1
|
Kawamata H, Yanishi K, Yoshimura J, Ozawa T, Goto D, Hori Y, Fujioka A, Shoji K, Yukawa A, Matoba S. Prognostic Factors After Bone Marrow-Derived Mononuclear Cell Implantation in No-Option Chronic Limb-Threatening Ischemia Patients with Atherosclerotic Lower Extremity Artery Disease. Int Heart J 2025; 66:96-105. [PMID: 39894555 DOI: 10.1536/ihj.24-440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Previous studies have reported the efficacy and safety of therapeutic angiogenesis through bone marrow-derived mononuclear cell (BM-MNC) implantation in patients with no-option chronic limb-threatening ischemia (CLTI) from atherosclerotic lower extremity artery disease (LEAD). However, uncertain clinical prognostic factors impact treatment outcomes. This study aimed to elucidate the long-term outcomes of patients with atherosclerotic LEAD-derived no-option CLTI after BM-MNC implantation and to identify prognostic factors.In this retrospective, single-center, observational study, the primary endpoints included the long-term prognosis of BM-MNC implantation and factors influencing 1-year outcomes. A total of 92 limbs in 84 patients were analyzed in the final cohort (mean age: 67 years; male, 65%). The 5- and 10-year overall survival rates were 50.0% and 31.0%, respectively, while the 5- and 10-year amputation-free survival rates were 37.6% and 23.3%, respectively. Multivariate logistic analysis linked all-cause mortality to age ≥ 70 years, hemodialysis, smoking, and a controlling nutrition status score ≥ 5. Major amputation or mortality was associated with male sex, hemodialysis, and C-reactive protein levels ≥ 3.0 mg/dL. No adverse events were associated with therapeutic angiogenesis.These findings endorse the feasibility and safety of BM-MNC implantation for patients with no-option CLTI due to atherosclerotic LEAD. Moreover, the study highlights the significance of several prognostic factors, including advanced age, hemodialysis, smoking, and inflammatory markers, in influencing the long-term outcomes of this treatment.
Collapse
Affiliation(s)
- Hirofumi Kawamata
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Kenji Yanishi
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Jun Yoshimura
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Takaaki Ozawa
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Daiki Goto
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Yusuke Hori
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Ayumu Fujioka
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Keisuke Shoji
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Arito Yukawa
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| |
Collapse
|
2
|
Fenov DM, Salcher R, Kludt E, Lesinski-Schiedat A, Harre J, Lenarz T, Giesemann A, Warnecke A. Long-term experience with biohybrid cochlear implants in human neurosensory restoration. Cochlear Implants Int 2024; 25:171-181. [PMID: 39159131 DOI: 10.1080/14670100.2024.2379124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
OBJECTIVE The implantation of biohybrid electrodes was introduced a few years ago in our clinic. These electrodes coated with autologous mononuclear cells releasing anti-inflammatory and neuroprotective factors are thought to reduce insertion trauma and maintain the vitality of surviving spiral ganglion neurons. The clinical feasibility of this approach has already been demonstrated. In the present retrospective study, the four-year results of the two sides (classical electrode and biohybrid electrode) in the bilaterally implanted patients were compared in order to investigate possible adverse long-term effects. METHODS All patients received a complete audiological diagnosis which also included a speech audiogram and impedance measurement. The measurements were carried out 1 month, 3 months, 6 months, 1 year, 2 years, 3 years and 4 years after implantation. The hearing results were assessed by pure tone audiometry. RESULTS All patients showed satisfactory speech understanding and similar impedances on both sides although they had a long-term deafness before implantation of the side provided with a biohybrid electrode array. The results of speech understanding and impedance measurements were stable for years. Cone beam computed tomography was performed in 4 patients three years after implantation and could rule out cochlear ossification. Other complications were also not registered in any of the patients. CONCLUSION Due to satisfactory outcomes and lack of complications, the biohybrid electrode is considered to be a safe option in cochlear implantation. The simplicity of application of autologous cells as a source of anti-inflammatory and neuroprotective factors via a biohybrid electrode array is a key step for cell-based, regenerative therapies for deafness.
Collapse
Affiliation(s)
- Dragana Mitovska Fenov
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Rolf Salcher
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Eugen Kludt
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Anke Lesinski-Schiedat
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Jennifer Harre
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence 'Hearing for All', German Research Foundation, Bonn, Germany
| | - Thomas Lenarz
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence 'Hearing for All', German Research Foundation, Bonn, Germany
| | - Anja Giesemann
- Department for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence 'Hearing for All', German Research Foundation, Bonn, Germany
| |
Collapse
|
3
|
Kyselovic J, Adamičková A, Gažová A, Valášková S, Chomaničová N, Červenák Z, Madaric J. Atorvastatin Treatment Significantly Increased the Concentration of Bone Marrow-Derived Mononuclear Cells and Transcutaneous Oxygen Pressure and Lowered the Pain Scale after Bone Marrow Cells Treatment in Patients with "No-Option" Critical Limb Ischaemia. Biomedicines 2024; 12:922. [PMID: 38672276 PMCID: PMC11048671 DOI: 10.3390/biomedicines12040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The present study investigated the outcomes and possible predictive factors of autologous bone marrow cells (BMCs) therapy in patients with "no-option" critical limb ischaemia (CLI). It was focused on exploring the clinical background and prior statin and renin-angiotensin system (RAS)-acting agents pharmacotherapy related to the therapeutic efficacy of BMCs treatment. METHODS In the present study, we reviewed thirty-three patients (mean age 64.9 ± 10 years; 31 males) with advanced CLI after failed or impossible revascularisation, who were treated with 40 mL of autologous BMCs by local intramuscular application. Patients with limb salvage and wound healing (N = 22) were considered as responders to BMCs therapy, and patients with limb salvage and complete ischemic wound healing (N = 13) were defined as super-responders. Logistic regression models were used to screen and identify the prognostic factors, and a receiver operating characteristics (ROC) curve, a linear regression, and a survival curve were drawn to determine the predictive accuracy, the correlation between the candidate predictors, and the risk of major amputation. RESULTS Based on the univariate regression analysis, baseline C-reactive protein (CRP) and transcutaneous oxygen pressure (TcPO2) values were identified as prognostic factors of the responders, while CRP value, ankle-brachial index (ABI), and bone marrow-derived mononuclear cells (BM-MNCs) concentration were identified as prognostic factors of the super-responders. An area under the ROC curve of 0.768 indicated good discrimination for CRP > 8.1 mg/L before transplantation as a predictive factor for negative clinical response. Linear regression analysis revealed a significant dependence between the levels of baseline CRP and the concentration of BM-MNCs in transplanted bone marrow. Patients taking atorvastatin before BMCs treatment (N = 22) had significantly improved TcPO2 and reduced pain scale after BMCs transplant, compared to the non-atorvastatin group. Statin treatment was associated with reduced risk for major amputation. However, the difference was not statistically significant. Statin use was also associated with a significantly higher concentration of BM-MNCs in the transplanted bone marrow compared to patients without statin treatment. Patients treated with RAS-acting agents (N = 20) had significantly reduced pain scale after BMCs transplant, compared to the non-RAS-acting agents group. Similar results, reduced pain scale and improved TcPO2, were achieved in patients treated with atorvastatin and RAS-acting agents (N = 17) before BMCs treatment. Results of the Spearman correlation showed a significant positive correlation between CLI regression, responders, and previous therapy before BMCs transplant with RAS-acting agents alone or with atorvastatin. CONCLUSIONS CRP and TcPO2 were prognostic factors of the responders, while CRP value, ABI, and BM-MNCs concentration were identified as predictive factors of the super-responders. Atorvastatin treatment was associated with a significantly increased concentration of BM-MNCs in bone marrow concentrate and higher TcPO2 and lower pain scale after BMCs treatment in CLI patients. Similarly, reduced pain scales and improved TcPO2 were achieved in patients treated with atorvastatin and RAS-acting agents before BMCs treatment. Positive correlations between responders and previous treatment before BMCs transplant with RAS-acting agents alone or with atorvastatin were significant.
Collapse
Affiliation(s)
- Jan Kyselovic
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia; (J.K.)
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Adriana Adamičková
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia; (J.K.)
| | - Andrea Gažová
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia
| | - Simona Valášková
- International Laser Center, Slovak Centre of Scientific and Technical Information, Lamačská cesta 7315/8A, 84104 Bratislava, Slovakia
| | - Nikola Chomaničová
- International Laser Center, Slovak Centre of Scientific and Technical Information, Lamačská cesta 7315/8A, 84104 Bratislava, Slovakia
| | - Zdenko Červenák
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia; (J.K.)
| | - Juraj Madaric
- Department of Angiology, Faculty of Medicine, Comenius University and National Institute of Cardiovascular Disease, Pod Krásnou Hôrkou 1, 83101 Bratislava, Slovakia;
| |
Collapse
|
4
|
Hetta HF, Elsaghir A, Sijercic VC, Akhtar MS, Gad SA, Moses A, Zeleke MS, Alanazi FE, Ahmed AK, Ramadan YN. Mesenchymal stem cell therapy in diabetic foot ulcer: An updated comprehensive review. Health Sci Rep 2024; 7:e2036. [PMID: 38650719 PMCID: PMC11033295 DOI: 10.1002/hsr2.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Diabetes has evolved into a worldwide public health issue. One of the most serious complications of diabetes is diabetic foot ulcer (DFU), which frequently creates a significant financial strain on patients and lowers their quality of life. Up until now, there has been no curative therapy for DFU, only symptomatic relief or an interruption in the disease's progression. Recent studies have focused attention on mesenchymal stem cells (MSCs), which provide innovative and potential treatment candidates for several illnesses as they can differentiate into various cell types. They are mostly extracted from the placenta, adipose tissue, umbilical cord (UC), and bone marrow (BM). Regardless of their origin, they show comparable features and small deviations. Our goal is to investigate MSCs' therapeutic effects, application obstacles, and patient benefit strategies for DFU therapy. Methodology A comprehensive search was conducted using specific keywords relating to DFU, MSCs, and connected topics in the databases of Medline, Scopus, Web of Science, and PubMed. The main focus of the selection criteria was on English-language literature that explored the relationship between DFU, MSCs, and related factors. Results and Discussion Numerous studies are being conducted and have demonstrated that MSCs can induce re-epithelialization and angiogenesis, decrease inflammation, contribute to immunological modulation, and subsequently promote DFU healing, making them a promising approach to treating DFU. This review article provides a general snapshot of DFU (including clinical presentation, risk factors and etiopathogenesis, and conventional treatment) and discusses the clinical progress of MSCs in the management of DFU, taking into consideration the side effects and challenges during the application of MSCs and how to overcome these challenges to achieve maximum benefits. Conclusion The incorporation of MSCs in the management of DFU highlights their potential as a feasible therapeutic strategy. Establishing a comprehensive understanding of the complex relationship between DFU pathophysiology, MSC therapies, and related obstacles is essential for optimizing therapy outcomes and maximizing patient benefits.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative MedicineFaculty of Pharmacy, University of TabukTabukSaudi Arabia
- Department of Medical Microbiology and ImmunologyFaculty of Medicine, Assiut UniversityAssiutEgypt
| | - Alaa Elsaghir
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| | | | | | - Sayed A. Gad
- Faculty of Medicine, Assiut UniversityAssiutEgypt
| | | | - Mahlet S. Zeleke
- Menelik II Medical and Health Science College, Kotebe Metropolitan UniversityAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and ToxicologyFaculty of Pharmacy, University of TabukTabukSaudi Arabia
| | | | - Yasmin N. Ramadan
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| |
Collapse
|
5
|
Ashoobi MT, Hemmati H, Aghayan HR, Zarei-Behjani Z, Keshavarz S, Babaloo H, Maroufizadeh S, Yousefi S, Farzin M, Vojoudi E. Wharton's jelly mesenchymal stem cells transplantation for critical limb ischemia in patients with type 2 diabetes mellitus: a preliminary report of phase I clinical trial. Cell Tissue Res 2024; 395:211-220. [PMID: 38112806 DOI: 10.1007/s00441-023-03854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Peripheral artery disease (PAD) affects more than 230 million people worldwide, with approximately 11% of patients presenting with advanced-stage PAD or critical limb ischemia (CLI). To avoid or delay amputation, particularly in no-option CLI patients with infeasible or ineffective revascularization, new treatment strategies such as regenerative therapies should be developed. Mesenchymal stem cells (MSCs) are the most popular cell source in regenerative therapies. They possess significant characteristics such as angiogenic, anti-inflammatory, and immunomodulatory activities, which encourage their application in different diseases. This phase I clinical trial reports the safety, feasibility, and probable efficacy of the intramuscular administration of allogeneic Wharton's jelly-derived MSCs (WJ-MSCs) in type 2 diabetes patients with CLI. Out of six screened patients with CLI, five patients were administered WJ-MSCs into the gastrocnemius, soleus, and the proximal part of the tibialis anterior muscles of the ischemic lower limb. The safety of WJ-MSCs injection was considered a primary outcome. Secondary endpoints included wound healing, the presence of pulse at the disease site, the absence of amputation, and improvement in visual analogue scale (VAS), pain-free walking time, and foot and ankle disability index (FADI). No patient experienced adverse events and foot or even toe amputation during the 6-month follow-up. Six months after the intervention, there were a significantly lower VAS score and significantly higher pain-free walking time and FADI score than the baseline, but no statistically significant difference was seen between other time points. In conclusion, allogeneic WJ-MSC transplantation in patients with CLI seems to be safe and effective.
