1
|
Mok CC, Chan KL, Tse SM, Chen SPL, Tan KCB, Ma WH. Romosozumab versus denosumab in long-term users of glucocorticoids: A pilot randomized controlled trial. J Intern Med 2024. [PMID: 39387335 DOI: 10.1111/joim.20017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To compare the efficacy of romosozumab (ROMO) and denosumab (DEN) in prevalent long-term glucocorticoid (GC) users. METHODS Adult patients receiving oral prednisolone (≥5 mg/day) with high risk of fracture were randomized to receive subcutaneous ROMO (210 mg monthly) or DEN (60 mg 6-monthly) for 12 months, followed by DEN for two more doses. The primary end point was the change in spine bone mineral density (BMD) from Months 0 to 12. Secondary end points included changes in BMD of the spine/hip/femoral neck and bone turnover markers at various time points and adverse events. RESULTS Seventy patients (age 62.6 ± 9.1 years; 96% women; median prednisolone dose 5.0 mg/day; duration of therapy 10.7 ± 7.4 years) were enrolled, and 63 completed the study. At Month 12, the spine BMD increased significantly in both ROMO (+7.3% ± 4.5%; p < 0.001) and DEN (+2.3% ± 3.1%; p < 0.001) groups. The absolute spine BMD gain from Months 0 to 12 was significantly greater in ROMO-treated patients (p < 0.001). Although the total hip BMD at Month 12 also increased significantly in the ROMO (+1.6% ± 3.3%; p = 0.01) and DEN groups (+1.6% ± 2.6%; p = 0.003), the absolute BMD gain was not significantly different between the groups. At Month 24, the spine BMD continued to increase in both the ROMO (+9.7% ± 4.8%; p < 0.001) and DEN group (+3.0% ± 3.0%; p < 0.001) compared to baseline, and the absolute BMD gain remained significantly greater in ROMO-treated patients. The total hip BMD continued to increase in both groups (ROMO +2.9% ± 3.7%; p < 0.001; DEN +2.2% ± 3.4%; p = 0.001), but the changes from baseline were similar. Injection site reaction was more frequently reported in ROMO-treated patients. CONCLUSION ROMO was superior to DEN in raising the spine BMD at Month 12 in chronic GC users. After switching to DEN, ROMO-treated patients continued to gain spine BMD to a greater extent than DEN until Month 24.
Collapse
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong SAR, China
| | - Kar Li Chan
- Department of Medicine, Tuen Mun Hospital, Hong Kong SAR, China
| | - Sau Mei Tse
- Department of Medicine, Tuen Mun Hospital, Hong Kong SAR, China
| | | | - Kathryn Choon Beng Tan
- Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Wai Han Ma
- Department of Nuclear Medicine, Tuen Mun Hospital, Hong Kong SAR, China
| |
Collapse
|
2
|
Al-Najjar YA, Quraishi DA, Kumar N, Hussain I. Bone Health Optimization in Adult Spinal Deformity Patients: A Narrative Review. J Clin Med 2024; 13:4891. [PMID: 39201032 PMCID: PMC11355164 DOI: 10.3390/jcm13164891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Osteoporosis and low bone mineral density (BMD) pose significant challenges in adult spinal deformity surgery, increasing the risks of complications such as vertebral compression fractures, hardware failure, proximal junctional kyphosis/failure, and pseudoarthrosis. This narrative review examines the current evidence on bone health optimization strategies for spinal deformity patients. Preoperative screening and medical optimization are crucial, with vitamin D supplementation showing particular benefit. Among the pharmacologic agents, bisphosphonates demonstrate efficacy in improving fusion rates and reducing hardware-related complications, though the effects may be delayed. Teriparatide, a parathyroid hormone analog, shows promise in accelerating fusion and enhancing pedicle screw fixation. Newer anabolic agents like abaloparatide and romosozumab require further study but show potential. Romosozumab, in particular, has demonstrated significant improvements in lumbar spine BMD over a shorter duration compared to other treatments. Surgical techniques like cement augmentation and the use of larger interbody cages can mitigate the risks in osteoporotic patients. Overall, a multifaceted approach incorporating medical optimization, appropriate pharmacologic treatment, and tailored surgical techniques is recommended to improve outcomes in adult spinal deformity patients with compromised bone quality. Future research should focus on optimizing the treatment protocols, assessing the long-term outcomes of newer agents in the spine surgery population, and developing cost-effective strategies to improve access to these promising therapies.
Collapse
Affiliation(s)
| | | | | | - Ibrahim Hussain
- Department of Neurological Surgery, Och Spine at New York Presbyterian at the Weill Cornell Medical Center, 525 East 68th Street, New York, NY 10065, USA; (Y.A.A.-N.); (D.A.Q.); (N.K.)
| |
Collapse
|
3
|
Adejuyigbe B, Kallini J, Chiou D, Kallini JR. Osteoporosis: Molecular Pathology, Diagnostics, and Therapeutics. Int J Mol Sci 2023; 24:14583. [PMID: 37834025 PMCID: PMC10572718 DOI: 10.3390/ijms241914583] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Osteoporosis is a major public health concern affecting millions of people worldwide and resulting in significant economic costs. The condition is characterized by changes in bone homeostasis, which lead to reduced bone mass, impaired bone quality, and an increased risk of fractures. The pathophysiology of osteoporosis is complex and multifactorial, involving imbalances in hormones, cytokines, and growth factors. Understanding the cellular and molecular mechanisms underlying osteoporosis is essential for appropriate diagnosis and management of the condition. This paper provides a comprehensive review of the normal cellular and molecular mechanisms of bone homeostasis, followed by an in-depth discussion of the proposed pathophysiology of osteoporosis through the osteoimmunological, gut microbiome, and cellular senescence models. Furthermore, the diagnostic tools used to assess osteoporosis, including bone mineral density measurements, biochemical markers of bone turnover, and diagnostic imaging modalities, are also discussed. Finally, both the current pharmacological and non-pharmacological treatment algorithms and management options for osteoporosis, including an exploration of the management of osteoporotic fragility fractures, are highlighted. This review reveals the need for further research to fully elucidate the molecular mechanisms underlying the condition and to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Babapelumi Adejuyigbe
- David Geffen School of Medicine, The University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA;
| | - Julie Kallini
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA;
| | - Daniel Chiou
- Department of Orthopedic Surgery, The University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA;
| | - Jennifer R. Kallini
- Department of Orthopedic Surgery, The University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA;
| |
Collapse
|
4
|
Vorrius B, Qiao Z, Ge J, Chen Q. Smart Strategies to Overcome Drug Delivery Challenges in the Musculoskeletal System. Pharmaceuticals (Basel) 2023; 16:967. [PMID: 37513879 PMCID: PMC10383421 DOI: 10.3390/ph16070967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
The musculoskeletal system (MSKS) is composed of specialized connective tissues including bone, muscle, cartilage, tendon, ligament, and their subtypes. The primary function of the MSKS is to provide protection, structure, mobility, and mechanical properties to the body. In the process of fulfilling these functions, the MSKS is subject to wear and tear during aging and after injury and requires subsequent repair. MSKS diseases are a growing burden due to the increasing population age. The World Health Organization estimates that 1.71 billon people suffer from MSKS diseases worldwide. MSKS diseases usually involve various dysfunctions in bones, muscles, and joints, which often result in pain, disability, and a decrease in quality of life. The most common MSKS diseases are osteoporosis (loss of bone), osteoarthritis (loss of cartilage), and sarcopenia (loss of skeletal muscle). Because of the disease burden and the need for treatment, regenerative drug therapies for MSKS disorders are increasingly in demand. However, the difficulty of effective drug delivery in the MSKS has become a bottleneck for developing MSKS therapeutics. The abundance of extracellular matrix and its small pore size in the MSKS present a formidable barrier to drug delivery. Differences of vascularity among various MSKS tissues pose complications for drug delivery. Novel strategies are necessary to achieve successful drug delivery in different tissues composing the MSKS. Those considerations include the route of administration, mechanics of surrounding fluids, and biomolecular interactions, such as the size and charge of the particles and targeting motifs. This review focuses on recent advances in challenges to deliver drugs to each tissue of the MSKS, current strategies of drug delivery, and future ideas of how to overcome drug delivery challenges in the MSKS.
Collapse
Affiliation(s)
| | | | | | - Qian Chen
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA; (B.V.); (Z.Q.); (J.G.)
| |
Collapse
|
5
|
Kim J, Jeong C, Lee J, Ha J, Baek KH, Kim S, An TJ, Park CK, Yoon HK, Lim JU. Bone-modifying agents for non-small-cell lung cancer patients with bone metastases during the era of immune checkpoint inhibitors: A narrative review. Semin Oncol 2023; 50:105-112. [PMID: 37723018 DOI: 10.1053/j.seminoncol.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
During the course of lung cancer progression, bone metastases occur in about 40% of patients. Common complications associated with bone metastases in lung cancer patients include musculoskeletal pain, pathologic fractures, spinal cord compression, and hypercalcemia. We discuss the efficacy of bone-modifying agents (BMAs) in reducing skeletal-related events (SREs) and improving cancer-related outcomes, particularly in patients with stage IV non-small-cell lung cancer with bone metastases. In addition, the combined effects of BMAs with radiotherapy or immunotherapy in reducing SREs in patients with lung cancer and bone metastases are explored.
Collapse
Affiliation(s)
- Jinyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chaiho Jeong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeongmin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seohyun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tai Joon An
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chan Kwon Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
6
|
Larrañaga-Vera A, Toti KS, Flatow JS, Haraczy AJ, Warnick E, Rao H, Gao ZG, Sussman SM, Mediero A, Leucht P, Jacobson KA, Cronstein BN. Novel alendronate-CGS21680 conjugate reduces bone resorption and induces new bone formation in post-menopausal osteoporosis and inflammatory osteolysis mouse models. Arthritis Res Ther 2022; 24:265. [PMID: 36494860 PMCID: PMC9733060 DOI: 10.1186/s13075-022-02961-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Loss of bone is a common medical problem and, while it can be treated with available therapies, some of these therapies have critical side effects. We have previously demonstrated that CGS21680, a selective A2A adenosine receptor agonist, prevents bone loss, but its on-target toxicities (hypotension, tachycardia) and frequent dosing requirements make it unusable in the clinic. We therefore generated a novel alendronate-CGS21680 conjugate (MRS7216), to target the agonist to bone where it remains for long periods thereby diminishing the frequency of administration and curtailing side effects. MRS7216 was synthesized from CGS21680 by sequential activation of the carboxylic acid moiety and reacting with an appropriate amino acid (PEG, alendronic acid) under basic conditions. MRS7216 was tested on C57BL/6J (WT) mice with established osteoporosis (OP) and WT or A2A KO mice with wear particle-induced inflammatory osteolysis (OL). Mice were treated weekly with MRS7216 (10mg/kg). Bone formation was studied after in vivo labeling with calcein/Alizarin Red, and μCT and histology analyses were performed. In addition, human primary osteoblasts and osteoclasts were cultured using bone marrow discarded after hip replacement. Receptor binding studies demonstrate that MRS7216 efficiently binds the A2A adenosine receptor. MRS7216-treated OP and OL mice had significant new bone formation and reduced bone loss compared to vehicle or alendronate-treated mice. Histological analysis showed that MRS7216 treatment significantly reduced osteoclast number and increased osteoblast number in murine models. Interestingly, cultured human osteoclast differentiation was inhibited, and osteoblast differentiation was stimulated by the compound indicating that MRS7216 conjugates represent a novel therapeutic approach to treat osteoporosis and osteolysis.
