMs are "subverted" from tumor-promoting immune cells to tumor-promoting immune suppressor cells, which play a significant role in tumor development and are considered potential targets for cancer therapy. Here, we explored how macrophages, as the most important part of the TNBC ecosystem, are "subverted" to drive cancer evolution and the uniqueness of TAMs in TNBC progression and metastasis. Similarly, we discuss the rationale and available evidence for TAMs as potential targets for TNBC therapy.
Collapse
Affiliation(s)
- Linxiao Shang
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264000, China
| | - Yuting Zhong
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Yan Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Lu Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Wenfeng Zhang
- School of Traditional Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, Macau 999078, China
| | - Jingyang Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Xue Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
19
|
Ren E, Wang Y, Liang T, Zheng H, Shi J, Cheng Z, Li H, Gu Z. Local Drug Delivery Techniques for Triggering Immunogenic Cell Death. SMALL METHODS 2023; 7:e2300347. [PMID: 37259275 DOI: 10.1002/smtd.202300347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Immunogenic cell death (ICD), a dying state of the cells, encompasses the changes in the conformations of cell surface and the release of damage-associated molecular patterns, which could initiate an adaptive immune response by stimulating the dendritic cells to present antigens to T cells. Advancements in biomaterials, nanomedicine, and micro- and nano-technologies have facilitated the development of effective ICD inducers, but the potential toxicity of these vesicles encountered in drug delivery via intravenous administration hampers their further application. As alternatives, the local drug delivery systems have gained emerging attention due to their ability to prolong the retention of high payloads at the lesions, sequester drugs from harsh environments, overcome biological barriers to exert optimal efficacy, and minimize potential side effects to guarantee bio-safety. Herein, a brief overview of the local drug delivery techniques used for ICD inducers is provided, explaining how these techniques broaden, alter, and enhance the therapeutic capability while circumventing systemic toxicity at the same time. The historical context and prominent examples of the local administration of ICD inducers are introduced. The complexities, potential pitfalls, and opportunities for local drug delivery techniques in cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- En Ren
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yanfang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tingxizi Liang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hanqi Zheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiaqi Shi
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zesheng Cheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, P. R. China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321299, P. R. China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, P. R. China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321299, P. R. China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, P. R. China
- The National Laboratory of Advanced Drug Delivery and Release Systems, Hangzhou, 310058, P. R. China
| |
Collapse
|
20
|
Zheng C, Zhong Q, Yi K, Kong H, Cao F, Zhuo C, Xu Y, Shi R, Ju E, Song W, Tao Y, Chen X, Li M. Anti-phagocytosis-blocking repolarization-resistant membrane-fusogenic liposome (ARMFUL) for adoptive cell immunotherapy. SCIENCE ADVANCES 2023; 9:eadh2413. [PMID: 37556535 PMCID: PMC10411906 DOI: 10.1126/sciadv.adh2413] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
Equipping multiple functionalities on adoptive effector cells is essential to overcome the complex immunological barriers in solid tumors for superior antitumor efficacy. However, current cell engineering technologies cannot endow these functionalities to cells within a single step because of the different spatial distributions of targets in one cell. Here, we present a core-shell anti-phagocytosis-blocking repolarization-resistant membrane-fusogenic liposome (ARMFUL) to achieve one-step multiplexing cell engineering for multifunctional cell construction. Through fusing with the M1 macrophage membrane, ARMFUL inserts an anti-CD47 (aCD47)-modified lipid shell onto the surface and simultaneously delivers colony-stimulating factor 1 receptor inhibitor BLZ945-loaded core into the cytoplasm. The surface-presenting aCD47 boosts macrophage's phagocytosis against the tumor by blocking CD47. The cytoplasm-located BLZ945 prompts its polarization resistance to M2 phenotype in the immunosuppressive microenvironment via inactivating the intracellular M2 polarization signaling pathway. This ARMFUL provides a versatile cell engineering platform to customize multimodal cellular functions for enhanced adoptive cell therapy.