Collapse
Affiliation(s)
- Mohammad Taghi Ashoobi
- Department of General Surgery, School of Medicine Road Trauma Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Hemmati
- Department of General Surgery, School of Medicine Road Trauma Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamideh Babaloo
- Biotechnology Research Center, International Campus, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saman Maroufizadeh
- Department of Biostatistics, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Yousefi
- Department of General Surgery, School of Medicine Road Trauma Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohaya Farzin
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Vojoudi
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Fukuda S, Hagiwara S, Okochi H, Ishiura N, Nishibe T, Yakabe R, Suzuki H. Autologous angiogenic therapy with cultured mesenchymal stromal cells in platelet-rich plasma for critical limb ischemia. Regen Ther 2023; 24:472-478. [PMID: 37772129 PMCID: PMC10523441 DOI: 10.1016/j.reth.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction The prevalence of diabetes mellitus is increasing globally, including in Japan. Patients with diabetes often experience microangiopathy and macroangiopathy, which lead to difficult-to-treat foot ulcers and diabetic gangrene. Conventional cellular therapies have limited safety and are invasive. In this study, we investigated the use of cultured autologous mesenchymal stromal cells derived from the bone marrow and grown in platelet-rich plasma as a potential treatment for diabetic complications. Methods A prospective clinical trial was conducted to assess safety as the primary endpoint and efficacy as the secondary endpoint of the aforementioned therapy in five patients with critical limb ischemia, with or without hemodialysis. Results Five patients with critical limb ischemia were enrolled between 2016 and 2019, three of whom underwent hemodialysis. Platelet-rich plasma was obtained from 288 ± 39.6 mL of blood/patient, yielding 31.6 ± 1.67 mL of platelet-rich plasma. Bone marrow aspiration yielded 18.4 ± 4.77 mL/patient, and 4.64 ± 1.51 × 107 cells were incubated for 16 ± 2.8 days to obtain 3.26 ± 0.33 × 107 mesenchymal stromal cells. Although several adverse events were observed, none were directly attributed to cell therapy. Clinical severity, as assessed by both the Fontaine stage and Rutherford category, improved significantly following therapy. This improvement was accompanied by enhancements in the 6-min walking distance, dorsal skin perfusion pressure, ankle transcutaneous partial oxygen pressure, and ankle brachial pressure index. Conclusion Autologous angiogenic therapy with cultured mesenchymal stromal cells derived from the bone marrow and grown in platelet-rich plasma is a safe and feasible, and was expected as a potential treatment for critical limb ischemia.
Collapse
Affiliation(s)
- Shoji Fukuda
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
| | - Shotaro Hagiwara
- Department of Hematology, Tsukuba University Hospital Mito Clinical Education and Training Center, Ibaragi, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nobuko Ishiura
- Department of Dermatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Toshiya Nishibe
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
| | - Ryo Yakabe
- Department of Therapeutics Development, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroko Suzuki
- Department of Therapeutics Development, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Liu Z, Zhou C, Guo H, Wang M, Liang J, Zhang Y. Knowledge Mapping of Global Status and Trends for Thromboangiitis Obliterans: A Bibliometrics and Visual Analysis. J Pain Res 2023; 16:4071-4087. [PMID: 38054111 PMCID: PMC10695024 DOI: 10.2147/jpr.s437521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Objective Thromboangiitis obliterans (TAO) is a segmental nonatherosclerotic inflammatory vascular disease characterized by recurrent progressive inflammatory reactions and thrombosis in the small and medium-sized arteries and veins of the extremities. However, there are few bibliometric studies on TAO. Therefore, this study was employed to generalize the research status, hotspots and development trends of TAO-related research. Methods The data from 1999 to 2022 were collected from the Web of Science core collection database, and analyzed through bibliometrics software. VOSviewer was utilized to carry out academic collaboration between different countries/regions, institutions, and authors, visualization map of co-cited authors, journals, reference, and co-occurring keywords. CiteSpace was used to analyze the dual-map of journals, keyword bursts, and timeline of keywords. Bar and pie charts in this study were statistically analyzed and graphed through Microsoft Excel 2021. Scimago Graphica was applied to map the academic collaboration between different countries/regions. Results A total of 553 literatures were involved in this study. Japan at the leading global position not only in the number of publications, but also total citations, average citations and H-index. Institution with the major contribution to TAO research is Mashhad University of Medical Sciences, and Nagoya University. Annals of Vascular Surgery, Angiology, Journal of Vascular Surgery are the main publication channel for articles related to TAO. Fazeli, B., Iwai, T., and Kihara, Y. are major contributors in this field. The studies on TAO keywords could be grouped into four clusters: Etiology, Mechanism, Cell therapy and Clinical therapy. Conclusion Although the number of TAO publications has fluctuated over the past 20 years, it has generally shown a steady upward trend. Etiology and treatment research on TAO and some keywords such as trail, therapy, outcome, management, stem cells, angioplasty, and activation will become a hot spot in the future.
Collapse
Affiliation(s)
- Ze Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Chenhan Zhou
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Min Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
8
|
Sernek B, Kamnikar R, Sebestjen M, Boc A, Boc V. Smoking and Diabetes Attenuate Number of CD34 + Haematopoietic Stem Cells in Peripheral Blood of Patients with Advanced Peripheral Artery Disease. Int J Mol Sci 2023; 24:15346. [PMID: 37895025 PMCID: PMC10607776 DOI: 10.3390/ijms242015346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Peripheral artery disease (PAD) is a globally prevalent problem with limited treatment options, leaving up to a fifth of patients remediless. The emergence of new studies on cell therapy in recent years offers a new promising option for their treatment. Our aim was to explore how the number of CD34+ hematopoietic cells in the peripheral blood of PAD patients is associated with patients' functional as well as atherogenic factors. We selected 30 patients with advanced PAD, recorded their performance in a walking test in standard conditions and sampled their blood for further analysis with an emphasis on CD34+ cell selection and counting. No correlation of the CD34+ cell number was confirmed with any of the observed laboratory parameters. There was an association between the claudication distance and the number of CD34+ cells (r = -0.403, p = 0.046). The number of CD34+ cells differed between patients with and without type II diabetes (p = 0.071) and between active smokers, past smokers, and non-smokers (p = 0.035; p = 0.068, p = 0.051, respectively), with both smoking and presence of diabetes type II having a negative effect on the number of CD34+ cells. Our study demonstrated a dependence of the CD34+ cell number on the patient's characteristics.
Collapse
Affiliation(s)
- Barbara Sernek
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.S.); (R.K.); (A.B.)
| | - Rok Kamnikar
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.S.); (R.K.); (A.B.)
| | - Miran Sebestjen
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.S.); (R.K.); (A.B.)
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Anja Boc
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.S.); (R.K.); (A.B.)
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Vinko Boc
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
9
|
Peeters JAHM, Peters HAB, Videler AJ, Hamming JF, Schepers A, Quax PHA. Exploring the Effects of Human Bone Marrow-Derived Mononuclear Cells on Angiogenesis In Vitro. Int J Mol Sci 2023; 24:13822. [PMID: 37762125 PMCID: PMC10531254 DOI: 10.3390/ijms241813822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cell therapies involving the administration of bone marrow-derived mononuclear cells (BM-MNCs) for patients with chronic limb-threatening ischemia (CLTI) have shown promise; however, their overall effectiveness lacks evidence, and the exact mechanism of action remains unclear. In this study, we examined the angiogenic effects of well-controlled human bone marrow cell isolates on endothelial cells. The responses of endothelial cell proliferation, migration, tube formation, and aortic ring sprouting were analyzed in vitro, considering both the direct and paracrine effects of BM cell isolates. Furthermore, we conducted these investigations under both normoxic and hypoxic conditions to simulate the ischemic environment. Interestingly, no significant effect on the angiogenic response of human umbilical vein endothelial cells (HUVECs) following treatment with BM-MNCs was observed. This study fails to provide significant evidence for angiogenic effects from human bone marrow cell isolates on human endothelial cells. These in vitro experiments suggest that the potential benefits of BM-MNC therapy for CLTI patients may not involve endothelial cell angiogenesis.
Collapse
Affiliation(s)
- Judith A. H. M. Peeters
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Hendrika A. B. Peters
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Anique J. Videler
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jaap F. Hamming
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
| | - Abbey Schepers
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
| | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
10
|
Mohamad Yusoff F, Higashi Y. Mesenchymal Stem/Stromal Cells for Therapeutic Angiogenesis. Cells 2023; 12:2162. [PMID: 37681894 PMCID: PMC10486439 DOI: 10.3390/cells12172162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are known to possess medicinal properties to facilitate vascular regeneration. Recent advances in the understanding of the utilities of MSCs in physiological/pathological tissue repair and technologies in isolation, expansion, and enhancement strategies have led to the use of MSCs for vascular disease-related treatments. Various conditions, including chronic arterial occlusive disease, diabetic ulcers, and chronic wounds, cause significant morbidity in patients. Therapeutic angiogenesis by cell therapy has led to the possibilities of treatment options in promoting angiogenesis, treating chronic wounds, and improving amputation-free survival. Current perspectives on the options for the use of MSCs for therapeutic angiogenesis in vascular research and in medicine, either as a monotherapy or in combination with conventional interventions, for treating patients with peripheral artery diseases are discussed in this review.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
- Division of Regeneration and Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
11
|
Fujioka A, Yanishi K, Yukawa A, Imai K, Yokota I, Fujikawa K, Yamada A, Naito A, Shoji K, Kawamata H, Higashi Y, Ishigami T, Sasaki KI, Tara S, Kuwahara K, Teramukai S, Matoba S. A Multicenter Prospective Interventional Trial of Therapeutic Angiogenesis Using Bone Marrow-Derived Mononuclear Cell Implantation for Patients With Critical Limb-Threatening Ischemia Caused by Thromboangiitis Obliterans. Circ J 2023; 87:1229-1237. [PMID: 36908168 DOI: 10.1253/circj.cj-23-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
BACKGROUND Thromboangiitis obliterans (TAO) can lead to the development of critical limb-threatening ischemia (CLTI). Despite conventional treatments, such as smoking cessation or revascularization, young patients (<50 years) still require limb amputation. Therapeutic angiogenesis using bone marrow-derived mononuclear cell (BM-MNC) implantation has been tested and shown to have reasonable efficacy in CLTI. In this multicenter prospective clinical trial, we evaluated the safety and efficacy of BM-MNC implantation in CLTI patients with TAO. METHODS AND RESULTS We enrolled 22 CLTI patients with skin perfusion pressure (SPP) <30 mmHg. The primary endpoint of this trial is the recovery of SPP in the treated limb after a 180-day follow-up period. Secondary endpoints include the pain scale score and transcutaneous oxygen pressure (TcPO2). One patient dropped out during follow-up, leaving 21 patients (mean age 48 years, 90.5% male, Fontaine Class IV) for analysis. BM-MNC implantation caused no serious adverse events and increased SPP by 1.5-fold compared with baseline. Surprisingly, this effect was sustained over the longer term at 180 days. Secondary endpoints also supported the efficacy of this novel therapy in relieving pain and increasing TcPO2. Major amputation-free and overall survival probabilities at 3 years among all enrolled patients were high (95.5% and 89.5%, respectively). CONCLUSIONS BM-MNC implantation showed safety and significant efficacy in CLTI patients with TAO.
