1
|
Austria E, Bilek M, Varamini P, Akhavan B. Breaking biological barriers: Engineering polymeric nanoparticles for cancer therapy. NANO TODAY 2025; 60:102552. [DOI: 10.1016/j.nantod.2024.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Rennie C, Morshed N, Faria M, Collins-Praino L, Care A. Nanoparticle Association with Brain Cells Is Augmented by Protein Coronas Formed in Cerebrospinal Fluid. Mol Pharm 2025. [PMID: 39805033 DOI: 10.1021/acs.molpharmaceut.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored. Indeed, less than 1% of protein corona studies have investigated protein coronas formed in cerebrospinal fluid (CSF), the fluid surrounding the brain. Herein, we utilize two clinically relevant polymeric nanoparticles (PLGA and PLGA-PEG) to evaluate the formation of serum and CSF protein coronas. LC-MS analysis revealed distinct protein compositions, with selective enrichment/depletion profiles. Enhanced association of CSF precoated particles with brain cells demonstrates the importance of selecting physiologically relevant biological fluids to more accurately study protein corona formation and subsequent nanoparticle-cell interactions, paving the way for improved nanoparticle engineering for in vivo applications.
Collapse
Affiliation(s)
- Claire Rennie
- School of Life Sciences, University of Technology Sydney, Sydney 2007, New South Wales, Australia
- Australian Institute for Microbiology and Infection, Sydney 2007, New South Wales, Australia
| | - Nabila Morshed
- School of Life Sciences, University of Technology Sydney, Sydney 2007, New South Wales, Australia
| | - Matthew Faria
- Department of Biomedical Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Lyndsey Collins-Praino
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Sydney 2007, New South Wales, Australia
| |
Collapse
|
3
|
Xiong H, Wang R, Zhang H, Zhang Q, Qin Y, Du C, Zhang X, Ye J, Shi C, Shen H, Zhu Z, Zhou Z, Chen X, Zhang J. Preclinical and First-in-Human Study of a Compact Radionuclide Labeled Self-Assembly Nanomedicine for Chemo-Radio-Theranostics of Cancer. ACS NANO 2025. [PMID: 39806279 DOI: 10.1021/acsnano.4c18489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The emerging combination of chemotherapy and radionuclide therapy has been actively investigated to overcome the limitations of monotherapy and augment therapeutic efficacy. However, it remains a challenge to design a single delivery vehicle that can incorporate chemotherapeutics and radionuclides into a compact structure. Here, a chelator DOTA- or NOTA-modified Evans blue conjugated camptothecin molecule (EB-CPT) nanoprodrug was synthesized, which could self-assemble into nanoparticles due to its inherent amphiphilicity. The nanoparticles could then be effectively labeled with therapeutic radionuclide lutetium-177 (177Lu) or diagnostic radionuclides gallium-68 (68Ga)/copper-64 (64Cu) with high radiolabeling efficiency and radiochemical stability. Impressively, a single-dose chemoradiation therapy of [177Lu]Lu-DOTA-EB-CPT plus EB-CPT effectively inhibited tumor growth in HCT116 tumor-bearing mice compared to the respective individual therapeutic approach. The [64Cu]Cu-NOTA-EB-CPT nanoparticles also exhibited excellent in vivo characteristics including favorable blood circulation properties and prolonged tumor retention in tumor-bearing mice. The safety, feasibility, tolerability, and biodistribution of [68Ga]Ga-NOTA-EB-ss-CPT were also preliminarily characterized in a first-in-human study. This study presents a simple but robust EB-CPT radiopharmaceutical that leverages EB as an albumin binder to strike a delicate balance between enhanced tumor accumulation, safety, and diagnostic efficacy, facilitating an integrated theranostic strategy within a single molecular structure. This radionuclide-labeled EB-CPT nanomedicine presents a step toward clinical translation of the combination of chemotherapy and radiotheranostics.
Collapse
Affiliation(s)
- Hehe Xiong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Rongxi Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 119074, Singapore
| | - Heng Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qianyu Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yatong Qin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chao Du
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xinyi Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jinmin Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Changrong Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 119074, Singapore
| | - Huaxiang Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, 138667, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117575 Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117575 Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore 117544, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos Singapore 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, 138667, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
4
|
Wu W, Li Y, Liu Q, Liu T, Zhao Y, Shao H, Ren P, Tang Y, Feng J, Wang Y, Sun G, Liu H, Bai Y, Chen F. Dual-Targeted Drug Delivery to Myeloid Leukemia Cells via Complement- and Transferrin-Based Protein Corona. NANO LETTERS 2025; 25:147-156. [PMID: 39694635 DOI: 10.1021/acs.nanolett.4c04429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Although traditionally regarded as an impediment, the protein corona can facilitate the advancement of targeted drug delivery systems. This study presents an innovative approach for targeting acute myeloid leukemia (AML) using nanoparticles with agglutinated protein (NAPs). Agglutinated transferrin and C3b in NAPs selectively bind to CD71 and CD11b, receptors that are overexpressed on myeloid leukemic cells compared to nonmalignant cells. In vitro, NAPs achieved a 73.9% doxorubicin (DOX) uptake in leukemic cells, compared to 6.19% for the free drug, while significantly reducing off-target accumulation in normal cells from 42.9% to 5.76%. In vivo, the distribution of NAPs correlated to the organ infiltration pattern of leukemic cells. NAPs demonstrated antileukemic activity in both in vitro and in vivo NSG mouse models, inducing cell death via apoptosis and ferroptosis. In conclusion, NAP-mediated targeted drug delivery represents a promising therapeutic strategy for AML, enhancing treatment efficacy and minimizing off-target effects.
Collapse
Affiliation(s)
- Wen Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Yuanyuan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Qihui Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Tao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Yanan Zhao
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Hui Shao
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130033, P. R. China
| | - Yueyang Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Jiayi Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Yihan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, P. R. China
| | - Haiyan Liu
- Key Laboratory of Pathobiology Ministry of Education, Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun 130021, P. R. China
| | - Yuansong Bai
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Fangfang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| |
Collapse
|
5
|
Li XL, Yan ZS, Ma YQ, Ding HM. Impact of Glycosylation of Apolipoprotein D on Its Interaction with Gold Nanoparticles: Insights from Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39772418 DOI: 10.1021/acsami.4c16685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Efficient delivery of nanoparticles (NPs) as carriers for biochemical substances is crucial in various biomedical applications. In this study, we systematically investigate the interactions between glycosylated and nonglycosylated forms of Apolipoprotein D (ApoD) with gold nanoparticles (AuNPs) functionalized with different polymer coatings, including polyethylene glycol (PEG) and zwitterionic polymers. Using all-atom molecular dynamics simulations, we demonstrate that glycosylation significantly enhances the adsorption behavior of ApoD on AuNP surfaces, with the extent of this enhancement being dependent on the type (especially the charge property) of the polymer coatings. Notably, while zwitterionic polymers exhibit strong resistance to protein adsorption in their nonglycosylated form, this antifouling capability is diminished when glycosylation is present. Further, our findings reveal that glycosylation not only strengthens the binding energy of proteins but also alters the hydration dynamics at the NP-protein interface. Overall, this study provides a deeper understanding of the role of glycosylation in modulating protein-nanoparticle interactions, which is essential for the design of more effective nanomaterials for precision medicine.
Collapse
Affiliation(s)
- Xiao-Lei Li
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zeng-Shuai Yan
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Jiangsu Physical Science Research Center, Nanjing 210093, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
6
|
Gong JY, Li Y, Wang P, Peng X, Xie R, Wang W, Liu Z, Pan DW, Ju XJ, Chu LY. K +-Responsive Nanoparticles with Charge Reversal and Gating Synergistic Effects for Targeted Intracellular Bacteria Eradication. ACS NANO 2025. [PMID: 39772435 DOI: 10.1021/acsnano.4c12542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Intracellular bacteria can evade the attack of the immune system and the bactericidal effects of most antibiotics due to the protective effect of the host cells. Herein, inspired by the stimuli-responsive behaviors of biological ion channels, a kind of synergistic cascade potassium ion (K+)-responsive nanoparticles gated with K+-responsive polymers is ingeniously designed to target intracellular bacteria and then control drug release. Due to the cooperative interaction of host-guest complexation and conformational transition of K+-responsive polymers, the grafted gates based on these polymers could recognize high K+ concentration to reverse the negatively charged nanoparticles into positively charged ones for targeting bacteria and subsequently inducing a switch from the hydrophobic shrinking "off" state to the hydrophilic stretching "on" state for drug release. The K+-responsive nanoparticles can effectively load antibiotics and be endocytosed into the infected cells, and K+-responsive gates can be actuated by a high intracellular K+ concentration. With the efficient synergistic cascade strategy, these K+-responsive nanocarriers can deliver antibiotics to the subcellular region where intracellular bacteria reside and show superior elimination efficiencies in vitro and in vivo than the free drug in delivering vancomycin. The K+-responsive nanocarriers are expected to improve the bioavailability of drugs and enhance their antibacterial efficacy.
Collapse
Affiliation(s)
- Jue-Ying Gong
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yao Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Po Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xu Peng
- Experimental and Research Animal Institute, Chengdu, Sichuan 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China
| |
Collapse
|
7
|
Mura M, Carucci C, Caddeo E, Sovová Š, Piludu M, Pekař M, Jachimska B, Parsons DF, Salis A. Specific buffer effects on the formation of BSA protein corona around amino-functionalized mesoporous silica nanoparticles. J Colloid Interface Sci 2025; 677:540-547. [PMID: 39106779 DOI: 10.1016/j.jcis.2024.07.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
The effect of buffer species on biomolecules and biomolecule-nanoparticle interactions is a phenomenon that has been either neglected, or not understood. Here, we study the formation of a BSA protein corona (PC) around amino-functionalized mesoporous silica nanoparticles (MSN-NH2) in the presence of different buffers (Tris, BES, cacodylate, phosphate, and citrate) at the same pH (7.15) and different concentrations (10, 50, and 100 mM). We find that BSA adsorption is buffer specific, with the adsorbed amount of BSA being 4.4 times higher in the presence of 100 mM Tris (184 ± 3 mg/g) than for 100 mM citrate (42 ± 2 mg/g). That is a considerable difference that cannot be explained by conventional theories. The results become clearer if the interaction energies between BSA and MSN-NH2, considering the electric double layer (EEDL) and the van der Waals (EvdW) terms, are evaluated. The buffer specific PC derives from buffer specific zeta potentials that, for MSN-NH2, are positive with Tris and negative with citrate buffers. A reversed sign of zeta potentials can be obtained by considering polarizability-dependent dispersion forces acting together with electrostatics to give the buffer specific outcome. These results are relevant not only to our understanding of the formation of the PC but may also apply to other bio- and nanosystems in biological media.
