1
|
Singh N, Xia W, Need E, McManus K, Huang J, Shi S, Goel S. Tumor agnostic ultrasmall nanoprobes for fluorescence-guided surgical resection in peritoneal metastasis. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06950-0. [PMID: 39446146 DOI: 10.1007/s00259-024-06950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Surgical excision of metastases is the only curative treatment strategy in peritoneal carcinomatosis management, and the completeness of tumor resection determines the success of the surgery. Tumor-specific fluorescence-guided probes can improve the outcomes of cytoreductive surgery and thereby prognosis. This study aimed to develop and evaluate the feasibility of fluorescently labeled ultrasmall porous silica nanoparticles (UPSN) for image-guided resection of peritoneally disseminated tumors of different origins. METHODS Ultrasmall fluorescent nanoprobes were synthesized and characterized for their physicochemical properties and stability. Tumor-specific uptake and biodistribution profiles were evaluated in syngeneic CT26 colorectal and KPC-689 pancreatic cancer murine models. The practicability of real-time optical UPSN-guided resection was examined in the CT26 colorectal cancer model using a surgical stereomicroscope. Quantitative measurements of tumor sensitivity and specificity were performed. Histopathological examination validated in vivo findings about tumor-specific accumulation and safety of ultrasmall fluorescent probes. RESULTS As-synthesized UPSNs were successfully surface modified with Cy5 or Cy3 dyes maintaining sub-15 nm size and near neutral charge which is beneficial for optimized in vivo pharmacokinetics. UPSN-Cy5 demonstrated high tumor-specific uptake and favorable biodistribution profiles in peritoneal metastasis models of CT26 and KPC tumors. Dye-conjugated UPSN enabled resection of microscopic lesions and achieved a higher tumor-to-background ratios in comparison to FDA-approved indocyanine green (ICG) dye in both models. Microscopic evaluation showed tumor localization and off-target safety profile of the UPSN-Cy5. CONCLUSION Ultrasmall fluorescent probes were effective in surgical resection of peritoneal metastases with high sensitivity and specificity, thus emerging as promising tumor agnostic agents for image-guided cancer surgery.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Wenxi Xia
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Esther Need
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kylee McManus
- College of Science and Honors College (Biology), University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiemin Huang
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
2
|
Al Tahan MA, Michaelides K, Somasekharan Nair S, AlShatti S, Russell C, Al-Khattawi A. Mesoporous Silica Microparticle-Protein Complexes: Effects of Protein Size and Solvent Properties on Diffusion and Loading Efficiency. Br J Biomed Sci 2024; 81:13595. [PMID: 39445315 PMCID: PMC11496099 DOI: 10.3389/bjbs.2024.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Oral administration of protein-based therapeutics is highly desirable due to lower cost, enhanced patient compliance, and convenience. However, the harsh pH environment of the gastrointestinal tract poses significant challenges. Silica-based carriers have emerged as potential candidates for the delivery of protein molecules, owing to their tuneable surface area and pore volume. We explored the use of a commercial mesoporous silica carrier, SYLOID, for the delivery of octreotide and bovine serum albumin (BSA) using a solvent evaporation method in three different solvents. The loading of proteins into SYLOID was driven by diffusion, as described by the Stokes-Einstein equation. Various parameters were investigated, such as protein size, diffusion, and solubility. Additionally, 3D fluorescence confocal imaging was employed to identify fluorescence intensity and protein diffusion within the carrier. Our results indicated that the loading process was influenced by the molecular size of the protein as octreotide exhibited a higher recovery rate (71%) compared to BSA (32%). The methanol-based loading of octreotide showed uniform diffusion into the silica carrier, whereas water and ethanol loading resulted in the drug being concentrated on the surface, as shown by confocal imaging, and further confirmed by scanning electron microscopy (SEM). Pore volume assessment supported these findings, showing that octreotide loaded with methanol had a low pore volume (1.2 cc/g). On the other hand, BSA loading was affected by its solubility in the three solvents, its tendency to aggregate, and its low solubility in ethanol and methanol, which resulted in dispersed particle sizes of 223 and 231 μm, respectively. This reduced diffusion into the carrier, as confirmed by fluorescence intensity and diffusivity values. This study underscores the importance of protein size, solvent properties, and diffusion characteristics when using porous carriers for protein delivery. Understanding these factors allows for the development of more effective oral protein-based therapeutics by enhancing loading efficiency. This, in turn, will lead to advances in targeted drug delivery and improved patient outcomes.
