1
|
Alghabari F, Shah ZH. Comparative adaptability assessment of bread wheat and synthetic hexaploid genotypes under saline conditions using physiological, biochemical, and genetic indices. FRONTIERS IN PLANT SCIENCE 2024; 15:1336571. [PMID: 38916034 PMCID: PMC11194433 DOI: 10.3389/fpls.2024.1336571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
The tolerance to salinity stress is an intricate phenomenon at cellular and whole plant level that requires the knowledge of contributing physiological and biochemical processes and the genetic control of participating traits. In this context, present study was conducted with objective to evaluate the physiological, biochemical, and genetic responses of different wheat genotypes including bread wheat (BW) and synthetic hexaploids (SHs) under saline and control environment. The experiment was conducted in two factorial arrangement in randomized complete block design (RCBD), with genotypes as one factor and treatments as another factor. A significant decline in physiological traits (chlorophyll, photosynthesis, stomatal conductance, transpiration, and cell membrane stability) was observed in all genotypes due to salt stress; however, this decline was higher in BW genotypes as compared to four SH genotypes. In addition, the biochemical traits including enzymes [superoxide dismutase, catalase, and peroxidase (POD)] activity, proline, and glycine betaine (GB) illustrated significant increase along with increase in the expression of corresponding genes (TaCAT1, TaSOD, TaPRX2A, TaP5CS, and TaBADH-A1) due to salt stress in SHs as compared to BW. Correspondingly, highly overexpressed genes, TaHKT1;4, TaNHX1, and TaAKT1 caused a significant decline in Na+/K+ in SH as compared to BW genotypes under salt stress. Moreover, correlation analysis, principal component analysis (PCA), and heatmap analysis have further confirmed that the association and expression of physiological and biochemical traits varied significantly with salinity stress and type of genotype. Overall, the physiological, biochemical, and genetic evaluation proved SHs as the most useful stock for transferring salinity tolerance to other superior BW cultivars via the right breeding program.
Collapse
Affiliation(s)
- Fahad Alghabari
- Department of Arid Land Agriculture, King Abdulaziz University, Jaddah, Saudi Arabia
| | - Zahid Hussain Shah
- Department of Plant Breeding and Genetics, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
2
|
Kirova E, Moskova I, Manova V, Koycheva Y, Tsekova Z, Borisova D, Nikolov H, Dimitrov V, Sergiev I, Kocheva K. Exogenous Cytokinin 4PU-30 Modulates the Response of Wheat and Einkorn Seedlings to Ultraviolet B Radiation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1401. [PMID: 38794471 PMCID: PMC11125444 DOI: 10.3390/plants13101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Abiotic stress is responsible for a significant reduction in crop plant productivity worldwide. Ultraviolet (UV) radiation is a natural component of sunlight and a permanent environmental stimulus. This study investigated the distinct responses of young wheat and einkorn plants to excessive UV-B radiation (180 min at λmax 312 nm) following foliar pretreatment with 1 µM synthetic cytokinin 4PU-30. Results demonstrated that UV radiation significantly amplified hydrogen peroxide levels in both wheat and einkorn, with einkorn exhibiting a more pronounced increase compared to wheat. This elevation indicated the induction of oxidative stress by UV radiation in the two genotypes. Intensified antioxidant enzyme activities and the increased accumulation of typical stress markers and non-enzyme protectants were evidenced. Transcriptional activity of genes encoding the key antioxidant enzymes POX, GST, CAT, and SOD was also investigated to shed some light on their genetic regulation in both wheat and einkorn seedlings. Our results suggested a role for POX1 and POX7 genes in the UV-B tolerance of the two wheat species as well as a cytokinin-stimulated UV-B stress response in einkorn involving the upregulation of the tau subfamily gene GSTU6. Based on all our findings, it could be concluded that 4PU-30 had the potential of alleviating oxidative stress by attenuating the symptoms of superfluous UV-B illumination in the two examined plant species.
Collapse
Affiliation(s)
- Elisaveta Kirova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (E.K.); (I.M.); (Y.K.); (Z.T.); (I.S.)
| | - Irina Moskova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (E.K.); (I.M.); (Y.K.); (Z.T.); (I.S.)
| | - Vasilissa Manova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (E.K.); (I.M.); (Y.K.); (Z.T.); (I.S.)
| | - Yana Koycheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (E.K.); (I.M.); (Y.K.); (Z.T.); (I.S.)
| | - Zoia Tsekova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (E.K.); (I.M.); (Y.K.); (Z.T.); (I.S.)
| | - Denitsa Borisova
- Space Research and Technology Institute, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 1, 1113 Sofia, Bulgaria; (D.B.); (H.N.); (V.D.)
| | - Hristo Nikolov
- Space Research and Technology Institute, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 1, 1113 Sofia, Bulgaria; (D.B.); (H.N.); (V.D.)
| | - Ventzeslav Dimitrov
- Space Research and Technology Institute, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 1, 1113 Sofia, Bulgaria; (D.B.); (H.N.); (V.D.)
| | - Iskren Sergiev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (E.K.); (I.M.); (Y.K.); (Z.T.); (I.S.)
| | - Konstantina Kocheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (E.K.); (I.M.); (Y.K.); (Z.T.); (I.S.)
| |
Collapse
|
3
|
Fatima S, Khan MO, Iqbal N, Iqbal MM, Qamar H, Imtiaz M, Hundleby P, Wei Z, Ahmad N. Studying Salt-Induced Shifts in Gene Expression Patterns of Glucosinolate Transporters and Glucosinolate Accumulation in Two Contrasting Brassica Species. Metabolites 2024; 14:179. [PMID: 38668307 PMCID: PMC11052333 DOI: 10.3390/metabo14040179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Brassica crops are well known for the accumulation of glucosinolates-secondary metabolites crucial for plants' adaptation to various stresses. Glucosinolates also functioning as defence compounds pose challenges to food quality due to their goitrogenic properties. Their disruption leaves plants susceptible to insect pests and diseases. Hence, a targeted reduction in seed glucosinolate content is of paramount importance to increase food acceptance. GLUCOSINOLATE TRANSPORTERS (GTRs) present a promising avenue for selectively reducing glucosinolate concentrations in seeds while preserving biosynthesis elsewhere. In this study, 54 putative GTR protein sequences found in Brassica were retrieved, employing Arabidopsis GTR1 and GTR2 templates. Comprehensive bioinformatics analyses, encompassing gene structure organization, domain analysis, motif assessments, promoter analysis, and cis-regulatory elements, affirmed the existence of transporter domains and stress-related regulatory elements. Phylogenetic analysis revealed patterns of conservation and divergence across species. Glucosinolates have been shown to increase under stress conditions, indicating a potential role in stress response. To elucidate the role of GTRs in glucosinolate transportation under NaCl stress in two distinct Brassica species, B. juncea and B. napus, plants were subjected to 0, 100, or 200 mM NaCl. Based on the literature, key GTR genes were chosen and their expression across various plant parts was assessed. Both species displayed divergent trends in their biochemical profiles as well as glucosinolate contents under elevated salt stress conditions. Statistical modelling identified significant contributors to glucosinolate variations, guiding the development of targeted breeding strategies for low-glucosinolate varieties. Notably, GTR2A2 exhibited pronounced expressions in stems, contributing approximately 52% to glucosinolate content variance, while GTR2B1/C2 displayed significant expression in flowers. Additionally, GTR2A1 and GTR1A2/B1 demonstrated noteworthy expression in roots. This study enhances our understanding of glucosinolate regulation under stress conditions, offering avenues to improve Brassica crop quality and resilience.