Collapse
Affiliation(s)
- Monica Mura
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Cristina Carucci
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Elena Caddeo
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Šárka Sovová
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czechia
| | - Marco Piludu
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Miloslav Pekař
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czechia
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow, Poland
| | - Drew F Parsons
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy.
| |
Collapse
|
8
|
Pan H, Wu X, Han R, He S, Li N, Yan H, Chen X, Zhu Z, Du Z, Wang H, Xu X. Nanoparticle-protein interactions: Spectroscopic probing of the adsorption of serum albumin to graphene oxide‑gold nanocomplexes surfaces. Int J Biol Macromol 2025; 284:138126. [PMID: 39608527 DOI: 10.1016/j.ijbiomac.2024.138126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Graphene oxide‑gold nanocomposites (GO-AuNCPs) are promising candidates in nanomedicine. They will inevitably bind with biomolecules such as serum albumin (SA) in the body while they enter the organism. The interaction between GO-AuNCPs and human serum albumin (HSA)/bovine serum albumin (BSA) were investigated by using multispectroscopic methods, elucidating the binding principles through molecular simulations. The results of ultraviolet-visible (UV-vis) absorption spectroscopy and steady-state fluorescence spectroscopy indicated that GO-AuNCPs interacted with HSA/BSA with different degrees of interaction. The binding of GO-AuNCPs and HSA/BSA was a spontaneous endothermic reaction, and the quenching mechanism is static quenching. The binding constant (Ka) value of BSA binding to GO-AuNCPs at the same temperature was greater than that for HSA, indicating a stronger affinity of BSA for GO-AuNCPs. Molecular simulation revealed that the binding sites of GO-AuNCPs on HSA/BSA were located within the slits of the subdomains IB and IIIA, rather than within any known binding regions. This significant finding was validated by using of site markers phenylbutazone (PB) and flufenamic acid (FA). Synchronous fluorescence spectroscopy, three-dimensional fluorescence spectroscopy, and circular dichroism (CD) spectroscopy showed that the conformation of HSA/BSA was altered upon the addition of GO-AuNCPs, resulting in slight structural changes of tryptophan and tyrosine residues. Although the secondary structure of HSA/BSA was changed, the α-helix remained dominant. The results provide a theoretical and experimental foundation for developing of safe and effective nanomaterials, which is of great theoretical significance.
Collapse
Affiliation(s)
- Hongshuo Pan
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Xinjie Wu
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Ruyue Han
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Shuhao He
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Nianhe Li
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Hui Yan
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, Shandong Province, China
| | - Xinyun Chen
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Ziyu Zhu
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Zhongyu Du
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Hao Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, Shandong Province, China.
| | - Xiangyu Xu
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China.
| |
Collapse
|
9
|
Jin M, Wu H, Jin W, Zeng B, Liu Y, Wang N, Wang S, Chen L, Gao Z, Huang W. Transferrin Protein Corona-Targeted Codelivery of Tirapazamine and IR820 Facilitates Efficient PDT-Induced Hypoxic Chemotherapy on 4T1 Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39699197 DOI: 10.1021/acsami.4c15045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Protein corona (PC) formation confers novel biological properties to the original nanomaterial, impeding its uptake and targeting efficacy in cells and tissues. Although many studies discussing PC formation have focused on inert proteins that may inhibit the function of nanomaterials, some functional plasma proteins with intrinsic targeting capabilities can also be adsorbed to the surface of nanomaterials, with active ligand properties to improve the targeting ability. In this approach, nanomaterials are surface-engineered to promote the adsorption of specific functional plasma proteins that are directly targeted to transport nanomaterials to the target site. In this study, T10 peptide-modified liposomes were employed to construct an in situ transferrin (Tf) PC-mediated liposome carrying a hypoxia-sensitive chemotherapy drug (tirapazamine, TPZ) and a photosensitizer (indocyanine green, IR820). The water-soluble drug TPZ was encapsulated in mesoporous silica nanoparticles (MSNs) and coated with IR820 (IR)-loaded liposome. Lipid-coated MSNs can inhibit aggregation in the body and significantly reduce the rapid release of water-soluble drugs, resulting in improved system stability and sustained release. Upon entering the in vivo circulation, T10 bound specifically to Tf in plasma to form an in situ Tf liposome-PC complex with enhanced targeting efficacy compared to traditional ligand-modified active-targeting strategies. However, large-sized PC particles faced challenges in penetrating deep into tumor tissues. IR could kill tumors through photodynamic therapy (PDT) and elicit complementary antitumor effects with the hypoxia-sensitive drug TPZ. This study demonstrates the novel design of in situ PC-mediated multifunctional liposomes for hypoxia-activated chemotherapy combined with PDT, a promising approach to cancer therapy.
Collapse
Affiliation(s)
- Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Wenyu Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Dermatology, Yanbian University Hospital, Yanji 133000, China
| | - Bowen Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nuoya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Wen J, Lei C, Hua S, Cai L, Dai H, Liu S, Li Y, Ivanovski S, Xu C. Regulation of macrophage uptake through the bio-nano interaction using surface functionalized mesoporous silica nanoparticles with large radial pores. J Mater Chem B 2024; 13:137-150. [PMID: 39575665 DOI: 10.1039/d4tb01124d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Porous nanoparticles, such as mesoporous silica nanoparticles (MSNs), have garnered significant interest for biomedical applications. Recently, MSNs with large radial pores have attracted increased attention because their unique pore structure and large pore size are suitable for delivering large molecules such as proteins and genes. Upon entry into biological systems like the bloodstream, nanoparticles quickly form a 'protein corona,' leading to alterations in their interactions with immune cells. In this study, we investigated the formation of protein corona on MSNs with large radial pores and various surface modifications using mass spectrometry. We also examined the effects of protein corona on the interaction between MSNs and macrophages. We prepared MSNs with large, cone-shaped radial pores (>30 nm) and six different functional groups, resulting in nanoparticles with neutral, negative, and positive surface charges. Our findings indicate that surface functional groups significantly alter the composition of the protein corona, affecting the bio-nano interaction of these surface-modified MSNs with macrophages. Notably, nanoparticles with similar surface charges exhibited distinct corona characteristics and were internalized differently by macrophages. This underscores the crucial role of the protein corona in determining the fate, behavior, and biological responses of nanoparticles. Our research sheds light on the significance of understanding and controlling protein corona formation to optimize the design and functionality of nanoparticle-based biomedical applications.
Collapse
Affiliation(s)
- Juan Wen
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Shu Hua
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia
| | - Larry Cai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Huan Dai
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia
| | - Siyuan Liu
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Yiwei Li
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Saso Ivanovski
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
11
|
Li M, Gao Z, Wang N, Sekhar KPC, Hao J, Cui J. Targeting of Low-Immunogenic Poly(ethylene glycol) Nanoparticles for Photothermal-Enhanced Immunotherapy. Adv Healthc Mater 2024:e2402954. [PMID: 39676379 DOI: 10.1002/adhm.202402954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Indexed: 12/17/2024]
Abstract
The assembly of low-immunogenic poly(ethylene glycol) nanoparticles (PEG NPs) for targeted delivery of therapeutics (i.e., mitoxantrone and imidazoquinoline) and improved photothermal-immunotherapy is reported. The targeted PEG NPs incorporating targeting molecules of hyaluronic acid are engineered via the templating of metal-organic frameworks, which can circumvent accelerated blood clearance and exhibit prolonged circulation time as well as improved accumulation of therapeutics at tumor sites. The targeted delivery of mitoxantrone under laser radiation induces immunogenic cell death of tumor cells, which is combined with toll-like receptor 7/8 agonists of imidazoquinoline to trigger immune responses of cytotoxic T lymphocytes for the eradication of tumor cells. Furthermore, the treatment can induce tumor-specific immune responses that inhibit metastatic lung tumor growth. This reported targeted PEG NPs provide a rational design for cancer immunotherapy.
Collapse
Affiliation(s)
- Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Ning Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Kanaparedu P C Sekhar
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, 250100, China
| |
Collapse
|
12
|
Halder K, Dasgupta S. Temperature dependent human serum albumin Corona formation: A case study on gold nanorods and nanospheres. Int J Biol Macromol 2024; 290:138581. [PMID: 39689792 DOI: 10.1016/j.ijbiomac.2024.138581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/23/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Protein molecules interact with nanoparticles to form a protein layer on the surface called the protein corona. Corona formation can be affected by the temperature and shape of the nanoparticles thereby impacting the fate of the nanoparticles inside physiological systems. We have investigated the human serum albumin (HSA) corona formation and its interactions with gold nanospheres and nanorods at different temperatures (18-42 °C). UV-Vis, fluorescence, isothermal titration calorimetry (ITC), x-ray photoelectron spectroscopy (XPS) and circular dichroism (CD) experiments have been performed to determine the changes due to the shape and temperature. UV-Vis spectra show a greater propensity of corona induced aggregation in the nanorods compared to the nanospheres. The Stern-Volmer plot indicates that static quenching is predominant in the HSA-AuNP interactions with higher quenching efficiency for nanorods than nanospheres. ITC analyses show that HSA-nanorods are involved in more favorable interactions compared to HSA-nanospheres. XPS studies indicate a more electron rich environment on the AuNRs surface and higher AuS interactions in AuNSs. CD spectra show higher secondary structural changes with temperature in case of HSA-AuNR interactions compared to HSA-AuNS interactions. The changes in the protein corona due to nanoparticle shape and variable temperature have been investigated through protein adsorption and composition, types of interactions and protein conformation.
Collapse
Affiliation(s)
- Krishna Halder
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302. India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302. India.
| |
Collapse
|
13
|
Yang EL, Wang WY, Liu YQ, Yi H, Lei A, Sun ZJ. Tumor-Targeted Catalytic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413210. [PMID: 39676382 DOI: 10.1002/adma.202413210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials. This review provides a comprehensive and systematic overview of recent advancements in tumor-targeted catalytic materials and their critical role in enhancing catalytic immunotherapy. It highlights the types of catalytic reactions, the construction strategies of catalytic materials, and their fundamental mechanisms for tumor targeting, including passive, bioactive, stimuli-responsive, and biomimetic targeting approaches. Furthermore, this review outlines various tumor-specific targeting strategies, encompassing tumor tissue, tumor cell, exogenous stimuli-responsive, TME-responsive, and cellular TME targeting strategies. Finally, the discussion addresses the challenges and future perspectives for transitioning catalytic materials into clinical applications, offering insights that pave the way for next-generation cancer therapies and provide substantial benefits to patients in clinical settings.
Collapse
Affiliation(s)
- En-Li Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wu-Yin Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Ying-Qi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
14
|
Li S, Cortez-Jugo C, Ju Y, Caruso F. Approaching Two Decades: Biomolecular Coronas and Bio-Nano Interactions. ACS NANO 2024; 18:33257-33263. [PMID: 39602410 DOI: 10.1021/acsnano.4c13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
It has been nearly two decades since the term "protein corona" was coined. This term has since evolved to "biomolecular corona" or "biocorona" to capture the diverse biomolecules that spontaneously form on the surface of nanoparticles upon exposure to biological fluids and drive nanoparticle interactions with biological systems. In this Perspective, we highlight the significant progress in this field, including studies on nonprotein corona components, lipid nanoparticles, and the role of the corona in endogenous organ targeting. We also discuss research opportunities in this field, particularly the need for improved characterization and standardization of analysis and how recent advances in artificial intelligence and ex vivo models can improve our understanding of the biomolecular corona in guiding nanomedicine design.
