1
|
Zhang Y, Cao Y, Xin Y, Liu Y. Significance of detecting cardiac troponin I and creatine kinase MB in critically Ill children without primary cardiac illness. Front Pediatr 2024; 12:1445651. [PMID: 39286452 PMCID: PMC11402721 DOI: 10.3389/fped.2024.1445651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Objective To investigate the incidence of myocardial injury in children with critically ill children without primary cardiac disease and the association between elevated cardiac troponin I (cTnl) and creatine kinase MB (CK-MB) concentrations and disease progression and prognosis to guide early treatment. Methods The serum cTnI and CK-MB concentrations of 292 children with critically ill children without primary cardiac disease in Yantai Yuhuangding Hospital between January 2021 and January 2024 were retrospectively analyzed within 24 h after entering the Pediatric Intensive Care Unit (PICU). The children were divided into normal and abnormal groups according to the myocardial marker results. The abnormal group was further divided into the cTnI-elevated, CK-MB-elevated, single-elevated (cTnI- or CK-MB-elevated) and double-elevated (cTnI- and CK-MB-elevated) groups. The differences in the clinical indicators and their relationships with prognosis for the groups were compared. Results The incidence of myocardial injury among the critically ill children without primary cardiac disease was 55.1%. The incidence of myocardial injury in children with infectious diarrhea combined with moderate and severe dehydration reached 85.19%. The pediatric critical illness score; frequency of use of vasoactive drugs; hypotension, shock, heart failure, respiratory failure, and multiple organ dysfunction syndrome; and mortality indexes differed significantly for the normal and abnormal myocardial marker groups (P < 0.05). The single-elevated and normal groups only showed a difference in mortality (P < 0.017). The cTnI and CK-MB concentrations were negatively correlated with prognosis (P < 0.01). Conclusion Myocardial injury, as evidenced by elevated cardiac biomarkers, is common in critically ill children without primary cardiac illness. cTnI and CK-MB are associated with outcomes. Shock, heart failure, and multiple organ dysfunction syndromes are independently associated with simultaneous elevations of CK-MB and cTnI concentrations. Further prospective studies are needed to elucidate the clinical utility of these biomarkers.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Pediatrics, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Yinyin Cao
- Department of Pediatrics, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Yi Xin
- Department of Pediatrics, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Yongming Liu
- Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
2
|
Dong T, Zhu W, Yang Z, Matos Pires NM, Lin Q, Jing W, Zhao L, Wei X, Jiang Z. Advances in heart failure monitoring: Biosensors targeting molecular markers in peripheral bio-fluids. Biosens Bioelectron 2024; 255:116090. [PMID: 38569250 DOI: 10.1016/j.bios.2024.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases (CVDs), especially chronic heart failure, threaten many patients' lives worldwide. Because of its slow course and complex causes, its clinical screening, diagnosis, and prognosis are essential challenges. Clinical biomarkers and biosensor technologies can rapidly screen and diagnose. Multiple types of biomarkers are employed for screening purposes, precise diagnosis, and treatment follow-up. This article provides an up-to-date overview of the biomarkers associated with the six main heart failure etiology pathways. Plasma natriuretic peptides (BNP and NT-proBNP) and cardiac troponins (cTnT, cTnl) are still analyzed as gold-standard markers for heart failure. Other complementary biomarkers include growth differentiation factor 15 (GDF-15), circulating Galactose Lectin 3 (Gal-3), soluble interleukin (sST2), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α). For these biomarkers, the electrochemical biosensors have exhibited sufficient sensitivity, detection limit, and specificity. This review systematically summarizes the latest molecular biomarkers and sensors for heart failure, which will provide comprehensive and cutting-edge authoritative scientific information for biomedical and electronic-sensing researchers in the field of heart failure, as well as patients. In addition, our proposed future outlook may provide new research ideas for researchers.