Collapse
Affiliation(s)
- Ane Larrañaga-Vera
- Division of Translational Medicine, Department of Medicine, NYU Langone Health, 550 First Avenue, Medical Science Building, Room, New York, NY, 251, USA
| | - Kiran S Toti
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James S Flatow
- Division of Translational Medicine, Department of Medicine, NYU Langone Health, 550 First Avenue, Medical Science Building, Room, New York, NY, 251, USA
| | - Alexandra J Haraczy
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eugene Warnick
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Harsha Rao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah M Sussman
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Aranzazu Mediero
- Division of Translational Medicine, Department of Medicine, NYU Langone Health, 550 First Avenue, Medical Science Building, Room, New York, NY, 251, USA
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Philipp Leucht
- Department of Orthopedic Surgery, New York University Langone Orthopedic Hospital, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bruce N Cronstein
- Division of Translational Medicine, Department of Medicine, NYU Langone Health, 550 First Avenue, Medical Science Building, Room, New York, NY, 251, USA.
- Division of Rheumatology, Department of Medicine, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
7
|
Wang YP, Khelifi N, Halleux CD, Ung RV, Samson F, Gagnon C, Mac-Way F. Bone Marrow Adiposity, Bone Mineral Density and Wnt/β-catenin Pathway Inhibitors Levels in Hemodialysis Patients. J Bone Metab 2022; 29:113-122. [PMID: 35718928 PMCID: PMC9208902 DOI: 10.11005/jbm.2022.29.2.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Marrow adipose tissue (MAT) is known to accumulate in patients with chronic kidney disease. This pilot study aimed to evaluate bone mineral density (BMD), MAT, visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) using computed tomography (CT) scans and to explore correlations between bone parameters, circulating Wnt/β-catenin pathway inhibitor levels, and adipose tissue parameters. Methods Single-center cross-sectional pilot study conducted in hemodialysis patients at the Centre Universitaire de Québec, Hôtel-Dieu de Québec hospital, Canada. CT-scan slices were acquired at the levels of the hip, L3 vertebra, and tibia. Volumetric and areal BMD, tibia cortical thickness, VAT and SAT area, and fat marrow index (FMI) were analyzed using the Mindways QCT Pro software. Blood levels of sclerostin, dickkopf-related protein 1 (DKK1), fibroblast growth factor 23, and α-Klotho were assessed. Spearman’s rho test was used to evaluate correlations. Results Fifteen hemodialysis patients (median age, 75 [66–82] years; 80% male; dialysis vintage, 39.3 [27.4–71.0] months) were included. While inverse correlations were obtained between L3 FMI and BMD, positive correlations were found between proximal tibial FMI and vertebral and tibial BMD, as well as with tibial (proximal and distal) cortical thickness. VAT had a positive correlation with α-Klotho levels, whereas L3 FMI had a negative correlation with DKK1 levels. Conclusions CT-scan allows simultaneous evaluation of bone and marrow adiposity in dialysis patients. Correlations between MAT and BMD vary depending on the bone site evaluated. DKK1 and α-Klotho levels correlate with adipose tissue accumulation in dialysis patients.
Collapse
Affiliation(s)
- Yue-Pei Wang
- Faculty and Department of Medicine, CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, Endocrinology and Nephrology Axis, Université Laval, Quebec, Canada
| | - Nada Khelifi
- Faculty and Department of Medicine, CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, Endocrinology and Nephrology Axis, Université Laval, Quebec, Canada
| | - Cyrille de Halleux
- Faculty and Department of Medicine, CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, Endocrinology and Nephrology Axis, Université Laval, Quebec, Canada
| | - Roth-Visal Ung
- Faculty and Department of Medicine, CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, Endocrinology and Nephrology Axis, Université Laval, Quebec, Canada
| | - France Samson
- Faculty and Department of Medicine, CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, Endocrinology and Nephrology Axis, Université Laval, Quebec, Canada
| | - Claudia Gagnon
- Faculty and Department of Medicine, CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, Endocrinology and Nephrology Axis, Université Laval, Quebec, Canada
| | - Fabrice Mac-Way
- Faculty and Department of Medicine, CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, Endocrinology and Nephrology Axis, Université Laval, Quebec, Canada
| |
Collapse
|
8
|
Gabe MBN, Skov-Jeppesen K, Gasbjerg LS, Schiellerup SP, Martinussen C, Gadgaard S, Boer GA, Oeke J, Torz LJ, Veedfald S, Svane MS, Bojsen-Møller KN, Madsbad S, Holst JJ, Hartmann B, Rosenkilde MM. GIP and GLP-2 together improve bone turnover in humans supporting GIPR-GLP-2R co-agonists as future osteoporosis treatment. Pharmacol Res 2022; 176:106058. [PMID: 34995796 DOI: 10.1016/j.phrs.2022.106058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 11/22/2022]
Abstract
The intestinal hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are key regulators of postprandial bone turnover in humans. We hypothesized that GIP and GLP-2 co-administration would provide stronger effect on bone turnover than administration of the hormones separately, and tested this using subcutaneous injections of GIP and GLP-2 alone or in combination in humans. Guided by these findings, we designed series of GIPR-GLP-2R co-agonists as template for new osteoporosis treatment. The clinical experiment was a randomized cross-over design including 10 healthy men administered subcutaneous injections of GIP and GLP-2 alone or in combination. The GIPR-GLP-2R co-agonists were characterized in terms of binding and activation profiles on human and rodent GIP and GLP-2 receptors, and their pharmacokinetic (PK) profiles were improved by dipeptidyl peptidase-4 protection and site-directed lipidation. Co-administration of GIP and GLP-2 in humans resulted in an additive reduction in bone resorption superior to each hormone individually. The GIPR-GLP-2R co-agonists, designed by combining regions of importance for cognate receptor activation, obtained similar efficacies as the two native hormones and nanomolar potencies on both human receptors. The PK-improved co-agonists maintained receptor activity along with their prolonged half-lives. Finally, we found that the GIPR-GLP-2R co-agonists optimized toward the human receptors for bone remodeling are not feasible for use in rodent models. The successful development of potent and efficacious GIPR-GLP-2R co-agonists, combined with the improved effect on bone metabolism in humans by co-administration, support these co-agonists as a future osteoporosis treatment.
Collapse
Affiliation(s)
- Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lærke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sine Pasch Schiellerup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christoffer Martinussen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Geke Aline Boer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jannika Oeke
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lola Julia Torz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maria Saur Svane
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Endocrinology, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | | | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
9
|
Oton-Gonzalez L, Mazziotta C, Iaquinta MR, Mazzoni E, Nocini R, Trevisiol L, D’Agostino A, Tognon M, Rotondo JC, Martini F. Genetics and Epigenetics of Bone Remodeling and Metabolic Bone Diseases. Int J Mol Sci 2022; 23:ijms23031500. [PMID: 35163424 PMCID: PMC8836080 DOI: 10.3390/ijms23031500] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Bone metabolism consists of a balance between bone formation and bone resorption, which is mediated by osteoblast and osteoclast activity, respectively. In order to ensure bone plasticity, the bone remodeling process needs to function properly. Mesenchymal stem cells differentiate into the osteoblast lineage by activating different signaling pathways, including transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1 (Wnt)/β-catenin pathways. Recent data indicate that bone remodeling processes are also epigenetically regulated by DNA methylation, histone post-translational modifications, and non-coding RNA expressions, such as micro-RNAs, long non-coding RNAs, and circular RNAs. Mutations and dysfunctions in pathways regulating the osteoblast differentiation might influence the bone remodeling process, ultimately leading to a large variety of metabolic bone diseases. In this review, we aim to summarize and describe the genetics and epigenetics of the bone remodeling process. Moreover, the current findings behind the genetics of metabolic bone diseases are also reported.
Collapse
Affiliation(s)
- Lucia Oton-Gonzalez
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Riccardo Nocini
- Unit of Otolaryngology, University of Verona, 37134 Verona, Italy;
| | - Lorenzo Trevisiol
- Unit of Maxillo-Facial Surgery and Dentistry, University of Verona, 37134 Verona, Italy; (L.T.); (A.D.)
| | - Antonio D’Agostino
- Unit of Maxillo-Facial Surgery and Dentistry, University of Verona, 37134 Verona, Italy; (L.T.); (A.D.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (J.C.R.); (F.M.); Tel.: +39-0532-455536 (J.C.R.); +39-0532-455540 (F.M.)
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (J.C.R.); (F.M.); Tel.: +39-0532-455536 (J.C.R.); +39-0532-455540 (F.M.)
