1
|
Zhang Z, Yuan S, Yang Z, Liu Y, Liu S, Chen L, Wu B. Hepatotoxicity of Three Common Liquid Crystal Monomers in Mus musculus: Differentiation of Actions Across Different Receptors and Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1519-1529. [PMID: 39804792 DOI: 10.1021/acs.est.4c08945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Liquid crystal monomers (LCMs) of different chemical structures were widely detected in various environmental matrices. However, their health risk evaluation is lacking. Herein, three representative LCMs were selected from 74 LCM candidates upon literature review and acute cytotoxicity evaluation, then Mus musculus were exposed to the three LCMs for 42 days at doses of 0.5 and 50 μg/kg/d to investigate hepatotoxicity and mechanisms. Phenotypic and histopathological results showed that the three LCMs (DTMDPB, MeO3bcH, and 5OCB) induced hepatomegaly, and only 5OCB induced fatty liver. DTMDPB and MeO3bcH decreased the total cholesterol (TCHO) and triglyceride (TG) content, whereas 5OCB increased the TCHO, TG, and alanine aminotransferase levels. Transcriptome and molecular docking analysis revealed that DTMDPB induced hepatotoxicity by agonizing the farnesoid X receptor, resulting in the disruption of unsaturated fatty acid biosynthesis, ascorbic acid and antioxidant pathways, and circadian clock homeostasis. MeO3bcH promoted inflammation and altered unsaturated fatty acid, primary bile acid biosynthesis, and circadian rhythm by antagonizing the aryl hydrocarbon receptor. 5OCB antagonized peroxisome proliferator-activated receptors, leading to fatty liver caused by the disruption of steroid, cholesterol, and terpenoid backbone biosynthesis pathways. This study provides references for understanding the hepatotoxicity of LCMs with different structures and the selection of priority control LCMs.
Collapse
Affiliation(s)
- Zhichao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Shengjie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Zhongchao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Yafeng Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Su Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Wang C, Sun X, Liu X, Wang Y, Luo J, Yang X, Liu Y. Protective effects of betaine on the early fatty liver in laying hens through ameliorating lipid metabolism and oxidative stress. Front Nutr 2024; 11:1505357. [PMID: 39654538 PMCID: PMC11627039 DOI: 10.3389/fnut.2024.1505357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Fatty liver syndrome (FLS) is a prevalent nutritional and metabolic disease that mainly occurs in caged laying hens, causing substantial losses in the poultry industry. The study was carried out to explore the protective effect and potential mechanism of betaine on early FLS. Methods There were three groups: Con group (basal diet), FLS group (Dexamethasone injection + basal diet) and betaine group (Dexamethasone injection + basal diet with 8 g/kg betaine). Birds in FLS and betaine groups were treated with subcutaneous dexamethasone injection once a day at a dosage of 4.50 mg/kg body weight for 7 days. Results The results revealed that DXM treatment significantly increased the liver index, serum aspartate aminotransferase (AST), total protein (TP), total bilirubin (TBIL), total biliary acid (TBA), total cholesterol (TC), high density lipoprotein cholesterol (HDL-c), low density lipoprotein cholesterol (LDL-c), and glucose (GLU) (p < 0.05). Additionally, hepatic TC and TG levels were also elevated (p < 0.05). Meanwhile, H&E and oil red O staining showed that there were a large number of vacuoles and lipid droplets in the liver of hens in FLS group. Dietary betaine addition significantly alleviated the increasing of serum TBIL, TBA and hepatic TC caused by dexamethasone treatment (p < 0.05). There existed 1,083 up- and 996 down-regulated genes in FLS group when compared with the control, and there were 169 upregulation and 405 downregulation genes in BT group when compared with FLS group. A total of 37 differential expression genes (DEGs) were rescued by betaine addition, which were related to lipid metabolism and antioxidant functions including APOC3, APOA4, G0S2, ERG28, PLA2G3, GPX4 and SLC5A8. Serum metabolomics analysis showed that 151 differential metabolites were identified in FLS group when compared with the control. Dietary betaine addition could rescue the changes of metabolites partly such as chicoric acid, gamma-aminobutyric acid, linoleic acid, telmisartan, which were associated with anti-oxidative function. In addition, RT-PCR results showed that genes involved in lipid metabolism, such as ACC, FAS, SCD1, ELOVL6, SREBP1, GR, ATGL and MTTP were markedly upregulated at the mRNA level (p < 0.05). However, dietary supplementation with betaine can reversed the expression of these genes (p < 0.05). Importantly, dietary betaine supplementation could reverse increased lipid synthesis partly by regulating PI3K/AKT/SREBP and CEBPα pathways in the liver based on western blot results (p < 0.05). Conclusion Dexamethasone treatment could establish the early FLS model in laying hens with hepatic lipid accumulation and no inflammation, which could be attenuated by dietary betaine addition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Griffett K, Burris TP. Development of LXR inverse agonists to treat MAFLD, NASH, and other metabolic diseases. Front Med (Lausanne) 2023; 10:1102469. [PMID: 36817797 PMCID: PMC9932051 DOI: 10.3389/fmed.2023.1102469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Activation of LXR activity by synthetic agonists has been the focus of many drug discovery efforts with a focus on treatment of dyslipidemia and atherosclerosis. Many agonists have been developed, but all have been hindered due to their ability to efficaciously stimulate de novo lipogenesis. Here, we review the development of LXR inverse agonists that were originally optimized for their ability to enable recruitment of corepressors leading to silencing of genes that drive de novo lipogenesis. Such compounds have efficacy in animal models of MAFLD, dyslipidemia, and cancer. Several classes of LXR inverse agonists have been identified and one is now in clinical trials for treatment of severe dyslipidemia.