Collapse
Affiliation(s)
- Tao Dong
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, P.O. Box 235, Kongsberg, 3603, Norway
| | - Wangang Zhu
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Libo Zhao
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
3
|
Aydeniz E, van Rosmalen F, de Kok J, Martens B, Mingels AMA, Canakci ME, Mihl C, Vernooy K, Prinzen FW, Wildberger JE, van der Horst ICC, van Bussel BCT, Driessen RGH. The association between coronary artery calcification and vectorcardiography in mechanically ventilated COVID-19 patients: the Maastricht Intensive Care COVID cohort. Intensive Care Med Exp 2024; 12:26. [PMID: 38451350 PMCID: PMC10920503 DOI: 10.1186/s40635-024-00611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Coronary artery calcification (CAC) is associated with poor outcome in critically ill patients. A deterioration in cardiac conduction and loss of myocardial tissue could be an underlying cause. Vectorcardiography (VCG) and cardiac biomarkers provide insight into these underlying causes. The aim of this study was to investigate whether a high degree of CAC is associated with VCG-derived variables and biomarkers, including high-sensitivity troponin-T (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). METHODS Mechanically ventilated coronavirus-19 (COVID-19) patients with an available chest computed tomography (CT) and 12-lead electrocardiogram (ECG) were studied. CAC scores were determined using chest CT scans. Patients were categorized into 3 sex-specific tertiles: low, intermediate, and high CAC. Daily 12 leads-ECGs were converted to VCGs. Daily hs-cTnT and NT-proBNP levels were determined. Linear mixed-effects regression models examined the associations between CAC tertiles and VCG variables, and between CAC tertiles and hs-cTnT or NT-proBNP levels. RESULTS In this study, 205 patients (73.2% men, median age 65 years [IQR 57.0; 71.0]) were included. Compared to the lowest CAC tertile, the highest CAC tertile had a larger QRS area at baseline (6.65 µVs larger [1.50; 11.81], p = 0.012), which decreased during admission (- 0.27 µVs per day [- 0.43; - 0.11], p = 0.001). Patients with the highest CAC tertile also had a longer QRS duration (12.02 ms longer [4.74; 19.30], p = 0.001), higher levels of log hs-cTnT (0.79 ng/L higher [0.40; 1.19], p < 0.001) and log NT-proBNP (0.83 pmol/L higher [0.30; 1.37], p = 0.002). CONCLUSION Patients with a high degree of CAC had the largest QRS area and higher QRS amplitude, which decreased more over time when compared to patients with a low degree of CAC. These results suggest that CAC might contribute to loss of myocardial tissue during critical illness. These insights could improve risk stratification and prognostication of patients with critical illness.
Collapse
Affiliation(s)
- Eda Aydeniz
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| | - Frank van Rosmalen
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jip de Kok
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Bibi Martens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Alma M A Mingels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Mustafa Emin Canakci
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Emergency Department, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey
| | - Casper Mihl
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kevin Vernooy
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center +, Maastricht, The Netherlands
| | - Frits W Prinzen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Joachim E Wildberger
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Bas C T van Bussel
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Rob G H Driessen
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center +, Maastricht, The Netherlands
| |
Collapse
|
4
|
Zheng H, Ni Y, Wang S, Geng M, Cao H, Song W, Tao F, Liu K. Associations between antibiotic exposure and abnormal cardiac enzyme profiles in older Chinese adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123679-123693. [PMID: 37991620 DOI: 10.1007/s11356-023-31082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Biomonitoring methods can be used to measure exposure to antibiotics in the general population; however, epidemiological data on the associations between urinary antibiotic levels and the cardiac profiles of enzymes lactate dehydrogenase, creatine kinase, and creatine kinase isoenzyme in older adults remain sparse. We investigated these associations in 990 individuals from the Cohort of Elderly Health and Environment Controllable Factors. Antibiotic residues in urine samples were analyzed using high-performance liquid chromatography-tandem mass spectrometry. Urinary levels of 34 antibiotics were measured. The participants' cardiac enzyme profiles were influenced by sex, age, marital status, education level, cohabitation status, physical activity, dietary structure, body mass index, depression presence and salt, sugar, and oil consumption (P < 0.05). Oxytetracycline, tetracycline, doxycycline, sulfaclozine, and, florfenicol concentrations were negatively associated with the risk of having an abnormal cardiac enzyme profile. Older adults exposed to higher concentrations of norfloxacin had a higher risk of LDH anomalies. After antibiotics were classified, we identified associations between exposure to chloramphenicols, sulfonamides, or veterinary antibiotics and a lower risk of having an abnormal cardiac enzyme profile. Obtaining an accurate epidemiological profile of antibiotic exposure is indispensable for the prevention and detection of cardiac enzyme profile abnormalities in older adults.
Collapse
Affiliation(s)
- Huimin Zheng
- School of Public Health, Anhui Medical University, Anhui, Hefei, 230032, China
| | - Yachao Ni
- School of Public Health, Anhui Medical University, Anhui, Hefei, 230032, China
| | - Sheng Wang
- Center for Scientific Research, Anhui Medical University, Anhui, Hefei, 230032, China
| | - Menglong Geng
- School of Public Health, Anhui Medical University, Anhui, Hefei, 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui, Hefei, 230032, China
| | - Hongjuan Cao
- Lu'an Center of Disease Control and Prevention, Anhui, Lu'an, 237000, China
| | - Wei Song
- Technical Center for Hefei Customs, Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, 230022, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Anhui, Hefei, 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui, Hefei, 230032, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, Anhui, Hefei, 230032, China.