Collapse
Affiliation(s)
- Samia Fatima
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (S.F.); (M.O.K.); (N.I.); (M.M.I.); (M.I.)
| | - Muhammad Omar Khan
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (S.F.); (M.O.K.); (N.I.); (M.M.I.); (M.I.)
| | - Nadia Iqbal
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (S.F.); (M.O.K.); (N.I.); (M.M.I.); (M.I.)
| | - Muhammad Mudassar Iqbal
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (S.F.); (M.O.K.); (N.I.); (M.M.I.); (M.I.)
| | - Huma Qamar
- Oilseeds Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan;
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Muhammad Imtiaz
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (S.F.); (M.O.K.); (N.I.); (M.M.I.); (M.I.)
| | - Penny Hundleby
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK;
| | - Zhengyi Wei
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (S.F.); (M.O.K.); (N.I.); (M.M.I.); (M.I.)
| |
Collapse
|
4
|
Zheng L, Assane Hamidou A, Zhao X, Ouyang Z, Lin H, Li J, Zhang X, Luo K, Chen Y. Superoxide dismutase gene family in cassava revealed their involvement in environmental stress via genome-wide analysis. iScience 2023; 26:107801. [PMID: 37954140 PMCID: PMC10638475 DOI: 10.1016/j.isci.2023.107801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/29/2023] [Accepted: 08/29/2023] [Indexed: 11/14/2023] Open
Abstract
Superoxide dismutase (SOD) is a crucial metal-containing enzyme that plays a vital role in catalyzing the dismutation of superoxide anions, converting them into molecular oxygen and hydrogen peroxide, essential for enhancing plant stress tolerance. We identified 8 SOD genes (4 CSODs, 2 FSODs, and 2 MSODs) in cassava. Bioinformatics analyses provided insights into chromosomal location, phylogenetic relationships, gene structure, conserved motifs, and gene ontology annotations. MeSOD genes were classified into two groups through phylogenetic analysis, revealing evolutionary connections. Promoters of these genes harbored stress-related cis-elements. Duplication analysis indicated the functional significance of MeCSOD2/MeCSOD4 and MeMSOD1/MeMSOD2. Through qRT-PCR, MeCSOD2 responded to salt stress, MeMSOD2 to drought, and cassava bacterial blight. Silencing MeMSOD2 increased XpmCHN11 virulence, indicating MeMSOD2 is essential for cassava's defense against XpmCHN11 infection. These findings enhance our understanding of the SOD gene family's role in cassava and contribute to strategies for stress tolerance improvement.
Collapse
Affiliation(s)
- Linling Zheng
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Abdoulaye Assane Hamidou
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Xuerui Zhao
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Zhiwei Ouyang
- HNU-ASU Joint International Tourism College, Hainan University, Haikou 570228, China
| | - Hongxin Lin
- Soil Fertilizer and Resources Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Junyi Li
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Xiaofei Zhang
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali 763537, Colombia
| | - Kai Luo
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Yinhua Chen
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| |
Collapse
|
5
|
Du L, Ma Z, Mao H. Duplicate Genes Contribute to Variability in Abiotic Stress Resistance in Allopolyploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2465. [PMID: 37447026 DOI: 10.3390/plants12132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
Gene duplication is a universal biological phenomenon that drives genomic variation and diversity, plays a crucial role in plant evolution, and contributes to innovations in genetic engineering and crop development. Duplicated genes participate in the emergence of novel functionality, such as adaptability to new or more severe abiotic stress resistance. Future crop research will benefit from advanced, mechanistic understanding of the effects of gene duplication, especially in the development and deployment of high-performance, stress-resistant, elite wheat lines. In this review, we summarize the current knowledge of gene duplication in wheat, including the principle of gene duplication and its effects on gene function, the diversity of duplicated genes, and how they have functionally diverged. Then, we discuss how duplicated genes contribute to abiotic stress response and the mechanisms of duplication. Finally, we have a future prospects section that discusses the direction of future efforts in the short term regarding the elucidation of replication and retention mechanisms of repetitive genes related to abiotic stress response in wheat, excellent gene function research, and practical applications.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Zhenbing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Tounsi S, Jemli S, Feki K, Brini F, Najib Saïdi M. Superoxide dismutase (SOD) family in durum wheat: promising candidates for improving crop resilience. PROTOPLASMA 2023; 260:145-158. [PMID: 35484428 DOI: 10.1007/s00709-022-01767-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The SOD family has been extensively analyzed at genome wide level in several crops. However, little is known about this family in durum wheat. In this study, a total of 14 TdSOD genes were identified in whole durum wheat genome including 8 TdCu-ZnSODs, 2 TdMnSODs, and 4 TdFeSODs. In silico analysis evinced that TdSOD family members displayed a closer evolutionary relationship, similar gene structure and protein features with their homologs from other plant species. Furthermore, the analysis of their promoter regions revealed the presence of a great number of cis-regulatory elements related to plant development, abiotic and biotic stresses, phytohormones, and several potential binding sites for transcription factors. Interestingly, 3D structure analysis revealed that TdCu-ZnSOD2A-2 and TdCu-ZnSOD2B-2, belonging to the Cu-Zn group, were modeled as copper chaperone for SOD like their homologs from rice and Arabidopsis. The expression profile of eight TdSOD candidate genes was investigated under salt, drought, cold, and ABA treatments. Notably, TdCu-ZnSOD2A-1, TdFeSOD4A-1, and TdFeSOD7A-1 were significantly up-regulated under all stress treatments. On the other hand, TdCu-ZnSOD7B and TdMnSOD2B were strongly expressed in roots and leaves under cold stress and TdCu-ZnSOD2B-2 was particularly up-regulated in leaves under ABA treatment. Ultimately, these findings provide valuable information for the identification of attractive candidate genes to improve wheat resilience.
Collapse
Affiliation(s)
- Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177" 3018, Sfax, Tunisia.