Collapse
Affiliation(s)
- Ayumu Fujioka
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Kenji Yanishi
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Arito Yukawa
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Kojiro Imai
- Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Isao Yokota
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University
| | - Kei Fujikawa
- Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Ayumu Yamada
- The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine
| | - Akari Naito
- The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine
| | - Keisuke Shoji
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Hirofumi Kawamata
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University
| | - Tomoaki Ishigami
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine
| | - Ken-Ichiro Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine
| | - Syuhei Tara
- Department of Cardiovascular Medicine, Nippon Medical School of Medicine
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine
| | - Satoshi Teramukai
- Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| |
Collapse
|
12
|
Shirbaghaee Z, Heidari Keshel S, Rasouli M, Valizadeh M, Hashemi Nazari SS, Hassani M, Soleimani M. Report of a phase 1 clinical trial for safety assessment of human placental mesenchymal stem cells therapy in patients with critical limb ischemia (CLI). Stem Cell Res Ther 2023; 14:174. [PMID: 37408043 PMCID: PMC10324209 DOI: 10.1186/s13287-023-03390-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Critical limb ischemia (CLI) is associated with increased risk of tissue loss, leading to significant morbidity and mortality. Therapeutic angiogenesis using cell-based treatments, notably mesenchymal stem cells (MSCs), is essential for enhancing blood flow to ischemic areas in subjects suffering from CLI. The objective of this study was to evaluate the feasibility of using placenta-derived mesenchymal stem cells (P-MSCs) in patients with CLI. METHODS This phase I dose-escalation study investigated P-MSCs in nine CLI patients who were enrolled into each of the two dosage groups (20 × 106 and 60 × 106 cells), delivered intramuscularly twice, two months apart. The incidence of treatment-related adverse events was the primary endpoint. The decrease in inflammatory cytokines, improvement in the ankle-brachial pressure index (ABI), maximum walking distance, vascular collateralization, alleviation of rest pain, healing of ulceration, and avoidance of major amputation in the target leg were the efficacy outcomes. RESULTS All dosages of P-MSCs, including the highest tested dose of 60 × 106 cells, were well tolerated. During the 6-month follow-up period, there was a statistically significant decrease in IL-1 and IFN-γ serum levels following P-MSC treatment. The blood lymphocyte profile of participants with CLI did not significantly differ, suggesting that the injection of allogeneic cells did not cause T-cell proliferation in vivo. We found clinically substantial improvement in rest pain, ulcer healing, and maximum walking distance after P-MSC implantation. In patients with CLI, we performed minor amputations rather than major amputations. Angiography was unable to demonstrate new small vessels formation significantly. CONCLUSION The observations from this phase I clinical study indicate that intramuscular administration of P-MSCs is considered safe and well tolerated and may dramatically improve physical performance and minimize inflammatory conditions in patients with CLI. TRIAL REGISTRATION IRCT, IRCT20210221050446N1. Registered May 09, 2021.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Valizadeh
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Saeed Hashemi Nazari
- Prevention of Cardiovascular Disease Research Center, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Ayatollah Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, Iran.
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Applied Cell Sciences and Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
Miyake K, Azuma N, Rinoie C, Maeda S, Harada A, Li L, Minami I, Miyagawa S, Sawa Y. Regenerative Effect of Umbilical Cord-Derived Mesenchymal Stromal Cells in a Rat Model of Established Limb Ischemia. Circ J 2023; 87:412-420. [PMID: 36171115 DOI: 10.1253/circj.cj-22-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Although regenerative cell therapy is expected to be an alternative treatment for peripheral artery disease (PAD), many regenerative cell therapies have failed to show sufficient efficacy in clinical trials. Most preclinical studies have used acute ischemia models, despite PAD being a chronic disease. In addition, aging and atherosclerosis decrease the quality of a patient's stem cells. Therefore, using a non-acute ischemic preclinical model and stem cells with high regenerative potency are important for the development of effective regenerative therapy. In this study, we assessed the tissue regenerative potential of umbilical cord-derived mesenchymal stromal cells (UCMSCs), which could potentially be an ideal cell source, in a rat model of established ischemia. METHODS AND RESULTS The regenerative capacity of UCMSCs was analyzed in terms of angiogenesis and muscle regeneration. In vitro analysis showed that UCMSCs secrete high amounts of cytokines associated with angiogenesis and muscle regeneration. In vivo experiments in a rat non-acute ischemia model showed significant improvement in blood perfusion after intravenous injection of UCMSCs compared with injection of culture medium or saline. Histological analysis revealed UCMSCs injection enhanced angiogenesis, with an increased number of von Willebrand factor-positive microcapillaries, and improved muscle regeneration. CONCLUSIONS These results suggest that intravenous administration of UCMSCs may be useful for treating patients with PAD.
Collapse
Affiliation(s)
- Keisuke Miyake
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University
| | | | - Shusaku Maeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Liu Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | | | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Yoshiki Sawa
- Department of Future Medicine, Division of Health Science, Osaka University Graduate School of Medicine
| |
Collapse
|
14
|
Ishizaki Y, Sasaki KI, Yoshikawa T, Nakayoshi T, Sasaki M, Ohtsuka M, Hatada-Katakabe S, Takata Y, Fukumoto Y. RTA-dh404 decreased oxidative stress in mice ischemic limbs and augmented efficacy of therapeutic angiogenesis by intramuscular injection of adipose-derived regenerative cells in the limbs. Eur J Pharmacol 2022; 938:175422. [PMID: 36442622 DOI: 10.1016/j.ejphar.2022.175422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Although an intramuscular injection of angiogenic cells to ischemic limbs with peripheral artery disease is a therapeutic option to rescue patients by augmenting neovascularization in the limbs, oxidative stress in the limbs may accelerate apoptosis of the injected cells and thereby reduce the therapeutic effect. In this study involving mice with ischemic lower limbs, whether daily oral administration of RTA-dh404, which is an activator of nuclear factor erythroid 2-related factor 2 (Nrf2) with antioxidant activity, could reduce oxidative stress in the limbs and suppress apoptosis of adipose-derived regenerative cells (ADRCs) injected in the limbs, eventually augmenting neovascularization in the limbs, was evaluated. The tissue expression of Nrf2 and concentrations of total antioxidant capacity and superoxide dismutase in the mice ischemic limbs were higher in the RTA-dh404-treated mice than in the control treated mice, and oxidative stress in the limbs of the RTA-dh404 treated mice was decreased. The day after an intramuscular injection of human ADRCs into ischemic lower limbs of immunodeficient mice, the number of apoptotic ADRCs in the ischemic limbs was decreased by approximately 25% in the RTA-dh404-treated mice compared to the control mice. Fourteen days after cell injection, neovascularization and the salvage ratio were increased by approximately 10% and 63%, respectively, in the ischemic limbs in the RTA-dh404-treated mice compared to the control mice. Pretreatment of ischemic limbs by daily oral administration of RTA-dh404 may augment the effect of therapeutic angiogenesis using an intramuscular injection of ADRCs into the ischemic limbs.
Collapse
Affiliation(s)
- Yuta Ishizaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ken-Ichiro Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan.
| | - Takahiro Yoshikawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takaharu Nakayoshi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Motoki Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masanori Ohtsuka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sachiko Hatada-Katakabe
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yuki Takata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
15
|
Hori Y, Kitani T, Yanishi K, Suga T, Kogure M, Kusaba T, Kushida Y, Dezawa M, Matoba S. Intravenous administration of human Muse cells recovers blood flow in a mouse model of hindlimb ischemia. Front Cardiovasc Med 2022; 9:981088. [PMID: 36440014 PMCID: PMC9692087 DOI: 10.3389/fcvm.2022.981088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-based therapies hold great promise for the treatment of peripheral arterial disease (PAD), especially in patients presenting with severe limb ischemia, although the optimal strategy remains to be explored. In this study, we evaluated the therapeutic effect of intravenous administration of human Muse cells, a unique subpopulation of mesenchymal stem cells (MSC), using a mouse model of hindlimb ischemia (HLI) without an immunosuppressant. Compared with the phosphate buffered saline (PBS) or non-Muse MSC groups, the Muse group showed significantly higher laser doppler blood flow in the ischemic limb at days 7 and 14 after HLI. Increased microvascular density [percent area of CD31(+) cells] and reduced interstitial fibrosis in the ischemic limb muscle were also observed in the Muse group. mCherry-expressing Muse cells were found in the ischemic border zone and expressed CD31 but did not in the non-ischemic limb. Muse cells produced higher amounts of vascular endothelial growth factor (VEGF) than non-Muse cells under normoxic and hypoxic conditions in vitro. In the ischemic muscle, tissue VEGF concentration and angiogenesis-related genes such as Vegfa, Angpt1, Pdgfb, and Igf1 were significantly higher in the Muse group than in the other two groups. In addition, the proportion of M2 macrophages to total macrophages and the ratio of anti-inflammatory-related genes such as IL-10, Arg1, and CD206 per iNOS were significantly higher in the Muse group than in the other two groups. In summary, Muse cells exert pleiotropic effects in a mouse model of HLI, and therefore may provide a novel therapeutic approach for the treatment of PAD patients with severe limb ischemia.
Collapse
|
16
|
Wolf KG, Crawford EB, Wartan NM, Schneiderman SK, Riehl VE, Dambaeva SV, Beaman KD. Ephrin-B2-expressing natural killer cells induce angiogenesis. JVS Vasc Sci 2022; 3:336-344. [DOI: 10.1016/j.jvssci.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
|
17
|
Therapeutic angiogenesis for patients with no-option critical limb ischemia by adipose-derived regenerative cells: TACT-ADRC multicenter trial. Angiogenesis 2022; 25:535-546. [PMID: 35802311 PMCID: PMC9263817 DOI: 10.1007/s10456-022-09844-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/19/2022] [Indexed: 12/24/2022]
Abstract
Background Patients with critical limb ischemia (CLI) still have a high rate of lower limb amputation, which is associated with not only a decrease in quality of life but also poor life prognosis. Implantation of adipose-derived regenerative cells (ADRCs) has an angiogenic potential for patients with limb ischemia. Objectives We investigated safety, feasibility, and efficacy of therapeutic angiogenesis by cell transplantation (TACT) of ADRCs for those patients in multicenter clinical trial in Japan. Methods The TACT-ADRC multicenter trial is a prospective, interventional, open-labeled study. Patients with CLI (Fontaine class III–IV) who have no other option for standard revascularization therapy were enrolled in this study. Thirty-four target ischemic limbs of 29 patients were received freshly isolated autologous ADRCs implantation. Results The overall survival rate at a post-operative period and at 6 months follow-up was 100% at any time points. As a primary endpoint for efficacy evaluation, 32 limbs out of 34 (94.1%) were free from major amputation for 6 months. Numerical rating scale (from 6 to 1) as QOL score, ulcer size (from 317 mm2 at to 109 mm2), and 6-min walking distance (from 255 to 369 m) improved in 90.6%, 83.3%, and 72.2% patients, respectively. Conclusions Implantation of autologous ADRCs could be safe and effective for the achievement of therapeutic angiogenesis in the multicenter settings, as a result in no major adverse event, optimal survival rate, and limb salvage for patients with no-conventional option against critical limb ischemia. TRN: jRCTb040190118; Date: Nov. 24th, 2015. Supplementary Information The online version contains supplementary material available at 10.1007/s10456-022-09844-7.
Collapse
|
18
|
El Hage R, Knippschild U, Arnold T, Hinterseher I. Stem Cell-Based Therapy: A Promising Treatment for Diabetic Foot Ulcer. Biomedicines 2022; 10:1507. [PMID: 35884812 PMCID: PMC9312797 DOI: 10.3390/biomedicines10071507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic foot ulcer (DFU) is a severe complication of diabetes and a challenging medical condition. Conventional treatments for DFU have not been effective enough to reduce the amputation rates, which urges the need for additional treatment. Stem cell-based therapy for DFU has been investigated over the past years. Its therapeutic effect is through promoting angiogenesis, secreting paracrine factors, stimulating vascular differentiation, suppressing inflammation, improving collagen deposition, and immunomodulation. It is controversial which type and origin of stem cells, and which administration route would be the most optimal for therapy. We reviewed the different types and origins of stem cells and routes of administration used for the treatment of DFU in clinical and preclinical studies. Diabetes leads to the impairment of the stem cells in the diseased patients, which makes it less ideal to use autologous stem cells, and requires looking for a matching donor. Moreover, angioplasty could be complementary to stem cell therapy, and scaffolds have a positive impact on the healing process of DFU by stem cell-based therapy. In short, stem cell-based therapy is promising in the field of regenerative medicine, but more studies are still needed to determine the ideal type of stem cells required in therapy, their safety, proper dosing, and optimal administration route.
Collapse
Affiliation(s)
- Racha El Hage
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany;
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (U.K.); (T.A.)
| | - Tobias Arnold
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (U.K.); (T.A.)
| | - Irene Hinterseher
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany;
- Berlin Institute of Health, Vascular Surgery Clinic, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane und der Brandenburgischen Technischen Universität Cottbus—Senftenberg, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
19
|
Implantation of Hypoxia-Induced Mesenchymal Stem Cell Advances Therapeutic Angiogenesis. Stem Cells Int 2022; 2022:6795274. [PMID: 35355589 PMCID: PMC8958070 DOI: 10.1155/2022/6795274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia preconditioning enhances the paracrine abilities of mesenchymal stem cells (MSCs) for vascular regeneration and tissue healing. Implantation of hypoxia-induced mesenchymal stem cells (hi-MSCs) may further improve limb perfusion in a murine model of hindlimb ischemia. This study is aimed at determining whether implantation of hi-MSCs is an effective modality for improving outcomes of treatment of ischemic artery diseases. We evaluated the effects of human bone marrow-derived MSC implantation on limb blood flow in an ischemic hindlimb model. hi-MSCs were prepared by cell culture under 1% oxygen for 24 hours prior to implantation. A total of 1 × 105 MSCs and hi-MSCs and phosphate-buffered saline (PBS) were intramuscularly implanted into ischemic muscles at 36 hours after surgery. Restoration of blood flow and muscle perfusion was evaluated by laser Doppler perfusion imaging. Blood perfusion recovery, enhanced vessel densities, and improvement of function of the ischemia limb were significantly greater in the hi-MSC group than in the MSC or PBS group. Immunochemistry revealed that hi-MSCs had higher expression levels of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor A than those in MSCs. In addition, an endothelial cell-inducing medium showed high expression levels of vascular endothelial growth factor, platelet endothelial cell adhesion molecule-1, and von Willebrand factor in hi-MSCs compared to those in MSCs. These findings suggest that pretreatment of MSCs with a hypoxia condition and implantation of hi-MSCs advances neovascularization capability with enhanced therapeutic angiogenic effects in a murine hindlimb ischemia model.