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui, Hefei, 230032, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui, Hefei, 230032, China.
| |
Collapse
|
5
|
Castro-Pearson S, Samorodnitsky S, Yang K, Lotfi-Emran S, Ingraham NE, Bramante C, Jones EK, Greising S, Yu M, Steffen BT, Svensson J, Åhlberg E, Österberg B, Wacker D, Guan W, Puskarich M, Smed-Sörensen A, Lusczek E, Safo SE, Tignanelli CJ. Development of a proteomic signature associated with severe disease for patients with COVID-19 using data from 5 multicenter, randomized, controlled, and prospective studies. Sci Rep 2023; 13:20315. [PMID: 37985892 PMCID: PMC10661735 DOI: 10.1038/s41598-023-46343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Significant progress has been made in preventing severe COVID-19 disease through the development of vaccines. However, we still lack a validated baseline predictive biologic signature for the development of more severe disease in both outpatients and inpatients infected with SARS-CoV-2. The objective of this study was to develop and externally validate, via 5 international outpatient and inpatient trials and/or prospective cohort studies, a novel baseline proteomic signature, which predicts the development of moderate or severe (vs mild) disease in patients with COVID-19 from a proteomic analysis of 7000 + proteins. The secondary objective was exploratory, to identify (1) individual baseline protein levels and/or (2) protein level changes within the first 2 weeks of acute infection that are associated with the development of moderate/severe (vs mild) disease. For model development, samples collected from 2 randomized controlled trials were used. Plasma was isolated and the SomaLogic SomaScan platform was used to characterize protein levels for 7301 proteins of interest for all studies. We dichotomized 113 patients as having mild or moderate/severe COVID-19 disease. An elastic net approach was used to develop a predictive proteomic signature. For validation, we applied our signature to data from three independent prospective biomarker studies. We found 4110 proteins measured at baseline that significantly differed between patients with mild COVID-19 and those with moderate/severe COVID-19 after adjusting for multiple hypothesis testing. Baseline protein expression was associated with predicted disease severity with an error rate of 4.7% (AUC = 0.964). We also found that five proteins (Afamin, I-309, NKG2A, PRS57, LIPK) and patient age serve as a signature that separates patients with mild COVID-19 and patients with moderate/severe COVID-19 with an error rate of 1.77% (AUC = 0.9804). This panel was validated using data from 3 external studies with AUCs of 0.764 (Harvard University), 0.696 (University of Colorado), and 0.893 (Karolinska Institutet). In this study we developed and externally validated a baseline COVID-19 proteomic signature associated with disease severity for potential use in both outpatients and inpatients with COVID-19.
Collapse
Affiliation(s)
- Sandra Castro-Pearson
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Sarah Samorodnitsky
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kaifeng Yang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Sahar Lotfi-Emran
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Carolyn Bramante
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Emma K Jones
- Department of Surgery, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Sarah Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN, USA
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Brian T Steffen
- Department of Surgery, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Julia Svensson
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eric Åhlberg
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - David Wacker
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Michael Puskarich
- Department of Emergency Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, MN, USA
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Elizabeth Lusczek
- Department of Surgery, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Sandra E Safo
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Christopher J Tignanelli
- Department of Surgery, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Shaikh A, Khan SD, Baloch F, Virani SS, Samad Z. The COVID-19 Pandemic and Coronary Heart Disease: the Next Surge. Curr Atheroscler Rep 2023; 25:559-569. [PMID: 37531071 DOI: 10.1007/s11883-023-01131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW In this narrative review, we highlight different ways in which the COVID-19 pandemic has impacted coronary heart disease (CHD) burden and how a surge in morbidity and mortality may be expected in the near future. We also discuss potential solutions, and the direction subsequent research and corrective actions should take. RECENT FINDINGS COVID-19 has been implicated in the development and worsening of CHD via acute and chronic mechanisms in the form of plaque rupture, destabilization, and sustenance of a chronic inflammatory state leading to long COVID syndrome and increased rates of myocardial infarction. However, indirectly the pandemic is likely to further escalate the CHD burden through poor health behaviors such as tobacco consumption, reduced physical activity, economic devastation and its associated sequelae, and regular cardiac care interruptions and delays. COVID-19 has increased the total CHD burden and will require extensive resource allocation and multifaceted strategies to curb future rise.
Collapse
|
7
|
Alsmadi MM, Jaradat MM, Obaidat RM, Alnaief M, Tayyem R, Idkaidek N. The In Vitro, In Vivo, and PBPK Evaluation of a Novel Lung-Targeted Cardiac-Safe Hydroxychloroquine Inhalation Aerogel. AAPS PharmSciTech 2023; 24:172. [PMID: 37566183 DOI: 10.1208/s12249-023-02627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Hydroxychloroquine (HCQ) was repurposed for COVID-19 treatment. Subtherapeutic HCQ lung levels and cardiac toxicity of oral HCQ were overcome by intratracheal (IT) administration of lower HCQ doses. The crosslinker-free supercritical fluid technology (SFT) produces aerogels and impregnates them with drugs in their amorphous form with efficient controlled release. Mechanistic physiologically based pharmacokinetic (PBPK) modeling can predict the lung's epithelial lining fluid (ELF) drug levels. This study aimed to develop a novel HCQ SFT formulation for IT administration to achieve maximal ELF levels and minimal cardiac toxicity. HCQ SFT formulation was prepared and evaluated for physicochemical, in vitro release, pharmacokinetics, and cardiac toxicity. Finally, the rat HCQ ELF concentrations were predicted using PBPK modeling. HCQ was amorphous after loading into the chitosan-alginate nanoporous microparticles (22.7±7.6 μm). The formulation showed a zero-order release, with only 40% released over 30 min compared to 94% for raw HCQ. The formulation had a tapped density of 0.28 g/cm3 and a loading efficiency of 35.3±1.3%. The IT administration of SFT HCQ at 1 mg/kg resulted in 23.7-fold higher bioavailability, fourfold longer MRT, and eightfold faster absorption but lower CK-MB and LDH levels than oral raw HCQ at 4 mg/kg. The PBPK model predicted 6 h of therapeutic ELF levels for IT SFT HCQ and a 100-fold higher ELF-to-heart concentration ratio than oral HCQ. Our findings support the feasibility of lung-targeted and more effective SFT HCQ IT administration for COVID-19 compared to oral HCQ with less cardiac toxicity. Graphical abstract.