Collapse
Affiliation(s)
- Kristine Griffett
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Thomas P. Burris
- The University of Florida Genetics Institute, Gainesville, FL, United States,*Correspondence: Thomas P. Burris,
| |
Collapse
|
4
|
Yang D, Wei X, Zhang B, Zhu R, Hu H, Fan X, Du H, Chen X, Zhang Z, Zhao M, Oh Y, Gu N. Probiotics protect against hepatic steatosis in tris (2-chloroethyl) phosphate-induced metabolic disorder of mice via FXR signaling. Food Chem Toxicol 2022; 169:113440. [PMID: 36162615 DOI: 10.1016/j.fct.2022.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022]
Abstract
Tris (2-chloroethyl) phosphate (TCEP), the most widely useful and most frequently detective organophosphate flame retardants in environment, has been shown potential relationship with adolescent weight. Probiotics is an effective therapy for metabolic diseases such as obesity and NAFLD with gut microbiota dysregulation. This study aims to explore the protective effects of probiotics against lipid metabolic disorder induced by chronic TCEP exposure and demonstrate the mechanism of this event. The data showed that dietary complex probiotics supplement attenuated TCEP-induced obesity, hyperlipidemia, liver dysfunction, and hepatic steatosis. In addition, dietary complex probiotics suppressed TCEP-promoted ileal FXR signaling, and upregulated hepatic FXR/SHP pathway inhibited by TCEP. Moreover, dietary complex probiotics stimulated PPARα-mediated lipid oxidation and suppressed SREBP1c/PPARγ-mediated lipid synthesis via regulation of FXR signaling. Therefore, this study indicates that dietary complex probiotics could protect against hepatic steatosis via FXR-mediated signaling pathway in TCEP-induced metabolism disorder in mice, resulting in attenuation of systemic lipid accumulation.
Collapse
Affiliation(s)
- Daqian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiangjuan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Boya Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hailong Hu
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xingpei Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haining Du
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xi Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ziyi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meimei Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuri Oh
- Faculty of Education, Wakayama University, Wakayama, Japan
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
5
|
Yang D, Wei X, Zhang Z, Chen X, Zhu R, Oh Y, Gu N. Tris (2-chloroethyl) phosphate (TCEP) induces obesity and hepatic steatosis via FXR-mediated lipid accumulation in mice: Long-term exposure as a potential risk for metabolic diseases. Chem Biol Interact 2022; 363:110027. [PMID: 35780845 DOI: 10.1016/j.cbi.2022.110027] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
Abstract
Tris (2-chloroethyl) phosphate (TCEP) is the most commonly detective organophosphate flame retardant in surroundings. TCEP is also evidenced as endocrine disrupting chemicals and has potential adverse effects on metabolic diseases. In this study, we hypothesized that metabolic diseases are adverse outcomes of TCEP exposure. Adult ICR mice was daily treated with TCEP (20 mg/kg and 60 mg/kg, higher than expected level in people) by gavage administration for 9 weeks. The results demonstrate that TCEP promoted body weight gain, hypertriglyceridemia, and hepatic steatosis, consistent with upregulation of hepatic lipogenesis-related gene expression. Moreover, TCEP altered the levels of several hepatic metabolites, especially bile acids and downregulated bile acid synthesis pathways. Intriguingly, we found a marked downregulation of the bile acid nuclear reporter, FXR, in TCEP-exposed livers. Mechanistically, TCEP directly interacted with FXR at Lys335 and Lys336. Further studies in this work elucidate the mechanisms of long-term TCEP exposure on hepatic steatosis and obesity in mice via FXR-mediated lipid accumulation. Our results provide insight into the possibility of intermediate TCEP exposure in causing metabolic diseases.