Collapse
Affiliation(s)
- Shiyao Li
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
15
|
Shi Z, Ma R, Shan L, Tu H, Li Q, Su J, Lu F, Yu K, Geng Z, Slezak P, Zhou Z, Hu E, Shi S, Lan G, Xie R. Artificial Plateletoids Recruit Blood Proteins to Shield Symbiotic Thrombin: a Silk Fibroin/Calcium Interface Medicated Thrombin Generation and Preservation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406909. [PMID: 39638929 DOI: 10.1002/smll.202406909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Breaking the constraints of thrombin during storage and in vivo applications remains challenging because of its low stability and sensitivity to environmental temperature and acidity. Herein, an artificial plateletoid is developed for in situ thrombin generation through a co-incubation approach with plasma in vitro, utilizing a silk fibroin/Ca2+ interface, to enhance the activity and stability of the generated thrombin. Notably, the enzymatic activity of the plateletoid thrombin platform is as high as 30 U g-1, leading to rapid clotting within 55 s, and it persisted for at least 90 days at as high as 37 °C. This considerably lessens the difficulties associated with maintaining the cold chain while storing and shipping thrombin formulations. Additionally, a gastric bleeding model confirmed that the plateletoid platform improved the acid resistance of thrombin by upregulating the pH of the gastric environment (pH 0.8), facilitating oral delivery of thrombin for effective hemorrhage control in highly acidic stomach conditions. This pioneering study addresses the constraints of thrombin in storage and in vivo applications and may provide a basis for further research on biological storage and delivery approaches.
Collapse
Affiliation(s)
- Zhenghui Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Ruiyao Ma
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Lianqi Shan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Hongyu Tu
- Chongqing Customs Technology Center, Chongqing, 400044, China
| | - Qing Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Su
- College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Fei Lu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Kun Yu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhen Geng
- Institute of Translational Medicine, Organoid Research Center, National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Paul Slezak
- Ludwig Boltzmann Institute for Traumatology, AUVA Research Center, Vienna, 1200, Austria
| | - Zhihang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Enling Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shuo Shi
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Guangqian Lan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Ludwig Boltzmann Institute for Traumatology, AUVA Research Center, Vienna, 1200, Austria
| |
Collapse
|
16
|
Pan S, Yuan H, Zhai Q, Zhang Y, He H, Yin T, Tang X, Gou J. The journey of nanoparticles in the abdominal cavity: Exploring their in vivo fate and impact factors. J Control Release 2024; 376:266-285. [PMID: 39396710 DOI: 10.1016/j.jconrel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Peritoneal carcinomatosis (PC) is caused by metastasis of primary tumor cells from intra-abdominal organs to the peritoneal surface. Intraperitoneal (IP) chemotherapy allows close contact of high concentrations of therapeutic agents with cancer cells in the peritoneal cavity to prolong patient survival. However, conventional IP chemotherapy is prone to rapid elimination from the peritoneal cavity and lacks specificity towards cancer cells. To address these challenges, there is an imperative demand for exploiting novel drug delivery systems to enhance drug retention in the peritoneal cavity and target PC cells. Therefore, in this review, we first recapitulate the physiological structures and barriers associated with IP drug delivery, highlighting the in vivo fate of nanoparticles (NPs) after IP administration. Furthermore, the influence of physicochemical properties (particle size, charge, surface modification, and carrier composition) on the in vivo fate of NPs is discussed. Perspectives on the rational design of NPs for IP therapy and recent clinical progress are also provided.
Collapse
Affiliation(s)
- Shu Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Qiyao Zhai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
17
|
Dorsey PJ, Lau CL, Chang TC, Doerschuk PC, D'Addio SM. Review of machine learning for lipid nanoparticle formulation and process development. J Pharm Sci 2024; 113:3413-3433. [PMID: 39341497 DOI: 10.1016/j.xphs.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Lipid nanoparticles (LNPs) are a subset of pharmaceutical nanoparticulate formulations designed to encapsulate, stabilize, and deliver nucleic acid cargoes in vivo. Applications for LNPs include new interventions for genetic disorders, novel classes of vaccines, and alternate modes of intracellular delivery for therapeutic proteins. In the pharmaceutical industry, establishing a robust formulation and process to achieve target product performance is a critical component of drug development. Fundamental understanding of the processes for making LNPs and their interactions with biological systems have advanced considerably in the wake of the COVID-19 pandemic. Nevertheless, LNP formulation research remains largely empirical and resource intensive due to the multitude of input parameters and the complex physical phenomena that govern the processes of nanoparticle precipitation, self-assembly, structure evolution, and stability. Increasingly, artificial intelligence and machine learning (AI/ML) are being applied to improve the efficiency of research activities through in silico models and predictions, and to drive deeper fundamental understanding of experimental inputs to functional outputs. This review will identify current challenges and opportunities in the development of robust LNP formulations of nucleic acids, review studies that apply machine learning methods to experimental datasets, and provide discussion on associated data science challenges to facilitate collaboration between formulation and data scientists, aiming to accelerate the advancement of AI/ML applied to LNP formulation and process optimization.
Collapse
Affiliation(s)
- Phillip J Dorsey
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Christina L Lau
- Cornell University, School of Electrical and Computer Engineering, Ithaca, NY 14853, USA
| | - Ti-Chiun Chang
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Peter C Doerschuk
- Cornell University, School of Electrical and Computer Engineering, Ithaca, NY 14853, USA
| | - Suzanne M D'Addio
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
18
|
de Oliveira Bianchi JR, Fabrino DL, Quintão CMF, Dos Reis Coimbra JS, Santos IJB. Self-assembled α-lactalbumin nanostructures: encapsulation and controlled release of bioactive molecules in gastrointestinal in vitro model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9592-9602. [PMID: 39099556 DOI: 10.1002/jsfa.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Implementing encapsulation techniques is pivotal in safeguarding bioactive molecules against environmental conditions for drug delivery systems. Moreover, the food-grade nanocarrier is a delivery system and food ingredient crucial in creating nutraceutical foods. Nano α-lactalbumin has been shown to be a promissory nanocarrier for hydrophobic molecules. Furthermore, the nanoprotein can enhance the tecno-functional properties of food such as foam and emulsion. The present study investigated the nanostructured α-lactalbumin protein (nano α-la) as a delivery and controlled release system for bioactive molecules in a gastric-intestinal in vitro mimic system. RESULTS The nano α-la was synthesized by a low self-assembly technique, changing the solution ionic strength by NaCl and obtaining nano α-la 191.10 ± 21.33 nm and a spherical shape. The nano α-la showed higher encapsulation efficiency and loading capacity for quercetin than riboflavin, a potential carrier for hydrophobic compounds. Thermal analysis of nano α-la resulted in a ΔH of -1480 J g-1 for denaturation at 57.44 °C. The nanostructure formed by self-assembly modifies the foam volume increment and stability. Also, differences between nano and native proteins in emulsion activity and stability were noticed. The release profile in vitro showed that the nano α-la could not hold the molecules in gastric fluid. The Weibull and Korsmeyer-Peppas model better fits the release profile behavior in the studied fluids. CONCLUSION The present study shows the possibility of nano α-la as an alternative to molecule delivery systems and nutraceutical foods' formulation because of the high capacity to encapsulate hydrophobic molecules and the improvement of techno-functional properties. However, the nanocarrier is not perfectly suitable for the sustainable delivery of molecules in the gastrointestinal fluid, demanding improvements in the nanocarrier. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jhonatan Rafael de Oliveira Bianchi
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del Rei (UFSJ), Alto Paraopeba Campus, Ouro Branco, Brazil
| | - Daniela Leite Fabrino
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del Rei (UFSJ), Alto Paraopeba Campus, Ouro Branco, Brazil
| | - Cristiane Medina Finzi Quintão
- Department of Chemical Engineering, Federal University of São João del Rei (UFSJ), Alto Paraopeba Campus, Ouro Branco, Brazil
| | | | - Igor José Boggione Santos
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del Rei (UFSJ), Alto Paraopeba Campus, Ouro Branco, Brazil
| |
Collapse
|
19
|
Lu X, Qiu J, Li Y, Cai M, Yang X, Li S, Ye G, Yi W, Huang Y. PEGylation Can Effectively Strike a Balance in siRNA Delivery Performances of Guanidinylated Linear Synthetic Polypeptides with Potential Use for Transcriptional Gene Silencing. ACS Macro Lett 2024; 13:1251-1257. [PMID: 39259674 DOI: 10.1021/acsmacrolett.4c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The prevailing design philosophy for polymeric vectors delivering siRNA is rooted in the post-transcriptional gene silencing (PTGS) mechanism. Yet, the transcriptional gene silencing (TGS) mechanism offers a potentially more durable silencing effect, which necessitates efficient siRNA delivery into the nucleus. However, it remains a challenge for the polymeric vectors to efficiently deliver siRNA into the nucleus. We have explored guanidinylated cyclic synthetic polypeptides (GCSPs) to enhance the nuclear delivery of siRNA, but an increased cytotoxicity and difficulty in producing the GCSPs on a large scale limit their utility. Herein, we simply prepare PEGylated guanidinylated linear synthetic polypeptides (PGLSPs) exhibiting improved membrane penetration, direct siRNA transport to the nucleus, reduced toxicity, high cellular uptake, and mitigation of protein corona formation. The PEGylation can effectively balance the vector's nuclear delivery capacity with other critical aspects of performances for siRNA delivery. Therefore, the PGLSPs hold promise as TGS-based delivery vectors, offering potential for future therapeutic applications.
Collapse
Affiliation(s)
- Xujun Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiajian Qiu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yilan Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ming Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaohan Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Suifei Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Guodong Ye
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yugang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
20
|
Villacorta AM, Mielcarek A, Martinez MG, Jorge H, Henschke A, Coy E, Gomez-Vallejo V, Llop J, Moya SE. The In Vivo Biological Fate of Protein Corona: A Comparative PET Study of the Fate of Soft and Hard Protein Corona in Healthy Animal Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309616. [PMID: 38564782 DOI: 10.1002/smll.202309616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Radiolabeling and nuclear imaging techniques are used to investigate the biodistribution patterns of the soft and hard protein corona around poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) after administration to healthy mice. Soft and hard protein coronas of 131I-labeled BSA or 131I-labeled serum are formed on PLGA NPs functionalized with either polyehtylenimine (PEI) or bovine serum albumin (BSA). The exchangeability of hard and soft corona is assessed in vitro by gamma counting exposing PLGA NPs with corona to non-labeled BSA, serum, or simulated body fluid. PEI PLGA NPs form larger and more stable coronas than BSA PLGA NPs. Soft coronas are more exchangeable than hard ones. The in vivo fate of PEI PLGA NPs coated with preformed 18F-labeled BSA hard and soft coronas is assessed by positron emission tomography (PET) following intravenous administration. While the soft corona shows a biodistribution similar to free 18F BSA with high activity in blood and kidney, the hard corona follows patterns characteristic of nanoparticles, accumulating in the lungs, liver, and spleen. These results show that in vivo fates of soft and hard corona are different, and that soft corona is more easily exchanged with proteins from the body, while hard corona is largely retained on the nanoparticle surface.