| |
Collapse
|
10
|
Deng Y, Wei W, Tang P. Applications of Calcium-Based Nanomaterials in Osteoporosis Treatment. ACS Biomater Sci Eng 2022; 8:424-443. [PMID: 35080365 DOI: 10.1021/acsbiomaterials.1c01306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With rapidly aging populations worldwide, osteoporosis has become a serious global public health problem. Caused by disordered systemic bone remodeling, osteoporosis manifests as progressive loss of bone mass and microarchitectural deterioration of bone tissue, increasing the risk of fractures and eventually leading to osteoporotic fragility fractures. As fracture risk increases, antiosteoporosis treatments transition from nonpharmacological management to pharmacological intervention, and finally to the treatment of fragility fractures. Calcium-based nanomaterials (CBNMs) have unique advantages in osteoporosis treatment because of several characteristics including similarity to natural bone, excellent biocompatibility, easy preparation and functionalization, low pH-responsive disaggregation, and inherent pro-osteogenic properties. By combining additional ingredients, CBNMs can play multiple roles to construct antiosteoporotic biomaterials with different forms. This review covers recent advances in CBNMs for osteoporosis treatment. For ease of understanding, CBNMs for antiosteoporosis treatment can be classified as locally applied CBNMs, such as implant coatings and filling materials for osteoporotic bone regeneration, and systemically administered CBNMs for antiosteoporosis treatment. Locally applied CBNMs for osteoporotic bone regeneration develop faster than the systemically administered CBNMs, an important consideration given the serious outcomes of fragility fractures. Nevertheless, many innovations in construction strategies and preparation methods have been applied to build systemically administered CBNMs. Furthermore, with increasing interest in delaying osteoporosis progression and avoiding fragility fracture occurrence, research into systemic administration of CBNMs for antiosteoporosis treatment will have more development prospects. Deep understanding of the CBNM preparation process and optimizing CBNM properties will allow for increased application of CBNMs in osteoporosis treatments in the future.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing 100000, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences No. 1 Bei-Er-Tiao, Beijing 100190, P. R. China
| | - Peifu Tang
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing 100000, China
| |
Collapse
|
11
|
Shao R, Dong Y, Zhang S, Wu X, Huang X, Sun B, Zeng B, Xu F, Liang W. State of the art of bone biomaterials and their interactions with stem cells: Current state and future directions. Biotechnol J 2022; 17:e2100074. [PMID: 35073451 DOI: 10.1002/biot.202100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ruyi Shao
- Department of Orthopedics Zhuji People's Hospital Shaoxing Zhejiang Province 312500 P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics Xinchang People's Hospital Shaoxing Zhejiang Province 312500 P. R. China
| | - Songou Zhang
- College of Medicine Shaoxing University Shaoxing Zhejiang Province 312000 P. R. China
| | - Xudong Wu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Xiaogang Huang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Bin Sun
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Bin Zeng
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Fangming Xu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Wenqing Liang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| |
Collapse
|
12
|
Willems D, Javaid MK, Pinedo-Villanueva R, Libanati C, Yehoshua A, Charokopou M. Importance of Time Point–Specific Indirect Treatment Comparisons of Osteoporosis Treatments: A Systematic Literature Review and Network Meta-Analyses. Clin Ther 2022; 44:81-97. [DOI: 10.1016/j.clinthera.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/05/2021] [Accepted: 11/20/2021] [Indexed: 11/25/2022]
|
13
|
Geusens P, Feldman R, Oates M, Thomas T, Makras P, Jakob F, Langdahl B, Wang Z, Rojeski M, Libanati C. Romosozumab reduces incidence of new vertebral fractures across severity grades among postmenopausal women with osteoporosis. Bone 2022; 154:116209. [PMID: 34547521 DOI: 10.1016/j.bone.2021.116209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
Vertebral fractures (VFs) are the most common type of osteoporotic fracture, and their prevalence and severity are key risk factors for future fragility fractures. Here, we assess the treatment effect of romosozumab on the incidence of new on-study VFs according to Genant severity grades (mild, moderate, and severe). Data are reported from two phase 3 clinical studies for patients who received romosozumab versus placebo through 12 months, followed by denosumab through 24 months (FRAME: NCT01575834), and for patients who received romosozumab through 12 months, followed by alendronate through 24 months, versus alendronate only through 24 months (ARCH: NCT01631214). The treatment effect of romosozumab is reported for all included patients, and for patients with prevalent and severe baseline VFs. The incidence of new moderate-or-severe VFs was reduced through 12 months for patients treated with romosozumab versus placebo (FRAME; 0.25% versus 1.42%, respectively; p < 0.001) or alendronate (ARCH; 2.78% versus 4.00%, respectively; p = 0.042). Furthermore, the treatment effect of romosozumab on the incidence of new VFs across moderate and severe severity grades was independent of baseline VF prevalence or severity; through 12 months, consistent reductions in new moderate-or-severe VFs were observed regardless of prevalent (FRAME; p = 0.18) or severe (ARCH; p = 0.52) VFs at baseline. Reductions in the incidence of new moderate and severe VFs were sustained through 24 months, after transition from romosozumab to denosumab or alendronate, independent of baseline VF prevalence or severity; no significant interactions were observed between the incidence of new moderate-or-severe VFs and the presence of prevalent (FRAME; p = 0.81) or severe (ARCH; p = 0.99) VFs at baseline. With increasing recommendations for initial treatment with bone-forming agents for postmenopausal women with osteoporosis, these analyses will help to inform treatment decisions for patients at very high risk of VF.
Collapse
Affiliation(s)
- Piet Geusens
- Maastricht University Medical Center, Maastricht, the Netherlands; University Hasselt, Belgium.
| | | | | | - Thierry Thomas
- Hopital Nord, CHU Saint-Etienne, Saint-Etienne and INSERM 1059, Universite de Lyon, Saint-Etienne, France
| | - Polyzois Makras
- 251 Hellenic Air Force & VA-General Hospital, Athens, Greece
| | | | | | | | | | | |
Collapse
|
14
|
Cosman F, Libanati C, Deignan C, Yu Z, Wang Z, Ferrari S, Beck Jensen JE, Peris P, Bertoldo F, Lespessailles E, Hesse E, Cummings SR. Romosozumab Followed by Antiresorptive Treatment Increases the Probability of Achieving Bone Mineral Density Treatment Goals. JBMR Plus 2021; 5:e10546. [PMID: 34761149 PMCID: PMC8567484 DOI: 10.1002/jbm4.10546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/28/2021] [Indexed: 11/09/2022] Open
Abstract
Increases in bone mineral density (BMD) with osteoporosis treatment are associated with reduced fracture risk. Increasing BMD is therefore a goal of osteoporosis therapy. Here, we compare the probability of achieving a T-score of > -2.5 over 3 years at the total hip (TH) or lumbar spine (LS) in women with osteoporosis, ≥55 years of age, after the following treatment sequences: 1 year romosozumab followed by 2 years denosumab (FRAME and FRAME extension trials), 1 year romosozumab followed by 2 years alendronate, or alendronate-only for 3 years (ARCH trial). Probabilities of attaining the BMD target within 1 year of treatment were also determined. At both skeletal sites, in women with a baseline Tscore ≥ -2.7, there was >50% probability of achieving the BMD target with any 3-year regimen. The probability of achieving the target BMD in those with a baseline TH Tscore equal to -3.0 was 61% with romosozumab/denosumab, 38% with romosozumab/alendronate, and 9% with alendronate. In those with a baseline LS Tscore equal to -3.0, the probability of achieving a T-score > -2.5 was 93% with romosozumab/denosumab, 81% with romosozumab/alendronate, and 55% with alendronate. With 1 year of treatment, in patients with a baseline TH T-score equal to -2.7, the probability of reaching the target Tscore with romosozumab was 71% to 78% and 38% with alendronate. For patients with an initial LS T-score equal to -3.0, the probability of achieving the target T-score over 1 year was 85% to 86% with romosozumab and 25% for alendronate. Our findings suggest baseline BMD and the probability of achieving BMD T-score goals are factors to consider when selecting initial treatment for patients with osteoporosis. As baseline T-score falls below -2.7 (TH) and -3.0 (LS), alendronate has <50% likelihood of achieving a BMD goal above osteoporosis range, whereas these probabilities remain relatively high for regimens beginning with romosozumab. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pilar Peris
- Hospital Clinic, IDIBAPS University of Barcelona Barcelona Spain
| | | | - Eric Lespessailles
- Centre Hospitalier Régional d'Orléans University of Orléans Orleans France
| | - Eric Hesse
- Institute of Molecular Musculoskeletal Research University Hospital, LudwigMaximilians-University Munich Germany
| | - Steven R Cummings
- University of California San Francisco San Francisco Coordinating Center San Francisco CA USA
| |
Collapse
|
15
|
The Effects of Osteoporotic and Non-osteoporotic Medications on Fracture Risk and Bone Mineral Density. Drugs 2021; 81:1831-1858. [PMID: 34724173 PMCID: PMC8578161 DOI: 10.1007/s40265-021-01625-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/26/2022]
Abstract
Osteoporosis is a highly prevalent bone disease affecting more than 37.5 million individuals in the European Union (EU) and the United States of America (USA). It is characterized by low bone mineral density (BMD), impaired bone quality, and loss of structural and biomechanical properties, resulting in reduced bone strength. An increase in morbidity and mortality is seen in patients with osteoporosis, caused by the approximately 3.5 million new osteoporotic fractures occurring every year in the EU. Currently, different medications are available for the treatment of osteoporosis, including anti-resorptive and osteoanabolic medications. Bisphosphonates, which belong to the anti-resorptive medications, are the standard treatment for osteoporosis based on their positive effects on bone, long-term experience, and low costs. However, not only medications used for the treatment of osteoporosis can affect bone: several other medications are suggested to have an effect on bone as well, especially on fracture risk and BMD. Knowledge about the positive and negative effects of different medications on both fracture risk and BMD is important, as it can contribute to an improvement in osteoporosis prevention and treatment in general, and, even more importantly, to the individual's health. In this review, we therefore discuss the effects of both osteoporotic and non-osteoporotic medications on fracture risk and BMD. In addition, we discuss the underlying mechanisms of action.
Collapse
|
16
|
Tian A, Jia H, Zhu S, Lu B, Li Y, Ma J, Ma X. Romosozumab versus Teriparatide for the Treatment of Postmenopausal Osteoporosis: A Systematic Review and Meta-analysis through a Grade Analysis of Evidence. Orthop Surg 2021; 13:1941-1950. [PMID: 34643048 PMCID: PMC8528978 DOI: 10.1111/os.13136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/08/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To provide a systematic review about the efficacy and safety of romosozumab and teriparatide for the treatment of postmenopausal osteoporosis. METHOD Randomized controlled trials (RCTs) were searched from electronic databases, including PubMed (1996 to June 2019), Embase (1980 to June 2019), Cochrane Library (CENTRAL, June 2019), Web of Science (1998 to June 2019), and others. The primary outcomes included the following: the percentage change in bone mineral density of lumbar spine and total hip from baseline at month 6 and month 12 in each group. The secondary outcomes included the following: the percentage change in bone mineral density of femoral neck from baseline at month 6 and month 12 in each group and the incidence of adverse events at month 12 in each group. RESULTS Four studies containing 1304 patients met our selection criteria. The result of our analysis indicated that romosozumab showed better effects in improving BMD of lumbar spine (month 6: MD = 3.54, 95% CI [3.13, 3.94], P<0.001; month 12: MD = 4.93, 95% CI [4.21, 5.64], P<0.001), total hip (month 6: MD = 2.27, 95% CI [0.62, 3.91], P = 0.007; month 12: MD = 3.17, 95% CI [2.68, 3.65], P<0.001), and femoral neck (month 6: MD = 2.30, 95% CI [0.51, 4.08], P = 0.01; month 12: MD = 3.04, 95% CI [2.29, 3.78], P<0.001). Also, the injection-site reaction was less (month 12: RR = 2.84, 95% CI [1.22, 6.59], P = 0.02), but there were no significant difference in the incidence of serious adverse events (month 12: RR = 0.78, 95% CI [0.46, 1.33], P = 0.37) and death (month 12: RR = 0.61, 95% CI [0.08, 4.62], P = 0.63). CONCLUSION Based on the available studies, our current results demonstrate that romosozumab was better than teriparatide both in terms of efficacy and side effects.