Collapse
|
20
|
Miyake K, Miyagawa S, Harada A, Sawa Y. Engineered clustered myoblast cell injection augments angiogenesis and muscle regeneration in peripheral artery disease. Mol Ther 2022; 30:1239-1251. [PMID: 35007760 PMCID: PMC8899600 DOI: 10.1016/j.ymthe.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/27/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
The low survival rate of administered cells due to ischemic and inflammatory environments limits the efficacy of the current regenerative cell therapy in peripheral artery disease (PAD). This study aimed to develop a new method to enhance the efficacy of cell therapy in PAD using cell sheet technology. Clustered cells (CCs) from myoblast cell sheets obtained from C57/BL6 mice were administered into ischemic mouse muscles 7 days after induction of ischemia (defined as day 0). Control groups were administered with single myoblast cells (SCs) or saline. Cell survival, blood perfusion of the limb, angiogenesis, muscle regeneration, and inflammation status were evaluated. The survival of administered cells was markedly improved in CCs compared with SCs at days 7 and 28. CCs showed significantly improved blood perfusion, augmented angiogenesis with increased density of CD31+/α-smooth muscle actin+ arterioles, and accelerated muscle regeneration, along with the upregulation of associated genes. Additionally, inflammation status was well regulated by CCs administration. CCs administration increased the number of macrophages and then induced polarization into an anti-inflammatory phenotype (CD11c-/CD206+), along with the increased expression of genes associated with anti-inflammatory cytokines. Our findings suggest clinical potential of rescuing severely damaged limbs in PAD using CCs.
Collapse
Affiliation(s)
- Keisuke Miyake
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
21
|
Maksimova NV, Michenko AV, Krasilnikova OA, Klabukov ID, Gadaev IY, Krasheninnikov ME, Belkov PA, Lyundup AV. Mesenchymal stromal cell therapy alone does not lead to complete restoration of skin parameters in diabetic foot patients within a 3-year follow-up period. BIOIMPACTS : BI 2022; 12:51-55. [PMID: 35087716 PMCID: PMC8783077 DOI: 10.34172/bi.2021.22167] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 01/07/2023]
Abstract
![]()
Introduction:Mesenchymal stromal cells (MSCs) administration is an effective option for the treatment of diabetic foot ulcers (DFUs). However, to date, studies assessing long-term outcomes and evaluating skin parameters after cell-based therapy are lacking. We presented the clinical outcomes of 3 patients, treated for DFUs with the bone marrow MSCs 3 years earlier.
Methods: Ultrasound examination was used to compare collagen density and epidermal thickness in areas of healed ulcers in comparison with non-affected skin used as a control. Ultrasound and dermatoscopy were used to exclude neoplasm formation, to assess scar contracture and wound recurrence.
Results:In all patients, no ulcer recurrence was detected, which was lower than the expected 60% rate of re-ulceration in diabetic patients in a 3-year period (OD [odds ratio] = 0.095, P = 0.12). No neoplasm formation, no contracture of hypertrophic scar, and adjacent tissue were registered. Collagen ultrasound density was decreased by 57% (P = 0.053) and epidermal thickness was increased by 72% (P = 0.01) in the area of healed ulcers in all patients.
Conclusion:MSCs therapy alone did not result in the complete restoration of the skin parameters within a 3-year period. MSCs may represent important adjuvant to the therapy, however, other novel approaches are required to achieve better results.
Collapse
Affiliation(s)
- Nadezhda V Maksimova
- Department of Endocrinology, Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Anna V Michenko
- Moscow Scientific and Practical Center of Dermatovenerology and Cosmetology, Moscow, Russia
| | - Olga A Krasilnikova
- Department of Regenerative Technologies and Biofabrication, National Medical Research Radiological Center, Obninsk, Russia
| | - Ilya D Klabukov
- Department of Regenerative Technologies and Biofabrication, National Medical Research Radiological Center, Obninsk, Russia
| | - Igor Yu Gadaev
- Chair of Hospital Therapy №1, Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Michael E Krasheninnikov
- Research and Educational Resource Center for Cellular Technologies, Peoples' Friendship University of Russia, Moscow, Russia
| | | | - Aleksey V Lyundup
- Research and Educational Resource Center for Cellular Technologies, Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|
22
|
Yoshimi R, Nakajima H. Current State and Issues of Regenerative Medicine for Rheumatic Diseases. Front Med (Lausanne) 2022; 9:813952. [PMID: 35155499 PMCID: PMC8831787 DOI: 10.3389/fmed.2022.813952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
The prognosis of rheumatic diseases is generally better than that of malignant diseases. However, some cases with poor prognoses resist conventional therapies and cause irreversible functional and organ damage. In recent years, there has been much research on regenerative medicine, which uses stem cells to restore the function of missing or dysfunctional tissues and organs. The development of regenerative medicine is also being attempted in rheumatic diseases. In diseases such as systemic sclerosis (SSc), systemic lupus erythematosus (SLE), and rheumatoid arthritis, hematopoietic stem cell transplantation has been attempted to correct and reconstruct abnormalities in the immune system. Mesenchymal stem cells (MSCs) have also been tried for the treatment of refractory skin ulcers in SSc using the ability of MSCs to differentiate into vascular endothelial cells and for the treatment of systemic lupus erythematosus SLE using the immunosuppressive effect of MSCs. CD34-positive endothelial progenitor cells (EPCs), which are found in the mononuclear cell fraction of bone marrow and peripheral blood, can differentiate into vascular endothelial cells at the site of ischemia. Therefore, EPCs have been used in research on vascular regeneration therapy for patients with severe lower limb ischemia caused by rheumatic diseases such as SSc. Since the first report of induced pluripotent stem cells (iPSCs) in 2007, research on regenerative medicine using iPSCs has been actively conducted, and their application to rheumatic diseases is expected. However, there are many safety issues and bioethical issues involved in regenerative medicine research, and it is essential to resolve these issues for practical application and spread of regenerative medicine in the future. The environment surrounding regenerative medicine research is changing drastically, and the required expertise is becoming higher. This paper outlines the current status and challenges of regenerative medicine in rheumatic diseases.
Collapse
|
23
|
Ribieras AJ, Ortiz YY, Liu ZJ, Velazquez OC. Therapeutic angiogenesis in Buerger's disease: reviewing the treatment landscape. THERAPEUTIC ADVANCES IN RARE DISEASE 2022; 3:26330040211070295. [PMID: 37180424 PMCID: PMC10032470 DOI: 10.1177/26330040211070295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/07/2021] [Indexed: 05/16/2023]
Abstract
Thromboangiitis obliterans, also known as Buerger's disease, is a rare inflammatory vasculitis that predominantly develops in smokers and characteristically affects the small- and medium-sized peripheral arteries and veins. Patients typically present with extremity claudication, but symptoms may progress to rest pain and tissue loss, especially in those unable to abstain from tobacco use. Unfortunately, traditional medical treatments are largely ineffective and due to the small caliber of affected vessels and lack of suitable distal targets or venous conduits, endovascular and open surgical approaches are often not possible. Eventually, a significant number of patients require major amputation. For these reasons, much research effort has been made in developing techniques of therapeutic angiogenesis to improve limb perfusion, both for atherosclerotic peripheral arterial disease and the smaller subset of patients with critical limb ischemia due to Buerger's disease. Neovascularization in response to ischemia relies on a complex interplay between the local tissue microenvironment and circulating stem and progenitor cells. To date, studies of therapeutic angiogenesis have therefore focused on exploiting known angiogenic factors and stem cells to induce neovascularization in ischemic tissues. This review summarizes the available clinical data regarding the safety and efficacy of various angiogenic therapies, notably injection of naked DNA plasmids, viral gene constructs, and cell-based preparations, and describes techniques for potentiating in vivo efficacy of gene- and cell-based therapies as well as ongoing developments in exosome-based cell-free approaches for therapeutic angiogenesis. Plain Language Title and Summary A review of available and emerging treatments for improving blood flow and wound healing in patients with Buerger's disease, a rare disorder of blood vessels Buerger's disease is a rare disorder of the small- and medium-sized blood vessels in the arms and legs that almost exclusively develops in young smokers. Buerger's disease causes inflammation in arteries and veins, which leads to blockage of these vessels and reduces blood flow to and from the extremities. Decreased blood flow to the arms and legs can lead to development of nonhealing wounds and infection for which some patients may eventually require amputation. Unfortunately, traditional medical and surgical treatments are not effective in Buerger's disease, so other methods for improving blood flow are needed for these patients. There are several different ways to stimulate new blood vessel formation, both in humans and animal models. The most common treatments involve injection of DNA or viruses that express genes related to blood vessel formation or, alternatively, stem cell-based treatments that help regenerate blood vessels and repair wound tissue. This review explores how safe and effective these various treatments are and describes recent research developments that may lead to better therapies for patients with Buerger's disease and other vascular disorders.
Collapse
Affiliation(s)
- Antoine J. Ribieras
- DeWitt Daughtry Family Department of Surgery,
University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yulexi Y. Ortiz
- DeWitt Daughtry Family Department of Surgery,
University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhao-Jun Liu
- DeWitt Daughtry Family Department of Surgery,
University of Miami Miller School of Medicine, RMSB 1046, 1600 NW 10th
Avenue, Miami, FL 33136, USA. Vascular Biology Institute, University of
Miami Miller School of Medicine, Miami, FL, USA
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery,
University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami,
FL 33136, USA. Vascular Biology Institute, University of Miami Miller School
of Medicine, Miami, FL, USA
| |
Collapse
|
24
|
Jiang X, Liu H, Pan T, Gu S, Fang Y, Wei Z, Fang G, Chen B, Jiang J, Shi Y, Liu P, Fu W, Dong Z. Long-Term Outcomes of Peripheral Blood Mononuclear Cells in the Treatment of Angiitis-Induced No-Option Critical Limb-Threatening Ischemia. Front Cardiovasc Med 2021; 8:769472. [PMID: 34938786 PMCID: PMC8687358 DOI: 10.3389/fcvm.2021.769472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Peripheral blood mononuclear cells (PBMNCs) showed encouraging short outcomes in the treatment of angiitis-induced no-option critical limb-threatening ischemia (AICLTI) in the pilot study. This study aimed to demonstrate the long-term outcomes of this treatment. Methods: From May 2014 to December 2018, patients diagnosed with AICLTI and treated by autotransplantation of PBMNCs in our center were enrolled and analyzed. The primary endpoint was major amputation-free survival (MAFS), the secondary endpoints included peak pain-free walking time (PPFWT), Wong-Baker FACES pain rating scale score (WFPRSS), labor recovery, ankle-brachial index (ABI), transcutaneous partial oxygen pressure (TcpO2), and SF-36v2 scores. Results: A total of 58 patients were enrolled. During a minimal follow-up of 36 months, the MAFS was 93.1% and the labor competence restored rate was 62.1%. The WFPRSS was decreased from 8.7 ± 1.6 to 1.6 ± 3.2, and PPFWT was significantly improved from 2.9 ± 4.2 min to 16.6 ± 6.9 min. The quality of life was also significantly improved at each follow-up point. Perfusion evaluating parameters, such as ABI and TcPO2, were also significantly improved. No critical adverse event was observed during the treatment and follow-up period. Conclusions: The treatment of AICLTI by autotransplantation of PBMNCs demonstrated encouraging long-term results. It could not only restore labor competence, improve the quality of life, but also significantly reduce the major amputation rate.
Collapse
Affiliation(s)
- Xiaolang Jiang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianyue Pan
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiyang Gu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Fang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Wei
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Fang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Chen
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junhao Jiang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shi
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Dong
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Magenta A, Florio MC, Ruggeri M, Furgiuele S. Autologous cell therapy in diabetes‑associated critical limb ischemia: From basic studies to clinical outcomes (Review). Int J Mol Med 2021; 48:173. [PMID: 34278463 DOI: 10.3892/ijmm.2021.5006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 01/13/2023] Open
Abstract
Cell therapy is becoming an attractive alternative for the treatment of patients with no‑option critical limb ischemia (CLI). The main benefits of cell therapy are the induction of therapeutic angiogenesis and neovascularization that lead to an increase in blood flow in the ischemic limb and tissue regeneration in non‑healing cutaneous trophic lesions. In the present review, the current state of the art of strategies in the cell therapy field are summarized, focusing on intra‑operative autologous cell concentrates in diabetic patients with CLI, examining different sources of cell concentrates and their mechanisms of action. The present study underlined the detrimental effects of the diabetic condition on different sources of autologous cells used in cell therapy, and also in delaying wound healing capacity. Moreover, relevant clinical trials and critical issues arising from cell therapy trials are discussed. Finally, the new concept of cell therapy as an adjuvant therapy to increase wound healing in revascularized diabetic patients is introduced.