Collapse
Affiliation(s)
- Mo'tasem M Alsmadi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
- Nanotechnology Institute, Jordan University of Science and Technology, Irbid, Jordan.
| | - Mays M Jaradat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Rana M Obaidat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mohammad Alnaief
- Department of Pharmaceutical and Chemical Engineering, Faculty of Applied Medical Sciences, German Jordanian University, Amman, Jordan
| | | | | |
Collapse
|
8
|
Aghajani M, Wong A, Azimi M, Harijani SM. Association between dietary antioxidant quality score and severity of coronavirus infection: a case-control study. Front Nutr 2023; 10:1174113. [PMID: 37485392 PMCID: PMC10358364 DOI: 10.3389/fnut.2023.1174113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
The purpose of this study was to examine the association between the dietary antioxidant quality score (DAQS) and the severity of Coronavirus disease 2019 (COVID-19). The present case-control study was carried out on 295 patients diagnosed with COVID-19 (≥18 years old), including 104 critical patients (Intensive care unit [ICU] admission) and 191 COVID-19 patients without severe complications (Non-intensive care unit [Non-ICU] patients) as cases. Dietary intake was assessed by a 147-item, semi-quantitative food frequency questionnaire (FFQ). Logistic regression was performed to calculate the odds ratio (OR) and 95% confidence interval (CI) for the considered risk factors. Our outcomes (after multivariate adjustment) suggested that higher adherence to DAQS was significantly associated with a decreased risk of COVID-19 infection severity (OR = 0.12; 95% CI: 0.04-0.29, p < 0.001). Similar results were seen when analyzed by sex [men (OR = 0.02; 95% CI: 0.002-0.15, p < 0.001) and women (OR = 0.21; 95% CI: 0.06-0.68, p = 0.012)]. A significant association between vitamin D3 intake and decreased risk of COVID-19 severity (OR = 0.91; 95% CI: 0.89-0.94, p < 0.001) was also observed. Moreover, multivariate results revealed that there were no significant associations between vitamin C (OR = 1.00; 95% CI: 0.99-1.00, p = 0.067), vitamin E (OR = 0.98; 95% CI: 0.86-1.11, p = 0.798), zinc (OR = 1.02; 95% CI: 0.86-1.20, p = 0.805), and selenium (OR = 0.99; 95% CI: 0.99-1.00, p = 0.077) intakes with the risk of COVID-19 severity. However, subgroup analyses by sex suggested a significant association between vitamin C intake and the risk of COVID-19 infection severity in women (OR = 1.00; 95% CI: 1.00-1.00, p = 0.028). Our findings showed a negative association between DAQS adherence and the risk of COVID-19 infection severity. Our results may be used to develop potential dietary therapies to decrease COVID-19 severity.