Collapse
Affiliation(s)
- Angel Martinez Villacorta
- Radiochemistry and Nuclear Imaging Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
| | - Angelika Mielcarek
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| | - María Gómez Martinez
- Radiochemistry and Nuclear Imaging Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
- Universidad del País Vasco/Euskal Herriko Unibertsitatea, Dpto Química Orgánica II/ Facultad de Ciencia y Tecnología, Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Basque
| | - Helena Jorge
- Radiochemistry and Nuclear Imaging Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
| | - Agata Henschke
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| | - Vanessa Gomez-Vallejo
- Radiochemistry and Nuclear Imaging Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
| | - Sergio E Moya
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
| |
Collapse
|
21
|
Liu M, Wu E, Pan F, Tian K, Fu J, Yu Y, Guo Z, Ma Y, Wei A, Yu X, Zhan C, Qian J. Effects of drug-induced liver injury on the in vivo fate of liposomes. Eur J Pharm Biopharm 2024; 201:114389. [PMID: 38945407 DOI: 10.1016/j.ejpb.2024.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Liposomes represent one of the most extensively studied nano-carriers due to their potential in targeted drug delivery. However, the complex in vivo fate, particularly under pathological conditions, presents challenges for clinical translation of liposomal therapeutics. Liver serves as the most important organ for liposome accumulation and metabolism. Unfortunately, the fate of liposomes under pathological liver conditions has been significantly overlooked. This study aimed to investigate the in vivo pharmacokinetic profile and biodistribution profile of liposomes under drug-induced liver injury (DILI) conditions. Two classic DILI animal models, i.e. acetaminophen-induced acute liver injury (AILI) and triptolide-induced subacute liver injury (TILI), were established to observe the effect of pathological liver conditions on the in vivo performance of liposomes. The study revealed significant changes in the in vivo fate of liposomes following DILI, including prolonged blood circulation and enhanced hepatic accumulation of liposomes. Changes in the composition of plasma proteins and mononuclear phagocyte system (MPS)-related cell subpopulations collectively led to the altered in vivo fate of liposomes under liver injury conditions. Despite liver injury, macrophages remained the primary cells responsible for liposomes uptake in liver, with the recruited monocyte-derived macrophages exhibiting enhanced ability to phagocytose liposomes under pathological conditions. These findings indicated that high capture of liposomes by the recruited hepatic macrophages not only offered potential solutions for targeted delivery, but also warned the clinical application of patients under pathological liver conditions.
Collapse
Affiliation(s)
- Mengyuan Liu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai 201203, PR China
| | - Ercan Wu
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Feng Pan
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai 201203, PR China
| | - Kaisong Tian
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Jiaru Fu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yifei Yu
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Zhiwei Guo
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Yinyu Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Anqi Wei
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Xiaoyue Yu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai 201203, PR China.
| | - Changyou Zhan
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China.
| | - Jun Qian
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
22
|
Fu L, Huo S, Lin P, Wang J, Zhao J, You Y, Nie X, Ding S. Precise antibiotic delivery to the lung infection microenvironment boosts the treatment of pneumonia with decreased gut dysbiosis. Acta Biomater 2024; 184:352-367. [PMID: 38909721 DOI: 10.1016/j.actbio.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Bacterial pneumonia is a common disease with significant health risks. However, the overuse antibiotics in clinics face challenges such as inadequate targeting and limited drug utilization, leading to drug resistance and gut dysbiosis. Herein, a dual-responsive lung inflammatory tissue targeted nanoparticle (LITTN), designed for targeting lung tissue and bacteria, is screened from a series of prepared nanoparticles consisting of permanent cationic lipids, acid-responsive lipids, and reactive oxygen species-responsive and phenylboronic acid-modified lipids with different surface properties. Such nanoparticle is further verified to enhance the adsorption of vitronectin in serum. Additionally, the optimized nanoparticle exhibits more positive charge and coordination of boric acid with cis-diol in the infected microenvironment, facilitating electrostatic interactions with bacteria and biofilm penetration. Importantly, the antibacterial efficiency of dual-responsive rifampicin-loaded LITTN (Rif@LITTN) against methicillin-resistant staphylococcus aureus is 10 times higher than that of free rifampicin. In a mouse model of bacterial pneumonia, the intravenous administration of Rif@LITTN could precisely target the lungs, localize in the lung infection microenvironment, and trigger the responsive release of rifampicin, thereby effectively alleviating lung inflammation and reducing damage. Notably, the targeted delivery of rifampicin helps protect against antibiotic-induced changes in the gut microbiota. This study establishes a new strategy for precise delivery to the lung-infected microenvironment, promoting treatment efficacy while minimizing the impact on gut microbiota. STATEMENT OF SIGNIFICANCE: Intravenous antibiotics play a critical role in clinical care, particularly for severe bacterial pneumonia. However, the inability of antibiotics to reach target tissues causes serious side effects, including liver and kidney damage and intestinal dysbiosis. Therefore, achieving precise delivery of antibiotics is of great significance. In this study, we developed a novel lung inflammatory tissue-targeted nanoparticle that could target lung tissue after intravenous administration and then target the inflammatory microenvironment to trigger dual-responsive antibiotics release to synergistically treat pneumonia while maintaining the balance of gut microbiota and reducing the adverse effects of antibiotics. This study provides new ideas for targeted drug delivery and reference for clinical treatment of pneumonia.
Collapse
Affiliation(s)
- Ling Fu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Shaohu Huo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Beijing Children's Hospital, Capital Medical University, China National Clinical, Research Center of Respiratory Diseases, Beijing 100045, PR China
| | - Paiyu Lin
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Jing Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Jiaying Zhao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and, Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| | - Xuan Nie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, PR China.
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Beijing Children's Hospital, Capital Medical University, China National Clinical, Research Center of Respiratory Diseases, Beijing 100045, PR China.
| |
Collapse
|
23
|
Yin YW, Ma YQ, Ding HM. Effect of Nanoparticle Curvature on Its Interaction with Serum Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15205-15213. [PMID: 38990344 DOI: 10.1021/acs.langmuir.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The size or the curvature of nanoparticles (NPs) plays an important role in regulating the composition of the protein corona. However, the molecular mechanisms of how curvature affects the interaction of NPs with serum proteins still remain elusive. In this study, we employ all-atom molecular dynamics simulations to investigate the interactions between two typical serum proteins and PEGylated Au NPs with three different surface curvatures (0, 0.1, and 0.5 nm-1, respectively). The results show that for proteins with a regular shape, the binding strength between the serum protein and Au NPs decreases with increasing curvature. For irregularly shaped proteins with noticeable grooves, the binding strength between the protein and Au NPs does not change obviously with increasing curvature in the cases of smaller curvature. However, as the curvature continues to increase, Au NPs may act as ligands firmly adsorbed in the protein grooves, significantly enhancing the binding strength. Overall, our findings suggest that the impact of NP curvature on protein adsorption may be nonmonotonic, which may provide useful guidelines for better design of functionalized NPs in biomedical applications.
Collapse
Affiliation(s)
- Yue-Wen Yin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
24
|
Shah N, Soma SR, Quaye MB, Mahmoud D, Ahmed S, Malkoochi A, Obaid G. A Physiochemical, In Vitro, and In Vivo Comparative Analysis of Verteporfin-Lipid Conjugate Formulations: Solid Lipid Nanoparticles and Liposomes. ACS APPLIED BIO MATERIALS 2024; 7:4427-4441. [PMID: 38934648 PMCID: PMC11253097 DOI: 10.1021/acsabm.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
VisudyneⓇ, a liposomal formulation of verteporfin (benzoporphyrin derivative; BPD), is the only nanomedicine approved to date for photodynamic therapy (PDT). We have previously demonstrated that BPD conjugated to the lysophospholipid 1-arachidoyl-2-hydroxy-sn-glycero-3-phosphocholine (BPD-PC) exhibits the greatest physical stability in liposomes, while maintaining cancer cell phototoxicity, from a panel of BPD lipid conjugates evaluated. In this study, we prepared 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-based solid lipid nanoparticles (LNPs) that stably entrap BPD-PC, which resemble the composition of the SpikevaxⓇ Moderna COVID-19 vaccine, and compared them to a DPPC based liposomal formulation (Lipo BPD-PC). We evaluated the photochemical, optical, and phototherapeutic properties of both formulations. We also investigated the in vivo distribution and tumor microdistribution of both formulations. Our results demonstrated that Lipo BPD-PC is able to generate 17% more singlet oxygen than LNP BPD-PC, while interestingly, LNP BPD-PC is able to produce 76% more hydroxyl radicals and/or peroxynitrite anion. Importantly, only 28% of BPD-PC leaches out of the LNP BPD-PC formulation during 7 days of incubation in serum at 37 °C, while 100% of BPD-PC leaches out of the Lipo BPD-PC formulation under the same conditions. Despite these differences, there was no significant difference in cellular uptake of BPD-PC or phototoxicity in CT1BA5 murine pancreatic cancer cells (derived from a genetically engineered mouse model). Interestingly, PDT using LNP BPD-PC was more efficient at inducing immunogenic cell death (calreticulin membrane translocation) than Lipo BPD-PC when using IC25 and IC50 PDT doses. In vivo studies revealed that CT1BA5 tumor fluorescence signals from BPD-PC were 2.41-fold higher with Lipo BPD-PC than with LNP BPD-PC; however, no significant difference was observed in tumor tissue selectivity or tumor penetration. As such, we present LNP BPD-PC as a unique and more stable nanoplatform to carry BPD lipid conjugates, such as BPD-PC, with a potential for future photodynamic immune priming studies and multiagent drug delivery.
Collapse
Affiliation(s)
- Nimit Shah
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Siddharth Reddy Soma
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Maxwell Bortei Quaye
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Doha Mahmoud
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Sarah Ahmed
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Ashritha Malkoochi
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Girgis Obaid
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
25
|
Agrohia DK, Goswami R, Jantarat T, Çiçek YA, Thongsukh K, Jeon T, Bell JM, Rotello VM, Vachet RW. Suborgan Level Quantitation of Proteins in Tissues Delivered by Polymeric Nanocarriers. ACS NANO 2024; 18:16808-16818. [PMID: 38870478 PMCID: PMC11497159 DOI: 10.1021/acsnano.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Amidst the rapid growth of protein therapeutics as a drug class, there is an increased focus on designing systems to effectively deliver proteins to target organs. Quantitative monitoring of protein distributions in tissues is essential for optimal development of delivery systems; however, existing strategies can have limited accuracy, making it difficult to assess suborgan dosing. Here, we describe a quantitative imaging approach that utilizes metal-coded mass tags and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to quantify the suborgan distributions of proteins in tissues that have been delivered by polymeric nanocarriers. Using this approach, we measure nanomole per gram levels of proteins as delivered by guanidinium-functionalized poly(oxanorborneneimide) (PONI) polymers to various tissues, including the alveolar region of the lung. Due to the multiplexing capability of the LA-ICP-MS imaging, we are also able to simultaneously quantify protein and polymer distributions, obtaining valuable information about the relative excretion pathways of the protein cargo and carrier. This imaging approach will facilitate quantitative correlations between nanocarrier properties and protein cargo biodistributions.