Collapse
Affiliation(s)
- Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Qingguo Zhong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Huimin Kong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chenya Zhuo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
21
|
Farhana A, Alsrhani A, Khan YS, Rasheed Z. Cancer Bioenergetics and Tumor Microenvironments-Enhancing Chemotherapeutics and Targeting Resistant Niches through Nanosystems. Cancers (Basel) 2023; 15:3836. [PMID: 37568652 PMCID: PMC10416858 DOI: 10.3390/cancers15153836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is an impending bottleneck in the advanced scientific workflow to achieve diagnostic, prognostic, and therapeutic success. Most cancers are refractory to conventional diagnostic and chemotherapeutics due to their limited targetability, specificity, solubility, and side effects. The inherent ability of each cancer to evolve through various genetic and epigenetic transformations and metabolic reprogramming underlies therapeutic limitations. Though tumor microenvironments (TMEs) are quite well understood in some cancers, each microenvironment differs from the other in internal perturbations and metabolic skew thereby impeding the development of appropriate diagnostics, drugs, vaccines, and therapies. Cancer associated bioenergetics modulations regulate TME, angiogenesis, immune evasion, generation of resistant niches and tumor progression, and a thorough understanding is crucial to the development of metabolic therapies. However, this remains a missing element in cancer theranostics, necessitating the development of modalities that can be adapted for targetability, diagnostics and therapeutics. In this challenging scenario, nanomaterials are modular platforms for understanding TME and achieving successful theranostics. Several nanoscale particles have been successfully researched in animal models, quite a few have reached clinical trials, and some have achieved clinical success. Nanoparticles exhibit an intrinsic capability to interact with diverse biomolecules and modulate their functions. Furthermore, nanoparticles can be functionalized with receptors, modulators, and drugs to facilitate specific targeting with reduced toxicity. This review discusses the current understanding of different theranostic nanosystems, their synthesis, functionalization, and targetability for therapeutic modulation of bioenergetics, and metabolic reprogramming of the cancer microenvironment. We highlight the potential of nanosystems for enhanced chemotherapeutic success emphasizing the questions that remain unanswered.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Qassim, Saudi Arabia
| |
Collapse
|
22
|
Luo JQ, Liu R, Chen FM, Zhang JY, Zheng SJ, Shao D, Du JZ. Nanoparticle-Mediated CD47-SIRPα Blockade and Calreticulin Exposure for Improved Cancer Chemo-Immunotherapy. ACS NANO 2023; 17:8966-8979. [PMID: 37133900 DOI: 10.1021/acsnano.2c08240] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Enabling macrophages to phagocytose tumor cells holds great potential for cancer therapy but suffers from tremendous challenges because the tumor cells upregulate antiphagocytosis molecules (such as CD47) on their surface. The blockade of CD47 alone is insufficient to stimulate tumor cell phagocytosis in solid tumors due to the lack of "eat me" signals. Herein, a degradable mesoporous silica nanoparticle (MSN) is reported to simultaneously deliver anti-CD47 antibodies (aCD47) and doxorubicin (DOX) for cancer chemo-immunotherapy. The codelivery nanocarrier aCD47-DMSN was constructed by accommodating DOX within the mesoporous cavity, while adsorbing aCD47 on the surface of MSN. aCD47 blocks the CD47-SIRPα axis to disable the "don't eat me" signal, while DOX induces immunogenic tumor cell death (ICD) for calreticulin exposure as an "eat me" signal. This design facilitated the phagocytosis of tumor cells by macrophages, which enhanced antigen cross-presentation and elicited efficient T cell-mediated immune response. In 4T1 and B16F10 murine tumor models, aCD47-DMSN generated a strong antitumor effect after intravenous injection by increasing tumor-infiltration of CD8+ T cells. Taken together, this study offers a nanoplatform to modulate the phagocytosis of macrophages for efficacious cancer chemo-immunotherapy.