Collapse
Affiliation(s)
| | - Maria Cristina Florio
- Laboratory of Cardiovascular Science, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Massimo Ruggeri
- Department of Vascular Surgery, San Camillo de Lellis Hospital, I‑02100 Rieti, Italy
| | | |
Collapse
|
26
|
Intravascular Application of Labelled Cell Spheroids: An Approach for Ischemic Peripheral Artery Disease. Int J Mol Sci 2021; 22:ijms22136831. [PMID: 34202056 PMCID: PMC8269343 DOI: 10.3390/ijms22136831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSC) are known for their vascular regeneration capacity by neoangiogenesis. Even though, several delivery approaches exist, particularly in the case of intravascular delivery, only limited number of cells reach the targeted tissue and are not able to remain on site. Applicated cells exhibit poor survival accompanied with a loss of functionality. Moreover, cell application techniques lead to cell death and impede the overall MSC function and survival. 3D cell spheroids mimic the physiological microenvironment, thus, overcoming these limitations. Therefore, in this study we aimed to evaluate and assess the feasibility of 3D MSCs spheroids for endovascular application, for treatment of ischemic peripheral vascular pathologies. Multicellular 3D MSC spheroids were generated at different cell seeding densities, labelled with ultra-small particles of iron oxide (USPIO) and investigated in vitro in terms of morphology, size distribution, mechanical stability as well as ex vivo with magnetic resonance imaging (MRI) to assess their trackability and distribution. Generated 3D spheroids were stable, viable, maintained stem cell phenotype and were easily trackable and visualized via MRI. MSC 3D spheroids are suitable candidates for endovascular delivery approaches in the context of ischemic peripheral vascular pathologies.
Collapse
|
27
|
Jo IS, Kim HJ, Chae MH, Kwon UC, Ju GH, Song U, Hyon CH, Kim IS. Combination of intramuscular transplantation of autologous mononuclear bone marrow cells with sympathectomy (L2, 3) in patients with peripheral arterial disease(PAD). Surgeon 2021; 20:e3-e6. [PMID: 33931346 DOI: 10.1016/j.surge.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/21/2021] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND In most patients with severe, chronic extremity ischemic diseases, intervention or surgical treatment is often not suitable. Combination of intramuscular transplantation of autologous monocular bone marrow cells (AMBMCs) and sympathectomy (L2, 3) has been proved therapeutically beneficial. METHODS We studied 170 patients (combined group 80, control group 90) with extremity ischemia (TAO, ASO FontaineⅡ,Ⅲ, Ⅳ) between January 2013 and September 2019. RESULTS In contrast to pre-operation, the walking distance of patients increased significantly (from 61.34 ± 52.23 m to 156.0 ± 32.4 m, p < 0.01), and the ankle-brachial index (ABI) remarkably improved (from 0.28 ± 0.13 to 0.59 ± 0.23, p < 0.05). CONCLUSION Combined therapy is feasible and effective for patients with peripheral arterial disease (PAD).
Collapse
Affiliation(s)
- Il-Su Jo
- Department of Thoracic Surgery, Pyongyang University of Medical Sciences, Democratic Peoples Republic of Korea.
| | - Hyon-Jong Kim
- Department of Thoracic Surgery, Pyongyang General Hospital, Democratic Peoples Republic of Korea
| | - Myong-Hwan Chae
- Department of Thoracic Surgery, Pyongyang University of Medical Sciences, Democratic Peoples Republic of Korea
| | - Un-Chol Kwon
- Department of Thoracic Surgery, Pyongyang University of Medical Sciences, Democratic Peoples Republic of Korea
| | - Gwang-Hak Ju
- Department of Thoracic Surgery, Pyongyang University of Medical Sciences, Democratic Peoples Republic of Korea
| | - Un Song
- Department of Thoracic Surgery, Pyongyang University of Medical Sciences, Democratic Peoples Republic of Korea
| | - Chol-Ho Hyon
- Department of Thoracic Surgery, Pyongyang University of Medical Sciences, Democratic Peoples Republic of Korea
| | - Il-Su Kim
- Institute of Medical Genetics, Pyongyang University of Medical Sciences, Democratic Peoples Republic of Korea
| |
Collapse
|
28
|
Gu Y, Rampin A, Alvino VV, Spinetti G, Madeddu P. Cell Therapy for Critical Limb Ischemia: Advantages, Limitations, and New Perspectives for Treatment of Patients with Critical Diabetic Vasculopathy. Curr Diab Rep 2021; 21:11. [PMID: 33651185 PMCID: PMC7925447 DOI: 10.1007/s11892-021-01378-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW To provide a highlight of the current state of cell therapy for the treatment of critical limb ischemia in patients with diabetes. RECENT FINDINGS The global incidence of diabetes is constantly growing with consequent challenges for healthcare systems worldwide. In the UK only, NHS costs attributed to diabetic complications, such as peripheral vascular disease, amputation, blindness, renal failure, and stroke, average £10 billion each year, with cost pressure being estimated to get worse. Although giant leaps forward have been registered in the scope of early diagnosis and optimal glycaemic control, an effective treatment for critical limb ischemia is still lacking. The present review aims to provide an update of the ongoing work in the field of regenerative medicine. Recent advancements but also limitations imposed by diabetes on the potential of the approach are addressed. In particular, the review focuses on the perturbation of non-coding RNA networks in progenitor cells and the possibility of using emerging knowledge on molecular mechanisms to design refined protocols for personalized therapy. The field of cell therapy showed rapid progress but has limitations. Significant advances are foreseen in the upcoming years thanks to a better understanding of molecular bottlenecks associated with the metabolic disorders.
Collapse
Affiliation(s)
- Y Gu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - A Rampin
- Laboratory of Cardiovascular Research, IRCCS, MultiMedica, Milan, Italy
| | - V V Alvino
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - G Spinetti
- Laboratory of Cardiovascular Research, IRCCS, MultiMedica, Milan, Italy
| | - P Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
29
|
Yunir E, Kurniawan F, Rezaprasga E, Wijaya IP, Suroyo I, Matondang S, Irawan C, Soewondo P. Autologous Bone-Marrow vs. Peripheral Blood Mononuclear Cells Therapy for Peripheral Artery Disease in Diabetic Patients. Int J Stem Cells 2021; 14:21-32. [PMID: 33377454 PMCID: PMC7904521 DOI: 10.15283/ijsc20088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus (DM) remains one of the most important risk factors for peripheral artery disease (PAD), with approximately 20% of DM patients older than 40 years old are affected with PAD. The current standard management for severe PAD is endovascular intervention with or without surgical bypass. Unfortunately, up to 40% of patients are unable to undergo these revascularization therapies due to excessive surgical risk or adverse vascular side effects. Stem cell therapy has emerged as a novel therapeutic strategy for these ‘no-option’ patients. Several types of stem cells are utilized for PAD therapy, including bone marrow mononuclear cells (BMMNC) and peripheral blood mononuclear cells (PBMNC). Many studies have reported the safety of BMMNC and PBMNC, as well as its efficacy in reducing ischemic pain, ulcer size, pain-free walking distance, ankle-brachial index (ABI), and transcutaneous oxygen pressure (TcPO2). However, the capacity to establish the efficacy of reducing major amputation rates, amputation free survival, and all-cause mortality is limited, as shown by several randomized placebo-controlled trials. The present literature review will focus on comparing safety and efficacy between BMMNC and PBMNC as cell-based management in diabetic patients with PAD who are not suitable for revascularization therapy.
Collapse
Affiliation(s)
- Em Yunir
- Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,Metabolic Disorder, Cardiovascular, and Aging Cluster, Indonesian Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Farid Kurniawan
- Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,Metabolic Disorder, Cardiovascular, and Aging Cluster, Indonesian Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Edo Rezaprasga
- Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,Metabolic Disorder, Cardiovascular, and Aging Cluster, Indonesian Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Ika Prasetya Wijaya
- Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Indrati Suroyo
- Department of Radiology, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Sahat Matondang
- Department of Radiology, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Cosphiadi Irawan
- Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Pradana Soewondo
- Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,Metabolic Disorder, Cardiovascular, and Aging Cluster, Indonesian Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
30
|
Current Status of Angiogenic Cell Therapy and Related Strategies Applied in Critical Limb Ischemia. Int J Mol Sci 2021; 22:ijms22052335. [PMID: 33652743 PMCID: PMC7956816 DOI: 10.3390/ijms22052335] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Critical limb ischemia (CLI) constitutes the most severe form of peripheral arterial disease (PAD), it is characterized by progressive blockade of arterial vessels, commonly correlated to atherosclerosis. Currently, revascularization strategies (bypass grafting, angioplasty) remain the first option for CLI patients, although less than 45% of them are eligible for surgical intervention mainly due to associated comorbidities. Moreover, patients usually require amputation in the short-term. Angiogenic cell therapy has arisen as a promising alternative for these "no-option" patients, with many studies demonstrating the potential of stem cells to enhance revascularization by promoting vessel formation and blood flow recovery in ischemic tissues. Herein, we provide an overview of studies focused on the use of angiogenic cell therapies in CLI in the last years, from approaches testing different cell types in animal/pre-clinical models of CLI, to the clinical trials currently under evaluation. Furthermore, recent alternatives related to stem cell therapies such as the use of secretomes, exosomes, or even microRNA, will be also described.
Collapse
|
31
|
Li MD, Wang YF, Yang MW, Hong FF, Yang SL. Risk Factors, Mechanisms and Treatments of Thromboangiitis Obliterans: An Overview of Recent Research. Curr Med Chem 2021; 27:6057-6072. [PMID: 31419926 DOI: 10.2174/0929867326666190816233042] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Thromboangiitis obliterans (TAO) is a nonatherosclerotic thromboticocclusive vasculitis that affects the vessels of the small and medium-sized extremities. No explicit etiology or pathogenesis of TAO has been proven, and more effective treatments are needed. OBJECTIVE The study aimed to summarize and present an overview of recent advances regarding the risk factors, mechanisms and treatments of TAO and to organize the related information in figures to provide a comparatively complete reference. METHODS We searched PubMed for English-language literature about TAO without article type limits, including articles about the risk factors, pathological mechanisms and treatments of TAO in the last 10 years with essential supplements (references over ranges and English abstracts of Russian literature). RESULTS After screening content of works of literature, 99 references were evaluated. We found that risk factors of TAO include smoking, gene factors and periodontal diseases. The underlying mechanism of TAO involves oxidative stress, immunity, hemodynamic changes, inflammation and so on. Moreover, similarities in genetic factors and cigarette relevance existed between periodontal diseases and TAO, so further study of relationship was required. For TAO treatment, medicine, endovascular intervention and revascularization surgery, autologous cell therapy and novel therapies were also mentioned. Besides, a hypothesis that infection triggers autoimmunity in TAO could be speculated, in which TLR4 plays a key role. CONCLUSION 1. A hypothesis is put forward that infections can trigger autoimmunity in TAO development, in which TLR4, as a key agent, can activate immune signaling pathways and induce autoimmune cytokines expression. 2. It is suggested to reconsider the association between periodontal diseases and TAO, as they share the same high-risk population. Controlling periodontal disease severity in TAO studies may provide new clues. 3. For TAO treatment, endovascular intervention and autologous cell therapy both showed promising long-term therapeutic effectiveness, in which autologous cell therapy is becoming more popular, although more clinical comparisons are needed.
Collapse
Affiliation(s)
- Meng-di Li
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Yi-Fan Wang
- Institute of Cancer Research, Jiangxi Academy of Medical Science, Nanchang, Jiangxi 330006, China
| | - Mei-Wen Yang
- Department of Nursing, Nanchang University hospital, Nanchang, Jiangxi 330006, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang 330031, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
32
|
Hénon P, Lahlil R. CD34+ Stem Cells and Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Rojas-Torres M, Jiménez-Palomares M, Martín-Ramírez J, Beltrán-Camacho L, Sánchez-Gomar I, Eslava-Alcon S, Rosal-Vela A, Gavaldá S, Durán-Ruiz MC. REX-001, a BM-MNC Enriched Solution, Induces Revascularization of Ischemic Tissues in a Murine Model of Chronic Limb-Threatening Ischemia. Front Cell Dev Biol 2020; 8:602837. [PMID: 33363160 PMCID: PMC7755609 DOI: 10.3389/fcell.2020.602837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Bone Marrow Mononuclear Cells (BM-MNC) constitute a promising alternative for the treatment of Chronic Limb-Threatening ischemia (CLTI), a disease characterized by extensive blockade of peripheral arteries, clinically presenting as excruciating pain at rest and ischemic ulcers which may lead to gangrene and amputation. BM-MNC implantation has shown to be efficient in promoting angiogenesis and ameliorating ischemic symptoms in CLTI patients. However, the variability seen between clinical trials makes necessary a further understanding of the mechanisms of action of BM-MNC, and moreover, to improve trial characteristics such as endpoints, inclusion/exclusion criteria or drug product compositions, in order to implement their use as stem-cell therapy. Materials: Herein, the effect of REX-001, a human-BM derived cell suspension enriched for mononuclear cells, granulocytes and CD34+ cells, has been assessed in a murine model of CLTI. In addition, a REX-001 placebo solution containing BM-derived red blood cells (BM-RBCs) was also tested. Thus, 24 h after double ligation of the femoral artery, REX-001 and placebo were administrated intramuscularly to Balb-c nude mice (n:51) and follow-up of ischemic symptoms (blood flow perfusion, motility, ulceration and necrosis) was carried out for 21 days. The number of vessels and vascular diameter sizes were measured within the ischemic tissues to evaluate neovascularization and arteriogenesis. Finally, several cell-tracking assays were performed to evaluate potential biodistribution of these cells. Results: REX-001 induced a significant recovery of blood flow by increasing vascular density within the ischemic limbs, with no cell translocation to other organs. Moreover, cell tracking assays confirmed a decrease in the number of infused cells after 2 weeks post-injection despite on-going revascularization, suggesting a paracrine mechanism of action. Conclusion: Overall, our data supported the role of REX-001 product to improve revascularization and ischemic reperfusion in CLTI.