Collapse
Affiliation(s)
- Dheeraj K. Agrohia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Teerapong Jantarat
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yağız Anil Çiçek
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Korndanai Thongsukh
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Taewon Jeon
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jonathan M. Bell
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
26
|
Li T, Wang Y, Zhou D. Manipulation of protein corona for nanomedicines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1982. [PMID: 39004508 DOI: 10.1002/wnan.1982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
Nanomedicines have significantly advanced the development of diagnostic and therapeutic strategies for various diseases, while they still encounter numerous challenges. Upon entry into the human body, nanomedicines interact with biomolecules to form a layer of proteins, which is defined as the protein corona that influences the biological properties of nanomedicines. Traditional approaches have primarily focused on designing stealthy nanomedicines to evade biomolecule adsorption; however, due to the intricacies of the biological environment within body, this method cannot completely prevent biomolecule adsorption. As research on the protein corona progresses, manipulating the protein corona to modulate the in vivo behaviors of nanomedicines has become a research focus. In this review, modern strategies focused on influencing the biological efficacy of nanomedicines in vivo by manipulating protein corona, along with their wide-ranging applications across diverse diseases are critically summarized, highlighted and discussed. Finally, future directions for this important yet challenging research area are also briefly discussed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Tao Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Southern Medical University, Guangzhou, People's Republic of China
| | - Yupeng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Southern Medical University, Guangzhou, People's Republic of China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
27
|
Subramaniam S, Joyce P, Conn CE, Prestidge CA. Cellular uptake and in vitro antibacterial activity of lipid-based nanoantibiotics are influenced by protein corona. Biomater Sci 2024; 12:3411-3422. [PMID: 38809118 DOI: 10.1039/d4bm00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Bacteria have evolved survival mechanisms that enable them to live within host cells, triggering persistent intracellular infections that present significant clinical challenges due to the inability for conventional antibiotics to permeate cell membranes. In recent years, antibiotic nanocarriers or 'nanoantibiotics' have presented a promising strategy for overcoming intracellular infections by facilitating cellular uptake of antibiotics, thus improving targeting to the bacteria. However, prior to reaching host cells, nanocarriers experience interactions with proteins that form a corona and alter their physiological response. The influence of this protein corona on the cellular uptake, drug release and efficacy of nanoantibiotics for intracellular infections is poorly understood and commonly overlooked in preclinical studies. In this study, protein corona influence on cellular uptake was investigated for two nanoparticles; liposomes and cubosomes in macrophage and epithelial cells that are commonly infected with pathogens. Studies were conducted in presence of fetal bovine serum (FBS) to form a biologically relevant protein corona in an in vitro setting. Protein corona impact on cellular uptake was shown to be nanoparticle-dependent, where reduced internalization was observed for liposomes, the opposite was observed for cubosomes. Subsequently, vancomycin-loaded cubosomes were explored for their drug delivery performance against intracellular small colony variants of Staphylococcus aureus. We demonstrated improved bacterial killing in macrophages, with greater reduction in bacterial viability upon internalization of cubosomes mediated by the protein corona. However, no differences in efficacy were observed in epithelial cells. Thus, this study provides insights and evidence to the role of protein corona in modulating the performance of nanoparticles in a dynamic manner; these findings will facilitate improved understanding and translation of future investigations from in vitro to in vivo.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide 5000, South Australia, Australia.
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide 5000, South Australia, Australia.
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide 5000, South Australia, Australia.
| |
Collapse
|
28
|
Liam-Or R, Faruqu FN, Walters A, Han S, Xu L, Wang JTW, Oberlaender J, Sanchez-Fueyo A, Lombardi G, Dazzi F, Mailaender V, Al-Jamal KT. Cellular uptake and in vivo distribution of mesenchymal-stem-cell-derived extracellular vesicles are protein corona dependent. NATURE NANOTECHNOLOGY 2024; 19:846-855. [PMID: 38366223 PMCID: PMC11186763 DOI: 10.1038/s41565-023-01585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/27/2023] [Indexed: 02/18/2024]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem cells are promising nanotherapeutics in liver diseases due to their regenerative and immunomodulatory properties. Nevertheless, a concern has been raised regarding the rapid clearance of exogenous EVs by phagocytic cells. Here we explore the impact of protein corona on EVs derived from two culturing conditions in which specific proteins acquired from media were simultaneously adsorbed on the EV surface. Additionally, by incubating EVs with serum, simulating protein corona formation upon systemic delivery, further resolved protein corona-EV complex patterns were investigated. Our findings reveal the potential influences of corona composition on EVs under in vitro conditions and their in vivo kinetics. Our data suggest that bound albumin creates an EV signature that can retarget EVs from hepatic macrophages. This results in markedly improved cellular uptake by hepatocytes, liver sinusoidal endothelial cells and hepatic stellate cells. This phenomenon can be applied as a camouflage strategy by precoating EVs with albumin to fabricate the albumin-enriched protein corona-EV complex, enhancing non-phagocytic uptake in the liver. This work addresses a critical challenge facing intravenously administered EVs for liver therapy by tailoring the protein corona-EV complex for liver cell targeting and immune evasion.
Collapse
Affiliation(s)
- Revadee Liam-Or
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Farid N Faruqu
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Pharmacology Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Adam Walters
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Shunping Han
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Lizhou Xu
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Jennifer Oberlaender
- Max Planck Institute for Polymer Research, Mainz, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, King's College London University and King's College Hospital, London, UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Francesco Dazzi
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Volker Mailaender
- Max Planck Institute for Polymer Research, Mainz, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
29
|
Liu H, Liu Z, Xiao J, Liu X, Jiang H, Wang X. Photo-induced Oriented Crystallization of Intracellular Nanocrystals Based on Phase Separation for Diagnostic Bioimaging and Analysis. Adv Healthc Mater 2024; 13:e2303248. [PMID: 38272459 DOI: 10.1002/adhm.202303248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Indexed: 01/27/2024]
Abstract
Biomineral crystals form complex nonequilibrium structures based on the multistep nucleation theory, via transient amorphous precursors. However, the intricate nature of the biological system results in the inconsistent frequency of nucleation and crystallization, which making it problematic to obtain homogeneous nanocrystals, limits their application in biomedicine. Here, it is reported that homogeneous nanocrystals of photoinduced oriented crystallization with protein coronas are based on intracellular liquid-liquid phase separation for in situ analysis and mapping of surface-enhanced Raman spectroscopy (SERS). Near-infrared light promotes the formation of intracellular dense phases, accelerates the nucleation of gold atoms at secondary structure sites of proteins, and promotes the growth of crystals. Homogeneous gold nanocrystals with stable SERS signals can be used to analysis different cell cycles and acquire in situ molecular information of metastatic tumor cells. Of note are tag molecule is embedded in protein coronas of gold nanocrystals to enable the mapping of patient tumor tissue samples and the portable recognition of tumor cells. Thus, this study proposes a new strategy for biomineralization of intracellular homogeneous gold nanocrystals and its potential application.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhiming Liu
- Guangdong Provincial Key Laboratory of Laser Life Science and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Jiang Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
30
|
Tang Y, Liu B, Zhang Y, Liu Y, Huang Y, Fan W. Interactions between nanoparticles and lymphatic systems: Mechanisms and applications in drug delivery. Adv Drug Deliv Rev 2024; 209:115304. [PMID: 38599495 DOI: 10.1016/j.addr.2024.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The lymphatic system has garnered significant attention in drug delivery research due to the advantages it offers, such as enhancing systemic exposure and enabling lymph node targeting for nanomedicines via the lymphatic delivery route. The journey of drug carriers involves transport from the administration site to the lymphatic vessels, traversing the lymph before entering the bloodstream or targeting specific lymph nodes. However, the anatomical and physiological barriers of the lymphatic system play a pivotal role in influencing the behavior and efficiency of carriers. To expedite research and subsequent clinical translation, this review begins by introducing the composition and classification of the lymphatic system. Subsequently, we explore the routes and mechanisms through which nanoparticles enter lymphatic vessels and lymph nodes. The review further delves into the interactions between nanomedicine and body fluids at the administration site or within lymphatic vessels. Finally, we provide a comprehensive overview of recent advancements in lymphatic delivery systems, addressing the challenges and opportunities inherent in current systems for delivering macromolecules and vaccines.
Collapse
Affiliation(s)
- Yisi Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NHC Key Laboratory of Comparative Medicine, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China.
| | - Wufa Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
31
|
Siddiquee T, Bhaskaran NA, Nathani K, Sawarkar SP. Empowering lung cancer treatment: Harnessing the potential of natural phytoconstituent-loaded nanoparticles. Phytother Res 2024. [PMID: 38806412 DOI: 10.1002/ptr.8241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Lung cancer, the second leading cause of cancer-related deaths, accounts for a substantial portion, representing 18.4% of all cancer fatalities. Despite advances in treatment modalities such as chemotherapy, surgery, and immunotherapy, significant challenges persist, including chemoresistance, non-specific targeting, and adverse effects. Consequently, there is an urgent need for innovative therapeutic approaches to overcome these limitations. Natural compounds, particularly phytoconstituents, have emerged as promising candidates due to their potent anticancer properties and relatively low incidence of adverse effects compared to conventional treatments. However, inherent challenges such as poor solubility, rapid metabolism, and enzymatic degradation hinder their clinical utility. To address these obstacles, researchers have increasingly turned to nanotechnology-based drug delivery systems (DDS). Nanocarriers offer several advantages, including enhanced drug stability, prolonged circulation time, and targeted delivery to tumor sites, thereby minimizing off-target effects. By encapsulating phytoconstituents within nanocarriers, researchers aim to optimize their bioavailability and therapeutic efficacy while reducing systemic toxicity. Moreover, the integration of nanotechnology with phytoconstituents allows for a nuanced understanding of the intricate molecular pathways involved in lung cancer pathogenesis. This integrated approach holds promise for modulating key cellular processes implicated in tumor growth and progression. Additionally, by leveraging the synergistic effects of phytoconstituents and nanocarriers, researchers seek to develop tailored therapeutic strategies that maximize efficacy while minimizing adverse effects. In conclusion, the integration of phytoconstituents with nanocarriers represents a promising avenue for advancing lung cancer treatment. This synergistic approach has the potential to revolutionize current therapeutic paradigms by offering targeted, efficient, and minimally toxic interventions. Continued research in this field holds the promise of improving patient outcomes and addressing unmet clinical needs in lung cancer management.
Collapse
Affiliation(s)
- Taufique Siddiquee
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Navya Ajitkumar Bhaskaran
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Khushali Nathani
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| |
Collapse
|
32
|
Dorsch A, Förschner F, Ravandeh M, da Silva Brito WA, Saadati F, Delcea M, Wende K, Bekeschus S. Nanoplastic Size and Surface Chemistry Dictate Decoration by Human Saliva Proteins. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25977-25993. [PMID: 38741563 DOI: 10.1021/acsami.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Environmental pollution with plastic polymers has become a global problem, leaving no continent and habitat unaffected. Plastic waste is broken down into smaller parts by environmental factors, which generate micro- and nanoplastic particles (MNPPs), ultimately ending up in the human food chain. Before entering the human body, MNPPs make their first contact with saliva in the human mouth. However, it is unknown what proteins attach to plastic particles and whether such protein corona formation is affected by the particle's biophysical properties. To this end, we employed polystyrene MNPPs of two different sizes and three different charges and incubated them individually with saliva donated by healthy human volunteers. Particle zeta potential and size analyses were performed using dynamic light scattering complemented by nanoliquid chromatography high-resolution mass spectrometry (nLC/HRMS) to qualitatively and quantitatively reveal the protein soft and hard corona for each particle type. Notably, protein profiles and relative quantities were dictated by plastic particle size and charge, which in turn affected their hydrodynamic size, polydispersity, and zeta potential. Strikingly, we provide evidence of the latter to be dynamic processes depending on exposure times. Smaller particles seemed to be more reactive with the surrounding proteins, and cultures of the particles with five different cell lines (HeLa, HEK293, A549, HepG2, and HaCaT) indicated protein corona effects on cellular metabolic activity and genotoxicity. In summary, our data suggest nanoplastic size and surface chemistry dictate the decoration by human saliva proteins, with important implications for MNPP uptake in humans.