Collapse
Affiliation(s)
- Jia-Qi Luo
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Rong Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Fang-Man Chen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China
| | - Jing-Yang Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China
| | - Sui-Juan Zheng
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
23
|
Li L, Tian Y. The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment. Biomed Pharmacother 2023; 161:114504. [PMID: 37002579 DOI: 10.1016/j.biopha.2023.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Macrophages are potent immune effector cells in innate immunity and exert dual-effects in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) make up a significant portion of TME immune cells. Similar to M1/M2 macrophages, TAMs are also highly plastic, and their functions are regulated by cytokines, chemokines and other factors in the TME. The metabolic changes in TAMs are significantly associated with polarization towards a protumour or antitumour phenotype. The metabolites generated via TAM metabolic reprogramming in turn promote tumor progression and immune tolerance. In this review, we explore the metabolic reprogramming of TAMs in terms of energy, amino acid and fatty acid metabolism and the potential roles of these changes in immune suppression.
Collapse
Affiliation(s)
- Lunxu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
24
|
Zhao C, Cheng Y, Huang P, Wang C, Wang W, Wang M, Shan W, Deng H. X-ray-Guided In Situ Genetic Engineering of Macrophages for Sustained Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208059. [PMID: 36527738 DOI: 10.1002/adma.202208059] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Effective repolarization of macrophages has emerged as a promising approach for anticancer therapy. However, there are very few studies on the effect of reprogramming macrophages from M2 phenotype to M1 phenotype without reconversion while maintaining an activated M1 phenotype. Moreover, these immunomodulatory methods have serious drawbacks due to the activation of normal monocytic cells. Therefore, it remains a challenge to selectively reprogram tumor-associated macrophages (TAMs) without systemic toxicities. Here, X-ray-guided and triggered remote control of a CRISPR/Cas9 genome editing system (X-CC9) that exclusively activates therapeutic agents at tumor sites is established. Under X-ray irradiation, X-CC9 selectively enhances M2-to-M1 repolarization within the tumor microenvironment, and significantly improves antitumor efficacy with robust immune responses in two animal models. This strategy provides an ideal method for improving the safety of macrophage polarization and may constitute a promising immunotherapy strategy.
Collapse
Affiliation(s)
- Caiyan Zhao
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yaya Cheng
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Pei Huang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Changrong Wang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Weipeng Wang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Mengjiao Wang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Wenbo Shan
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Hongzhang Deng
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
25
|
Sadhukhan P, Seiwert TY. The role of macrophages in the tumor microenvironment and tumor metabolism. Semin Immunopathol 2023; 45:187-201. [PMID: 37002376 DOI: 10.1007/s00281-023-00988-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
The complexity and plasticity of the tumor microenvironment (TME) make it difficult to fully understand the intratumoral regulation of different cell types and their activities. Macrophages play a crucial role in the signaling dynamics of the TME. Among the different subtypes of macrophages, tumor-associated macrophages (TAMs) are often associated with poor prognosis, although some subtypes of TAMs can at the same time improve treatment responsiveness and lead to favorable clinical outcomes. TAMs are key regulators of cancer cell proliferation, metastasis, angiogenesis, extracellular matrix remodeling, tumor metabolism, and importantly immunosuppression in the TME by modulating various chemokines, cytokines, and growth factors. TAMs have been identified as a key contributor to resistance to chemotherapy and cancer immunotherapy. In this review article, we aim to discuss the mechanisms by which TAMs regulate innate and adaptive immune signaling in the TME and summarize recent preclinical research on the development of therapeutics targeting TAMs and tumor metabolism.
Collapse
Affiliation(s)
- Pritam Sadhukhan
- Johns Hopkins University, Skip Viragh Outpatient Cancer Building, Baltimore, MD, 21287, USA
| | - Tanguy Y Seiwert
- Johns Hopkins University, Skip Viragh Outpatient Cancer Building, Baltimore, MD, 21287, USA.