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology Enzymatic and Biomolecules, Centre of Biotechnology of Sfax (CBS), University of Sfax, P.O Box 1177, 3018, Sfax, Tunisia
- Biology Department, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Kaouthar Feki
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cedria, BP901, 2050, Hammam‑Lif, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177" 3018, Sfax, Tunisia.
| | - Mohamed Najib Saïdi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177" 3018, Sfax, Tunisia
| |
Collapse
|
7
|
Kamruzzaman M, Beyene MA, Siddiqui MN, Ballvora A, Léon J, Naz AA. Pinpointing genomic loci for drought-induced proline and hydrogen peroxide accumulation in bread wheat under field conditions. BMC PLANT BIOLOGY 2022; 22:584. [PMID: 36513990 PMCID: PMC9746221 DOI: 10.1186/s12870-022-03943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Proline (Pro) and hydrogen peroxide (H2O2) play a critical role in plants during drought adaptation. Genetic mapping for drought-induced Pro and H2O2 production under field conditions is very limited in crop plants since their phenotyping with large populations is labor-intensive. A genome-wide association study (GWAS) of a diversity panel comprised of 184 bread wheat cultivars grown in natural field (control) and rain-out shelter (drought) environments was performed to identify candidate loci and genes regulating Pro and H2O2 accumulation induced by drought. RESULTS The GWAS identified top significant marker-trait associations (MTAs) on 1A and 2A chromosomes, respectively for Pro and H2O2 in response to drought. Similarly, MTAs for stress tolerance index (STI) of Pro and H2O2 were identified on 5B and 1B chromosomes, respectively. Total 143 significant MTAs were identified including 36 and 71 were linked to drought and 2 and 34 were linked to STI for Pro and H2O2, respectively. Next, linkage disequilibrium analysis revealed minor alleles of significant single-markers and haplotypes were associated with higher Pro and H2O2 accumulation under drought. Several putative candidate genes for Pro and H2O2 content encode proteins with kinase, transporter or protein-binding activities. CONCLUSIONS The identified genetic factors associated with Pro and H2O2 biosynthesis underlying drought adaptation lay a fundamental basis for functional studies and future marker-assisted breeding programs.
Collapse
Affiliation(s)
- Mohammad Kamruzzaman
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202, Bangladesh
| | - Mekides Abebe Beyene
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Bonn, Germany
| | - Ali Ahmad Naz
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany.
- Department of Plant Breeding, University of Applied Sciences, Osnabrueck, Osnabrueck, Germany.
| |
Collapse
|
8
|
Balla MY, Gorafi YSA, Kamal NM, Abdalla MGA, Tahir ISA, Tsujimoto H. Exploiting Wild Emmer Wheat Diversity to Improve Wheat A and B Genomes in Breeding for Heat Stress Adaptation. FRONTIERS IN PLANT SCIENCE 2022; 13:895742. [PMID: 35937332 PMCID: PMC9355596 DOI: 10.3389/fpls.2022.895742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Wheat is highly sensitive to temperature beyond the optimum. To improve wheat adaptation to heat stress, the best option is to exploit the diversity of wild wheat progenitors. This study aimed to identify germplasm and quantitative trait loci associated with heat stress tolerance from wild emmer wheat diversity. We evaluated a diverse set of multiple derivative lines harboring chromosome segments from nine wild emmer wheat parents under four environments: two optimum environments at Tottori, Japan and Dongola, Sudan, one moderate heat stress environment, and one severe heat stress environment at Wad Medani, Sudan. Genome-wide association analysis was conducted with 13,312 SNP markers. Strong marker-trait associations (MTAs) were identified for chlorophyll content at maturity on chromosomes 1A and 5B: these MTAs explained 28.8 and 26.8% of the variation, respectively. A region on chromosome 3A (473.7-638.4 Mbp) contained MTAs controlling grain yield, under optimum and severe heat stress. Under severe heat stress, regions on chromosomes 3A (590.4-713.3 Mbp) controlled grain yield, biomass, days to maturity and thousand kernel weight, and on 3B (744.0-795.2 Mbp) grain yield and biomass. Heat tolerance efficiency (HTE) was controlled by three MTAs, one each on chromosomes 2A, 2B, and 5A under moderate heat stress and one MTA on chromosome 3A under severe heat stress. Some of the MTAs found here were previously reported, but the new ones originated from the wild emmer wheat genomes. The favorable alleles identified from wild emmer wheat were absent or rare in the elite durum wheat germplasm being bred for heat stress tolerance. This study provides potential genetic materials, alleles, MTAs, and quantitative trait loci for enhancing wheat adaptation to heat stress. The derivative lines studied here could be investigated to enhance other stress tolerance such as drought and salinity.
Collapse
Affiliation(s)
| | - Yasir Serag Alnor Gorafi
- Arid Land Research Center, Tottori University, Tottori, Japan
- Agricultural Research Corporation, Wad Medani, Sudan
| | - Nasrein Mohamed Kamal
- Arid Land Research Center, Tottori University, Tottori, Japan
- Agricultural Research Corporation, Wad Medani, Sudan
| | | | | | | |
Collapse
|
9
|
Kaur A, Tyagi S, Singh K, Upadhyay SK. Exploration of glutathione reductase for abiotic stress response in bread wheat (Triticum aestivum L.). PLANT CELL REPORTS 2022; 41:639-654. [PMID: 34032897 DOI: 10.1007/s00299-021-02717-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 05/27/2023]
Abstract
A total of seven glutathione reductase (GR) genes were identified in Triticum aestivum, which were used for comparative structural characterization, phylogenetic analysis and expression profiling with the GR genes of other cereal plants. The modulated gene expression and enzyme activity revealed the role of GRs in abiotic stress response in T. aestivum. Glutathione reductase (GR) is an enzymatic antioxidant that converts oxidized glutathione (GSSG) into reduced glutathione (GSH) through the ascorbate-glutathione cycle. In this study, a total of seven GR genes forming two homeologous groups were identified in the allohexaploid genome of bread wheat (Triticum aestivum). Besides, we identified three GR genes in each Aegilops tauschii, Brachypodium distachyon, Triticum urartu and Sorghum bicolor, which were used for comparative characterization. Phylogenetic analysis revealed the clustering of GR proteins into two groups; class I and class II, which were predicted to be localized in cytoplasm and chloroplast, respectively. The exon-intron and conserved motif patterns were almost conserved in each group, in which a maximum of 10 and 17 exons were present in chloroplastic and cytoplasmic GRs, respectively. The protein structure analysis confirmed the occurrence of conserved pyridine nucleotide disulfide oxidoreductase (Pyr_redox) and pyridine nucleotide disulfide oxidoreductase dimerization (Pyr_redox_dim) domains in each GR. The active site of GR proteins consisted of two conserved cysteine residues separated by four amino acid residues. Promoter analysis revealed the occurrence of growth and stress-related cis-active elements. Tissue-specific expression profiling suggested the involvement of GRs in both vegetative and reproductive tissue development in various plants. The differential expression of TaGR genes and enhanced GR enzyme activity suggested their roles under drought, heat, salt and arsenic stress. Interaction of GRs with other proteins and chemical compounds of the ascorbate-glutathione cycle revealed their coordinated functioning. The current study will provide a foundation for the validation of the precise role of each GR gene in future studies.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