Collapse
Affiliation(s)
- Anna Dorsch
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Fritz Förschner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Mehdi Ravandeh
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Walison Augusto da Silva Brito
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86057-970, Brazil
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Mihaela Delcea
- Biophysical Chemistry Department, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
33
|
Kong H, Zheng C, Yi K, Mintz RL, Lao YH, Tao Y, Li M. An antifouling membrane-fusogenic liposome for effective intracellular delivery in vivo. Nat Commun 2024; 15:4267. [PMID: 38769317 PMCID: PMC11106281 DOI: 10.1038/s41467-024-46533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 03/01/2024] [Indexed: 05/22/2024] Open
Abstract
The membrane-fusion-based internalization without lysosomal entrapment is advantageous for intracellular delivery over endocytosis. However, protein corona formed on the membrane-fusogenic liposome surface converts its membrane-fusion performance to lysosome-dependent endocytosis, causing poorer delivery efficiency in biological conditions. Herein, we develop an antifouling membrane-fusogenic liposome for effective intracellular delivery in vivo. Leveraging specific lipid composition at an optimized ratio, such antifouling membrane-fusogenic liposome facilitates fusion capacity even in protein-rich conditions, attributed to the copious zwitterionic phosphorylcholine groups for protein-adsorption resistance. Consequently, the antifouling membrane-fusogenic liposome demonstrates robust membrane-fusion-mediated delivery in the medium with up to 38% fetal bovine serum, outclassing two traditional membrane-fusogenic liposomes effective at 4% and 6% concentrations. When injected into mice, antifouling membrane-fusogenic liposomes can keep their membrane-fusion-transportation behaviors, thereby achieving efficient luciferase transfection and enhancing gene-editing-mediated viral inhibition. This study provides a promising tool for effective intracellular delivery under complex physiological environments, enlightening future nanomedicine design.
Collapse
Affiliation(s)
- Huimin Kong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Rachel L Mintz
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
34
|
Chen Y, Xu S, Ren S, Zhang J, Xu J, Song Y, Peng J, Zhang S, Du Q, Chen Y. Design of a targeted dual drug delivery system for boosting the efficacy of photoimmunotherapy against melanoma proliferation and metastasis. J Adv Res 2024:S2090-1232(24)00207-8. [PMID: 38768811 DOI: 10.1016/j.jare.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION The combination of a photosensitizer and indoleamine-2,3 dioxygenase (IDO) inhibitor provides a promising photoimmunotherapy (PIT) strategy for melanoma treatment. A dual drug delivery system offers a potential approach for optimizing the inhibitory effects of PIT on melanoma proliferation and metastasis. OBJECTIVE To develop a dual drug delivery system based on PIT and to study its efficacy in inhibiting melanoma proliferation and metastasis. METHODS We constructed a multifunctional nano-porphyrin material (P18-APBA-HA) using the photosensitizer-purpurin 18 (P18), hyaluronic acid (HA), and 4-(aminomethyl) phenylboronic acid (APBA). The resulting P18-APBA-HA was inserted into a phospholipid membrane and the IDO inhibitor epacadostat (EPA) was loaded into the internal phase to prepare a dual drug delivery system (Lip\EPA\P18-APBA-HA). Moreover, we also investigated its physicochemical properties, targeting, anti-tumor immunity, and anti-tumor proliferation and metastasis effects. RESULTS The designed system utilized the pH sensitivity of borate ester to realize an enhanced-targeting strategy to facilitate the drug distribution in tumor lesions and efficient receptor-mediated cellular endocytosis. The intracellular release of EPA from Lip\EPA\P18-APBA-HA was triggered by thermal radiation, thereby inhibiting IDO activity in the tumor microenvironment, and promoting activation of the immune response. Intravenous administration of Lip\EPA\P18-APBA-HA effectively induced anti-tumor immunity by promoting dendritic cell maturation, cytotoxic T cell activation, and regulatory T cell suppression, and regulating cytokine secretion, to inhibit the proliferation of melanoma and lung metastasis. CONCLUSION The proposed nano-drug delivery system holds promise as offers a promising strategy to enhance the inhibitory effects of the combination of EPA and P18 on melanoma proliferation and metastasis.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Shan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Shuang Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Jiyuan Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jinzhuan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Yuxuan Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Shuai Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yan Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| |
Collapse
|
35
|
Pan F, Liu M, Li G, Chen B, Chu Y, Yang Y, Wu E, Yu Y, Lin S, Ding T, Wei X, Zhan C, Qian J. Phospholipid Type Regulates Protein Corona Composition and In Vivo Performance of Lipid Nanodiscs. Mol Pharm 2024; 21:2272-2283. [PMID: 38607681 DOI: 10.1021/acs.molpharmaceut.3c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Over the years, there has been significant interest in PEGylated lipid-based nanocarriers within the drug delivery field. The inevitable interplay between the nanocarriers and plasma protein plays a pivotal role in their in vivo biological fate. Understanding the factors influencing lipid-based nanocarrier and protein corona interactions is of paramount importance in the design and clinical translation of these nanocarriers. Herein, discoid-shaped lipid nanodiscs (sNDs) composed of different phospholipids with varied lipid tails and head groups were fabricated. We investigated the impact of phospholipid components on the interaction between sNDs and serum proteins, particle stability, and biodistribution. The results showed that all of these lipid nanodiscs remained stable over a 15 day storage period, while their stability in the blood serum demonstrated significant differences. The sND composed of POPG exhibited the least stability due to its potent complement activation capability, resulting in rapid blood clearance. Furthermore, a negative correlation between the complement activation capability and serum stability was identified. Pharmacokinetic and biodistribution experiments indicated that phospholipid composition did not influence the capability of sNDs to evade the accelerated blood clearance phenomenon. Complement deposition on the sND was inversely associated with the area under the curve. Additionally, all lipid nanodiscs exhibited dominant adsorption of apolipoprotein. Remarkably, the POPC-based lipid nanodisc displayed a significantly higher deposition of apolipoprotein E, contributing to an obvious brain distribution, which provides a promising tool for brain-targeted drug delivery.
Collapse
Affiliation(s)
- Feng Pan
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China
| | - Mengyuan Liu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China
| | - Guanghui Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China
| | - Boqian Chen
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Yuxiu Chu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Yang Yang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Ercan Wu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Yifei Yu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Shiqi Lin
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Tianhao Ding
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoli Wei
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Changyou Zhan
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Jun Qian
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
36
|
Zairov RR, Kornev TA, Akhmadeev BS, Dovzhenko AP, Vasilyev VA, Kholin KV, Nizameeva GR, Ismaev IE, Mukhametzyanov TA, Liubina АP, Voloshina AD, Mustafina AR. Expanding Mn 2+ loading capacity of BSA via mild non-thermal denaturing and cross-linking as a tool to maximize the relaxivity of water protons. Int J Biol Macromol 2024; 266:131338. [PMID: 38569987 DOI: 10.1016/j.ijbiomac.2024.131338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Development of nanoparticles (NPs) serving as contrast enhancing agents in MRI requires a combination of high contrasting effect with the biosafety and hemocompatibility. This work demonstrates that bovine serum albumin (BSA) molecules bound to paramagnetic Mn2+ ions are promising building blocks of such NPs. The desolvation-induced denaturation of BSA bound with Mn2+ ions followed by the glutaraldehyde-facilitated cross-linking provides the uniform in size 102.0 ± 0.7 nm BSA-based nanoparticles (BSA-NPs) loaded with Mn2+ ions, which are manifested in aqueous solutions as negatively charged spheres with high colloid stability. The optimal loading of Mn2+ ions into BSA-NPs provides maximum values of longitudinal and transverse relaxivity at 98.9 and 133.6 mM-1 s-1, respectively, which are among the best known from the literature. The spin trap EPR method indicates that Mn2+ ions bound to BSA-NPs exhibit poor catalytic activity in the Fenton-like reaction. On the contrary, the presence of BSA-NPs has an antioxidant effect by preventing the accumulation of hydroxyl radicals produced by H2O2. The NPs exhibit remarkably low hemolytic activity and hemagglutination can be avoided at concentrations lower than 110 μM. Thus, BSA-NPs bound with Mn2+ ions are promising candidates for combining high contrast effect with biosafety and hemocompatibility.
Collapse
Affiliation(s)
- Rustem R Zairov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation.
| | - Timur A Kornev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Bulat S Akhmadeev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Alexey P Dovzhenko
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Vadim A Vasilyev
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Kirill V Kholin
- Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russian Federation
| | - Guliya R Nizameeva
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russian Federation
| | - Ildus E Ismaev
- A.N. Tupolev Kazan Research Technological University, Kazan 420015, Russia
| | - Timur A Mukhametzyanov
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Аnna P Liubina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Alexandra D Voloshina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Asiya R Mustafina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| |
Collapse
|
37
|
Gong K, Jiao J, Wu Z, Wang Q, Liao J, Duan Y, Lin J, Yu J, Sun Y, Zhang Y, Duan Y. Nanosystem Delivers Senescence Activators and Immunomodulators to Combat Liver Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308310. [PMID: 38520730 PMCID: PMC11132057 DOI: 10.1002/advs.202308310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/28/2024] [Indexed: 03/25/2024]
Abstract
CD47 blockade has emerged as a promising immunotherapy against liver cancer. However, the optimization of its antitumor effectiveness using efficient drug delivery systems or combinations of therapeutic agents remains largely incomplete. Here, patients with liver cancer co-expressing CD47 and CDC7 (cell division cycle 7, a negative senescence-related gene) are found to have the worst prognosis. Moreover, CD47 is highly expressed, and senescence is inhibited after the development of chemoresistance, suggesting that combination therapy targeting CD47 and CDC7 to inhibit CD47 and induce senescence may be a promising strategy for liver cancer. The efficacy of intravenously administered CDC7 and CD47 inhibitors is limited by low uptake and short circulation times. Here, inhibitors are coloaded into a dual-targeted nanosystem. The sequential release of the inhibitors from the nanosystem under acidic conditions first induces cellular senescence and then promotes immune responses. In an in situ liver cancer mouse model and a chemotherapy-resistant mouse model, the nanosystem effectively inhibited tumor growth by 90.33% and 85.15%, respectively. Overall, the nanosystem in this work achieved the sequential release of CDC7 and CD47 inhibitors in situ to trigger senescence and induce immunotherapy, effectively combating liver cancer and overcoming chemoresistance.