Collapse
Affiliation(s)
- Mohamad Anas Al Tahan
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- Aston Medical Research Institute, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Kyprianos Michaelides
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Smith Somasekharan Nair
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Shouq AlShatti
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Craig Russell
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Ali Al-Khattawi
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
3
|
Rafati N, Zarepour A, Bigham A, Khosravi A, Naderi-Manesh H, Iravani S, Zarrabi A. Nanosystems for targeted drug Delivery: Innovations and challenges in overcoming the Blood-Brain barrier for neurodegenerative disease and cancer therapy. Int J Pharm 2024; 666:124800. [PMID: 39374818 DOI: 10.1016/j.ijpharm.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The evolution of sophisticated nanosystems has revolutionized biomedicine, notably in treating neurodegenerative diseases and cancer. These systems show potential in delivering medication precisely to affected tissues, improving treatment effectiveness while minimizing side effects. Nevertheless, a major hurdle in targeted drug delivery is breaching the blood-brain barrier (BBB), a selective shield separating the bloodstream from the brain and spinal cord. The tight junctions between endothelial cells in brain capillaries create a formidable physical barrier, alongside efflux transporters that expel harmful molecules. This presents a notable challenge for brain drug delivery. Nanosystems present distinct advantages in overcoming BBB challenges, offering enhanced drug efficacy, reduced side effects, improved stability, and controlled release. Despite their promise, challenges persist, such as the BBB's regional variability hindering uniform drug distribution. Efflux transporters can also limit therapeutic agent efficacy, while nanosystem toxicity necessitates rigorous safety evaluations. Understanding the long-term impact of nanomaterials on the brain remains crucial. Additionally, addressing nanosystem scalability, cost-effectiveness, and safety profiles is vital for widespread clinical implementation. This review delves into the advancements and obstacles of advanced nanosystems in targeted drug delivery for neurodegenerative diseases and cancer therapy, with a focus on overcoming the BBB.
Collapse
Affiliation(s)
- Nesa Rafati
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran; Departments of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
4
|
Lima AF, Justo GZ, Sousa AA. Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1208-1226. [PMID: 39376728 PMCID: PMC11457047 DOI: 10.3762/bjnano.15.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024]
Abstract
Ultrasmall nanoparticles (usNPs) have emerged as promising theranostic tools in cancer nanomedicine. With sizes comparable to globular proteins, usNPs exhibit unique physicochemical properties and physiological behavior distinct from larger particles, including lack of protein corona formation, efficient renal clearance, and reduced recognition and sequestration by the reticuloendothelial system. In cancer treatment, usNPs demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of actively targeted usNPs, revealing increased tumor accumulation and retention compared to non-targeted counterparts. In this review, we explore actively targeted inorganic usNPs, highlighting their biological properties and behavior, along with applications in both preclinical and clinical settings.
Collapse
Affiliation(s)
- André F Lima
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Giselle Z Justo
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| |
Collapse
|
5
|
Guido V, Olivieri PH, Brito ML, Prezoto BC, Martinez DST, Oliva MLV, Sousa AA. Stealth and Biocompatible Gold Nanoparticles through Surface Coating with a Zwitterionic Derivative of Glutathione. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12167-12178. [PMID: 38808371 PMCID: PMC11171461 DOI: 10.1021/acs.langmuir.4c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Gold nanoparticles (AuNPs) hold promise in biomedicine, but challenges like aggregation, protein corona formation, and insufficient biocompatibility must be thoroughly addressed before advancing their clinical applications. Designing AuNPs with specific protein corona compositions is challenging, and strategies for corona elimination, such as coating with polyethylene glycol (PEG), have limitations. In this study, we introduce a commercially available zwitterionic derivative of glutathione, glutathione monoethyl ester (GSHzwt), for the surface coating of colloidal AuNPs. Particles coated with GSHzwt were investigated alongside four other AuNPs coated with various ligands, including citrate ions, tiopronin, glutathione, cysteine, and PEG. We then undertook a head-to-head comparison of these AuNPs to assess their behavior in biological fluid. GSHzwt-coated AuNPs exhibited exceptional resistance to aggregation and protein adsorption. The particles could also be readily functionalized with biotin and interact with streptavidin receptors in human plasma. Additionally, they exhibited significant blood compatibility and noncytotoxicity. In conclusion, GSHzwt provides a practical and easy method for the surface passivation of AuNPs, creating "stealth" particles for potential clinical applications.