10
|
Aleem M, Aleem S, Sharif I, Wu Z, Aleem M, Tahir A, Atif RM, Cheema HMN, Shakeel A, Lei S, Yu D, Wang H, Kaushik P, Alyemeni MN, Bhat JA, Ahmad P. Characterization of SOD and GPX Gene Families in the Soybeans in Response to Drought and Salinity Stresses. Antioxidants (Basel) 2022; 11:antiox11030460. [PMID: 35326109 PMCID: PMC8944523 DOI: 10.3390/antiox11030460] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 12/31/2022] Open
Abstract
Plant stresses causing accumulation of reactive oxidative species (ROS) are scavenged by effective antioxidant defense systems. Therefore, the present study performed genome-wide identification of superoxide dismutase (SOD) and glutathione peroxidase (GPX) gene families in cultivated and wild soybeans, and 11 other legume species. We identified a total of 101 and 95 genes of SOD and GPX, respectively, across thirteen legume species. The highest numbers of SODs and GPXs were identified in cultivated (Glycine max) and wild (Glycine soja). A comparative phylogenetic study revealed highest homology among the SODs and GPXs of cultivated and wild soybeans relative to other legumes. The exon/intron structure, motif and synteny blocks were conserved in both soybean species. According to Ka/Ks, purifying the selection played the major evolutionary role in these gene families, and segmental duplication are major driving force for SODs and GPXs expansion. In addition, the qRT-PCR analysis of the G. max and G. soja SOD and GPX genes revealed significant differential expression of these genes in response to oxidative, drought and salinity stresses in root tissue. In conclusion, our study provides new insights for the evolution of SOD and GPX gene families in legumes, and provides resources for further functional characterization of these genes for multiple stresses.
Collapse
Affiliation(s)
- Muqadas Aleem
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad 38040, Pakistan;
| | - Saba Aleem
- Barani Agricultural Research Station, Fatehjang 43350, Pakistan;
| | - Iram Sharif
- Cotton Research Station, Ayub Agricultural Research Institute, Faisalabad 38040, Pakistan;
| | - Zhiyi Wu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
| | - Maida Aleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Ammara Tahir
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
| | - Rana Muhammad Atif
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad 38040, Pakistan;
| | - Hafiza Masooma Naseer Cheema
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan; (H.M.N.C.); (A.S.)
| | - Amir Shakeel
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan; (H.M.N.C.); (A.S.)
| | - Sun Lei
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
| | - Deyue Yu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
- Correspondence: (D.Y.); (H.W.); (J.A.B.); (P.A.)
| | - Hui Wang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
- Correspondence: (D.Y.); (H.W.); (J.A.B.); (P.A.)
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 12546, Saudi Arabia;
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (D.Y.); (H.W.); (J.A.B.); (P.A.)
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 12546, Saudi Arabia;
- Correspondence: (D.Y.); (H.W.); (J.A.B.); (P.A.)
| |
Collapse
|
11
|
The Stimulation of Superoxide Dismutase Enzyme Activity and Its Relation with the Pyrenophora teres f. teres Infection in Different Barley Genotypes. SUSTAINABILITY 2022. [DOI: 10.3390/su14052597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in superoxide dismutase (SOD) enzyme activity were examined in infected barley seedlings of five cultivars with the goal to study the role of SOD in the defense mechanism induced by Pyrenophora teres f. teres (PTT) infection. Our results showed that although there were differences in the responses of the cultivars, all three PTT isolates (H-618, H-774, H-949) had significantly increased SOD activity in all examined barley varieties at the early stages of the infection. The lowest SOD activity was observed in the case of the most resistant cultivar. Our results did not show a clear connection between seedling resistance of genotypes and SOD enzyme activity; however, we were able to find strong significant correlations between the PTT infection scores on the Tekauz scale and the SOD activity. The measurement of the SOD activity could offer a novel perspective to detect the early stress responses induced by PTT. Our results suggest that the resistance of varieties cannot be estimated based on SOD enzyme activity alone, because many antioxidant enzymes play a role in fine-tuning the defense response, but SOD is an important member of this system.
Collapse
|
12
|
Salamon S, Żok J, Gromadzka K, Błaszczyk L. Expression Patterns of miR398, miR167, and miR159 in the Interaction between Bread Wheat ( Triticum aestivum L.) and Pathogenic Fusarium culmorum and Beneficial Trichoderma Fungi. Pathogens 2021; 10:1461. [PMID: 34832616 PMCID: PMC8624912 DOI: 10.3390/pathogens10111461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Bread wheat (Triticum aestivum L.) is an agronomically significant cereal cultivated worldwide. Wheat breeding is limited by numerous abiotic and biotic stresses. One of the most deleterious factors is biotic stress provoked by the Fusarium culmorum fungus. This pathogen is a causative agent of Fusarium root rot and Fusarium head blight. Beneficial fungi Trichoderma atroviride and T. cremeum are strong antagonists of mycotoxigenic Fusarium spp. These fungi promote plant growth and enhance their tolerance of negative environmental conditions. The aim of the study was to determine and compare the spatial (in above- and underground organs) and temporal (early: 6 and 22 hpi; and late: 5 and 7 dpi reactions) expression profiles of three mature miRNAs (miR398, miR167, and miR159) in wheat plants inoculated with two strains of F. culmorum (KF846 and EW49). Moreover, the spatial expression patterns in wheat response between plants inoculated with beneficial T. atroviride (AN35) and T. cremeum (AN392) were assessed. Understanding the sophisticated role of miRNAs in wheat-fungal interactions may initiate a discussion concerning the use of this knowledge to protect wheat plants from the harmful effects of fungal pathogens. With the use of droplet digital PCR (ddPCR), the absolute quantification of the selected miRNAs in the tested material was carried out. The differential accumulation of miR398, miR167, and miR159 in the studied groups was observed. The abundance of all analyzed miRNAs in the roots demonstrated an increase in the early and reduction in late wheat response to F. culmorum inoculation, suggesting the role of these particles in the initial wheat reaction to the studied fungal pathogen. The diverse expression patterns of the studied miRNAs between Trichoderma-inoculated or F. culmorum-inoculated plants and control wheat, as well as between Trichoderma-inoculated and F. culmorum-inoculated plants, were noticed, indicating the need for further analysis.