Collapse
Affiliation(s)
- Ke Gong
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032P. R. China
| | - Juyang Jiao
- Department of Bone and Joint SurgeryDepartment of OrthopedicsRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200001P. R. China
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032P. R. China
| | - Quan Wang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032P. R. China
| | - Jinghan Liao
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032P. R. China
| | - Yi Duan
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032P. R. China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032P. R. China
| | - Jian Yu
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032P. R. China
| | - Ying Sun
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032P. R. China
| | - Yong Zhang
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032P. R. China
| |
Collapse
|
38
|
Wu Z, Yuan C, Xia Q, Qu Y, Yang H, Du Q, Xu B. Pre-coating cRGD-modified bovine serum albumin enhanced the anti-tumor angiogenesis of siVEGF-loaded chitosan-based nanoparticles by manipulating the protein corona composition. Int J Biol Macromol 2024; 267:131546. [PMID: 38614172 DOI: 10.1016/j.ijbiomac.2024.131546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Chitosan-based nanoparticles inevitably adsorb numerous proteins in the bloodstream, forming a protein corona that significantly influences their functionality. This study employed a pre-coated protein corona using cyclic Arg-Gly-Asp peptide (cRGD)-modified bovine serum albumin (BcR) to confer tumor-targeting capabilities on siVEGF-loaded chitosan-based nanoparticles (CsR/siVEGF NPs) and actively manipulated the serum protein corona composition to enhance their anti-tumor angiogenesis. Consequently, BcR effectively binds to the nanoparticles' surface, generating nanocarriers of appropriate size and stability that enhance the inhibition of endothelial cell proliferation, migration, invasion, and tube formation, as well as suppress tumor proliferation and angiogenesis in tumor-bearing nude mice. Proteomic analysis indicated a significant enrichment of serotransferrin, albumin, and proteasome subunit alpha type-1 in the protein corona of BcR-precoated NPs formed in the serum of tumor-bearing nude mice. Additionally, there was a decrease in proteins associated with complement activation, immunoglobulins, blood coagulation, and acute-phase responses. This modification resulted in an enhanced impact on anti-tumor angiogenesis, along with a reduction in opsonization and inflammatory responses. Therefore, pre-coating of nanoparticles with a functionalized albumin corona to manipulate the composition of serum protein corona emerges as an innovative approach to improve the delivery effectiveness of chitosan-based carriers for siVEGF, targeting the inhibition of tumor angiogenesis.
Collapse
Affiliation(s)
- Zhenqian Wu
- School of Pharmacy, Nantong University, Nantong 226019, PR China
| | - Chen Yuan
- School of Pharmacy, Nantong University, Nantong 226019, PR China
| | - Qin Xia
- School of Pharmacy, Nantong University, Nantong 226019, PR China
| | - Yan Qu
- School of Pharmacy, Nantong University, Nantong 226019, PR China
| | - Han Yang
- School of Pharmacy, Nantong University, Nantong 226019, PR China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong 226019, PR China.
| |
Collapse
|
39
|
He Z, Qu S, Shang L. Perspectives on Protein-Nanoparticle Interactions at the In Vivo Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7781-7790. [PMID: 38572817 DOI: 10.1021/acs.langmuir.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The distinct features of nanoparticles have provided a vast opportunity of developing new diagnosis and therapy strategies for miscellaneous diseases. Although a few nanomedicines are available in the market or in the translation stage, many important issues are still unsolved. When entering the body, nanomaterials will be quickly coated by proteins from their surroundings, forming a corona on their surface, the so-called protein corona. Studies have shown that the protein corona has many important biological implications, particularly at the in vivo level. For example, they can promote the immune system to rapidly clear these outer materials and prevent nanoparticles from playing their designed role in therapy. In this Perspective, the available techniques for characterizing protein-nanoparticle interactions are critically summarized. Effects of nanoparticle properties and environmental factors on protein corona formation, which can further regulate the in vivo fate of nanoparticles, are highlighted and discussed. Moreover, recent progress on the biomedical application of protein corona-engineered nanoparticles is introduced, and future directions for this important yet challenging research area are also briefly discussed.
Collapse
Affiliation(s)
- Zhenhua He
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 China
| | - Shaohua Qu
- School of Physics and Electronic Information, Yan'an University, Yan'an, Shannxi 716000, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 China
| |
Collapse
|
40
|
Qiu S, Liu J, Chen J, Li Y, Bu T, Li Z, Zhang L, Sun W, Zhou T, Hu W, Yang G, Yuan L, Duan Y, Xing C. Targeted delivery of MerTK protein via cell membrane engineered nanoparticle enhances efferocytosis and attenuates atherosclerosis in diabetic ApoE -/- Mice. J Nanobiotechnology 2024; 22:178. [PMID: 38614985 PMCID: PMC11015613 DOI: 10.1186/s12951-024-02463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Clearance of apoptotic cells by efferocytosis is crucial for prevention of atherosclerosis progress, and impaired efferocytosis contributes to the aggravated atherosclerosis. RESULTS In this study, we found that diabetic ApoE-/- mice showed aggravated atherosclerosis as hyperglycemia damaged the efferocytosis capacity at least partially due to decreased expression of Mer tyrosine kinase (MerTK) on macrophages. To locally restore MerTK in the macrophages in the plaque, hybrid membrane nanovesicles (HMNVs) were thus developed. Briefly, cell membrane from MerTK overexpressing RAW264.7 cell and transferrin receptor (TfR) overexpressing HEK293T cell were mixed with DOPE polymers to produce nanovesicles designated as HMNVs. HMNVs could fuse with the recipient cell membrane and thus increased MerTK in diabetic macrophages, which in turn restored the efferocytosis capacity. Upon intravenous administration into diabetic ApoE-/- mice, superparamagnetic iron oxide nanoparticles (SMN) decorated HMNVs accumulated at the aorta site significantly under magnetic navigation, where the recipient macrophages cleared the apoptotic cells efficiently and thus decreased the inflammation. CONCLUSIONS Our study indicates that MerTK decrease in macrophages contributes to the aggravated atherosclerosis in diabetic ApoE-/- mice and regional restoration of MerTK in macrophages of the plaque via HMNVs could be a promising therapeutic approach.
Collapse
Affiliation(s)
- Shuo Qiu
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Jiahan Liu
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Jianmei Chen
- Department of Health Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yangni Li
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Te Bu
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Zhelong Li
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Liang Zhang
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Wenqi Sun
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Tian Zhou
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Wei Hu
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Guodong Yang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China.
| | - Yunyou Duan
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China.
| | - Changyang Xing
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China.
| |
Collapse
|
41
|
Marques C, Borchard G, Jordan O. Unveiling the challenges of engineered protein corona from the proteins' perspective. Int J Pharm 2024; 654:123987. [PMID: 38467206 DOI: 10.1016/j.ijpharm.2024.123987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
It is well known that protein corona affects the "biological identity" of nanoparticles (NPs), which has been seen as both a challenge and an opportunity. Approaches have moved from avoiding protein adsorption to trying to direct it, taking advantage of the formation of a protein corona to favorably modify the pharmacokinetic parameters of NPs. Although promising, the results obtained with engineered NPs still need to be completely understood. While much effort has been put into understanding how the surface of nanomaterials affects protein absorption, less is known about how proteins can affect corona formation due to their specific physicochemical properties. This review addresses this knowledge gap, examining key protein factors influencing corona formation, highlighting current challenges in studying protein-protein interactions, and discussing future perspectives in the field.
Collapse
Affiliation(s)
- Cintia Marques
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1211, Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet 1211, Geneva, Switzerland.
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1211, Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet 1211, Geneva, Switzerland
| | - Olivier Jordan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1211, Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet 1211, Geneva, Switzerland
| |
Collapse
|
42
|
Li X, Zou J, He Z, Sun Y, Song X, He W. The interaction between particles and vascular endothelium in blood flow. Adv Drug Deliv Rev 2024; 207:115216. [PMID: 38387770 DOI: 10.1016/j.addr.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Particle-based drug delivery systems have shown promising application potential to treat human diseases; however, an incomplete understanding of their interactions with vascular endothelium in blood flow prevents their inclusion into mainstream clinical applications. The flow performance of nano/micro-sized particles in the blood are disturbed by many external/internal factors, including blood constituents, particle properties, and endothelium bioactivities, affecting the fate of particles in vivo and therapeutic effects for diseases. This review highlights how the blood constituents, hemodynamic environment and particle properties influence the interactions and particle activities in vivo. Moreover, we briefly summarized the structure and functions of endothelium and simulated devices for studying particle performance under blood flow conditions. Finally, based on particle-endothelium interactions, we propose future opportunities for novel therapeutic strategies and provide solutions to challenges in particle delivery systems for accelerating their clinical translation. This review helps provoke an increasing in-depth understanding of particle-endothelium interactions and inspires more strategies that may benefit the development of particle medicine.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongshan He
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co., LtD., Jinan 250000, PR China
| | - Xiangrong Song
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China.
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China.
| |
Collapse
|
43
|
Wang Q, Li X, Cao Z, Feng W, Chen Y, Jiang D. Enzyme-Mediated Bioorthogonal Cascade Catalytic Reaction for Metabolism Intervention and Enhanced Ferroptosis on Neuroblastoma. J Am Chem Soc 2024; 146:8228-8241. [PMID: 38471004 DOI: 10.1021/jacs.3c13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
It remains a tremendous challenge to explore effective therapeutic modalities against neuroblastoma, a lethal cancer of the sympathetic nervous system with poor prognosis and disappointing treatment outcomes. Considering the limitations of conventional treatment modalities and the intrinsic vulnerability of neuroblastoma, we herein develop a pioneering sequential catalytic therapeutic system that utilizes lactate oxidase (LOx)/horseradish peroxidase (HRP)-loaded amorphous zinc metal-organic framework, named LOx/HRP-aZIF, in combination with a 3-indole-acetic acid (IAA) prodrug. On the basis of abnormal lactate accumulation that occurs in the tumor microenvironment, the cascade reaction of LOx and HRP consumes endogenous glutathione and a reduced form of nicotinamide adenine dinucleotide to achieve the first stage of killing cancer cells via antioxidative incapacitation and electron transport chain interference. Furthermore, the generation of reactive oxygen species induced by HRP and IAA through bioorthogonal catalysis promotes ferritin degradation and lipid peroxidation, ultimately provoking self-enhanced ferroptosis with positive feedback by initiating an endogenous Fenton reaction. This work highlights the superiority of the natural enzyme-dependent cascade and bioorthogonal catalytic reaction, offering a paradigm for synergistically enzyme-based metabolism-ferroptosis anticancer therapy.
Collapse
Affiliation(s)
- Qi Wang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Xiangze Li
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Zhiyao Cao
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang 325088, P. R. China
| | - Dapeng Jiang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
44
|
Zhang H, Gao X, Sun Q, Dong X, Zhu Z, Yang C. Incorporation of poly(γ-glutamic acid) in lipid nanoparticles for enhanced mRNA delivery efficiency in vitro and in vivo. Acta Biomater 2024; 177:361-376. [PMID: 38342193 DOI: 10.1016/j.actbio.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Messenger RNA (mRNA)-based therapy shows immense potential for broad biomedical applications. However, the development of safe and efficacious mRNA delivery vectors remains challenging due to delivery barriers and inefficient intracellular payload release. Herein, we presented a simple strategy to boost the mRNA intracellular release by incorporation of anionic poly(γ-glutamic acid) (PGA) into an ionizable lipid-based LNP/mRNA. We systematically investigated the impact of PGA incorporation on mRNA transfection both in vitro and in vivo. The molecular weights and formulation ratios of PGA greatly affected the transfection efficacy of LNP/mRNA. From in vitro study, the optimized LNP/mRNA/PGA was formulated by incorporation of PGA with the molecular weight of 80 kDa or 200 kDa and the charge ratio (N/P/C) of 25/1/1. The optimized formulation achieved around 3-fold mRNA expression in HeLa cells compared to the bare LNP/mRNA. The intracellular releasing study using specific DNA probe revealed that this enhancement of transfection efficacy was attributed to the elevated mRNA release into cytoplasm. Moreover, the optimized LNP/mRNA/PGA achieved up to 5-fold or 3-fold increase of luciferase mRNA expression in vivo after being injected into mice systematically or intramuscularly, respectively. In addition, the incorporation of PGA did not significantly alter the biodistribution profile of the complexes on both organ and cellular levels. Therefore, our work provides a simple strategy to boost mRNA delivery, which holds great promise to improve the efficacy of mRNA therapeutics for various biomedical applications. STATEMENT OF SIGNIFICANCE: The process of designing and screening potent mRNA carriers is complicated and time-consuming, while the efficacy is not always satisfying due to the delivery barriers and inefficient mRNA release. This work presented an alternative strategy to boost the mRNA delivery efficacy by incorporating an anionic natural polymer poly(γ-glutamic acid) (PGA) into LNP/mRNA complexes. The optimized LNP/mRNA/PGA achieved up to 3-fold and 5-fold increase in transfection efficacy in vitro and in vivo, respectively. Intracellular releasing analysis revealed that the enhancement of transfection efficacy was mainly attributed to the elevated intracellular release of mRNA. In addition, the incorporation of PGA did not alter the biodistribution or the biosafety profile of the complexes. These findings indicate that PGA incorporation is a promising strategy to improve the efficacy of mRNA therapeutics.