Collapse
Affiliation(s)
- Aixian Tian
- Orthopedic Research Institute, Tianjin Hospital Heping BranchTianjin UniversityTianjinChina
| | - Haobo Jia
- Tianjin Medical UniversityTianjinChina
- Orthopaedics Institute, Tianjin HospitalTianjin UniversityTianjinChina
| | - Shan Zhu
- Department of Radiology, Tianjin HospitalTianjin UniversityTianjinChina
| | - Bin Lu
- Orthopedic Research Institute, Tianjin Hospital Heping BranchTianjin UniversityTianjinChina
| | - Yan Li
- Orthopedic Research Institute, Tianjin Hospital Heping BranchTianjin UniversityTianjinChina
| | - Jianxiong Ma
- Orthopedic Research Institute, Tianjin Hospital Heping BranchTianjin UniversityTianjinChina
| | - Xinlong Ma
- Orthopedic Research Institute, Tianjin Hospital Heping BranchTianjin UniversityTianjinChina
- Orthopaedics Institute, Tianjin HospitalTianjin UniversityTianjinChina
| |
Collapse
|
17
|
Management of osteoporosis in postmenopausal women: the 2021 position statement of The North American Menopause Society. Menopause 2021; 28:973-997. [PMID: 34448749 DOI: 10.1097/gme.0000000000001831] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To review evidence regarding osteoporosis screening, prevention, diagnosis, and management in the past decade and update the position statement published by The North American Menopause Society (NAMS) in 2010 regarding the management of osteoporosis in postmenopausal women as new therapies and paradigms have become available. DESIGN NAMS enlisted a panel of clinician experts in the field of metabolic bone diseases and/or women's health to review and update the 2010 NAMS position statement and recommendations on the basis of new evidence and clinical judgement. The panel's recommendations were reviewed and approved by the NAMS Board of Trustees. RESULTS Osteoporosis, especially prevalent in older postmenopausal women, increases the risk of fractures that can be associated with significant morbidity and mortality. Postmenopausal bone loss, related to estrogen deficiency, is the primary contributor to osteoporosis. Other important risk factors for postmenopausal osteoporosis include advanced age, genetics, smoking, thinness, and many diseases and drugs that impair bone health. An evaluation of these risk factors to identify candidates for osteoporosis screening and recommending nonpharmacologic measures such as good nutrition (especially adequate intake of protein, calcium, and vitamin D), regular physical activity, and avoiding smoking and excessive alcohol consumption are appropriate for all postmenopausal women. For women at high risk for osteoporosis, especially perimenopausal women with low bone density and other risk factors, estrogen or other therapies are available to prevent bone loss. For women with osteoporosis and/or other risk factors for fracture, including advanced age and previous fractures, the primary goal of therapy is to prevent new fractures. This is accomplished by combining nonpharmacologic measures, drugs to increase bone density and to improve bone strength, and strategies to reduce fall risk. If pharmacologic therapy is indicated, government-approved options include estrogen agonists/antagonists, bisphosphonates, RANK ligand inhibitors, parathyroid hormone-receptor agonists, and inhibitors of sclerostin. CONCLUSIONS Osteoporosis is a common disorder in postmenopausal women. Management of skeletal health in postmenopausal women involves assessing risk factors for fracture, reducing modifiable risk factors through dietary and lifestyle changes, and the use of pharmacologic therapy for patients at significant risk of osteoporosis or fracture. For women with osteoporosis, lifelong management is necessary. Treatment decisions occur continuously over the lifespan of a postmenopausal woman. Decisions must be individualized and should include the patient in the process of shared decision-making.
Collapse
|
18
|
Prather C, Adams E, Zentgraf W. Romosozumab: A first-in-class sclerostin inhibitor for osteoporosis. Am J Health Syst Pharm 2021; 77:1949-1956. [PMID: 32880646 DOI: 10.1093/ajhp/zxaa285] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The purpose of this article is to review the pharmacology, efficacy, and safety of the sclerostin inhibitor romosozumab for the treatment of osteoporosis, including data from clinical trials of the drug. SUMMARY A review of the literature was performed by searching PubMed and MEDLINE for all relevant articles published between January 2014 and February 2020 using the keywords romosozumab, romosozumab-aqqg, osteoporosis, and fracture. All relevant English-language articles evaluating the pharmacology, efficacy, or safety of romosozumab for the treatment of osteoporosis in humans were included; poster presentations were excluded. Romosozumab has been approved by the Food and Drug Administration and is considered both safe and effective for the treatment of osteoporosis in high-risk postmenopausal females. Phase 2 and phase 3 clinical trials have shown a statistically significant decrease in new vertebral fractures and an increase in bone mineral density with romosozumab use, as compared with both placebo use and use of alternative osteoporosis therapies. The primary safety concern is a potential risk of cardiovascular events; additionally, hypocalcemia must be corrected prior to initiation. Romosozumab is the first anabolic medication that both increases bone formation and decreases bone resorption. Data suggest that romosozumab is more effective than oral bisphosphonates in preventing osteoporotic fractures, though cost and safety concerns must be considered. CONCLUSION Romosozumab is a novel, 12-month treatment option for postmenopausal women at high risk for osteoporotic fracture that both increases bone formation and decreases bone resorption.
Collapse
Affiliation(s)
| | - Erin Adams
- Bernard J. Dunn School of Pharmacy, Shenandoah University, Winchester, VA
| | - Whitney Zentgraf
- Bernard J. Dunn School of Pharmacy, Shenandoah University, Winchester, VA
| |
Collapse
|
19
|
Holdsworth G, Staley JR, Hall P, van Koeverden I, Vangjeli C, Okoye R, Boyce RW, Turk JR, Armstrong M, Wolfreys A, Pasterkamp G. Sclerostin Downregulation Globally by Naturally Occurring Genetic Variants, or Locally in Atherosclerotic Plaques, Does Not Associate With Cardiovascular Events in Humans. J Bone Miner Res 2021; 36:1326-1339. [PMID: 33784435 PMCID: PMC8360163 DOI: 10.1002/jbmr.4287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
Inhibition of sclerostin increases bone formation and decreases bone resorption, leading to increased bone mass, bone mineral density, and bone strength and reduced fracture risk. In a clinical study of the sclerostin antibody romosozumab versus alendronate in postmenopausal women (ARCH), an imbalance in adjudicated serious cardiovascular (CV) adverse events driven by an increase in myocardial infarction (MI) and stroke was observed. To explore whether there was a potential mechanistic plausibility that sclerostin expression, or its inhibition, in atherosclerotic (AS) plaques may have contributed to this imbalance, sclerostin was immunostained in human plaques to determine whether it was detected in regions relevant to plaque stability in 94 carotid and 50 femoral AS plaques surgically collected from older female patients (mean age 69.6 ± 10.4 years). Sclerostin staining was absent in most plaques (67%), and when detected, it was of reduced intensity compared with normal aorta and was located in deeper regions of the plaque/wall but was not observed in areas considered relevant to plaque stability (fibrous cap and endothelium). Additionally, genetic variants associated with lifelong reduced sclerostin expression were explored for associations with phenotypes including those related to bone physiology and CV risk factors/events in a population-based phenomewide association study (PheWAS). Natural genetic modulation of sclerostin by variants with a significant positive effect on bone physiology showed no association with lifetime risk of MI or stroke. These data do not support a causal association between the presence of sclerostin, or its inhibition, in the vasculature and increased risk of serious cardiovascular events. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
|
20
|
Rosa JT, Laizé V, Gavaia PJ, Cancela ML. Fish Models of Induced Osteoporosis. Front Cell Dev Biol 2021; 9:672424. [PMID: 34179000 PMCID: PMC8222987 DOI: 10.3389/fcell.2021.672424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Osteopenia and osteoporosis are bone disorders characterized by reduced bone mineral density (BMD), altered bone microarchitecture and increased bone fragility. Because of global aging, their incidence is rapidly increasing worldwide and novel treatments that would be more efficient at preventing disease progression and at reducing the risk of bone fractures are needed. Preclinical studies are today a major bottleneck to the collection of new data and the discovery of new drugs, since they are commonly based on rodent in vivo systems that are time consuming and expensive, or in vitro systems that do not exactly recapitulate the complexity of low BMD disorders. In this regard, teleost fish, in particular zebrafish and medaka, have recently emerged as suitable alternatives to study bone formation and mineralization and to model human bone disorders. In addition to the many technical advantages that allow faster and larger studies, the availability of several fish models that efficiently mimic human osteopenia and osteoporosis phenotypes has stimulated the interest of the academia and industry toward a better understanding of the mechanisms of pathogenesis but also toward the discovery of new bone anabolic or antiresorptive compounds. This mini review recapitulates the in vivo teleost fish systems available to study low BMD disorders and highlights their applications and the recent advances in the field.
Collapse
Affiliation(s)
- Joana T Rosa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,S2 AQUA - Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,GreenCoLab - Associação Oceano Verde, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| |
Collapse
|
21
|
McClung MR, Bolognese MA, Brown JP, Reginster JY, Langdahl BL, Shi Y, Timoshanko J, Libanati C, Chines A, Oates MK. Skeletal responses to romosozumab after 12 months of denosumab. JBMR Plus 2021; 5:e10512. [PMID: 34258507 PMCID: PMC8260819 DOI: 10.1002/jbm4.10512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 05/09/2021] [Indexed: 01/07/2023] Open
Abstract
Romosozumab, a monoclonal anti‐sclerostin antibody that has the dual effect of increasing bone formation and decreasing bone resorption, reduces fracture risk within 12 months. In a post hoc, exploratory analysis, we evaluated the effects of romosozumab after 12 months of denosumab in postmenopausal women with low bone mass who had not received previous osteoporosis therapy. This phase 2 trial (NCT00896532) enrolled postmenopausal women with a lumbar spine, total hip, or femoral neck T‐score ≤ −2.0 and ≥ −3.5. Individuals were randomized to placebo or various romosozumab dosing regimens from baseline to month 24, were re‐randomized to 12 months of denosumab or placebo (months 24–36), and then all received romosozumab 210 mg monthly for 12 months (months 36–48). Results for the overall population have been previously published. Here, we present results for changes in bone mineral density (BMD) and levels of procollagen type I N‐terminal propeptide (P1NP) and β‐isomer of the C‐terminal telopeptide of type I collagen (β‐CTX) from a subset of women who were randomized to placebo for 24 months, were re‐randomized to receive denosumab (n = 16) or placebo (n = 12) for 12 months, and then received romosozumab for 12 months. In women who were randomized to placebo followed by denosumab, romosozumab treatment for 12 months maintained BMD gained during denosumab treatment at the total hip (mean change from end of denosumab treatment of 0.9%) and further increased BMD gains at the lumbar spine (mean change from end of denosumab treatment of 5.3%). Upon transition to romosozumab (months 36–48), P1NP and β‐CTX levels gradually returned to baseline from their reduced values during denosumab administration. Transitioning to romosozumab after 12 months of denosumab appears to improve lumbar spine BMD and maintain total hip BMD while possibly preventing the rapid increase in levels of bone turnover markers above baseline expected upon denosumab discontinuation. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael R McClung
- Oregon Osteoporosis Center Portland Oregon USA.,Mary MacKillop Institute for Health Research Australian Catholic University Melbourne Victoria Australia
| | | | - Jacques P Brown
- Laval University and CHU de Quebec (CHUL) Research Centre Quebec City Quebec Canada
| | | | | | - Yifei Shi
- Amgen Inc. Thousand Oaks California USA
| | | | | | | | | |
Collapse
|
22
|
Littlewood SJ, Dalci O, Dolce C, Holliday LS, Naraghi S. Orthodontic retention: what's on the horizon? Br Dent J 2021; 230:760-764. [PMID: 34117435 PMCID: PMC8193167 DOI: 10.1038/s41415-021-2937-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/14/2020] [Indexed: 11/08/2022]
Abstract
Orthodontic retention remains one of the great challenges in orthodontics. In this article, we discuss what is on the horizon to help address this challenge, including biological approaches to reduce relapse, treating patients without using retainers, technological developments, personalised medicine and the impact of COVID-19 on approaches to orthodontic retention.