Collapse
Affiliation(s)
- Vinicius
S. Guido
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo 04044-020, Brazil
| | - Paulo H. Olivieri
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo 04044-020, Brazil
| | - Milena L. Brito
- Brazilian
Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100, Brazil
| | - Benedito C. Prezoto
- Laboratory
of Pharmacology, the Butantan Institute, São Paulo 05503-900, Brazil
| | - Diego S. T. Martinez
- Brazilian
Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100, Brazil
| | - Maria Luiza V. Oliva
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo 04044-020, Brazil
| | - Alioscka A. Sousa
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo 04044-020, Brazil
| |
Collapse
|
6
|
Sun S, Yang Q, Jiang D, Zhang Y. Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment. J Nanobiotechnology 2024; 22:176. [PMID: 38609981 PMCID: PMC11015566 DOI: 10.1186/s12951-024-02432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent both a key driving force and therapeutic target of tumoral carcinogenesis, tumor evolution, progression, and recurrence. CSC-guided tumor diagnosis, treatment, and surveillance are strategically significant in improving cancer patients' overall survival. Due to the heterogeneity and plasticity of CSCs, high sensitivity, specificity, and outstanding targeting are demanded for CSC detection and targeting. Nanobiotechnologies, including biosensors, nano-probes, contrast enhancers, and drug delivery systems, share identical features required. Implementing these techniques may facilitate the overall performance of CSC detection and targeting. In this review, we focus on some of the most recent advances in how nanobiotechnologies leverage the characteristics of CSC to optimize cancer diagnosis and treatment in liquid biopsy, clinical imaging, and CSC-guided nano-treatment. Specifically, how nanobiotechnologies leverage the attributes of CSC to maximize the detection of circulating tumor DNA, circulating tumor cells, and exosomes, to improve positron emission computed tomography and magnetic resonance imaging, and to enhance the therapeutic effects of cytotoxic therapy, photodynamic therapy, immunotherapy therapy, and radioimmunotherapy are reviewed.
Collapse
Affiliation(s)
- Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiang Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Janjua TI, Cao Y, Kleitz F, Linden M, Yu C, Popat A. Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers. Adv Drug Deliv Rev 2023; 203:115115. [PMID: 37844843 DOI: 10.1016/j.addr.2023.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Silica nanoparticles (SNP) have gained tremendous attention in the recent decades. They have been used in many different biomedical fields including diagnosis, biosensing and drug delivery. Medical uses of SNP for anti-cancer, anti-microbial and theranostic applications are especially prominent due to their exceptional performance to deliver many different small molecules and recently biologics (mRNA, siRNA, antigens, antibodies, proteins, and peptides) at targeted sites. The physical and chemical properties of SNP such as large specific surface area, tuneable particle size and porosity, excellent biodegradability and biocompatibility make them an ideal drug delivery and diagnostic platform. Based on the available data and the pre-clinical performance of SNP, recent interest has driven these innovative materials towards clinical application with many of the formulations already in Phase I and Phase II trials. Herein, the progress of SNP in biomedical field is reviewed, and their safety aspects are analysed. Importantly, we critically evaluate the key structural characteristics of SNP to overcome different biological barriers including the blood-brain barrier (BBB), skin, tumour barrier and mucosal barrier. Future directions, potential pathways, and target areas towards rapid clinical translation of SNP are also recommended.
Collapse
Affiliation(s)
- Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Mika Linden
- Institute of Inorganic Chemistry II, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| |
Collapse
|
8
|
Ding R, Li Y, Yu Y, Sun Z, Duan J. Prospects and hazards of silica nanoparticles: Biological impacts and implicated mechanisms. Biotechnol Adv 2023; 69:108277. [PMID: 37923235 DOI: 10.1016/j.biotechadv.2023.108277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the thrive of nanotechnology, silica nanoparticles (SiNPs) have been extensively adopted in the agriculture, food, cosmetic, and even biomedical industries. Due to the mass production and use, SiNPs inevitably entered the environment, resulting in ecological toxicity and even posing a threat to human health. Although considerable investigations have been conducted to assess the toxicity of SiNPs, the correlation between SiNPs exposure and consequent health risks remains ambiguous. Since the biological impacts of SiNPs can differ from their design and application, the toxicity assessment for SiNPs may be extremely difficult. This review discussed the application of SiNPs in different fields, especially their biomedical use, and documented their potential release pathways into the environment. Meanwhile, the current process of assessing SiNPs-related toxicity on various model organisms and cell lines was also detailed, thus estimating the health threats posed by SiNPs exposure. Finally, the potential toxic mechanisms of SiNPs were also elaborated based on results obtained from both in vivo and in vitro trials. This review generally summarizes the biological effects of SiNPs, which will build up a comprehensive perspective of the application and toxicity of SiNPs.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
9
|
Cao R, Wang C, Zhou C, Liu Y, Yin Y, Chen H, Li F, Zhou W, Xu M, Yang W. Polymeric Surfactant (PIBSA-X) Facilitates the Formation of a Water-in-Oil Emulsion Reactor for the Preparation of Ultrasmall Nanosilica. ACS OMEGA 2023; 8:44647-44658. [PMID: 38046313 PMCID: PMC10688208 DOI: 10.1021/acsomega.3c05335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Despite the widespread application of ultrasmall nanosilica, solving its aggregation problem during the preparation process remains a challenge. In this paper, ultrasmall nanosilica with a controllable size and aggregates were prepared through the water-in-oil (W/O) emulsion method by using polyisobutylene succinic anhydride-type polymeric surfactants (PIBSA-X) as an isolating agent. PIBSA-X polymeric surfactants with different hydrophilic groups were prepared using industrial-grade PIBSA, which can form stable W/O-type emulsions well. Subsequently, the W/O-type emulsion droplets were used as reactors and tetraethyl orthosilicate was hydrolyzed under ammonia alkaline conditions to synthesize ultrasmall nanosilica (10 nm). Furthermore, the morphological evolution of nanosilica aggregates can be tuned by varying the oil/water ratio, which controls the emulsion droplets. A possible mechanism is proposed to explain why the emulsion method approach affords nanosilica aggregates with various morphologies and pellet size in water-in-oil (W/O-type) emulsion droplets. This study provides a precise and simple synthetic method for the development of ultrasmall nanosilica, which has good potential to be industrialized.