Collapse
Affiliation(s)
- Mobina Aghajani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, TX, United States
| | - Mehdi Azimi
- Department of Internal Medicine, School of Medicine, Firoozgar General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shadmehr Mirdar Harijani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran
- Athletic Performance and Health Research Center, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
9
|
Xing N, Qin J, Ren D, Du Q, Li Y, Mi J, Zhang F, Ai L, Zhang S, Zhang Y, Wang S. Integrating UPLC-Q-Exactive Orbitrap/MS, network pharmacology and experimental validation to reveal the potential mechanism of Tibetan medicine Rhodiola granules in improving myocardial ischemia-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116572. [PMID: 37201662 DOI: 10.1016/j.jep.2023.116572] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/24/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Rhodiola granules (RG) is a traditional Tibetan medicine prescription that can be used to improve the symptoms of ischemia and hypoxia in cardiovascular and cerebrovascular diseases. However, there is no report on its use to improve myocardial ischemia/reperfusion (I/R) injury, and its potential active ingredients and mechanism against myocardial ischemia/reperfusion (I/R) injury remain unclear. AIM OF THE STUDY This study aimed to reveal the potential bioactive components and underlying pharmacological mechanisms of RG in improving myocardial I/R injury through a comprehensive strategy. MATERIALS AND METHODS UPLC-Q-Exactive Orbitrap/MS technology was used to analyze the chemical components of RG, the potential bioactive components and targets were tracked and predicted by the SwissADME and SwissTargetPrediction databases, and the core targets were predicted through the PPI network, as well the functions and pathways were determined by GO and KEGG analysis. In addition, the molecular docking and ligation of the anterior descending coronary artery-induced rat I/R models were experimentally validated. RESULTS A total of 37 ingredients were detected from RG, including nine flavones, ten flavonoid glycosides, one glycoside, eight organic acids, four amides, two nucleosides, one amino acid, and two other components. Among them, 15 chemical components, such as salidroside, morin, diosmetin, and gallic acid were identified as key active compounds. Ten core targets, including AKT1, VEGF, PTGS2, and STAT3, were discovered through the analysis of the PPI network constructed from 124 common potential targets. These possible targets were involved in the regulation of oxidative stress and HIF-1/VEGF/PI3K-Akt signaling pathways. Furthermore, molecular docking confirmed that the potential bioactive compounds in RG have good potential binding abilities to AKT1, VEGFA, PTGS2, STAT3, and HIF-1α proteins. Then, the animal experiments showed that RG could significantly improve the cardiac function of I/R rats, reduce the size of myocardial infarction, improve the myocardial structure, and reduce the degree of myocardial fibrosis, inflammatory cell infiltration, and myocardial cell apoptosis rate in I/R rats. In addition, we also found that RG could decrease the concentration of AGE, Ox-LDL, MDA, MPO, XOD, SDH, Ca2+, and ROS, and increase the concentration of Trx, TrxR1, SOD, T-AOC, NO, ATP, Na+k+-ATPase, Ca2+-ATPase, and CCO. Moreover, RG could significantly down-regulate the expressions of Bax, Cleaved-caspase3, HIF-1α, and PTGS2, as well up-regulate the expressions of Bcl-2, VEGFA, p-AKT1, and p-STAT3. CONCLUSION In summary, we revealed for the first time the potential active ingredients and mechanisms of RG for myocardial I/R injury therapy through a comprehensive research strategy. RG may synergistically improve myocardial I/R injury through anti-inflammatory, regulating energy metabolism, and oxidative stress, improving I/R-induced myocardial apoptosis, which may be related to the HIF-1/VEGF/PI3K-Akt signaling pathway. Our study provides new insights into the clinical application of RG and also provides a reference for the development and mechanism research of other Tibetan medicine compound preparations.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongsheng Ren
- Tibet Rhodiola Pharmaceutical Holding Co. Ltd, Lasa, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuying Li
- Tibet Rhodiola Pharmaceutical Holding Co. Ltd, Lasa, China
| | - Jiao Mi
- Tibet Rhodiola Pharmaceutical Holding Co. Ltd, Lasa, China
| | - Fengming Zhang
- Tibet Rhodiola Pharmaceutical Holding Co. Ltd, Lasa, China
| | - Li Ai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
10
|
Semiz S. COVID19 biomarkers: What did we learn from systematic reviews? Front Cell Infect Microbiol 2022; 12:1038908. [PMID: 36583110 PMCID: PMC9792992 DOI: 10.3389/fcimb.2022.1038908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID19) pandemic continues to represent a substantial public health concern. It can rapidly progress to severe disease, with poor prognosis and a high mortality risk. An early diagnosis and specific prognostic tools can help healthcare providers to start interventions promptly, understand the likely prognosis and to identify and treat timely individuals likely to develop severe disease with enhanced mortality risk. Here we focused on an impressive set of systematic reviews and meta-analyses that were performed since the start of the COVID19 pandemic and summarized their results related to the levels of hematologic, inflammatory, immunologic biomarkers as well as markers of cardiac, respiratory, hepatic, gastrointestinal and renal systems and their association with the disease progression, severity and mortality. The evidence outlines the significance of specific biomarkers, including inflammatory and immunological parameters (C-reactive protein, procalcitonin, interleukin-6), hematological (lymphocytes count, neutrophil-to-lymphocyte ratio, D-dimer, ferritin, red blood cell distribution width), cardiac (troponin, CK-MB, myoglobin), liver (AST, ALT, total bilirubin, albumin) and lung injury (Krebs von den Lungen-6) that can be used as prognostic biomarkers to aid the identification of high-risk patients and the prediction of serious outcomes, including mortality, in COVID19. Thus, these parameters should be used as essential tools for an early risk stratification and adequate intervention in improving disease outcomes in COVID19 patients.