Collapse
Affiliation(s)
- Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Margarita Jiménez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | | | - Lucía Beltrán-Camacho
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Sara Eslava-Alcon
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Sandra Gavaldá
- R&D Department at Rexgenero Biosciences Sociedad Limitada (SL), Seville, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| |
Collapse
|
34
|
Sharma S, Pandey NN, Sinha M, Kumar S, Jagia P, Gulati GS, Gond K, Mohanty S, Bhargava B. Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate Safety and Therapeutic Efficacy of Angiogenesis Induced by Intraarterial Autologous Bone Marrow-Derived Stem Cells in Patients with Severe Peripheral Arterial Disease. J Vasc Interv Radiol 2020; 32:157-163. [PMID: 33248918 DOI: 10.1016/j.jvir.2020.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To evaluate safety and efficacy of angiogenesis induced by intraarterial autologous bone marrow-derived stem cell (BMSC) injection in patients with severe peripheral arterial disease (PAD). MATERIALS AND METHODS Eighty-one patients with severe PAD (77 men), including 56 with critical limb ischemia (CLI) and 25 with severe claudication, were randomized to receive sham injection (group A) or intraarterial BMSC injection at the site of occlusion (group B). Primary endpoints included improvement in ankle-brachial index (ABI) of > 0.1 and transcutaneous pressure of oxygen (TcPO2) of > 15% at mid- and lower foot at 6 mo. Secondary endpoints included relief from rest pain, > 30% reduction in ulcer size, and reduction in major amputation in patients with CLI and > 50% improvement in pain-free walking distance in patients with severe claudication. RESULTS Technical success was achieved in all patients, without complications. At 6 mo, group B showed more improvements in ABI of > 0.1 (35 of 41 [85.37%] vs 13 of 40 [32.50%]; P < .0001) and TcPO2 of > 15% at the midfoot (35 of 41 [85.37%] vs 17 of 40 [42.50%]; P = .0001] and lower foot (37 of 41 [90.24%] vs 19 of 40 [47.50%]; P < .0001). No patients with CLI underwent major amputation in group B, compared with 4 in group A (P = .0390). No significant difference was observed in relief from rest pain or > 30% reduction in ulcer size among patients with CLI or in > 50% improvement in pain-free walking distance among patients with severe claudication. CONCLUSIONS Intraarterial delivery of autologous BMSCs is safe and effective in the management of severe PAD.
Collapse
Affiliation(s)
- Sanjiv Sharma
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Niraj Nirmal Pandey
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Mumun Sinha
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sanjeev Kumar
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Priya Jagia
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Gurpreet Singh Gulati
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Kalpnath Gond
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Balram Bhargava
- Department of Cardiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
35
|
Yusoff FM, Kajikawa M, Takaeko Y, Kishimoto S, Hashimoto H, Maruhashi T, Nakashima A, Wahid SFSA, Higashi Y. Relationship between cell number and clinical outcomes of autologous bone-marrow mononuclear cell implantation in critical limb ischemia. Sci Rep 2020; 10:19891. [PMID: 33199760 PMCID: PMC7669841 DOI: 10.1038/s41598-020-76886-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022] Open
Abstract
Cell therapy using intramuscular injections of autologous bone-marrow mononuclear cells (BM-MNCs) improves clinical symptoms and can prevent limb amputation in atherosclerotic peripheral arterial disease (PAD) patients with critical limb ischemia (CLI). The purpose of this study was to evaluate the effects of the number of implanted BM-MNCs on clinical outcomes in atherosclerotic PAD patients with CLI who underwent cell therapy. This study was a retrospective observational study with median follow-up period of 13.5 years (range, 6.8–15.5 years) from BM-MNC implantation procedure. The mean number of implanted cells was 1.2 ± 0.7 × 109 per limb. There was no significant difference in number of BM-MNCs implanted between the no major amputation group and major amputation group (1.1 ± 0.7 × 109 vs. 1.5 ± 0.8 × 109 per limb, P = 0.138). There was also no significant difference in number of BM-MNCs implanted between the no death group and death group (1.5 ± 0.9 × 109 vs. 1.8 ± 0.8 × 109 per patient, P = 0.404). Differences in the number of BM-MNCs (mean number, 1.2 ± 0.7 × 109 per limb) for cell therapy did not alter the major amputation-free survival rate or mortality rate in atherosclerotic PAD patients with CLI. A large number of BM-MNCs will not improve limb salvage outcome or mortality.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuji Takaeko
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Haruki Hashimoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - S Fadilah S Abdul Wahid
- Pusat Terapi Sel (Cell Therapy Centre), Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. .,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan.
| |
Collapse
|
36
|
Abstract
Buerger’s disease or Thromboangiitis Obliterans (TAO) is a nonatherosclerotic segmental vascular disease which affects small and medium arteries and veins in the upper and lower extremities. Based on pathological findings, TAO can be considered as a distinct form of vasculitis that is most prevalent in young male smokers. There is no definitive cure for this disease as therapeutic modalities are limited in number and efficacy. Surgical bypass has limited utility and 24% of patients will ultimately require amputation. Recently, studies have shown that therapeutic angiogenesis and immunomodulatory approaches through the delivery of stem cells to target tissues are potential options for ischemic lesion treatment. In this review, we summarize the current knowledge of TAO treatment and provide an overview of stem cell-based treatment modalities.
Collapse
|
37
|
Fang G, Jiang X, Fang Y, Pan T, Liu H, Ren B, Wei Z, Gu S, Chen B, Jiang J, Shi Y, Guo D, Liu P, Fu W, Dong Z. Autologous peripheral blood-derived stem cells transplantation for treatment of no-option angiitis-induced critical limb ischemia: 10-year management experience. Stem Cell Res Ther 2020; 11:458. [PMID: 33115517 PMCID: PMC7594448 DOI: 10.1186/s13287-020-01981-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Previous studies have demonstrated that no-option angiitis-induced critical limb ischemia (NO-AICLI) could be significantly improved by transplantation of peripheral blood-derived stem cells (PBDSCs). Additionally, a randomized controlled trial (RCT) recently conducted by us suggested that peripheral blood-derived purified CD34+ cells (PCCs) were not inferior to non-purified peripheral blood mononuclear cells (PBMNCs) at limb salvage in treatment of NO-AICLI. However, most of these clinical trials whether RCT or single-arm studies were characterized with a small sample size and absence of long-term outcomes. Methods To analyze long-term clinical outcomes of PBDSCs transplantation for NO-AICLI, we reviewed clinical data of patients with NO-AICLI receiving PBDSCs transplantation at our center during the past decade. Meanwhile, we first compared the long-term safety and efficacy of intramuscular transplantation of PCCs versus PBMNCs in a sizable number of patients with NO-AICLI. Results From May 2009 to December 2019, a total of 160 patients with NO-AICLI patients were treated by PBDSCs transplantation (82 with PCCs, 78 with PBMNCs) at our center. Baseline characteristics between two groups were similar. Up to June 2020, the mean follow-up period was 46.6 ± 35.3 months. No critical adverse events were observed in either group. There was one death during the follow-up period. A total of eight major amputations occurred. The cumulative major amputation-free survival (MAFS) rate at 5 years after PBDSCs transplantation was 94.4%, without difference between two groups (P = .855). Wound healing, rest pain, pain-free walking time, ankle-brachial index, transcutaneous oxygen pressure, and quality of life (QoL) also significantly improved after PBDSCs transplantation. Conclusions Autologous PBDSCs intramuscular transplantation could significantly decrease the major amputation rates and improve the QoL in patients with NO-AICLI. Long-term observation of a large sample of patients confirmed that the clinical benefits of PBDSCs transplantation were durable, without difference between the PCCs and PBMNCs groups.
Collapse
Affiliation(s)
- Gang Fang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolang Jiang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Fang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianyue Pan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bichen Ren
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Wei
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiyang Gu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Chen
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junhao Jiang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shi
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Daqiao Guo
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. .,Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Zhihui Dong
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. .,Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
38
|
Current Concepts in the Management of Thromboangiitis Obliterans (TAO) Using Distraction Osteogenesis. Indian J Surg 2020. [DOI: 10.1007/s12262-020-02653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
39
|
Katagiri T, Kondo K, Shibata R, Hayashida R, Shintani S, Yamaguchi S, Shimizu Y, Unno K, Kikuchi R, Kodama A, Takanari K, Kamei Y, Komori K, Murohara T. Therapeutic angiogenesis using autologous adipose-derived regenerative cells in patients with critical limb ischaemia in Japan: a clinical pilot study. Sci Rep 2020; 10:16045. [PMID: 32994527 PMCID: PMC7525513 DOI: 10.1038/s41598-020-73096-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived regenerative cell (ADRC) is a promising alternative source of autologous somatic stem cells for the repair of damaged tissue. This study aimed to assess the safety and feasibility of autologous ADRC implantation for therapeutic angiogenesis in patients with critical limb ischaemia (CLI). A clinical pilot study—Therapeutic Angiogenesis by Cell Transplantation using ADRCs (TACT-ADRC) study—was initiated in Japan. Adipose tissue was obtained by ordinary liposuction method. Isolated ADRCs were injected into the ischaemic limb. We performed TACT-ADRC procedure in five patients with CLI. At 6 months, no adverse events related to the TACT-ADRC were observed. No patients required major limb amputation, and ischaemic ulcers were partly or completely healed during the 6-month follow-up. In all cases, significant clinical improvements were seen in terms of rest pain and 6-min walking distance. Numbers of circulating CD34+ and CD133+ cells markers of progenitor cell persistently increased after ADRC implantation. The ratio of VEGF-A165b (an anti-angiogenic isoform of VEGF) to total VEGF-A in plasma significantly decreased after ADRC implantation. In vitro experiments, cultured with ADRC-conditioned media (CM) resulted in increased total VEGF-A and decreased VEGF-A165b in C2C12 cells, but not in macrophages. ADRC-CM also increased CD206+ cells expression and decreased TNF-α in macrophages. Autologous ADRC implantation was safe and effective in patients with CLI and could repair damaged tissue via its ability to promote angiogenesis and suppress tissue inflammation.
Collapse
Affiliation(s)
- Takeshi Katagiri
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhisa Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan.
| | - Ryo Hayashida
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoshi Shintani
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shukuro Yamaguchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazumasa Unno
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryosuke Kikuchi
- Department of Medical Technique, Nagoya University Hospital, Nagoya, Japan
| | - Akio Kodama
- Department of Vascular Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Takanari
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuzuru Kamei
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimihiro Komori
- Department of Vascular Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
40
|
Fujioka A, Yanishi K, Shoji K, Hori Y, Kawamata H, Yukawa A, Yokota I, Teramukai S, Yamada A, Matoba S. Therapeutic Angiogenesis Using Bone Marrow-Derived Mononuclear Cell Implantation for Patients With Critical Limb-Threatening Ischemia Caused by Thromboangiitis Obliterans - Study Protocol for a Multicenter Prospective Interventional Trial. Circ Rep 2020; 2:630-634. [PMID: 33693187 PMCID: PMC7932848 DOI: 10.1253/circrep.cr-20-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background:
Patients with thromboangiitis obliterans (TAO) can develop critical limb-threatening ischemia (CLTI) and require limb amputation. Smoking cessation and exercise therapy are recommended as standard treatments, and revascularization by bypass surgery or endovascular therapy (EVT) is required for patients with CLTI. However, there are many cases in which revascularization is difficult because of vascular characteristics, and the patency rate after revascularization remains unsatisfactory. Therapeutic angiogenesis using bone marrow-derived mononuclear cell (BM-MNC) implantation is used clinically, with many trials demonstrating long-term efficacy and safety of the technique in patients with CLTI, especially that caused by TAO. To expand the use of BM-MNCs implantation in clinical practice, further evidence is required in patients with CLTI caused by TAO. Methods and Results:
This trial is a multicenter, prospective, non-randomized interventional trial of an Advanced Medicine B treatment approach. We aim to enroll 25 patients aged 20–80 years with Fontaine classification Stage III or IV, who will undergo BM-MNC implantation. The primary endpoint is the improvement in skin perfusion pressure of the target limb 180 days after BM-MNC implantation, whereas secondary endpoints are improvements in rest pain or ulcer size. We will also investigate rates of major or minor amputation, survival, and adverse events during follow-up. Conclusions:
BM-MNC implantation is expected to be an efficacious and feasible treatment for patients with CLTI caused by TAO.