Collapse
Affiliation(s)
- Sylwia Salamon
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (S.S.); (J.Ż.)
| | - Julia Żok
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (S.S.); (J.Ż.)
| | - Karolina Gromadzka
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznan, Poland;
| | - Lidia Błaszczyk
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (S.S.); (J.Ż.)
| |
Collapse
|
13
|
Iqbal Qureshi AM, Sofi MU, Dar NA, Khan MH, Mahdi SS, Dar ZA, Bangroo S, El-Serehy HA, Hefft DI, Popescu SM. Insilco identification and characterization of superoxide dismutase gene family in Brassica rapa. Saudi J Biol Sci 2021; 28:5526-5537. [PMID: 34588862 PMCID: PMC8459115 DOI: 10.1016/j.sjbs.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/18/2021] [Accepted: 08/01/2021] [Indexed: 01/17/2023] Open
Abstract
Superoxide Dismutase SODs are defense associated proteins that detoxify ROS and primarily serve as scavengers. They have been described in numerous plant species, but their in-depth characterization in Brassica rapa has not been reported. Therefore, the present investigation on genome wide study of SOD gene family was conducted to identify BrSOD genes, their domain-based organization, gene structure analysis, phylogenetic analysis, intron-exon structure of genes and expression analysis. The sequence characterization of Super oxide dismutase gene family in Brassica rapa, their syntenic associateship of conserved motifs and phylogenetic correlationship, prediction of cis-elements and determing the expression analysis in distinct tissues namely plant callus, root, stem, leaf, flower, and silique under abiotic conditions have been analysed using different software’s. The study on SOD gene family identified 17 BrSOD genes which were grouped into eight BrCu-ZnSODs and nine BrFe-MnSODs domain-based organization. Furthermore, the conserved character of BrSODs were confirmed by intron-exon organisation, motif arrangements and domain architectural investigations. Expression analysis using RNA Sequence data of different developmental stages proclaimed that genes were manifested in all six tissues with an exception of BrCu-ZnSOD3, which was not manifested in roots; however, whose transcript was detected in all other tested tissues. The study has genome wide insight into the occurrence and functional specifications of BrSOD gene family in Brassica rapa that can be potentially utilized in breeding program for resilience to climate change and abiotic stresses tolerance Brassica variety.
Collapse
Affiliation(s)
- Asif M Iqbal Qureshi
- ARSSSS, Pampore, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar Kashmir, India
| | - Mehraj Uddin Sofi
- HMAARI, Leh, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar Kashmir, India
| | - N A Dar
- ARSSSS, Pampore, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar Kashmir, India
| | - M H Khan
- ARSSSS, Pampore, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar Kashmir, India
| | - S S Mahdi
- Division of Agronomy, FoA Wadura, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar Kashmir, India
| | - Zahoor A Dar
- DARS, Rangreth, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar Kashmir, India
| | - Shabir Bangroo
- Division of Soil Sciences, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar Kashmir, India
| | - Hamed A El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyad, 11451, Saudi Arabia
| | - Daniel Ingo Hefft
- University Centre Reaseheath, Reaseheath College, Nantwich CW5 6DF, UK
| | - Simona Mariana Popescu
- Department of Biology and Environmental Engineering, University of Craiova, 200585, Romania
| |
Collapse
|
14
|
The Genetic Regulation of Secondary Metabolic Pathways in Response to Salinity and Drought as Abiotic Stresses. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Global development has generated a plethora of unfavorable and adverse environmental factors for the living organisms in the ecosystem. Plants are sessile organisms, and they are crucial to sustain life on earth. Since plants are sessile, they face a great number of environmental challenges related to abiotic stresses, such as temperature fluctuation, drought, salinity, flood and metal contamination. Salinity and drought are considered major abiotic stresses that negatively affect the plants’ growth and production of useful content. However, plants have evolved various molecular mechanisms to increase their tolerance to these environmental stresses. There is a whole complex system of communication (cross-talk) through massive signaling cascades that are activated and modulated in response to salinity and drought. Secondary metabolites are believed to play significant roles in the plant’s response and resistance to salinity and drought stress. Until recently, attempts to unravel the biosynthetic pathways were limited mainly due to the inadequate plant genomics resources. However, recent advancements in generating high-throughput “omics” datasets, computational tools and functional genomics approach integration have aided in the elucidation of biosynthetic pathways of many plant bioactive metabolites. This review gathers comprehensive knowledge of plants’ complex system that is involved in the response and resistance to salinity and water deficit stresses as abiotic stress. Additionally, it offers clues in determining the genes involved in this complex and measures its activity. It covers basic information regarding the signaling molecules involved in salinity and drought resistance and how plant hormones regulate the cross-talking mechanism with emphasis on transcriptional activity. Moreover, it discusses many studies that illustrate the relationship between salinity and drought and secondary metabolite production. Furthermore, several transcriptome analysis research papers of medicinal plants are illustrated. The aim of this review is to be a key for any researcher that is aspiring to study the relationship between salinity and drought stresses and secondary metabolite production at the transcriptome and transcription level.
Collapse
|
15
|
Abdelaal K, AlKahtani M, Attia K, Hafez Y, Király L, Künstler A. The Role of Plant Growth-Promoting Bacteria in Alleviating the Adverse Effects of Drought on Plants. BIOLOGY 2021; 10:520. [PMID: 34207963 PMCID: PMC8230635 DOI: 10.3390/biology10060520] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
Plant growth-promoting bacteria play an essential role in enhancing the physical, chemical and biological characters of soils by facilitating nutrient uptake and water flow, especially under abiotic stress conditions, which are major constrains to agricultural development and production. Drought is one of the most harmful abiotic stress and perhaps the most severe problem facing agricultural sustainability, leading to a severe shortage in crop productivity. Drought affects plant growth by causing hormonal and membrane stability perturbations, nutrient imbalance and physiological disorders. Furthermore, drought causes a remarkable decrease in leaf numbers, relative water content, sugar yield, root yield, chlorophyll a and b and ascorbic acid concentrations. However, the concentrations of total phenolic compounds, electrolyte leakage, lipid peroxidation, amounts of proline, and reactive oxygen species are considerably increased because of drought stress. This negative impact of drought can be eliminated by using plant growth-promoting bacteria (PGPB). Under drought conditions, application of PGPB can improve plant growth by adjusting hormonal balance, maintaining nutrient status and producing plant growth regulators. This role of PGPB positively affects physiological and biochemical characteristics, resulting in increased leaf numbers, sugar yield, relative water content, amounts of photosynthetic pigments and ascorbic acid. Conversely, lipid peroxidation, electrolyte leakage and amounts of proline, total phenolic compounds and reactive oxygen species are decreased under drought in the presence of PGPB. The current review gives an overview on the impact of drought on plants and the pivotal role of PGPB in mitigating the negative effects of drought by enhancing antioxidant defense systems and increasing plant growth and yield to improve sustainable agriculture.