Collapse
|
11
|
Kyriakoulis KG, Kyriakoulis IG, Trontzas IP, Syrigos N, Kyprianou IA, Fyta E, Kollias A. Cardiac Injury in COVID-19: A Systematic Review of Relevant Meta-Analyses. Rev Cardiovasc Med 2022; 23:404. [PMID: 39076653 PMCID: PMC11270392 DOI: 10.31083/j.rcm2312404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 07/31/2024] Open
Abstract
Background Cardiac injury (CI) is not a rare condition among hospitalized patients with coronavirus disease 2019 (COVID-19). Its prognostic value has been extensively reported through the literature, mainly in the context of observational studies. An impressive number of relevant meta-analyses has been conducted. These meta-analyses present similar and consistent results; yet interesting methodological issues emerge. Methods A systematic literature search was conducted aiming to identify all relevant meta-analyses on (i) the incidence, and (ii) the prognostic value of CI among hospitalized patients with COVID-19. Results Among 118 articles initially retrieved, 73 fulfilled the inclusion criteria and were included in the systematic review. Various criteria were used for CI definition mainly based on elevated cardiac biomarkers levels. The most frequently used biomarker was troponin. 30 meta-analyses reported the pooled incidence of CI in hospitalized patients with COVID-19 that varies from 5% to 37%. 32 meta-analyses reported on the association of CI with COVID-19 infection severity, with only 6 of them failing to show a statistically significant association. Finally, 46 meta-analyses investigated the association of CI with mortality and showed that patients with COVID-19 with CI had increased risk for worse prognosis. Four meta-analyses reported pooled adjusted hazard ratios for death in patients with COVID-19 and CI vs those without CI ranging from 1.5 to 3. Conclusions The impact of CI on the prognosis of hospitalized patients with COVID-19 has gained great interest during the pandemic. Methodological issues such as the inclusion of not peer-reviewed studies, the inclusion of potentially overlapping populations or the inclusion of studies with unadjusted analyses for confounders should be taken into consideration. Despite these limitations, the adverse prognosis of patients with COVID-19 and CI has been consistently demonstrated.
Collapse
Affiliation(s)
- Konstantinos G Kyriakoulis
- National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, 11527 Athens, Greece
| | - Ioannis G Kyriakoulis
- National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, 11527 Athens, Greece
| | - Ioannis P Trontzas
- National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, 11527 Athens, Greece
| | - Nikolaos Syrigos
- National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, 11527 Athens, Greece
| | - Ioanna A Kyprianou
- National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, 11527 Athens, Greece
| | - Eleni Fyta
- National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, 11527 Athens, Greece
| | - Anastasios Kollias
- National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, 11527 Athens, Greece
| |
Collapse
|
12
|
Pal M, Muinao T, Parihar A, Roy DK, Boruah HPD, Mahindroo N, Khan R. Biosensors based detection of novel biomarkers associated with COVID-19: Current progress and future promise. BIOSENSORS & BIOELECTRONICS: X 2022; 12:100281. [PMID: 36405494 PMCID: PMC9661549 DOI: 10.1016/j.biosx.2022.100281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
The pandemic situation of COVID-19 has caused global alarm in health care, devastating loss of lives, strangled economy, and paralysis of normal livelihood. The high inter-individual transmission rate created havoc in the global community. Although tremendous efforts are pitching in from across the globe to understand this disease, the clinical features seemed to have a wide range including fever, cough, and fatigue are the prominent features. Congestion, rhinorrhea, sore throat, and diarrhea are other less common features observed. The challenge of this disease lies in the difficulty in maneuvering the clinical course causing severe complications. One of the major causative factors for multi-organ failure in patients with severe COVID-19 complications is systemic vasculitis and cytokine-mediated coagulation disorders. Hence, effective markers trailing the disease severity and disease prognosis are urgently required for prompt medical treatment. In this review article, we have emphasized currently identified inflammatory, hematological, immunological, and biochemical biomarkers of COVID-19. We also discussed currently available biosensors for the detection of COVID-19-associated biomarkers & risk factors and the detection methods as well as their performances. These could be effective tools for rapid and more promising diagnoses in the current pandemic situation. Effective biomarkers and their rapid, scalable, & sensitive detection might be beneficial for the prevention of serious complications and the clinical management of the disease.