Collapse
Affiliation(s)
- Hongqian Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Xue Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Qian Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Xiaoxue Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Zongwei Zhu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Chuanxu Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| |
Collapse
|
45
|
Huang Y, Chang Z, Gao Y, Ren C, Lin Y, Zhang X, Wu C, Pan X, Huang Z. Overcoming the Low-Stability Bottleneck in the Clinical Translation of Liposomal Pressurized Metered-Dose Inhalers: A Shell Stabilization Strategy Inspired by Biomineralization. Int J Mol Sci 2024; 25:3261. [PMID: 38542235 PMCID: PMC10970625 DOI: 10.3390/ijms25063261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 06/25/2024] Open
Abstract
Currently, several types of inhalable liposomes have been developed. Among them, liposomal pressurized metered-dose inhalers (pMDIs) have gained much attention due to their cost-effectiveness, patient compliance, and accurate dosages. However, the clinical application of liposomal pMDIs has been hindered by the low stability, i.e., the tendency of the aggregation of the liposome lipid bilayer in hydrophobic propellant medium and brittleness under high mechanical forces. Biomineralization is an evolutionary mechanism that organisms use to resist harsh external environments in nature, providing mechanical support and protection effects. Inspired by such a concept, this paper proposes a shell stabilization strategy (SSS) to solve the problem of the low stability of liposomal pMDIs. Depending on the shell material used, the SSS can be classified into biomineralization (biomineralized using calcium, silicon, manganese, titanium, gadolinium, etc.) biomineralization-like (composite with protein), and layer-by-layer (LbL) assembly (multiple shells structured with diverse materials). This work evaluated the potential of this strategy by reviewing studies on the formation of shells deposited on liposomes or similar structures. It also covered useful synthesis strategies and active molecules/functional groups for modification. We aimed to put forward new insights to promote the stability of liposomal pMDIs and shed some light on the clinical translation of relevant products.
Collapse
Affiliation(s)
- Yeqi Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Ziyao Chang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Z.C.); (X.P.)
| | - Yue Gao
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Chuanyu Ren
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Yuxin Lin
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Z.C.); (X.P.)
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| |
Collapse
|
46
|
Yang D, Feng Y, Yuan Y, Zhang L, Zhou Y, Midgley AC, Wang Y, Liu N, Li G, Yao X, Liu D. Protein Coronas Derived from Mucus Act as Both Spear and Shield to Regulate Transferrin Functionalized Nanoparticle Transcellular Transport in Enterocytes. ACS NANO 2024; 18:7455-7472. [PMID: 38417159 DOI: 10.1021/acsnano.3c11315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The epithelial mucosa is a key biological barrier faced by gastrointestinal, intraoral, intranasal, ocular, and vaginal drug delivery. Ligand-modified nanoparticles demonstrate excellent ability on this process, but their efficacy is diminished by the formation of protein coronas (PCs) when they interact with biological matrices. PCs are broadly implicated in affecting the fate of NPs in vivo and in vitro, yet few studies have investigated PCs formed during interactions of NPs with the epithelial mucosa, especially mucus. In this study, we constructed transferrin modified NPs (Tf-NPs) as a model and explored the mechanisms and effects that epithelial mucosa had on PCs formation and the subsequent impact on the transcellular transport of Tf-NPs. In mucus-secreting cells, Tf-NPs adsorbed more proteins from the mucus layers, which masked, displaced, and dampened the active targeting effects of Tf-NPs, thereby weakening endocytosis and transcellular transport efficiencies. In mucus-free cells, Tf-NPs adsorbed more proteins during intracellular trafficking, which enhanced transcytosis related functions. Inspired by soft coronas and artificial biomimetic membranes, we used mucin as an "active PC" to precoat Tf-NPs (M@Tf-NPs), which limited the negative impacts of "passive PCs" formed during interface with the epithelial mucosa and improved favorable routes of endocytosis. M@Tf-NPs adsorbed more proteins associated with endoplasmic reticulum-Golgi functions, prompting enhanced intracellular transport and exocytosis. In summary, mucus shielded against the absorption of Tf-NPs, but also could be employed as a spear to break through the epithelial mucosa barrier. These findings offer a theoretical foundation and design platform to enhance the efficiency of oral-administered nanomedicines.
Collapse
Affiliation(s)
- Dan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
- Xi'an Key Laboratory of Antiviral and Antimicrobial Resistant Bacteria Therapeutics Research, Xi'an, 710021, China
| | - Yuqi Feng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Ying Yuan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Linxuan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yao Zhou
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanrong Wang
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ning Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Dechun Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
47
|
Wan S, Wang X, Chen W, Wang M, Zhao J, Xu Z, Wang R, Mi C, Zheng Z, Zhang H. Exposure to high dose of polystyrene nanoplastics causes trophoblast cell apoptosis and induces miscarriage. Part Fibre Toxicol 2024; 21:13. [PMID: 38454452 PMCID: PMC10921758 DOI: 10.1186/s12989-024-00574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND With rapid increase in the global use of various plastics, microplastics (MPs) and nanoplastics (NPs) pollution and their adverse health effects have attracted global attention. MPs have been detected out in human body and both MPs and NPs showed female reproductive toxicological effects in animal models. Miscarriage (abnormal early embryo loss), accounting for 15-25% pregnant women worldwide, greatly harms human reproduction. However, the adverse effects of NPs on miscarriage have never been explored. RESULTS In this study, we identified that polystyrene (PS) plastics particles were present in women villous tissues. Their levels were higher in villous tissues of unexplained recurrent miscarriage (RM) patients vs. healthy control (HC) group. Furthermore, mouse assays further confirmed that exposure to polystyrene nanoplastics (PS-NPs, 50 nm in diameter, 50 or 100 mg/kg) indeed induced miscarriage. In mechanism, PS-NPs exposure (50, 100, 150, or 200 µg/mL) increased oxidative stress, decreased mitochondrial membrane potential, and increased apoptosis in human trophoblast cells by activating Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3 signaling through mitochondrial pathway. The alteration in this signaling was consistent in placental tissues of PS-NPs-exposed mouse model and in villous tissues of unexplained RM patients. Supplement with Bcl-2 could efficiently suppress apoptosis in PS-NPs-exposed trophoblast cells and reduce apoptosis and alleviate miscarriage in PS-NPs-exposed pregnant mouse model. CONCLUSIONS Exposure to PS-NPs activated Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3, leading to excessive apoptosis in human trophoblast cells and in mice placental tissues, further inducing miscarriage.
Collapse
Affiliation(s)
- Shukun Wan
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, 610041, Chengdu, China
| | - Xiaoqing Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, 610041, Chengdu, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, 610041, Chengdu, China
| | - Manli Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
| | - Rong Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
| | - Chenyang Mi
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
| | - Zhaodian Zheng
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China.
| |
Collapse
|
48
|
Wang J, Xu Y, Zhou Y, Zhang J, Jia J, Jiao P, Liu Y, Su G. Modulating the toxicity of engineered nanoparticles by controlling protein corona formation: Recent advances and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169590. [PMID: 38154635 DOI: 10.1016/j.scitotenv.2023.169590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development and widespread application of engineered nanoparticles (ENPs), understanding the fundamental interactions between ENPs and biological systems is essential to assess and predict the fate of ENPs in vivo. When ENPs are exposed to complex physiological environments, biomolecules quickly and inevitably adsorb to ENPs to form a biomolecule corona, such as a protein corona (PC). The formed PC has a significant effect on the physicochemical properties of ENPs and gives them a brand new identity in the biological environment, which determines the subsequent ENP-cell/tissue/organ interactions. Controlling the formation of PCs is therefore of utmost importance to accurately predict and optimize the behavior of ENPs within living organisms, as well as ensure the safety of their applications. In this review, we provide an overview of the fundamental aspects of the PC, including the formation mechanism, composition, and frequently used characterization techniques. We comprehensively discuss the potential impact of the PC on ENP toxicity, including cytotoxicity, immune response, and so on. Additionally, we summarize recent advancements in manipulating PC formation on ENPs to achieve the desired biological outcomes. We further discuss the challenges and prospects, aiming to provide valuable insights for a better understanding and prediction of ENP behaviors in vivo, as well as the development of low-toxicity ENPs.
Collapse
Affiliation(s)
- Jiali Wang
- School of Pharmacy, Nantong University, Nantong 226019, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Yun Zhou
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Jian Zhang
- Digestive Diseases Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 510001, China; Center for Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 510001 Guangzhou, China
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peifu Jiao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226019, China.
| |
Collapse
|
49
|
Wang X, Wang D, Lu H, Wang X, Wang X, Su J, Xia G. Strategies to Promote the Journey of Nanoparticles Against Biofilm-Associated Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305988. [PMID: 38178276 DOI: 10.1002/smll.202305988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Indexed: 01/06/2024]
Abstract
Biofilm-associated infections are one of the most challenging healthcare threats for humans, accounting for 80% of bacterial infections, leading to persistent and chronic infections. The conventional antibiotics still face their dilemma of poor therapeutic effects due to the high tolerance and resistance led by bacterial biofilm barriers. Nanotechnology-based antimicrobials, nanoparticles (NPs), are paid attention extensively and considered as promising alternative. This review focuses on the whole journey of NPs against biofilm-associated infections, and to clarify it clearly, the journey is divided into four processes in sequence as 1) Targeting biofilms, 2) Penetrating biofilm barrier, 3) Attaching to bacterial cells, and 4) Translocating through bacterial cell envelope. Through outlining the compositions and properties of biofilms and bacteria cells, recent advances and present the strategies of each process are comprehensively discussed to combat biofilm-associated infections, as well as the combined strategies against these infections with drug resistance, aiming to guide the rational design and facilitate wide application of NPs in biofilm-associated infections.
Collapse
Affiliation(s)
- Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
50
|
Wang L, Quine S, Frickenstein AN, Lee M, Yang W, Sheth VM, Bourlon MD, He Y, Lyu S, Garcia-Contreras L, Zhao YD, Wilhelm S. Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2308446. [PMID: 38828467 PMCID: PMC11142462 DOI: 10.1002/adfm.202308446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 06/05/2024]
Abstract
Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.
Collapse
Affiliation(s)
- Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Skyler Quine
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Michael Lee
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit M. Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Margaret D. Bourlon
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Shanxin Lyu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lucila Garcia-Contreras
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73012, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
| |
Collapse
|