Collapse
Affiliation(s)
- Khaled Abdelaal
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Laboratory, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt;
| | - Muneera AlKahtani
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Yaser Hafez
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Laboratory, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt;
| | - Lóránt Király
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (L.K.); (A.K.)
| | - András Künstler
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (L.K.); (A.K.)
| |
Collapse
|
16
|
Morgun VV, Kots SY, Mamenko TP, Rybachenko LI, Pukhtaievych PP. Regulation of superoxide dismutase activity in soybean plants by inoculating seeds with rhizobia containing nanoparticles of metal carboxylates under conditions of different water supply. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Soybean is one of the most profitable advanced crops in agricultural production in Ukraine and the world as a whole. Therefore, studies of means of regulation and increase in the adaptive capacity of soybeans in symbiosis with nodule bacteria under the action of unfavourable environmental factors are relevant and should be aimed at the use of complex bacterial compositions involving modern nanotechnological approaches. Nanocarboxylates of ferrum, molybdenum and germanium metals were used as components of rhizobia inoculation suspension for soybean seed treatment to study the effectiveness of their complex effect on the regulation of the activity of the key antioxidant enzyme superoxide dismutase in plants under drought. Various symbiotic systems were used, which included soybean plants and inoculation suspensions based on the active, virulent Tn5-mutant Bradyrhizobium japonicum B1-20 by adding nanoparticles of ferrum, germanium and molybdenum carboxylates to the culture medium in a ratio of 1: 1000. Citric acid was the chelator. A model drought lasting 14 days was created during the period of active fixation of atmospheric molecular nitrogen by root nodules of soybeans in the budding and flowering stages, by means of controlled watering of plants to 30% of the total moisture content. In the stage of bean formation, watering of plants was resumed to the optimal level – 60% of the total moisture content. The control was soybean plants, the seeds of which were inoculated with a suspension of rhizobia without the addition of chelated metals. The following research methods were used in the work – microbiological, physiological and biochemical. According to the results, it was found that when nanoparticles of carboxylates of ferrum, molybdenum and germanium were added to the inoculation suspension of rhizobia, there was an increase in superoxide dismutase activity in root nodules and a decrease in soybean leaves under optimal water supply conditions of plants. This indicates the initial changes in the activity of the antioxidant enzyme in these symbiotic systems, induced by the influence of chelated metals in combination with the rhizobia of the active Tn5-mutant B. japonicum B1-20. Prolonged drought induced an increase in the overall level of superoxide dismutase activity in soybean nodules and leaves, compared to plants grown under optimal watering conditions. The symbiotic system formed by soybeans and B. japonicum with molybdenum carboxylate nanoparticles was the most sensitive to long-term drought exposure, compared to two other soybean-rhizobial symbioses using ferrum and germanium nanocarboxylates. This was manifested in the unstable reaction of the enzyme to the action of drought – suppression or intensification of the level of its activity in the root nodules and leaves of soybeans inoculated with rhizobia containing molybdenum carboxylate nanoparticles. In symbiotic systems with the participation of germanium and ferrum nanocarboxylates, slight changes were revealed in superoxide dismutase activity in root nodules and leaves of plants during drought and restoration of enzyme activity to the level of plants with optimal watering after water stress. It is concluded that the addition to the culture medium of rhizobia Tn5-mutant B1-20 of nanocarboxylates of germanium or ferrum is an effective means of regulating the activity of the antioxidant enzyme superoxide dismutase in soybean root nodules and leaves, which can contribute to an increase in the protective properties and adaptation of plants to the action of dehydration.
Collapse
|
17
|
Tyagi S, Singh K, Upadhyay SK. Molecular characterization revealed the role of catalases under abiotic and arsenic stress in bread wheat (Triticum aestivum L.). JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123585. [PMID: 32810714 DOI: 10.1016/j.jhazmat.2020.123585] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Catalases are crucial antioxidant enzymes that reduce the excessive level of H2O2 caused by various environmental stresses and metal toxicity and hence protect the plant cells. In this study, a total of ten TaCAT genes, forming three homeologous groups, were identified in the genome of bread wheat (Triticum aestivum L.) and named as per the wheat gene symbolization guidelines. The identified catalases were characterized for various structural and physicochemical features. The proximal active-site (F(D/A)RERIPERVVHAKGASA) and heme-ligand (R(I/V)F(S/A)Y(A/S)DTQ) signature motifs, catalytic residues and peroxisomal targeting peptides were found conserved. Phylogenetic analysis clustered TaCATs into three classes, which showed conserved functional specialization based on their tissue specific expression. Modulated spatio-temporal expression of various TaCAT genes and alteration in total catalase enzyme activity during heat, drought, salt and arsenic (AsIII and AsV) treatment suggested their roles in abiotic stress response and arsenic tolerance. Molecular cloning and overexpression of TaCAT3-B gene in Escherichia coli showed tolerance against heat, drought, salt and varied concentrations of AsIII and AsV treatments. The results further confirmed their role in stress tolerance and recommended that these genes can be used in future stress management strategies for the development of abiotic and arsenic stress resistant transgenic crops.
Collapse
Affiliation(s)
- Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
18
|
Ali Alafari H, Elsayed Abd-Elgawad M. Heat-Induced Protein and Superoxide Dismutase Changes in Wild Tetraena propinqua ssp. Migahidii Seedlings. Pak J Biol Sci 2021; 24:310-318. [PMID: 34486315 DOI: 10.3923/pjbs.2021.310.318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
<b>Background and Objective:</b> Heat stress is known as a raise of 5°C or more than the optimal temperature. In this study, we analyzed the effect of heat stress on protein content, protein electrophoretic pattern and Superoxide Dismutase (SOD) profile in three populations of <i>Tetraena propinqua</i> subspecies migahidii. <b>Materials and Methods:</b> Populations of <i>Tetraena propinqua</i> ssp. migahidii were studied. The seeds were subjected to 25 (control), 30, 35 and 40°C for 4, 24 and 48 hrs and 10 days. <b>Results:</b> Heat stress (35 and 40°C) elicited total soluble protein in populations 1 and 2 however reduced in population 3 with increasing exposure time to 10 days. New polypeptides of 23 KD at 4 hrs in population 3 below 35°C and population 2 below 40°C and 28 KD at 48 hrs in population one below 30°C however 20 KD altogether populations below 40°C. The expression of most polypeptides diminished for 4 hrs however induced for 24, 48 hrs and 10 days with increase heat temperature to 40°C relative to their expression among the management seedlings. SOD1 and SOD2 have detected altogether most of the genotypes, however, heat stress (35, 40°C) induced the expression of SOD2 and SOD1 and was altogether genotyped for 10 days as compared with the control. <b>Conclusion:</b> The heat stress caused protein degradation and conjointly induced expression of new synthesized HSPs throughout heat acclimatization may be related to heat injury and the improved thermotolerance in early hours of germination and additional studies are required for its protein identification.