Collapse
Affiliation(s)
- Simon J Littlewood
- Consultant Orthodontist, Department of Orthodontics, St Luke's Hospital, Bradford, UK.
| | - Oyku Dalci
- Senior Lecturer, Discipline of Orthodontics and Paediatric Dentistry, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Australia
| | - Calogero Dolce
- Professor and Chairman, Department of Orthodontics, University of Florida, College of Dentistry, Gainesville, Florida, USA
| | - L Shannon Holliday
- Associate Professor, Department of Orthodontics, University of Florida, College of Dentistry, Gainesville, Florida, USA
| | - Sasan Naraghi
- Consultant Orthodontist, Orthodontic Clinic, Public Dental Health, Växjö, Sweden
| |
Collapse
|
23
|
McClung MR. Role of bone-forming agents in the management of osteoporosis. Aging Clin Exp Res 2021; 33:775-791. [PMID: 33594648 DOI: 10.1007/s40520-020-01708-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Recent evidence confirms the superiority of osteoanabolic therapy compared to anti-remodeling drugs for rapid improvement in bone density and fracture risk reduction, providing strong justification for the use of these anabolic agents as the initial therapy in high-risk patients, to be followed by anti-remodeling therapy. This review will highlight the results of recent studies and define the current status of osteoanabolic therapy for osteoporosis.
Collapse
Affiliation(s)
- Michael R McClung
- Oregon Osteoporosis Center, Portland, OR, USA.
- Mary MacKillop Center for Health Research, Australian Catholic University, Melbourne, VIC, Australia.
| |
Collapse
|
24
|
Bailey KN, Nguyen J, Yee CS, Dole NS, Dang A, Alliston T. Mechanosensitive Control of Articular Cartilage and Subchondral Bone Homeostasis in Mice Requires Osteocytic Transforming Growth Factor β Signaling. Arthritis Rheumatol 2021; 73:414-425. [PMID: 33022131 DOI: 10.1002/art.41548] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Transforming growth factor β (TGFβ) signaling plays a complex tissue-specific and nonlinear role in osteoarthritis (OA). This study was conducted to determine the osteocytic contributions of TGFβ signaling to OA. METHODS To identify the role of osteocytic TGFβ signaling in joint homeostasis, we used 16-week-old male mice (n = 9-11 per group) and female mice (n = 7-11 per group) with an osteocyte-intrinsic ablation of TGFβ receptor type II (TβRIIocy-/- mice) and assessed defects in cartilage degeneration, subchondral bone plate (SBP) thickness, and SBP sclerostin expression. To further investigate these mechanisms in 16-week-old male mice, we perturbed joint homeostasis by subjecting 8-week-old mice to medial meniscal/ligamentous injury (MLI), which preferentially disrupts the mechanical environment of the medial joint to induce OA. RESULTS In all contexts, independent of sex, genotype, or medial or lateral joint compartment, increased SBP thickness and SBP sclerostin expression were spatially associated with cartilage degeneration. Male TβRIIocy-/- mice, but not female TβRIIocy-/- mice, had increased cartilage degeneration, increased SBP thickness, and higher levels of SBP sclerostin compared with control mice (all P < 0.05), demonstrating that the role of osteocytic TGFβ signaling on joint homeostasis is sexually dimorphic. With changes in joint mechanics following injury, control mice had increased SBP thickness, subchondral bone volume, and SBP sclerostin expression (all P < 0.05). TβRIIocy-/- mice, however, were insensitive to subchondral bone changes with injury, suggesting that mechanosensation at the SBP requires osteocytic TGFβ signaling. CONCLUSION Our results provide new evidence that osteocytic TGFβ signaling is required for a mechanosensitive response to injury, and that osteocytes control SBP homeostasis to maintain cartilage health, identifying osteocytic TGFβ signaling as a novel therapeutic target for OA.
Collapse
Affiliation(s)
| | - Jeffrey Nguyen
- University of California, San Francisco, and California State University, Long Beach
| | | | | | - Alexis Dang
- University of California, San Francisco and San Francisco VAMC, San Francisco, California
| | | |
Collapse
|
25
|
New therapeutic options for bone diseases. Wien Med Wochenschr 2021; 171:120-125. [PMID: 33512621 DOI: 10.1007/s10354-020-00810-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
In recent years, new treatment options for both common and rare bone diseases have become available. The sclerostin antibody romosozumab is the most recently approved drug for the therapy of postmenopausal osteoporosis. Its anabolic capacity makes it a promising treatment option for severe osteoporosis. Other sclerostin antibodies for the treatment of rare bone diseases such as osteogenesis imperfecta are currently being investigated. For rare bone diseases such as X‑linked hypophosphatemia (XLH) and hypophosphatasia (HPP), specific therapies are now also available, showing promising data in children and adults with a severe disease course. However, long-term data are needed to assess a sustained benefit for patients.
Collapse
|
26
|
Codrea CI, Croitoru AM, Baciu CC, Melinescu A, Ficai D, Fruth V, Ficai A. Advances in Osteoporotic Bone Tissue Engineering. J Clin Med 2021; 10:E253. [PMID: 33445513 PMCID: PMC7827332 DOI: 10.3390/jcm10020253] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
The increase in osteoporotic fracture worldwide is urging bone tissue engineering research to find new, improved solutions both for the biomaterials used in designing bone scaffolds and the anti-osteoporotic agents capable of promoting bone regeneration. This review aims to report on the latest advances in biomaterials by discussing the types of biomaterials and their properties, with a special emphasis on polymer-ceramic composites. The use of hydroxyapatite in combination with natural/synthetic polymers can take advantage of each of their components properties and has a great potential in bone tissue engineering, in general. A comparison between the benefits and potential limitations of different scaffold fabrication methods lead to a raised awareness of the challenges research face in dealing with osteoporotic fracture. Advances in 3D printing techniques are providing the ways to manufacture improved, complex, and specialized 3D scaffolds, capable of delivering therapeutic factors directly at the osteoporotic skeletal defect site with predefined rate which is essential in order to optimize the osteointegration/healing rate. Among these factors, strontium has the potential to increase osseointegration, osteogenesis, and healing rate. Strontium ranelate as well as other biological active agents are known to be effective in treating osteoporosis due to both anti-resorptive and anabolic properties but has adverse effects that can be reduced/avoided by local release from biomaterials. In this manner, incorporation of these agents in polymer-ceramic composites bone scaffolds can have significant clinical applications for the recovery of fractured osteoporotic bones limiting or removing the risks associated with systemic administration.
Collapse
Affiliation(s)
- Cosmin Iulian Codrea
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania; (C.I.C.); (A.-M.C.); (A.F.)
- Department of Oxide Compounds and Materials Science, Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 060021 Bucharest, Romania;
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania; (C.I.C.); (A.-M.C.); (A.F.)
| | - Cosmin Constantin Baciu
- Anaesthesia Intensive Care Unit (AICU/ATI), Department of Orthopedics, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Alina Melinescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania; (C.I.C.); (A.-M.C.); (A.F.)
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania;
| | - Victor Fruth
- Department of Oxide Compounds and Materials Science, Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 060021 Bucharest, Romania;
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania; (C.I.C.); (A.-M.C.); (A.F.)
- Academy of Romanian Scientists, 050094 Bucharest, Romania
| |
Collapse
|
27
|
Abe K, Kimura H, Yamamoto N, Shimozaki S, Higuchi T, Taniguchi Y, Uto T, Tsuchiya H. Treatment strategy for atypical ulnar fracture due to severely suppressed bone turnover caused by long-term bisphosphonate therapy: a case report and literature review. BMC Musculoskelet Disord 2020; 21:802. [PMID: 33272231 PMCID: PMC7712635 DOI: 10.1186/s12891-020-03824-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Atypical fractures may occur due to the combined effect of severely suppressed bone turnover (SSBT) caused by long-term bisphosphonate treatment and chronic repetitive bone microdamage. Atypical fracture of the ulna due to SSBT is a rare entity; there is no standardized treatment strategy for this condition. We successfully treated a patient with atypical fracture of the ulna. Herein, we present this patient, review the relevant literature, and discuss the treatment strategy. CASE PRESENTATION An 84-year-old woman presented with atypical fracture of the left ulnar shaft due to SSBT. She had a history of bisphosphonate therapy (ibandronate and alendronate) since more than 10 years; her bone turnover was severely suppressed. We performed open reduction and internal fixation (ORIF) using dual plate with some additional treatments. These included drilling and decortication, use of autogenous bone graft, low-intensity pulsed ultrasound (LIPUS) treatment, and administration of teriparatide. Finally, bone union was observed at 11 months after surgery. CONCLUSIONS Based on the literature review and our experience with this case, ORIF alone may not be adequate to achieve bone union; drilling, decortication, and use of cancellus bone graft is important to achieve favorable outcomes. Administration of teriparatide and LIPUS may facilitate early bone union, although further studies are required to provide more definitive evidence. Furthermore, ORIF using dual plate may help avoid implant failure owing to the long time required for bone union.
Collapse
Affiliation(s)
- Kensaku Abe
- Department of Orthopaedic Surgery, Japanese Red Cross Kanazawa Hospital, 2-251 Minma, Kanazawa, 921-8162, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Japanese Red Cross Kanazawa Hospital, 2-251 Minma, Kanazawa, 921-8162, Japan.