Collapse
Affiliation(s)
- Ayumu Fujioka
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine Kyoto Japan
| | - Kenji Yanishi
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine Kyoto Japan
| | - Keisuke Shoji
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine Kyoto Japan
| | - Yusuke Hori
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine Kyoto Japan
| | - Hirofumi Kawamata
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine Kyoto Japan
| | - Arito Yukawa
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine Kyoto Japan
| | - Isao Yokota
- Department of Biostatistics, Hokkaido University Sapporo Japan
| | - Satoshi Teramukai
- Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto Japan
| | - Ayumu Yamada
- The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine Kyoto Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine Kyoto Japan
| |
Collapse
|
41
|
Hu C, Zaitseva TS, Alcazar C, Tabada P, Sawamura S, Yang G, Borrelli MR, Wan DC, Nguyen DH, Paukshto MV, Huang NF. Delivery of Human Stromal Vascular Fraction Cells on Nanofibrillar Scaffolds for Treatment of Peripheral Arterial Disease. Front Bioeng Biotechnol 2020; 8:689. [PMID: 32766213 PMCID: PMC7380169 DOI: 10.3389/fbioe.2020.00689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/02/2020] [Indexed: 01/14/2023] Open
Abstract
Cell therapy for treatment of peripheral arterial disease (PAD) is a promising approach but is limited by poor cell survival when cells are delivered using saline. The objective of this study was to examine the feasibility of aligned nanofibrillar scaffolds as a vehicle for the delivery of human stromal vascular fraction (SVF), and then to assess the efficacy of the cell-seeded scaffolds in a murine model of PAD. Flow cytometric analysis was performed to characterize the phenotype of SVF cells from freshly isolated lipoaspirate, as well as after attachment onto aligned nanofibrillar scaffolds. Flow cytometry results demonstrated that the SVF consisted of 33.1 ± 9.6% CD45+ cells, a small fraction of CD45–/CD31+ (4.5 ± 3.1%) and 45.4 ± 20.0% of CD45–/CD31–/CD34+ cells. Although the subpopulations of SVF did not change significantly after attachment to the aligned nanofibrillar scaffolds, protein secretion of vascular endothelial growth factor (VEGF) significantly increased by six-fold, compared to SVF cultured in suspension. Importantly, when SVF-seeded scaffolds were transplanted into immunodeficient mice with induced hindlimb ischemia, the cell-seeded scaffolds induced a significant higher mean perfusion ratio after 14 days, compared to cells delivered using saline. Together, these results show that aligned nanofibrillar scaffolds promoted cellular attachment, enhanced the secretion of VEGF from attached SVF cells, and their implantation with attached SVF cells stimulated blood perfusion recovery. These findings have important therapeutic implications for the treatment of PAD using SVF.
Collapse
Affiliation(s)
- Caroline Hu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | | | - Cynthia Alcazar
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Peter Tabada
- Fibralign Corporation, Inc., Union City, CA, United States
| | - Steve Sawamura
- Fibralign Corporation, Inc., Union City, CA, United States
| | - Guang Yang
- The Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, United States.,Department of Cardiothoracic Surgery, Stanford University, Palo Alto, CA, United States
| | - Mimi R Borrelli
- Division of Plastic and Reconstructive Surgery, Stanford University, Palo Alto, CA, United States
| | - Derrick C Wan
- Division of Plastic and Reconstructive Surgery, Stanford University, Palo Alto, CA, United States
| | - Dung H Nguyen
- Division of Plastic and Reconstructive Surgery, Stanford University, Palo Alto, CA, United States
| | | | - Ngan F Huang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States.,The Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, United States.,Department of Cardiothoracic Surgery, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
42
|
Evaluation of a cell-based osteogenic formulation compliant with good manufacturing practice for use in tissue engineering. Mol Biol Rep 2020; 47:5145-5154. [PMID: 32562174 DOI: 10.1007/s11033-020-05588-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
Abstract
Proper bony tissue regeneration requires mechanical stabilization, an osteogenic biological activity and appropriate scaffolds. The latter two elements can be combined in a hydrogel format for effective delivery, so it can readily adapt to the architecture of the defect. We evaluated a Good Manufacturing Practice-compliant formulation composed of bone marrow-derived mesenchymal stromal cells in combination with bone particles (Ø = 0.25 to 1 µm) and fibrin, which can be readily translated into the clinical setting for the treatment of bone defects, as an alternative to bone tissue autografts. Remarkably, cells survived with unaltered phenotype (CD73+, CD90+, CD105+, CD31-, CD45-) and retained their osteogenic capacity up to 48 h after being combined with hydrogel and bone particles, thus demonstrating the stability of their identity and potency. Moreover, in a subchronic toxicity in vivo study, no toxicity was observed upon subcutaneous administration in athymic mice and signs of osteogenesis and vascularization were detected 2 months after administration. The preclinical data gathered in the present work, in compliance with current quality and regulatory requirements, demonstrated the feasibility of formulating an osteogenic cell-based tissue engineering product with a defined profile including identity, purity and potency (in vitro and in vivo), and the stability of these attributes, which complements the preclinical package required prior to move towards its use of prior to its clinical use.
Collapse
|
43
|
Duffy GP, Robinson ST, O'Connor R, Wylie R, Mauerhofer C, Bellavia G, Straino S, Cianfarani F, Mendez K, Beatty R, Levey R, O'Sullivan J, McDonough L, Kelly H, Roche ET, Dolan EB. Implantable Therapeutic Reservoir Systems for Diverse Clinical Applications in Large Animal Models. Adv Healthc Mater 2020; 9:e2000305. [PMID: 32339411 DOI: 10.1002/adhm.202000305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 12/25/2022]
Abstract
Regenerative medicine approaches, specifically stem cell technologies, have demonstrated significant potential to treat a diverse array of pathologies. However, such approaches have resulted in a modest clinical benefit, which may be attributed to poor cell retention/survival at the disease site. A delivery system that facilitates regional and repeated delivery to target tissues can provide enhanced clinical efficacy of cell therapies when localized delivery of high doses of cells is required. In this study, a new regenerative reservoir platform (Regenervoir) is described for use in large animal models, with relevance to cardiac, abdominal, and soft tissue pathologies. Regenervoir incorporates multiple novel design features essential for clinical translation, with a focus on scalability, mechanism of delivery, fixation to target tissue, and filling/refilling with a therapeutic cargo, and is demonstrated in an array of clinical applications that are easily translated to human studies. Regenervoir consists of a porous reservoir fabricated from a single material, a flexible thermoplastic polymer, capable of delivering cargo via fill lines to target tissues. A radiopaque shear thinning hydrogel can be delivered to the therapy reservoir and multiple fixation methods (laparoscopic tacks and cyanoacrylate bioadhesive) can be used to secure Regenervoir to target tissues through a minimally invasive approach.
Collapse
Affiliation(s)
- Garry P. Duffy
- Anatomy & Regenerative Medicine Institute (REMEDI)School of Medicine, College of Medicine Nursing and Health SciencesNational University of Ireland Galway H91 W5P7 Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER)Trinity College Dublin Dublin D02 PN40 Ireland
- CÚRAM, Centre for Research in Medical DevicesNational University of Ireland Galway Galway H91 TK33 Ireland
| | - Scott T. Robinson
- Anatomy & Regenerative Medicine Institute (REMEDI)School of Medicine, College of Medicine Nursing and Health SciencesNational University of Ireland Galway H91 W5P7 Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER)Trinity College Dublin Dublin D02 PN40 Ireland
- Department of SurgeryUniversity of Michigan Ann Arbor MI 48109 USA
| | - Raymond O'Connor
- Anatomy & Regenerative Medicine Institute (REMEDI)School of Medicine, College of Medicine Nursing and Health SciencesNational University of Ireland Galway H91 W5P7 Ireland
| | - Robert Wylie
- Anatomy & Regenerative Medicine Institute (REMEDI)School of Medicine, College of Medicine Nursing and Health SciencesNational University of Ireland Galway H91 W5P7 Ireland
| | - Ciaran Mauerhofer
- Anatomy & Regenerative Medicine Institute (REMEDI)School of Medicine, College of Medicine Nursing and Health SciencesNational University of Ireland Galway H91 W5P7 Ireland
| | | | | | | | - Keegan Mendez
- Institute for Medical Engineering and ScienceMassachusetts Institute of Technology Cambridge MA 02139 USA
- Harvard‐MIT Program in Health Sciences and Technology Cambridge MA 02139 USA
| | - Rachel Beatty
- Anatomy & Regenerative Medicine Institute (REMEDI)School of Medicine, College of Medicine Nursing and Health SciencesNational University of Ireland Galway H91 W5P7 Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER)Trinity College Dublin Dublin D02 PN40 Ireland
| | - Ruth Levey
- Anatomy & Regenerative Medicine Institute (REMEDI)School of Medicine, College of Medicine Nursing and Health SciencesNational University of Ireland Galway H91 W5P7 Ireland
| | - Janice O'Sullivan
- Anatomy & Regenerative Medicine Institute (REMEDI)School of Medicine, College of Medicine Nursing and Health SciencesNational University of Ireland Galway H91 W5P7 Ireland
| | - Liam McDonough
- School of Pharmacy and Molecular SciencesRoyal College of Surgeons in Ireland 111 St. Stephen's Green Dublin 2 D02 VN51 Ireland
- Tissue Engineering Research GroupDepartment of AnatomyRoyal College of Surgeons in Ireland 123 St. Stephen's Green Dublin 2 D02 YN77 Ireland
| | - Helena Kelly
- School of Pharmacy and Molecular SciencesRoyal College of Surgeons in Ireland 111 St. Stephen's Green Dublin 2 D02 VN51 Ireland
- Tissue Engineering Research GroupDepartment of AnatomyRoyal College of Surgeons in Ireland 123 St. Stephen's Green Dublin 2 D02 YN77 Ireland
| | - Ellen T. Roche
- Institute for Medical Engineering and ScienceMassachusetts Institute of Technology Cambridge MA 02139 USA
- Harvard‐MIT Program in Health Sciences and Technology Cambridge MA 02139 USA
- Department of Mechanical EngineeringMassachusetts Institute of Technology Cambridge MA 02139 USA
| | - Eimear B. Dolan
- Anatomy & Regenerative Medicine Institute (REMEDI)School of Medicine, College of Medicine Nursing and Health SciencesNational University of Ireland Galway H91 W5P7 Ireland
- Department of Biomedical Engineering School of Engineering, College of Science and EngineeringNational University of Ireland Galway H91 TK33 Ireland
| |
Collapse
|
44
|
Yanishi K, Shoji K, Fujioka A, Hori Y, Yukawa A, Matoba S. Impact of Therapeutic Angiogenesis Using Autologous Bone Marrow-derived Mononuclear Cell Implantation in Patients with No-option Critical Limb Ischemia. Ann Vasc Dis 2020; 13:13-22. [PMID: 32273917 PMCID: PMC7140169 DOI: 10.3400/avd.ra.20-00002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recently, the limb salvage rate of patients with critical limb ischemia (CLI) has been improved due to the development of revascularization and wound care treatment. However, many patients with CLI are refractory to standard treatments, including revascularization such as endovascular treatment or surgical bypass. Establishment of a new cell therapy is required to improve the limb salvage rate and prognosis in patients with CLI. In 1997, endothelial progenitor cells were found to be derived from the bone marrow to circulate as CD34 surface antigen positive cells in peripheral blood and to affect therapeutic angiogenesis in ischemic tissues. Later, therapeutic angiogenesis using autologous bone marrow-derived mononuclear cell (BM-MNC) implantation was performed for patients with no-option CLI in clinical practice. Several reports showed the safety and efficacy of the BM-MNC implantation in patients with CLI caused by arteriosclerosis obliterans, thromboangiitis obliterans (TAO), and collagen diseases. In particular, in patients with CLI caused by TAO, limb salvage rate was significantly improved compared with standard treatments. The BM-MNC implantation may be feasible and safe in patients with no-option CLI. Here, we review the efficacy of BM-MNC implantation in no-option CLI, with a focus on therapeutic angiogenesis.