Collapse
Affiliation(s)
- Mintu Pal
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Academy of Scientific & Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam, 785006, India
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, 151001, India
| | - Thingreila Muinao
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Academy of Scientific & Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam, 785006, India
| | - Arpana Parihar
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
| | - Dilip Kumar Roy
- Department of Pharmaceutical Technology, JIS University, Kolkata, 700109, India
| | - Hari Prasanna Deka Boruah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Academy of Scientific & Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam, 785006, India
- Government Model College, Kaziranga, Golaghat, Assam, 785609, India
| | - Neeraj Mahindroo
- School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India
| | - Raju Khan
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
| |
Collapse
|
13
|
Sha S, Liu M, Sun M, Xiao L, Chang Q, Chen Y, Huang J. Abnormal myocardial enzymes in the prediction of mortality and hypertension in COVID-19 patients: a retrospective study. Aging (Albany NY) 2022; 14:8585-8594. [DOI: 10.18632/aging.204362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/21/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Shuang Sha
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Min Liu
- Department of Hospital Infection Control, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Miaomiao Sun
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Long Xiao
- Yunmeng County People’s Hospital, Yunmeng 432500, China
| | - Qing Chang
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, China
- Shanghai General Practice Medical Education and Research Center, Shanghai 201800, China
| | - Ying Chen
- Department of Education and Training Office, Huangshi Central Hospital, Huangshi 435000, China
| | - Jie Huang
- Department of Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
14
|
Velichko A, Huyut MT, Belyaev M, Izotov Y, Korzun D. Machine Learning Sensors for Diagnosis of COVID-19 Disease Using Routine Blood Values for Internet of Things Application. SENSORS (BASEL, SWITZERLAND) 2022; 22:7886. [PMID: 36298235 PMCID: PMC9610709 DOI: 10.3390/s22207886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 05/16/2023]
Abstract
Healthcare digitalization requires effective applications of human sensors, when various parameters of the human body are instantly monitored in everyday life due to the Internet of Things (IoT). In particular, machine learning (ML) sensors for the prompt diagnosis of COVID-19 are an important option for IoT application in healthcare and ambient assisted living (AAL). Determining a COVID-19 infected status with various diagnostic tests and imaging results is costly and time-consuming. This study provides a fast, reliable and cost-effective alternative tool for the diagnosis of COVID-19 based on the routine blood values (RBVs) measured at admission. The dataset of the study consists of a total of 5296 patients with the same number of negative and positive COVID-19 test results and 51 routine blood values. In this study, 13 popular classifier machine learning models and the LogNNet neural network model were exanimated. The most successful classifier model in terms of time and accuracy in the detection of the disease was the histogram-based gradient boosting (HGB) (accuracy: 100%, time: 6.39 sec). The HGB classifier identified the 11 most important features (LDL, cholesterol, HDL-C, MCHC, triglyceride, amylase, UA, LDH, CK-MB, ALP and MCH) to detect the disease with 100% accuracy. In addition, the importance of single, double and triple combinations of these features in the diagnosis of the disease was discussed. We propose to use these 11 features and their binary combinations as important biomarkers for ML sensors in the diagnosis of the disease, supporting edge computing on Arduino and cloud IoT service.
Collapse
Affiliation(s)
- Andrei Velichko
- Institute of Physics and Technology, Petrozavodsk State University, 33 Lenin Ave., 185910 Petrozavodsk, Russia
| | - Mehmet Tahir Huyut
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Erzincan Binali Yıldırım University, 24000 Erzincan, Türkiye
| | - Maksim Belyaev
- Institute of Physics and Technology, Petrozavodsk State University, 33 Lenin Ave., 185910 Petrozavodsk, Russia
| | - Yuriy Izotov
- Institute of Physics and Technology, Petrozavodsk State University, 33 Lenin Ave., 185910 Petrozavodsk, Russia
| | - Dmitry Korzun
- Department of Computer Science, Institute of Mathematics and Information Technology, Petrozavodsk State University, 33 Lenin Ave., 185910 Petrozavodsk, Russia
| |
Collapse
|
15
|
Sultan RH, Elesawy BH, Ali TM, Abdallah M, Assal HH, Ahmed AE, Ahmed OM. Correlations between Kidney and Heart Function Bioindicators and the Expressions of Toll-Like, ACE2, and NRP-1 Receptors in COVID-19. Vaccines (Basel) 2022; 10:1106. [PMID: 35891270 PMCID: PMC9319872 DOI: 10.3390/vaccines10071106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND COVID-19 impacts the cardiovascular system resulting in myocardial damage, and also affects the kidneys leading to renal dysfunction. This effect is mostly through the binding with angiotensin-converting enzyme 2 (ACE2) and Neuropilin-1 (NRP-l) receptors. Toll-Like Receptors (TLRs) typically combine with microbial pathogens and provoke an inflammatory response. AIM This work aims to compare the changes in kidney and heart function bioindicators and expressions of TLRs (TLR2 and TLR2) as well as ACE2 and NRP-l receptors in moderate and severe COVID-19 patients. The correlations between kidney and heart function bioindicators and expressions of these receptors are also studied. PATIENTS AND METHODS In this study, 50 healthy control and 100 COVID-19 patients (55 males and 45 females) were enrolled. According to WHO guidelines, these participants were divided into severe (50 cases) and moderate (50 cases). Serum creatinine, blood urea, CK-MB, LDH, and Troponin I were estimated. We measured the gene expression for Toll-Like Receptors (TLR2 and TLR4), ACE2, and NRP-1 in the blood samples using quantitative real-time PCR (qRT-PCR). RESULTS In comparison with the healthy group, all patients exhibited a significant elevation in serum creatinine, urea, cardiac enzymes (CK-MB and LDH), and CRP. Serum Troponin I level was significantly increased in severe COVID-19 patients. Furthermore, all studied patients revealed a significant elevation in the expression levels of TLR2, TLR4, ACE2, and NRP-1 mRNA. In all patients, CK-MB, ACE2, and NRP-1 mRNA expression levels were positively correlated with both TLR2 and TLR4 expression levels. Moreover, serum creatinine and urea levels were positively correlated with both TLR2 and TLR 4 expression levels in the severe group only. In the moderate group, serum CK-MB activity and Troponin I level had a significant positive correlation with both NRP-1 and ACE2 expression levels, while serum urea level and LDH activity had a significant positive correlation with NRP-1 only. In severe patients, the increases in serum creatinine, urea, CK-MB, and LDH were significantly associated with the elevations in both ACE2 and NRP-1 expression levels, whereas serum Troponin I level had a positive direct relationship with NRP-1 only. CONCLUSIONS Our study concluded that expression levels for TLR2, TLR4, ACE2, and NRP-1 mRNA in both severe and moderate patients were positively correlated with renal biomarkers and cardiac enzymes. Innate immune markers can be important because they correlate with the severity of illness in COVID-19.