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Shingo Shimozaki
- Department of Orthopaedic Surgery, Japanese Red Cross Kanazawa Hospital, 2-251 Minma, Kanazawa, 921-8162, Japan
| | - Takashi Higuchi
- Department of Orthopaedic Surgery, Japanese Red Cross Kanazawa Hospital, 2-251 Minma, Kanazawa, 921-8162, Japan
| | - Yuta Taniguchi
- Department of Orthopaedic Surgery, Japanese Red Cross Kanazawa Hospital, 2-251 Minma, Kanazawa, 921-8162, Japan
| | - Takaaki Uto
- Department of Orthopaedic Surgery, Japanese Red Cross Kanazawa Hospital, 2-251 Minma, Kanazawa, 921-8162, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
28
|
Abstract
Osteocytes are an ancient cell, appearing in fossilized skeletal remains of early fish and dinosaurs. Despite its relative high abundance, even in the context of nonskeletal cells, the osteocyte is perhaps among the least studied cells in all of vertebrate biology. Osteocytes are cells embedded in bone, able to modify their surrounding extracellular matrix via specialized molecular remodeling mechanisms that are independent of the bone forming osteoblasts and bone-resorbing osteoclasts. Osteocytes communicate with osteoclasts and osteoblasts via distinct signaling molecules that include the RankL/OPG axis and the Sost/Dkk1/Wnt axis, among others. Osteocytes also extend their influence beyond the local bone environment by functioning as an endocrine cell that controls phosphate reabsorption in the kidney, insulin secretion in the pancreas, and skeletal muscle function. These cells are also finely tuned sensors of mechanical stimulation to coordinate with effector cells to adjust bone mass, size, and shape to conform to mechanical demands.
Collapse
Affiliation(s)
- Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| |
Collapse
|
29
|
Development of cyclic peptides with potent in vivo osteogenic activity through RaPID-based affinity maturation. Proc Natl Acad Sci U S A 2020; 117:31070-31077. [PMID: 33229551 PMCID: PMC7733813 DOI: 10.1073/pnas.2012266117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Osteoporosis is caused by a disequilibrium between bone resorption and bone formation. Therapeutics for osteoporosis can be divided into antiresorptives that suppress bone resorption and anabolics which increase bone formation. Currently, the only anabolic treatment options are parathyroid hormone mimetics or an anti-sclerostin monoclonal antibody. With the current global increases in demographics at risk for osteoporosis, development of therapeutics that elicit anabolic activity through alternative mechanisms is imperative. Blockade of the PlexinB1 and Semaphorin4D interaction on osteoblasts has been shown to be a promising mechanism to increase bone formation. Here we report the discovery of cyclic peptides by a novel RaPID (Random nonstandard Peptides Integrated Discovery) system-based affinity maturation methodology that generated the peptide PB1m6A9 which binds with high affinity to both human and mouse PlexinB1. The chemically dimerized peptide, PB1d6A9, showed potent inhibition of PlexinB1 signaling in mouse primary osteoblast cultures, resulting in significant enhancement of bone formation even compared to non-Semaphorin4D-treated controls. This high anabolic activity was also observed in vivo when the lipidated PB1d6A9 (PB1d6A9-Pal) was intravenously administered once weekly to ovariectomized mice, leading to complete rescue of bone loss. The potent osteogenic properties of this peptide shows great promise as an addition to the current anabolic treatment options for bone diseases such as osteoporosis.
Collapse
|
30
|
Simpson CR, Kelly HM, Murphy CM. Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair. Adv Drug Deliv Rev 2020; 160:212-233. [PMID: 33122088 DOI: 10.1016/j.addr.2020.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Disrupted bone metabolism can lead to delayed fracture healing or non-union, often requiring intervention to correct. Although the current clinical gold standard bone graft implants and commercial bone graft substitutes are effective, they possess inherent drawbacks and are limited in their therapeutic capacity for delayed union and non-union repair. Research into advanced biomaterials and therapeutic biomolecules has shown great potential for driving bone regeneration, although few have achieved commercial success or clinical translation. There are a number of therapeutics, which influence bone remodelling, currently licensed for clinical use. Providing an alternative local delivery context for these therapies, can enhance their efficacy and is an emerging trend in bone regenerative therapeutic strategies. This review aims to provide an overview of how biomaterial design has advanced from currently available commercial bone graft substitutes to accommodate previously licensed therapeutics that target local bone restoration and healing in a synergistic manner, and the challenges faced in progressing this research towards clinical reality.
Collapse
Affiliation(s)
- Christopher R Simpson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Helena M Kelly
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
31
|
Nielsen JJ, Low SA. Bone-Targeting Systems to Systemically Deliver Therapeutics to Bone Fractures for Accelerated Healing. Curr Osteoporos Rep 2020; 18:449-459. [PMID: 32860563 PMCID: PMC7560943 DOI: 10.1007/s11914-020-00604-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Compared with the current standard of implanting bone anabolics for fracture repair, bone fracture-targeted anabolics would be more effective, less invasive, and less toxic and would allow for control over what phase of fracture healing is being affected. We therefore sought to identify the optimal bone-targeting molecule to allow for systemic administration of therapeutics to bone fractures. RECENT FINDINGS We found that many bone-targeting molecules exist, but most have been developed for the treatment of bone cancers, osteomyelitis, or osteoporosis. There are a few examples of bone-targeting ligands that have been developed for bone fractures that are selective for the bone fracture over the body and skeleton. Acidic oligopeptides have the ideal half-life, toxicity profile, and selectivity for a bone fracture-targeting ligand and are the most developed and promising of these bone fracture-targeting ligands. However, many other promising ligands have been developed that could be used for bone fractures.
Collapse
Affiliation(s)
- Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, USA.
| | - Stewart A Low
- Novosteo Inc., West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
32
|
Kobza AO, Papaioannou A, Lau AN, Adachi JD. Romosozumab in the treatment of osteoporosis. Immunotherapy 2020; 12:965-981. [DOI: 10.2217/imt-2020-0158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis is a disease characterized by weakening of the bone architecture, which leads to an increased risk of fracture. There has been interest in the development of osteoanabolic agents that can increase bone mass and reverse the deteriorating architecture of osteoporotic bone. Romosozumab is a new agent for osteoporosis that both promotes bone formation and inhibits bone resorption. It is a monoclonal antibody that inhibits the activity of sclerostin, which allows the Wnt pathway to promote osteoblastogenesis and inhibit the activity of bone-resorbing osteoclasts. In clinical trials, it has proven to be superior to other agents in terms of increasing bone mineral density and reducing the incidence of fractures. This review will highlight the pharmacology, clinical efficacy and safety profile of romosozumab and suggest where this medication may fit within our current management of osteoporosis.
Collapse
Affiliation(s)
- Alexandra O Kobza
- Department of Medicine, Division of Rheumatology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Alexandra Papaioannou
- Department of Medicine, Division of Geriatric Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Arthur N Lau
- Department of Medicine, Division of Rheumatology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jonathan D Adachi
- Department of Medicine, Division of Rheumatology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
33
|
Nealy KL, Harris KB. Romosozumab: A Novel Injectable Sclerostin Inhibitor With Anabolic and Antiresorptive Effects for Osteoporosis. Ann Pharmacother 2020; 55:677-686. [PMID: 32862655 DOI: 10.1177/1060028020952764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To review the clinical pharmacology, efficacy, and safety of romosozumab, a humanized monoclonal antibody with a novel mechanism of action for monthly injection, and its place in the management of osteoporosis. DATA SOURCES PubMed, MEDLINE, and ClinicalTrials.gov searches (1966 to July 2020) were conducted using the keywords romosozumab and osteoporosis. STUDY SELECTION AND DATA EXTRACTION Published phase 2 and 3 clinical trials and 2 meta-analyses in patients with osteoporosis were included. DATA SYNTHESIS Romosozumab increased bone mineral density (BMD) at the lumbar spine (12.1%-13.3%), femoral neck (2.2%-5.9%), and total hip (2.5%-6.9%) in patients with osteoporosis. After 12 months, romosozumab provided greater BMD gains at the lumbar spine and hip than teriparatide. However, teriparatide is likely to further increase BMD if continued for up to 24 months. In postmenopausal women at a high fracture risk, 1 year of romosozumab followed by 1 year of alendronate resulted in lower vertebral, nonvertebral, clinical, and hip fractures than alendronate alone for 2 years. Although absolute event rates were low, serious cardiovascular and cerebrovascular events were numerically higher in 2 clinical trials when compared with alendronate (2.5% vs 1.9%, respectively) and placebo (4.9% vs 2.5%, respectively). RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE This review discusses the place in therapy for romosozumab in osteoporosis management as a novel agent. CONCLUSIONS Romosozumab offers an alternative for patients with a high risk of osteoporotic fractures. Clinicians should avoid romosozumab in patients with a history of myocardial infarction or stroke in the past 12 months.
Collapse
Affiliation(s)
- Kimberly Lovin Nealy
- Wingate University School of Pharmacy, Wingate, NC, USA.,Novant Health Senior Care, Matthews, NC, USA
| | - Kira B Harris
- Novant Health Family Medicine Residency Program, Cornelius, NC, USA
| |
Collapse
|
34
|
Kirazlı Y, Atamaz Çalış F, El Ö, Gökçe Kutsal Y, Peker Ö, Sindel D, Tuzun Ş, Gogas Yavuz D, Durmaz B, Akarirmak Ü, Bodur H, Hamuryudan V, Inceboz U, Öncel S. Updated approach for the management of osteoporosis in Turkey: a consensus report. Arch Osteoporos 2020; 15:137. [PMID: 32860546 PMCID: PMC7456410 DOI: 10.1007/s11657-020-00799-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/27/2020] [Indexed: 02/03/2023]
Abstract
As a result of the current demographics, increased projections of osteoporosis (OP) and prevalence of the disease in Turkey, a panel of multidisciplinary experts developed a thorough review to assist clinicians in identifying OP and associated fracture risk patients, diagnosing the disease with the appropriate available diagnostic methods, classifying the disease, and initiating appropriate treatment. The panel expects to increase the awareness of this prevalent disease, decrease consequences of OP with corresponding cost savings and, ultimately, decrease the overall burden of OP and related fractures in Turkey. BACKGROUND OP is not officially accepted as a chronic disease in Turkey despite the high prevalence and predicted increase in the following years. However, there are areas where the country is performing well, such as having a country-specific fracture risk assessment model, DXA access, and the uptake of FRAX. Additional efforts are required to decrease the existing treatment gap estimating 75-90% of patients do not receive pharmacological intervention for secondary prevention, and the diagnosis rate is around 25%. METHODS A selected panel of Turkish experts in fields related to osteoporosis was provided with a series of relevant questions to address prior to the multi-day conference. Within this conference, each narrative was discussed and edited by the entire group, through numerous drafts and rounds of discussion until a consensus was achieved. Represented in the panel were a number of societies including The Turkish Osteoporosis Society, The Society of Endocrinology and Metabolism of Turkey (SEMT), and The Turkish Society of Physical Medicine and Rehabilitation. RESULTS Standardized general guidelines to identify OP and related fractures and at-risk population in Turkey, which will enable clinicians to accurately and effectively diagnose the disease, treat the appropriate patients with available pharmacological and non-pharmacological treatments and decrease the burden of the disease. CONCLUSIONS This manuscript provides a review of the current state of OP and related fractures in Turkey. Moreover, this manuscript reviews current international guidelines and national studies and proposes a number of helpful country-specific classifications that can be used by healthcare providers caring for the at-risk population. Additionally, the panel proposes practical recommendations that should be implemented nationally in order to decrease the burden of OP and related fractures and effectively preventing the burden in future generations.