Collapse
Affiliation(s)
- Kenji Yanishi
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Keisuke Shoji
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Ayumu Fujioka
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Yusuke Hori
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Arito Yukawa
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| |
Collapse
|
45
|
Mohamad Yusoff F, Kajikawa M, Takaeko Y, Kishimoto S, Hashimoto H, Maruhashi T, Kihara Y, Nakashima A, Higashi Y. Long-Term Clinical Outcomes of Autologous Bone Marrow Mononuclear Cell Implantation in Patients With Severe Thromboangiitis Obliterans. Circ J 2020; 84:650-655. [PMID: 32132348 DOI: 10.1253/circj.cj-19-1041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Patients with severe Buerger disease, also known as thromboangiitis obliterans (TAO), are at risk of major limb amputation. It has been shown that autologous bone marrow mononuclear cell (BM-MNC) implantation improves the condition of critical limb ischemia in TAO patients. This study was conducted to further clarify the long-term (>10 years) results of autologous BM-MNC implantation in patients with TAO. METHODS AND RESULTS An observational study was conducted of the long-term results of BM-MNC implantation in 47 lower limbs of 27 patients with TAO. The mean (±SD) follow-up period was 12.0±8.6 years. There was no major amputation event up to 10 years of follow-up in patients treated with BM-MNC implantation. The overall amputation-free survival rates were significantly higher in patients who underwent BM-MNC implantation than in internal controls and historical controls. There was no significant difference in amputation-free survival rates between the historical and internal controls. There was also no significant difference in overall survival between patients who underwent BM-MNC implantation and the historical controls. CONCLUSIONS BM-MNC transplantation successfully prevented major limb amputation over a period of >10 years in patients with severe TAO who had no other therapeutic options.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital
| | - Yuji Takaeko
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University
| | - Haruki Hashimoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Tatsuya Maruhashi
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| |
Collapse
|
46
|
Shoji K, Yanishi K, Shiraishi H, Yamabata S, Yukawa A, Teramukai S, Imai K, Ito-Ihara T, Tao M, Higashi Y, Ishigami T, Fukumoto Y, Kuwahara K, Matoba S. Establishment of optimal exercise therapy using near-infrared spectroscopy monitoring of tissue muscle oxygenation after therapeutic angiogenesis for patients with critical limb ischemia: A multicenter, randomized, controlled trial. Contemp Clin Trials Commun 2020; 17:100542. [PMID: 32072074 PMCID: PMC7015992 DOI: 10.1016/j.conctc.2020.100542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 01/14/2023] Open
Abstract
Critical limb ischemia (CLI) is a potentially life-threatening condition that involves severely reduced blood flow to the peripheral arteries due to arteriosclerosis obliterans (ASO) of the limbs or a similar condition. CLI patients must undergo revascularization to avoid amputation of the lower limbs and improve their survival prognosis. However, the outcomes of conventional surgical revascularization or endovascular therapy are inadequate; therefore, establishing further effective treatment methods is an urgent task. We perform therapeutic angiogenesis using autologous bone marrow-derived mononuclear cells in clinical practice and demonstrated its safety and efficacy for CLI patients for whom conventional treatments failed or are not indicated. Exercise therapies must be devised for CLI patients who have undergone therapeutic angiogenesis to save their limbs and improve survival. Because evidence regarding the efficacy and safety of exercise therapy for CLI patients is lacking, we plan to perform a prospective trial of the efficacy and safety of optimal exercise therapy following therapeutic angiogenesis for CLI patients.The trial will enroll 30 patients between 20 and 79 years with Rutherford category 4 or 5 CLI caused by ASO who will undergo therapeutic angiogenesis. Participants will be randomly allocated to receive either optimal exercise therapy or fixed exercise therapy. Those receiving optimal exercise therapy will undergo tissue muscle oxygen saturation monitoring using near-infrared spectroscopy while performing exercises and will be prescribed optimal exercise therapy. The optimal amount of exercise will be determined on day 8, 31, 61, 91 and 181 after therapeutic angiogenesis. ETHICS AND DISSEMINATION This protocol was approved by the Institutional Review Boards of Kyoto Prefectural University of Medicine. In accordance with the Helsinki Declaration, written informed consent has been obtained from all participants prior to enrollment. The results of this trial will be disseminated by publication in a peer-reviewed journal. TRIAL REGISTRATION This trial is registered at http://www.umin.ac.jp/ctr/index.htm (identifier: UMIN000035288).
Collapse
Key Words
- ASO, arteriosclerosis obliterans
- Arteriosclerosis obliterans
- BM-MNC, bone marrow-derived mononuclear cells
- CLI, critical limb ischemia
- CT, computed tomography
- Critical limb ischemia
- NIRS, near-infrared spectroscopy
- NO, nitric oxide
- Near-infrared spectroscopy
- Optimal exercise therapy
- PAD, peripheral artery disease
- RHI, reactive hyperemia index
- SPP, skin perfusion pressure
- StO2, thenar tissue oxygen saturation
- TAO, thromboangiitis obliterans
- TOI, tissue oxygenation index
- TcPO2, transcutaneous oxygen pressure
- Therapeutic angiogenesis
- Tissue muscle oxygen saturation
- VAS, visual analogue scale
- WIQ, walking impairment questionnaire
- eNOS, endothelial nitric oxide synthase
- nTHI, normalized tissue hemoglobin index
- ΔHHb, change in deoxygenated hemoglobin concentration
- ΔO2Hb, change in oxygenated hemoglobin concentration
Collapse
Affiliation(s)
- Keisuke Shoji
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Yanishi
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirokazu Shiraishi
- Rehabilitation Unit, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shiho Yamabata
- Rehabilitation Unit, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Arito Yukawa
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Teramukai
- Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kojiro Imai
- Department for Medical Innovation and Translational Medical Science, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Toshiko Ito-Ihara
- The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masami Tao
- The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tomoaki Ishigami
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Yoshihiro Fukumoto
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Nagano, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
47
|
Signorelli SS, Vanella L, Abraham NG, Scuto S, Marino E, Rocic P. Pathophysiology of chronic peripheral ischemia: new perspectives. Ther Adv Chronic Dis 2020; 11:2040622319894466. [PMID: 32076496 PMCID: PMC7003198 DOI: 10.1177/2040622319894466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral arterial disease (PAD) affects individuals particularly over 65 years old in the more advanced countries. Hemodynamic, inflammatory, and oxidative mechanisms interact in the pathophysiological scenario of this chronic arterial disease. We discuss the hemodynamic, muscle tissue, and oxidative stress (OxS) conditions related to chronic ischemia of the peripheral arteries. This review summarizes the results of evaluating both metabolic and oxidative markers, and also therapy to counteract OxS. In conclusion, we believe different pathways should be highlighted to discover new drugs to treat patients suffering from PAD.
Collapse
Affiliation(s)
- Salvatore Santo Signorelli
- Department of Clinical and Experimental Medicine, University of Catania, University Hospital ‘G. Rodolico’, Catania, 95124, Italy
| | - Luca Vanella
- Department of Drug Science, University of Catania, Catania, Italy
| | - Nader G. Abraham
- Departments of Medicine, Pharmacology and Gastroenterology, New York Medical College, Valhalla, NY, USA
| | - Salvatore Scuto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Elisa Marino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Petra Rocic
- Departments of Medicine, Pharmacology and Gastroenterology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
48
|
Isobe M, Amano K, Arimura Y, Ishizu A, Ito S, Kaname S, Kobayashi S, Komagata Y, Komuro I, Komori K, Takahashi K, Tanemoto K, Hasegawa H, Harigai M, Fujimoto S, Miyazaki T, Miyata T, Yamada H, Yoshida A, Wada T, Inoue Y, Uchida HA, Ota H, Okazaki T, Onimaru M, Kawakami T, Kinouchi R, Kurata A, Kosuge H, Sada KE, Shigematsu K, Suematsu E, Sueyoshi E, Sugihara T, Sugiyama H, Takeno M, Tamura N, Tsutsumino M, Dobashi H, Nakaoka Y, Nagasaka K, Maejima Y, Yoshifuji H, Watanabe Y, Ozaki S, Kimura T, Shigematsu H, Yamauchi-Takihara K, Murohara T, Momomura SI. JCS 2017 Guideline on Management of Vasculitis Syndrome - Digest Version. Circ J 2020; 84:299-359. [PMID: 31956163 DOI: 10.1253/circj.cj-19-0773] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Koichi Amano
- Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University
| | - Yoshihiro Arimura
- Department of Rheumatology and Nephrology, Kyorin University School of Medicine.,Internal Medicine, Kichijoji Asahi Hospital
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
| | - Shinya Kaname
- Department of Nephrology and Rheumatology, Kyorin University School of Medicine
| | | | - Yoshinori Komagata
- Department of Nephrology and Rheumatology, Kyorin University School of Medicine
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine
| | - Kimihiro Komori
- Division of Vascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine
| | - Kei Takahashi
- Department of Pathology, Toho University Ohashi Medical Center
| | - Kazuo Tanemoto
- Department of Cardiovascular Surgery, Kawasaki Medical School
| | - Hitoshi Hasegawa
- Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine
| | - Masayoshi Harigai
- Department of Rheumatology, School of Medicine, Tokyo Women's Medical University
| | - Shouichi Fujimoto
- Department of Hemovascular Medicine and Artificial Organs, Faculty of Medicine, University of Miyazaki
| | | | - Tetsuro Miyata
- Vascular Center, Sanno Hospital and Sanno Medical Center
| | - Hidehiro Yamada
- Medical Center for Rheumatic Diseases, Seirei Yokohama Hospital
| | | | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Graduate School of Medical Sciences, Kanazawa University
| | | | - Haruhito A Uchida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Hideki Ota
- Department of Advanced MRI Collaboration Research, Tohoku University Graduate School of Medicine
| | - Takahiro Okazaki
- Vice-Director, Shizuoka Medical Center, National Hospital Organization
| | - Mitsuho Onimaru
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University
| | - Tamihiro Kawakami
- Division of Dermatology, Tohoku Medical and Pharmaceutical University
| | - Reiko Kinouchi
- Medicine and Engineering Combined Research Institute, Asahikawa Medical University.,Department of Ophthalmology, Asahikawa Medical University
| | - Atsushi Kurata
- Department of Molecular Pathology, Tokyo Medical University
| | | | - Ken-Ei Sada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Kunihiro Shigematsu
- Department of Vascular Surgery, International University of Health and Welfare Mita Hospital
| | - Eiichi Suematsu
- Division of Internal Medicine and Rheumatology, National Hospital Organization, Kyushu Medical Center
| | - Eijun Sueyoshi
- Department of Radiological Science, Nagasaki University Graduate School of Biomedical Sciences
| | - Takahiko Sugihara
- Department of Lifetime Clinical Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Hitoshi Sugiyama
- Department of Human Resource Development of Dialysis Therapy for Kidney Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Mitsuhiro Takeno
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University Faculty of Medicine
| | | | - Hiroaki Dobashi
- Division of Hematology, Rheumatology and Respiratory Medicine Department of Internal Medicine, Faculty of Medicine, Kagawa University
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute
| | - Kenji Nagasaka
- Department of Rheumatology, Ome Municipal General Hospital
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University
| | | | - Shoichi Ozaki
- Division of Rheumatology and Allergology, Department of Internal Medicine, St. Marianna University School of Medicine
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
| | - Hiroshi Shigematsu
- Clinical Research Center for Medicine, International University of Health and Welfare
| | | | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | | | | |
Collapse
|
49
|
Murohara T. Therapeutic Angiogenesis with Somatic Stem Cell Transplantation. Korean Circ J 2020; 50:12-21. [PMID: 31854154 PMCID: PMC6923231 DOI: 10.4070/kcj.2019.0288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
Therapeutic angiogenesis is an important strategy to rescue ischemic tissues in patients with critical limb ischemia having no other treatment option such as endovascular angioplasty or bypass surgery. Studies indicated so far possibilities of therapeutic angiogenesis using autologous bone marrow mononuclear cells, CD34⁺ cells, peripheral blood mononuclear cells, adipose-derived stem/progenitor cells, and etc. Recent studies indicated that subcutaneous adipose tissue contains stem/progenitor cells that can give rise to several mesenchymal lineage cells. Moreover, these mesenchymal progenitor cells release a variety of angiogenic growth factors including vascular endothelial growth factor, fibroblast growth factor, hepatocyte growth factor and chemokine stromal cell-derived factor-1. Subcutaneous adipose tissues can be harvested by less invasive technique. These biological properties of adipose-derived regenerative cells (ADRCs) implicate that autologous subcutaneous adipose tissue would be a useful cell source for therapeutic angiogenesis in humans. In this review, I would like to discuss biological properties and future perspective of ADRCs-mediated therapeutic angiogenesis.
Collapse
Affiliation(s)
- Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
50
|
Sharma A, Sinha M, Pandey NN, Chandrashekhara SH. Stem cell therapy in critical limb ischemia: Current scenario and future trends. Indian J Radiol Imaging 2019; 29:397-403. [PMID: 31949342 PMCID: PMC6958876 DOI: 10.4103/ijri.ijri_385_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
Critical limb ischemia (CLI) represents the most severe manifestation of peripheral arterial disease (PAD). It imposes a huge economic burden and is associated with high short-term mortality and adverse cardiovascular outcomes. Prompt recognition and early revascularization, surgical or endovascular, with the aim of improving the inline bloodflow to the ischemic limb, are currently the standard of care. However, this strategy may not always be feasible or effective; hence, evaluation of newer pharmacological or angiogenic therapies for alleviating the symptoms of this alarming condition is of utmost importance. Cell-based therapies have shown promise in smaller studies; however, large-scale studies, demonstrating definite survival benefits, are entailed to ascertain their role in the management of CLI.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Mumun Sinha
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Niraj Nirmal Pandey
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - S H Chandrashekhara
- Department of Radiodiagnosis, BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|