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
26
|
Li J, Fan J, Gao Y, Huang S, Huang D, Li J, Wang X, Santos HA, Shen P, Xia B. Porous Silicon Nanocarriers Boost the Immunomodulation of Mitochondria-Targeted Bovine Serum Albumins on Macrophage Polarization. ACS NANO 2023; 17:1036-1053. [PMID: 36598186 PMCID: PMC9878978 DOI: 10.1021/acsnano.2c07439] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/29/2022] [Indexed: 05/31/2023]
Abstract
The development of nanosystems with intrinsic immunomodulatory effects on macrophage polarization is important for the macrophage-targeted immunotherapy. Here, mitochondria-targeted bovine serum albumins (BSAs) via the conjugation of fluorescent, lipophilic, and cationic rhodamine 110 molecules can efficiently enhance the gene expression of the proinflammatory phenotype of macrophages and correspondingly inhibit the gene expression of their anti-inflammatory phenotype. On this basis, porous silicon nanocarriers can further boost the immunomodulation of these mitochondria-targeted BSAs in vitro or in vivo, accompanied by the secretion of proinflammatory mediators including tumor necrosis factor α, nitric oxide, and reactive oxygen species (ROS). Meanwhile, BSA coatings can also improve the biocompatibility of porous silicon nanoparticulate cores on macrophages. Finally, the mechanism investigations demonstrate that porous silicon nanocarriers can efficiently deliver mitochondria-targeted BSA into macrophages to generate mitochondrial ROS via the interference with mitochondrial respiratory chains, which can further trigger the downstream signaling transduction pathways for the proinflammatory transition. Considering the good biosafety and versatile loading capability, this developed porous silicon@BSA nanosystem with a strong proinflmmatory regulatory effect has important potential on the combinatorial chemoimmunotherapy against cancer or viral/bacterial-related infectious diseases.
Collapse
Affiliation(s)
- Jialiang Li
- College
of Science, Nanjing Forestry University, Nanjing210037, China
| | - Jiqiang Fan
- State
Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive
Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital
of Nanjing University Medical School, Nanjing
University, Nanjing210023, China
| | - Yan Gao
- College
of Science, Nanjing Forestry University, Nanjing210037, China
| | - Shuodan Huang
- College
of Science, Nanjing Forestry University, Nanjing210037, China
| | - Di Huang
- College
of Science, Nanjing Forestry University, Nanjing210037, China
| | - Jiachen Li
- Department
of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
- W.
J. Kolff Institute for Biomedical Engineering and Materials Science,
University Medical Center Groningen, University
of Groningen, Antonius
Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Xiaoyu Wang
- College
of Science, Nanjing Forestry University, Nanjing210037, China
| | - Hélder A. Santos
- Department
of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
- W.
J. Kolff Institute for Biomedical Engineering and Materials Science,
University Medical Center Groningen, University
of Groningen, Antonius
Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Pingping Shen
- Department
of Geriatric Medicine, The Second Affiliated
Hospital and Yuying Children’s Hospital of Wenzhou Medical
University, Wenzhou325027, China
- State
Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive
Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital
of Nanjing University Medical School, Nanjing
University, Nanjing210023, China
| | - Bing Xia
- College
of Science, Nanjing Forestry University, Nanjing210037, China
| |
Collapse
|
27
|
Lu F, Sang R, Tang Y, Xia H, Liu J, Huang W, Fan Q, Wang Q. Fabrication of a phototheranostic nanoplatform for single laser-triggered NIR-II fluorescence imaging-guided photothermal/chemo/antiangiogenic combination therapy. Acta Biomater 2022; 151:528-536. [PMID: 35970478 DOI: 10.1016/j.actbio.2022.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/15/2022] [Accepted: 08/06/2022] [Indexed: 12/29/2022]
Abstract