Collapse
|
19
|
Zang Y, Chen J, Li R, Shang S, Tang X. Genome-wide analysis of the superoxide dismutase (SOD) gene family in Zostera marina and expression profile analysis under temperature stress. PeerJ 2020; 8:e9063. [PMID: 32411532 PMCID: PMC7207209 DOI: 10.7717/peerj.9063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/05/2020] [Indexed: 11/25/2022] Open
Abstract
Superoxide dismutases (SODs) serve as the first line of defense in the plant antioxidant enzyme system, and play a primary role in the removal of reactive oxygen species (ROS). However, our understanding of the functions of the SOD family in Zostera marina is limited. In this study, a systematic analysis was conducted on the characteristics of the SOD genes in Z. marina at the whole-genome level. Five SOD genes were identified, consisting of two Cu/ZnSODs, two FeSODs, and one MnSOD. Phylogenetic analysis showed that ZmSOD proteins could be divided into two major categories (Cu/ZnSODs and Fe-MnSODs). Sequence motifs, gene structure, and the 3D-modeled protein structures further supported the phylogenetic analysis, with each subgroup having similar motifs, exon-intron structures, and protein structures. Additionally, several cis-elements were identified that may respond to biotic and abiotic stresses. Transcriptome analysis revealed expression diversity of ZmSODs in various tissues. Moreover, qRT-PCR analysis showed that the expression level of most ZmSOD genes trended to decreased expression with the increase of temperature, indicating that heat stress inhibits expression of ZmSODs and may result in reduced ability of ZmSODs to scavenge ROS. Our results provide a basis for further functional research on the SOD gene family in Z. marina, which will help to determine the molecular mechanism of ZmSOD genes in response to environmental stress.
Collapse
Affiliation(s)
- Yu Zang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ruoxi Li
- School of Life Science, Southwest University, Chongqing, China
| | - Shuai Shang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
20
|
Silva SAF, Silva FLB, Ribas AF, de Souza SGH, dos Santos TB. Genome-wide in silico analysis of SOD genes in common bean (Phaseolus vulgaris L.). ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s12892-020-00030-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Tounsi S, Feki K, Kamoun Y, Saïdi MN, Jemli S, Ghorbel M, Alcon C, Brini F. Highlight on the expression and the function of a novel MnSOD from diploid wheat (T. monococcum) in response to abiotic stress and heavy metal toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:384-394. [PMID: 31401434 DOI: 10.1016/j.plaphy.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/09/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Superoxide dismutases (SODs) play a pivotal role in improving abiotic stress tolerance in plant cells. A novel manganese superoxide dismutase gene, denoted as TmMnSOD, was identified from Triticum monococcum. The encoded protein displayed high sequence identity with MnSOD family members and was highly homologous to TdMnSOD from durum wheat. Furthermore, the 3D structure analysis revealed that TmMnSOD displayed homotetramer subunit organization, incorporating four Mn2+ ions. Notably, TmMnSOD structure contains predominantly alpha helices with three beta sheets. On the other hand, under stress conditions, TmMnSOD transcript level was significantly up-regulated by salt, oxidative and heavy metal stresses. At the functional level, TmMnSOD imparts tolerance of yeast and E. coli cells under diverse stresses. Promoter analysis of TmMnSOD gene showed the presence of a great number of salt and pathogen-responsive cis-regulatory elements, highlighting the interest of this gene in breeding programs towards improved tolerance to salt stress in wheat.
Collapse
Affiliation(s)
- Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Kaouthar Feki
- Laboratory of Legumes, Centre of Biotechnology Bordj Cedria, BP 901, 2050, Hammam Lif, Tunisia
| | - Yosra Kamoun
- Laboratory of Molecular Biotechnology of Eukaryotes, Centre of Biotechnology of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Mohamed Najib Saïdi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Mouna Ghorbel
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Carine Alcon
- Biochimie & Physiologie Moléculaire des plantes, PHIV platform, UMR 5004 CNRS/386 INRA/Supagro Montpellier / Université Montpellier 2, Campus Supagro-INRA, 34060, Montpellier Cedex 2, France
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia.
| |
Collapse
|
22
|
Genomic dissection and transcriptional profiling of Cysteine-rich receptor-like kinases in five cereals and functional characterization of TaCRK68-A. Int J Biol Macromol 2019; 134:316-329. [PMID: 31078592 DOI: 10.1016/j.ijbiomac.2019.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/23/2022]
Abstract
Cysteine-rich receptor-like kinases (CRK) constitute one of the largest subfamily of receptor-like kinases, which play crucial roles in plant development and stress response. In total, 43, 37, 36, 38 and 170 CRK genes including duplicated genes were identified in the genome of Brachypodium distachyon, Hordeum vulgare, Oryza sativa, Sorghum bicolor and Triticum aestivum, respectively. These CRK proteins were tightly clustered into four phylogenetic groups and exhibited close syntenic relationship among orthologous genes. Majority of CRK proteins contain a transmembrane domain for plasma membrane localization. The organization of exon/intron, domains and motifs were variably conserved. Tissue-specific expression suggested the involvement of certain CRK genes in plant development. Modulated expression revealed their specific stress-responsive functions. Co-expression and interaction analysis indicated their role in signaling. Ks value and divergence time analysis suggested duplication of TaCRK genes before the hybridization of T. aestivum sub-genomes. Expression comparison of duplicated TaCRK genes revealed functional retention, neofunctionalization or pseudo-functionalization. Recombinant expression of a stress-responsive gene TaCRK68-A in Escherichia coli and Saccharomyces cerevisiae displayed enhanced tolerance against heat, drought, cold and salinity stresses. The study suggested vital functions of CRKs during development and stresses, and provides the basis for functional characterization of each gene in future studies.