Collapse
Affiliation(s)
- Rui Cao
- School
of Chemistry and Chemical Engineering, Guizhou
University, Guiyang 550025, China
| | - Chun Wang
- School
of Chemistry and Chemical Engineering, Guizhou
University, Guiyang 550025, China
| | - Chengliang Zhou
- School
of Chemistry and Chemical Engineering, Guizhou
University, Guiyang 550025, China
| | - Yong Liu
- Guizhou
Juneng Chemical Co, Ltd, Huishui County
of Guizhou Province, Huishui 550601, PR China
| | - Yating Yin
- Guizhou
Juneng Chemical Co, Ltd, Huishui County
of Guizhou Province, Huishui 550601, PR China
| | - Haibao Chen
- Guizhou
Juneng Chemical Co, Ltd, Huishui County
of Guizhou Province, Huishui 550601, PR China
| | - Feng Li
- School
of Chemistry and Chemical Engineering, Guizhou
University, Guiyang 550025, China
| | - Wending Zhou
- School
of Chemistry and Chemical Engineering, Guizhou
University, Guiyang 550025, China
| | - Meisong Xu
- School
of Chemistry and Chemical Engineering, Guizhou
University, Guiyang 550025, China
| | - Wanliang Yang
- School
of Chemistry and Chemical Engineering, Guizhou
University, Guiyang 550025, China
- Guizhou
Provincial Double Carbon and Renewable Energy Technology Innovation
Research Institute, Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Xing B, Shawn Chen X. Preface in Special Theme: Functional Inorganic Nanomaterials for Cutting-edge Theranostic Applications. Adv Drug Deliv Rev 2023:114991. [PMID: 37414363 DOI: 10.1016/j.addr.2023.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Affiliation(s)
- Bengang Xing
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, S637371 Singapore, Singapore; School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| | - Xiaoyuan Shawn Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074 Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
11
|
Yang SY, Han AR, Choi JW, Kim KM, Kwon JS. Novel antibacterial and apatite forming restorative composite resin incorporated with hydrated calcium silicate. Biomater Res 2023; 27:25. [PMID: 36978203 PMCID: PMC10053114 DOI: 10.1186/s40824-023-00364-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
White Portland cement is a calcium silicate material. It exhibits antibacterial properties and is biocompatible. In addition, calcium silicate-based materials are known to release calcium ions and form apatite. The purpose of this study was to develop a novel bioactive restorative resin composite with antibacterial and apatite forming properties to prevent tooth caries at the interface of teeth and restorative materials, by incorporation of hydrated calcium silicate (hCS) derived from white Portland cement.
Methods
To prepare the experimental composite resins, a 30 wt% light-curable resin matrix and 70 wt% filler, which was mixed with hCS and silanized glass powder were prepared in following concentrations: 0, 17.5, 35.0, and 52.5 wt% hCS filler. The depth of cure, flexural strength, water sorption, solubility, and antibacterial effect were tested. After immersion in artificial saliva solution for 15, 30, 60, and 90 days, ion concentration by ICP-MS and apatite formation using SEM-EDS, Raman spectroscopy and XRD from experimental specimens were analyzed.
Results
All experimental groups showed clinically acceptable depths of cure and flexural strength for the use as the restorative composite resin. Water sorption, solubility, released Ca and Si ions increased with the addition of hCS to the experimental composite resin. Experimental groups containing hCS showed greater antibacterial effects compared with the 0 wt% hCS filler group (p < 0.05). The 52.5 wt% hCS filler group produced precipitates mainly composed of Ca and P detected as hydroxyapatite after immersion in artificial saliva solution for 30, 60, and 90 days.
Conclusions
This results show that composite resins containing hCS filler is effective in antibacterial effects. hCS has also apatite formation ability for reducing gap size of microleakage by accumulating hydroxyapatite precipitates at the restoration-tooth interface. Therefore, novel composite resin containing hCS is promising bioactive resin because of its clinically acceptable physiochemical properties, antibacterial properties, and self-sealing potential for prevention of microleakage for longer usage of restorations.
Collapse
|