Phototheranostics that integrates real-time optical imaging and light-controlled therapy has recently emerged as a promising paradigm for cancer theranostics. Herein, a new small molecule dye DPP-BT-TPA with strong emission above 1000 nm and a redox-responsive prodrug camptothecin-combretastatin A4 (CPT-CA4) were designed and successfully synthesized. A multifunctional phototheranostic nanoplatform was then fabricated by encapsulating them within an amphiphilic polymer. The presence of DPP-BT-TPA enabled high-resolution imaging in the second near-infrared window (NIR-II) and efficient photothermal therapy. The prodrug was cleaved by the overexpressed glutathione (GSH) in the tumor microenvironment to release the chemotherapeutic drug CPT and the angiogenesis inhibitor CA4. Because this process can be accelerated with elevated temperature, laser-induced hyperthermia was utilized to control the drug release and enhance the therapeutic effect. Tumors in living mice were observed through NIR-II imaging after intravenous injection of the obtained nanoparticles. Improved antitumor efficacy by photothermal/chemo/antiangiogenic combination therapy was achieved with a NIR laser both in vitro and in vivo. This work provides a promising strategy for developing tumor microenvironment responsive and light-controlled theranostic platforms. STATEMENT OF SIGNIFICANCE: Fluorescence imaging in the second near-infrared (NIR-II, 1000-1700 nm) window and near-infrared light-controlled drug release have been recognized as efficient strategies for cancer theranostics. Herein, we present a phototheranostic platform fabricated with a biocompatible NIR-II emissive dye DPP-BT-TPA and a redox-responsive prodrug camptothecin-combretastatin A4 (CPT-CA4). DPP-BT-TPA not only provides high-resolution NIR-II imaging in vivo but also enables efficient photothermal therapy. In addition, the photothermal effect largely accelerates the release of the chemotherapeutic drug CPT and the angiogenesis inhibitor CA4 in the glutathione-overexpressed tumor microenvironment. Thus, the designed phototheranostic platform can be used for NIR-II imaging-guided photothermal/chemo/antiangiogenic combination therapy for tumors with a single laser.
Collapse
Affiliation(s)
- Feng Lu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Ruoyu Sang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yu Tang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Hui Xia
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jiawei Liu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Quli Fan
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Qi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| |
Collapse
|
28
|
Huo W, Yang X, Wang B, Cao L, Fang Z, Li Z, Liu H, Liang XJ, Zhang J, Jin Y. Biomineralized hydrogel DC vaccine for cancer immunotherapy: A boosting strategy via improving immunogenicity and reversing immune-inhibitory microenvironment. Biomaterials 2022; 288:121722. [DOI: 10.1016/j.biomaterials.2022.121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
|
29
|
Vepris O, Eich C, Feng Y, Fuentes G, Zhang H, Kaijzel EL, Cruz LJ. Optically Coupled PtOEP and DPA Molecules Encapsulated into PLGA-Nanoparticles for Cancer Bioimaging. Biomedicines 2022; 10:biomedicines10051070. [PMID: 35625807 PMCID: PMC9138547 DOI: 10.3390/biomedicines10051070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 01/10/2023] Open
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) nanoparticles (NPs) have emerged as imaging probes and therapeutic probes in recent years due to their excellent optical properties. In contrast to lanthanide ion-doped inorganic materials, highly efficient TTA-UC can be generated by low excitation power density, which makes it suitable for clinical applications. In the present study, we used biodegradable poly(lactic-co-glycolic acid) (PLGA)-NPs as a delivery vehicle for TTA-UC based on the heavy metal porphyrin Platinum(II) octaethylporphyrin (PtOEP) and the polycyclic aromatic hydrocarbon 9,10-diphenylanthracene (DPA) as a photosensitizer/emitter pair. TTA-UC-PLGA-NPs were successfully synthesized according to an oil-in-water emulsion and solvent evaporation method. After physicochemical characterization, UC-efficacy of TTA-UC-PLGA-NPs was assessed in vitro and ex vivo. TTA-UC could be detected in the tumour area 96 h after in vivo administration of TTA-UC-PLGA-NPs, confirming the integrity and suitability of PLGA-NPs as a TTA-UC in vivo delivery system. Thus, this study provides proof-of-concept that the advantageous properties of PLGA can be combined with the unique optical properties of TTA-UC for the development of advanced nanocarriers for simultaneous in vivo molecular imaging and drug delivery.
Collapse
Affiliation(s)
- Olena Vepris
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
| | - Christina Eich
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
| | - Yansong Feng
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Y.F.); (H.Z.)
| | - Gastón Fuentes
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
- Department of Ceramic and Metallic Biomaterials, Biomaterials Center, University of Havana, Ave Universidad e/G y Ronda, Vedado, Plaza, La Habana 10400, Cuba
| | - Hong Zhang
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Y.F.); (H.Z.)
| | - Eric L. Kaijzel
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
- Correspondence:
| |
Collapse
|