Collapse
|
23
|
Verma D, Lakhanpal N, Singh K. Genome-wide identification and characterization of abiotic-stress responsive SOD (superoxide dismutase) gene family in Brassica juncea and B. rapa. BMC Genomics 2019; 20:227. [PMID: 30890148 PMCID: PMC6425617 DOI: 10.1186/s12864-019-5593-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background Abiotic stresses like drought, heat, cold and salinity cause major productivity loss in the rapeseed-mustard crops (Brassica). Major efforts have been made in the past to identify genes that provide resistance against such stresses. Superoxide dismutase (SOD) proteins, member of the metallo-enzyme family play vital role in protecting plants against abiotic stresses. In the present study, genome-wide analysis of abiotic stress responsive SOD gene family has been done in B. juncea and B. rapa. Results A total of 29 and 18 SOD genes were identified in B. juncea and B. rapa respectively and chromosome location mapping indicated their wide distribution across genome. On the basis of domain composition, the SODs were phylogenetically classified into sub-groups which was also substantiated by the gene structure and sub-cellular locations of SOD proteins. Functional annotation of SODs was also done by Gene Ontology (GO) mapping and the result was corroborated by the identified cis-regulatory elements in the promoter region of SOD genes. Based on FPKM analysis of SRA data available for drought, heat and salt stress, we identified 14 and 10 abiotic stress responsive SOD genes in B. rapa and B. juncea respectively. The differential expression analysis under drought and heat stress of identified abiotic-stress responsive SOD genes was done through quantitative Real Time PCR. Conclusion We identified abiotic-stress responsive genes that could help in improving the plant tolerance against abiotic stresses. This was the first study to describe the genome-wide analysis of SOD gene family in B. rapa and B. juncea, and the results will help in laying basic ground for future work of cloning and functional validation of SOD genes during abiotic stresses leading to Brassica crop improvement. Electronic supplementary material The online version of this article (10.1186/s12864-019-5593-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India
| | - Neha Lakhanpal
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
24
|
Sharma H, Taneja M, Upadhyay SK. Identification, characterization and expression profiling of cation-proton antiporter superfamily in Triticum aestivum L. and functional analysis of TaNHX4-B. Genomics 2019; 112:356-370. [PMID: 30818061 DOI: 10.1016/j.ygeno.2019.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/18/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022]
Abstract
The monovalent cation proton antiporter (CPA) superfamily comprises Na+/H+ exchanger (NHX), K+ efflux antiporter (KEA), and cation/H+ exchanger (CHX) family proteins, which play vital functions in plants. A total of 107 TaCPA proteins were identified in Triticum aestivum, and phylogenetically classified into 35 TaNHX, 24 TaKEA and 48 TaCHX proteins. These families had representatives derived from all three sub-genomes. TaKEA genes consisted of higher number of exons, followed by TaNHXs and TaCHXs. The occurrence of about 10 transmembrane regions and higher composition of helices and coils support their membrane-bound and hydrophobic nature. Diverse expression in various tissues and modulated expression under stress conditions suggested their role in development and in response to stress. Co-expression analyses revealed their complex interaction networks. Expression of TaNHX4-B.1 and TaNHX4-B.4 facilitated differential abiotic stress tolerance to Escherichia coli. Our study provides comprehensive information about CPA genes, which would be useful in their future functional characterization.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Botany, Panjab University, Sector 14, Chandigarh 160014, India
| | - Mehak Taneja
- Department of Botany, Panjab University, Sector 14, Chandigarh 160014, India
| | | |
Collapse
|
25
|
Taneja M, Upadhyay SK. Molecular characterization and differential expression suggested diverse functions of P-type II Ca 2+ATPases in Triticum aestivum L. BMC Genomics 2018; 19:389. [PMID: 29792165 PMCID: PMC5966885 DOI: 10.1186/s12864-018-4792-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background Plant P-type II Ca2+ATPases are formed by two distinct groups of proteins (ACAs and ECAs) that perform pumping of Ca2+ outside the cytoplasm during homeostasis, and play vital functions during development and stress management. In the present study, we have performed identification and characterisation of P-type II Ca2+ATPase gene family in an important crop plant Triticum aestivum. Results Herein, a total of 33 TaACA and 9 TaECA proteins were identified from the various chromosomes and sub-genomes of Triticum aestivum. Phylogenetic analysis revealed clustering of the homoeologous TaACA and TaECA proteins into 11 and 3 distinct groups that exhibited high sequence homology and comparable structural organization as well. Both TaACA and TaECA group proteins consisted of eight to ten transmembrane regions, and their respective domains and motifs. Prediction of sub-cellular localization was found variable for most of the proteins; moreover, it was consistent with the evolutionarily related proteins from rice and Arabidopsis in certain cases. The occurrence of assorted sets of cis-regulatory elements indicated their diverse functions. The differential expression of various TaACA and TaECA genes during developmental stages suggested their roles in growth and development. The modulated expression during heat, drought, salt and biotic stresses along with the occurrence of various stress specific cis-regulatory elements suggested their association with stress response. Interaction of these genes with numerous development and stress related genes indicated their decisive role in various biological processes and signaling. Conclusion T. aestivum genome consisted of a maximum of 42 P-type II Ca2+ATPase genes, derived from each A, B and D sub-genome. These genes may play diverse functions during plant growth and development. They may also be involved in signalling during abiotic and biotic stresses. The present study provides a comprehensive insight into the role of P-type II Ca2+ATPase genes in T. aestivum. However, the specific function of each gene needs to be established, which could be utilized in future crop improvement programs. Electronic supplementary material The online version of this article (10.1186/s12864-018-4792-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mehak Taneja
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
26
|
Tyagi S, Sembi JK, Upadhyay SK. Gene architecture and expression analyses provide insights into the role of glutathione peroxidases (GPXs) in bread wheat (Triticum aestivum L.). JOURNAL OF PLANT PHYSIOLOGY 2018; 223:19-31. [PMID: 29471272 DOI: 10.1016/j.jplph.2018.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 05/05/2023]
Abstract
Glutathione peroxidases (GPXs) are redox sensor proteins that maintain a steady-state of H2O2 in plant cells. They exhibit distinct sub-cellular localization and have diverse functionality in response to different stimuli. In this study, a total of 14 TaGPX genes and three splice variants were identified in the genome of Triticum aestivum and evaluated for various physicochemical properties. The TaGPX genes were scattered on the various chromosomes of the A, B, and D sub-genomes and clustered into five homeologous groups based on high sequence homology. The majority of genes were derived from the B sub-genome and localized on chromosome 2. The intron-exon organization, motif and domain architecture, and phylogenetic analyses revealed the conserved nature of TaGPXs. The occurrence of both development-related and stress-responsive cis-acting elements in the promoter region, the differential expression of these genes during various developmental stages, and the modulation of expression in the presence of biotic and abiotic stresses suggested their diverse role in T. aestivum. The majority of TaGPX genes showed higher expression in various leaf developmental stages. However, TaGPX1-A1 was upregulated in the presence of each abiotic stress treatment. A co-expression analysis revealed the interaction of TaGPXs with numerous development and stress-related genes, which indicated their vital role in numerous biological processes. Our study revealed the opportunities for further characterization of individual TaGPX proteins, which might be useful in designing future crop improvement strategies.
Collapse
Affiliation(s)
- Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh,160014, India
| | - Jaspreet K Sembi
- Department of Botany, Panjab University, Chandigarh,160014, India
| | | |
Collapse
|