Collapse
Affiliation(s)
- Rabab Hussain Sultan
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Maged Abdallah
- Department of Anesthesia and Intensive Care, Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Hebatallah Hany Assal
- Department of Chest Medicine, Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Amr E. Ahmed
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| |
Collapse
|
16
|
Battaglini D, Lopes-Pacheco M, Castro-Faria-Neto HC, Pelosi P, Rocco PRM. Laboratory Biomarkers for Diagnosis and Prognosis in COVID-19. Front Immunol 2022; 13:857573. [PMID: 35572561 PMCID: PMC9091347 DOI: 10.3389/fimmu.2022.857573] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/31/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) causes a wide spectrum of clinical manifestations, with progression to multiorgan failure in the most severe cases. Several biomarkers can be altered in coronavirus disease 2019 (COVID-19), and they can be associated with diagnosis, prognosis, and outcomes. The most used biomarkers in COVID-19 include several proinflammatory cytokines, neuron-specific enolase (NSE), lactate dehydrogenase (LDH), aspartate transaminase (AST), neutrophil count, neutrophils-to-lymphocytes ratio, troponins, creatine kinase (MB), myoglobin, D-dimer, brain natriuretic peptide (BNP), and its N-terminal pro-hormone (NT-proBNP). Some of these biomarkers can be readily used to predict disease severity, hospitalization, intensive care unit (ICU) admission, and mortality, while others, such as metabolomic and proteomic analysis, have not yet translated to clinical practice. This narrative review aims to identify laboratory biomarkers that have shown significant diagnostic and prognostic value for risk stratification in COVID-19 and discuss the possible clinical application of novel analytic strategies, like metabolomics and proteomics. Future research should focus on identifying a limited but essential number of laboratory biomarkers to easily predict prognosis and outcome in severe COVID-19.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,COVID-19 Virus Network from Brazilian Council for Scientific and Technological Development, Brasília, Brazil.,COVID-19 Virus Network from Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Crapnell RD, Dempsey NC, Sigley E, Tridente A, Banks CE. Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine - a review. Mikrochim Acta 2022; 189:142. [PMID: 35279780 PMCID: PMC8917829 DOI: 10.1007/s00604-022-05186-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Determination of specific cardiac biomarkers (CBs) during the diagnosis and management of adverse cardiovascular events such as acute myocardial infarction (AMI) has become commonplace in emergency department (ED), cardiology and many other ward settings. Cardiac troponins (cTnT and cTnI) and natriuretic peptides (BNP and NT-pro-BNP) are the preferred biomarkers in clinical practice for the diagnostic workup of AMI, acute coronary syndrome (ACS) and other types of myocardial ischaemia and heart failure (HF), while the roles and possible clinical applications of several other potential biomarkers continue to be evaluated and are the subject of several comprehensive reviews. The requirement for rapid, repeated testing of a small number of CBs in ED and cardiology patients has led to the development of point-of-care (PoC) technology to circumvent the need for remote and lengthy testing procedures in the hospital pathology laboratories. Electroanalytical sensing platforms have the potential to meet these requirements. This review aims firstly to reflect on the potential benefits of rapid CB testing in critically ill patients, a very distinct cohort of patients with deranged baseline levels of CBs. We summarise their source and clinical relevance and are the first to report the required analytical ranges for such technology to be of value in this patient cohort. Secondly, we review the current electrochemical approaches, including its sub-variants such as photoelectrochemical and electrochemiluminescence, for the determination of important CBs highlighting the various strategies used, namely the use of micro- and nanomaterials, to maximise the sensitivities and selectivities of such approaches. Finally, we consider the challenges that must be overcome to allow for the commercialisation of this technology and transition into intensive care medicine.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Nina C Dempsey
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Evelyn Sigley
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Ascanio Tridente
- Intensive Care Unit, Whiston Hospital, St Helens and Knowsley Teaching Hospitals NHS Trust, Warrington Road, Prescot, L35 5DR, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|