Collapse
Affiliation(s)
- Yeşim Kirazlı
- Department of Physical Medicine and Rehabilitation, Medical Faculty of Ege University, Izmir, Turkey.
| | - Funda Atamaz Çalış
- Department of Physical Medicine and Rehabilitation, Medical Faculty of Ege University, Izmir, Turkey
| | - Özlem El
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Yeşim Gökçe Kutsal
- Department of Physical and Rehabilitation Medicine, Hacettepe University Medical School, Ankara, Turkey
| | - Özlen Peker
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Dilsad Sindel
- Department of Physical Medicine and Rehabilitation, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Şansın Tuzun
- Department of Physical Medicine and Rehabilitation, Cerrahpaşa Medical Faculty, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Dilek Gogas Yavuz
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Marmara University School of Medicine, Istanbul, Turkey
| | - Berrin Durmaz
- Department of Physical Medicine and Rehabilitation, Medical Faculty of Ege University, Izmir, Turkey
| | - Ülkü Akarirmak
- Department of Physical Medicine and Rehabilitation, Cerrahpaşa Medical Faculty, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Hatice Bodur
- Department of Physical Medicine and Rehabilitation, Medical Faculty of Yıldırım Beyazıt University, Ankara, Turkey
| | - Vedat Hamuryudan
- Department of Internal Medicine, Section of Rheumatology, Cerrahpaşa Medical Faculty, İstanbul University Cerrahpaşa, İstanbul, Turkey
| | - Umit Inceboz
- İrenbe Obstetrics and Gynecology IVF Center, İzmir, Turkey
| | - Sema Öncel
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
35
|
Chen W, Wasnik S, Fu Y, Aranda L, Rundle CH, Lau KHW, Baylink DJ, Zhang X. Unique anabolic action of stem cell gene therapy overexpressing PDGFB-DSS6 fusion protein in OVX osteoporosis mouse model. Bone Rep 2020; 12:100236. [PMID: 31886323 PMCID: PMC6920713 DOI: 10.1016/j.bonr.2019.100236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
In the present study we sought to improve the efficacy and safety of our Sca1+ PDGFB stem cell gene therapy for osteoporosis in ovariectomized (OVX) mouse model. This therapy is administered by marrow transplantation. We established the promise of this approach by previously showing that this therapy in normal mice increase bone density, increased endosteal cortical and trabecular bone formation, caused de novo trabecular bone formation, increased cortical thickness and improve bone strength. In the current study we produced a fusion gene, PDGFB-DSS6. We reasoned that the DSS6, calcium binding protein would trap the PDGFB at the bone surface and thereby limit the amount of PDGFB required to produce an optimal bone formation response, i.e. efficacy with a lower engraftment. The result shows that indeed with a very low level of engraftment we achieved a large increase in bone formation in the OVX model of bone loss. Serum analysis for biochemical marker of new bone formation showed an approximate 75% increase in alkaline phosphatase levels in Sca1+PDGFB-DSS6 group as compared to other groups. Quantitative analysis of bone by microCT showed a massive increase in trabecular bone density and trabecular connectivity of the femur in the metaphysis in Sca1+ PDGFB-DSS6 group. The increased cortical porosity produced by OVX was replaced by the Sca1+ PDGFB-DSS6 therapy but not by the positive control Sca1+ PDGFB. Additionally, an increase in the femur bone strength was also observed specifically in Sca1+ PDGFB-DSS6 as compared to other treatment groups, emphasizing the functional significance of the observed anabolic action is on bone formation. In future work we will focus on nontoxic preconditioning of our marrow transplantation procedure and also on transcriptional control of therapeutic gene expression to avoid excess bone formation.
Collapse
Affiliation(s)
- Wanqiu Chen
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA
| | - Samiksha Wasnik
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA
| | - Yawen Fu
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA
| | - Leslie Aranda
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA
| | - Charles H. Rundle
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA, USA
| | - Kin-Hing William Lau
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA, USA
| | - David J. Baylink
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA
| | - Xiaobing Zhang
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
36
|
Lau EMC, Dinavahi R, Woo YC, Wu CH, Guan J, Maddox J, Tolman C, Yang W, Shin CS. Romosozumab or alendronate for fracture prevention in East Asian patients: a subanalysis of the phase III, randomized ARCH study. Osteoporos Int 2020; 31:677-685. [PMID: 32047951 PMCID: PMC7075830 DOI: 10.1007/s00198-020-05324-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/27/2020] [Indexed: 01/04/2023]
Abstract
UNLABELLED Romosozumab, a sclerostin antibody, exerts dual effect to increase bone formation and decrease bone resorption. Among high-risk postmenopausal East Asian women, romosozumab followed by alendronate was associated with lower incidences of fractures vs alendronate alone. Romosozumab demonstrates potential to address an unmet need in osteoporosis management in Asia. INTRODUCTION Romosozumab, a sclerostin antibody, exerts dual effect to increase bone formation and decrease bone resorption. The global ARCH study demonstrated superiority of romosozumab followed by alendronate in reducing fracture risk in high-risk postmenopausal osteoporotic women vs alendronate alone. We report outcomes among ARCH East Asian patients. METHODS In ARCH, 4093 postmenopausal osteoporotic women with fragility fracture were randomized 1:1 to monthly romosozumab 210 mg or weekly alendronate 70 mg for 12 months, both followed by open-label alendronate. Primary endpoints were incidence of new vertebral fracture (VF) at 24 months and clinical fracture at primary analysis (confirmed fractures in ≥ 330 patients and all patients had opportunity to attend month 24 visit). This post hoc analysis was not powered to detect fracture-rate differences. RESULTS This analysis included 275 patients from Hong Kong, Korea, and Taiwan. Romosozumab followed by alendronate reduced risk of new VFs at 24 months by 60% (P = 0.11) and clinical fractures at primary analysis by 44% (P = 0.15) vs alendronate alone. Romosozumab followed by alendronate significantly increased mean bone mineral density at 24 months from baseline by a further 9.0%, 3.3%, and 3.0% at the lumbar spine, total hip, and femoral neck vs alendronate alone. Adverse event (AE) rates, including positively adjudicated serious cardiovascular AEs (1.6% vs 1.4% at 12 months for romosozumab vs alendronate), were similar across treatment groups. CONCLUSIONS Consistent with the global analysis, romosozumab followed by alendronate was associated with lower incidences of new vertebral, clinical, non-vertebral, and hip fractures vs alendronate alone among East Asian patients.
Collapse
Affiliation(s)
- E M C Lau
- Hong Kong Orthopaedic and Osteoporosis Center for Treatment and Research, 6th Floor, Tower 2, New World Tower, 18 Queen's Road Central, Hong Kong, Hong Kong.
| | | | - Y C Woo
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, 102 Pok Fu Lam Road, Pok Fu Lam, Hong Kong
| | - C-H Wu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Sheng Li Road, Tainan, Taiwan
| | - J Guan
- UCB Pharma, Brussels, Belgium
| | - J Maddox
- Amgen, Inc., Thousand Oaks, CA, USA
| | - C Tolman
- Amgen Asia Holding Ltd, One Island East, 18 Westlands Rd, Quarry Bay, Hong Kong
| | - W Yang
- Amgen, Inc., Thousand Oaks, CA, USA
| | - C S Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW We reviewed recent progress on the role of sclerostin (SOST) and its effects on the immune system in order to summarize the current state of knowledge in osteoimmunology, in regard to hematopoiesis, lymphopoiesis, and inflammation. RECENT FINDINGS Changes in sclerostin levels affect distinct niches within the bone marrow that support hematopoietic stem cells and B cell development. Sclerostin's regulation of adipogenesis could also be important for immune cell maintenance with age. Surprisingly, B cell development in the bone marrow is influenced by Sost produced by mesenchymal stem cells and osteoblasts, but not by osteocytes. Additionally, extramedullary hematopoiesis in the spleen and increased pro-inflammatory cytokine levels in the bone marrow are observed in global Sost-/- mice. In addition to changes in bone marrow density, sclerostin depletion affects B lymphopoiesis and myelopoiesis, as well as other changes within the bone marrow cavity that could affect hematopoiesis. It is therefore important to monitor for hematopoietic changes in patients receiving sclerostin-depleting therapies.
Collapse
Affiliation(s)
- Cristine Donham
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, 95343, USA
| | - Jennifer O Manilay
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, 95343, USA.
- Dept. of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200, Lake Road Merced, North, CA, 95343, USA.
| |
Collapse
|
38
|
Abstract
Numerous safe and efficient drug therapies are currently available to decrease risk of low trauma fractures in patients with osteoporosis including postmenopausal, male, and secondary osteoporosis. In this chapter, we give first an overview of the most important outcomes regarding fracture risk reduction, change in bone mineral density (BMD by DXA) and/or bone markers of the phase III clinical studies of well-established therapies (such as Bisphosphonates, Denosumab or Teriparatide) and also novel therapies (such as Romosozumab or Abaloparatide) and highlight their mechanisms of action at bone tissue/material level. The latter understanding is not only essential for the choice of drug, duration and discontinuation of treatment but also for the interpretation of the clinical outcomes (in particular of eventual changes in BMD) after drug administration. In the second part of this chapter, we focus on the management of different forms of osteoporosis and give a review of the respective current guidelines for treatment. Adverse effects of treatment such as atypical femoral fractures, osteonecrosis of the jaw or influence of fracture healing are considered also in this context.
Collapse
|
39
|
Romosozumab: a novel bone anabolic treatment option for osteoporosis? Wien Med Wochenschr 2019; 170:124-131. [PMID: 31858345 PMCID: PMC7098919 DOI: 10.1007/s10354-019-00721-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 10/29/2022]
Abstract
Research into the drug romosozumab began with the investigation of patients with excess bone formation. The understanding of the wingless-type mouse mammary tumor virus integration site (Wnt) signaling pathway in bone metabolism identified the negative regulator of bone mass sclerostin as a potential target for the treatment of osteoporosis. Preclinical studies confirmed this idea because they showed that sclerostin antibodies have the potential to increase bone formation. Biochemical analyses of clinical studies showed a significant increase in bone formation markers, which then slowly decreased within a year. This was accompanied by a particularly initially pronounced decrease in bone resorption. This dual mechanism of action led to an increase in bone mineral density and a significant reduction in fracture risk. Clinical vertebral fractures decreased by between 28 and 36%, nonvertebral fractures shown in a post hoc analysis by 42%. Romosozumab is administered once a month in the form of two injections. At the puncture site, reactions occur in about 5%. The most significant side effects are cardiovascular. In phase III studies, the number of serious cardiovascular complications was not significantly, albeit numerically, higher than in the control group. In Japan, South Korea, Canada, Australia, and the USA, osteoporosis patients at a high risk of fracture may already be treated with romosozumab (Evenity). Approval in the European Union was granted by 2019-12-12.
Collapse
|
40
|
PHARMACOLOGICAL MANAGEMENT OF OSTEOPOROSIS IN POSTMENOPAUSAL WOMEN: THE CURRENT STATE OF THE ART. JOURNAL OF POPULATION THERAPEUTICS AND CLINICAL PHARMACOLOGY 2019. [DOI: 10.15586/jptcp.v26i4.646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Iaquinta MR, Mazzoni E, Bononi I, Rotondo JC, Mazziotta C, Montesi M, Sprio S, Tampieri A, Tognon M, Martini F. Adult Stem Cells for Bone Regeneration and Repair. Front Cell Dev Biol 2019; 7:268. [PMID: 31799249 PMCID: PMC6863062 DOI: 10.3389/fcell.2019.00268] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The regeneration of bone fractures, resulting from trauma, osteoporosis or tumors, is a major problem in our super-aging society. Bone regeneration is one of the main topics of concern in regenerative medicine. In recent years, stem cells have been employed in regenerative medicine with interesting results due to their self-renewal and differentiation capacity. Moreover, stem cells are able to secrete bioactive molecules and regulate the behavior of other cells in different host tissues. Bone regeneration process may improve effectively and rapidly when stem cells are used. To this purpose, stem cells are often employed with biomaterials/scaffolds and growth factors to accelerate bone healing at the fracture site. Briefly, this review will describe bone structure and the osteogenic differentiation of stem cells. In addition, the role of mesenchymal stem cells for bone repair/regrowth in the tissue engineering field and their recent progress in clinical applications will be discussed.
Collapse
Affiliation(s)
- Maria Rosa Iaquinta
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
42
|
Abstract
Romosozumab (EVENITY™) is a humanised monoclonal antibody against sclerostin being developed by Amgen and UCB for the treatment of osteoporosis. On the basis of favourable results from several phase III trials in postmenopausal women with osteoporosis, and a single trial in men with osteoporosis, romosozumab is being considered for marketing approval in the US, EU and Canada, and was recently approved for marketing in Japan. This article summarizes the milestones in the development of romosozumab leading to this first approval for the treatment of osteoporosis in patients at high risk of fracture.
Collapse
Affiliation(s)
- Anthony Markham
- Springer, Private Bag 65901, Mairangi Bay, 0754, Auckland, New Zealand.
| |
Collapse
|
43
|
Suehara Y, Okubo T, Kurihara T, Hayashi T, Kohsaka S, Kazuno S, Sano K, Hasegawa N, Miura Y, Akaike K, Kim Y, Takamochi K, Takahashi F, Ueno T, Kaneko K, Saito T. Protein Expression Profiles Corresponding to Histological Changes with Denosumab Treatment in Giant Cell Tumors of Bone. Proteomics Clin Appl 2019; 13:e1800147. [DOI: 10.1002/prca.201800147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 06/13/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Yoshiyuki Suehara
- Department of Orthopedic SurgeryJuntendo University School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| | - Taketo Okubo
- Department of Orthopedic SurgeryJuntendo University School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| | - Taisei Kurihara
- Department of Orthopedic SurgeryJuntendo University School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
- Department of Human PathologyJuntendo University School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| | - Takuo Hayashi
- Department of Human PathologyJuntendo University School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| | - Shinji Kohsaka
- Division of Cellular SignalingNational Cancer Center Research Institute 5‐1‐1 Tsukiji Chuo‐ku Tokyo 104‐0045 Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular ScienceResearch Support CenterJuntendo University Graduate School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| | - Kei Sano
- Department of Orthopedic SurgeryJuntendo University School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
- Department of Human PathologyJuntendo University School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| | - Nobuhiko Hasegawa
- Department of Orthopedic SurgeryJuntendo University School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular ScienceResearch Support CenterJuntendo University Graduate School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| | - Keisuke Akaike
- Department of Orthopedic SurgeryJuntendo University School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| | - Youngji Kim
- Department of Orthopedic SurgeryJuntendo University School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| | - Kazuya Takamochi
- Department of General Thoracic SurgeryJuntendo University School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| | - Fumiyuki Takahashi
- Department of Respiratory MedicineJuntendo University School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular ScienceResearch Support CenterJuntendo University Graduate School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| | - Kazuo Kaneko
- Department of Orthopedic SurgeryJuntendo University School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| | - Tsuyoshi Saito
- Department of Human PathologyJuntendo University School of Medicine 2‐1‐1 Hongo Bunkyo‐ku Tokyo 113‐8421 Japan
| |
Collapse
|
44
|
Effect of TNF- α-Induced Sclerostin on Osteocytes during Orthodontic Tooth Movement. J Immunol Res 2019; 2019:9716758. [PMID: 31341915 PMCID: PMC6612957 DOI: 10.1155/2019/9716758] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/07/2019] [Accepted: 05/26/2019] [Indexed: 12/18/2022] Open
Abstract
Osteocytes are abundant cells in bone, which contribute to bone maintenance. Osteocytes express receptor activator of nuclear factor kappa-B ligand (RANKL) and regulate osteoclast formation. Orthodontic tooth movement (OTM) occurs by osteoclast resorption of alveolar bone. Osteocyte-derived RANKL is critical in bone resorption during OTM. Additionally, tumor necrosis factor-α (TNF-α) is important in osteoclastogenesis during OTM. Sclerostin has been reported to enhance RANKL expression in the MLO-Y4 osteocyte-like cell line. This study investigated the effect of TNF-α on sclerostin expression in osteocytes during OTM. In vitro analysis of primary osteocytes, which were isolated from DMP1-Topaz mice by sorting the Topaz variant of GFP-positive cells, revealed that SOST mRNA expression was increased when osteocytes were cultured with TNF-α and that RANKL mRNA expression was increased when osteocytes were cultured with sclerostin. Moreover, the number of TRAP-positive cells was increased in osteocytes and osteoclast precursors cocultured with sclerostin. In vivo analysis of mouse calvariae that had been subcutaneously injected with phosphate-buffered saline (PBS) or TNF-α revealed that the number of TRAP-positive cells and the percentage of sclerostin-positive osteocytes were higher in the TNF-α group than in the PBS group. Furthermore, the level of SOST mRNA was increased by TNF-α. As an OTM model, a Ni-Ti closed-coil spring connecting the upper incisors and upper-left first molar was placed to move the first molar to the mesial direction in wild-type (WT) mice and TNF receptor 1- and 2-deficient (TNFRsKO) mice. After 6 days of OTM, the percentage of sclerostin-positive osteocytes on the compression side of the first molar in TNFRsKO mice was lower than that in WT mice. In this study, TNF-α increased sclerostin expression in osteocytes, and sclerostin enhanced RANKL expression in osteocytes. Thus, TNF-α may play an important role in sclerostin expression in osteocytes and enhance osteoclast formation during OTM.
Collapse
|
45
|
Bergen DJM, Kague E, Hammond CL. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Front Endocrinol (Lausanne) 2019; 10:6. [PMID: 30761080 PMCID: PMC6361756 DOI: 10.3389/fendo.2019.00006] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is metabolic bone disease caused by an altered balance between bone anabolism and catabolism. This dysregulated balance is responsible for fragile bones that fracture easily after minor falls. With an aging population, the incidence is rising and as yet pharmaceutical options to restore this imbalance is limited, especially stimulating osteoblast bone-building activity. Excitingly, output from large genetic studies on people with high bone mass (HBM) cases and genome wide association studies (GWAS) on the population, yielded new insights into pathways containing osteo-anabolic players that have potential for drug target development. However, a bottleneck in development of new treatments targeting these putative osteo-anabolic genes is the lack of animal models for rapid and affordable testing to generate functional data and that simultaneously can be used as a compound testing platform. Zebrafish, a small teleost fish, are increasingly used in functional genomics and drug screening assays which resulted in new treatments in the clinic for other diseases. In this review we outline the zebrafish as a powerful model for osteoporosis research to validate potential therapeutic candidates, describe the tools and assays that can be used to study bone homeostasis, and affordable (semi-)high-throughput compound testing.
Collapse
Affiliation(s)
- Dylan J. M. Bergen
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
46
|
Skjødt MK, Frost M, Abrahamsen B. Side effects of drugs for osteoporosis and metastatic bone disease. Br J Clin Pharmacol 2018; 85:1063-1071. [PMID: 30192026 DOI: 10.1111/bcp.13759] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a common condition that leads to substantial morbidity and mortality and affects an increasing number of persons worldwide. Several pharmacological therapies that inhibit bone resorption, promote bone formation, or both, are available for the treatment of osteoporosis. The osteoanabolic treatment spectrum was recently expanded by the introduction of a novel bone-forming agent in the United States, and clinical trials indicate that a new class of bone anabolic therapy may become available. Both antiresorptive and bone anabolic therapies are associated with common and rare adverse effects, which are particularly important to address as these drugs are used for long-term treatment in numerous patients with a large proportion being elderly and/or having multimorbidity. In addition, antiresorptive drugs are used to inhibit bone resorption in patients with malignant hypercalcaemia or to prevent skeletal events in cancer patients, and bisphosphonates have been repurposed as a cancer preventive therapy. However, therapeutic doses are generally higher when antiresorptive drugs are used in the oncological setting, which influence the prevalence of adverse effects significantly. This review highlights key issues and controversies regarding adverse effects of currently available and emerging drugs used for osteoporosis and metastatic bone diseases.
Collapse
Affiliation(s)
- Michael Kriegbaum Skjødt
- Department of Medicine, Holbaek Hospital, Holbaek, Denmark.,Department of Medicine, Slagelse Hospital, Slagelse, Denmark
| | - Morten Frost
- Department of Endocrinology M, Odense University Hospital, Odense C, Denmark.,Steno Diabetes Centre Odense, Odense C, Denmark
| | - Bo Abrahamsen
- Department of Medicine, Holbaek Hospital, Holbaek, Denmark.,Odense Patient Data Explorative Network, Institute of Clinical Research University of Southern Denmark and Odense University Hospital, Odense C, Denmark
| |
Collapse
|