Collapse
Affiliation(s)
- Daqian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiangjuan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ziyi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xi Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuri Oh
- Faculty of Education, Wakayama University, Wakayama, Japan
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
6
|
Duan Y, Bai X, Yang J, Zhou Y, Gu W, Liu G, Wang Q, Zhu J, La L, Li X. Exposure to High-Altitude Environment Is Associated with Drug Transporters Change: microRNA-873-5p-Mediated Alteration of Function and Expression Levels of Drug Transporters under Hypoxia. Drug Metab Dispos 2022; 50:174-186. [PMID: 34844996 DOI: 10.1124/dmd.121.000681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
Hypoxia is the main characteristic of a high-altitude environment, affecting drug metabolism. However, so far, the mechanism of microRNA (miRNA) involved in the regulation of drug metabolism and transporters under high-altitude hypoxia is still unclear. This study aims to investigate the functions and expression levels of multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 2 (MRP2), breast cancer resistance protein (BCRP), peptide transport 1 (PEPT1), and organic anion-transporting polypeptides 2B1 (OATP2B1) in rats and colon cancer (Caco-2) cells after exposure to high-altitude hypoxia. The protein and mRNA expression of MDR1, MRP2, BCRP, PEPT1, and OATP2B1 were determined by Western blot and qPCR. The functions of MDR1, MRP2, BCRP, PEPT1, and OATP2B1 were evaluated by determining the effective intestinal permeability and absorption rate constants of their specific substrates in rats under high-altitude hypoxia, and uptake and transport studies were performed on Caco-2 cells. To screen the miRNA associated with hypoxia, Caco-2 cells were examined by high throughput sequencing. We observed that the miR-873-5p was significantly decreased under hypoxia and might target MDR1 and pregnane X receptor (PXR). To clarify whether miR-873-5p regulates MDR1 and PXR under hypoxia, Caco-2 cells were transfected with mimics or inhibitors of miR-873-5p and negative control (NC). The function and expression of drug transporters were found to be significantly increased in rats and Caco-2 cells under hypoxia. We found that miR-873-5p regulated MDR1 and PXR expression. Herein, it is shown that miRNA may affect the expression of drug transporter and nuclear receptor under hypoxia. SIGNIFICANCE STATEMENT: This study explores if alterations to the microRNAs (miRNAs), induced by high-altitude hypoxia, can be translated to altered drug transporters. Among miRNAs, which show a significant change in a hypoxic environment, miR-873-5p can act on the multidrug resistance protein 1 (MDR1) gene; however, there are multiple miRNAs that can act on the pregnane X receptor (PXR). This study speculates that the miRNA-PXR-drug transporter axis is important in the physiological disposition of drugs.
Collapse
Affiliation(s)
- Yabin Duan
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, China (Y.D.); Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China (Y.D., X.B., J.Y., G.L., J.Z., L.L.); and State Key Laboratory of Plateau Ecology and Agriculture (X.L.), and Medical College (Y.Z., W.G., Q.W., X.L.), Qinghai University, Xining, China
| | - Xue Bai
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, China (Y.D.); Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China (Y.D., X.B., J.Y., G.L., J.Z., L.L.); and State Key Laboratory of Plateau Ecology and Agriculture (X.L.), and Medical College (Y.Z., W.G., Q.W., X.L.), Qinghai University, Xining, China
| | - Jianxin Yang
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, China (Y.D.); Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China (Y.D., X.B., J.Y., G.L., J.Z., L.L.); and State Key Laboratory of Plateau Ecology and Agriculture (X.L.), and Medical College (Y.Z., W.G., Q.W., X.L.), Qinghai University, Xining, China
| | - Yang Zhou
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, China (Y.D.); Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China (Y.D., X.B., J.Y., G.L., J.Z., L.L.); and State Key Laboratory of Plateau Ecology and Agriculture (X.L.), and Medical College (Y.Z., W.G., Q.W., X.L.), Qinghai University, Xining, China
| | - Wenqi Gu
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, China (Y.D.); Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China (Y.D., X.B., J.Y., G.L., J.Z., L.L.); and State Key Laboratory of Plateau Ecology and Agriculture (X.L.), and Medical College (Y.Z., W.G., Q.W., X.L.), Qinghai University, Xining, China
| | - Guiqin Liu
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, China (Y.D.); Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China (Y.D., X.B., J.Y., G.L., J.Z., L.L.); and State Key Laboratory of Plateau Ecology and Agriculture (X.L.), and Medical College (Y.Z., W.G., Q.W., X.L.), Qinghai University, Xining, China
| | - Qian Wang
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, China (Y.D.); Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China (Y.D., X.B., J.Y., G.L., J.Z., L.L.); and State Key Laboratory of Plateau Ecology and Agriculture (X.L.), and Medical College (Y.Z., W.G., Q.W., X.L.), Qinghai University, Xining, China
| | - Junbo Zhu
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, China (Y.D.); Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China (Y.D., X.B., J.Y., G.L., J.Z., L.L.); and State Key Laboratory of Plateau Ecology and Agriculture (X.L.), and Medical College (Y.Z., W.G., Q.W., X.L.), Qinghai University, Xining, China
| | - Linli La
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, China (Y.D.); Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China (Y.D., X.B., J.Y., G.L., J.Z., L.L.); and State Key Laboratory of Plateau Ecology and Agriculture (X.L.), and Medical College (Y.Z., W.G., Q.W., X.L.), Qinghai University, Xining, China
| | - Xiangyang Li
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, China (Y.D.); Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China (Y.D., X.B., J.Y., G.L., J.Z., L.L.); and State Key Laboratory of Plateau Ecology and Agriculture (X.L.), and Medical College (Y.Z., W.G., Q.W., X.L.), Qinghai University, Xining, China
| |
Collapse
|
7
|
Shen C, Pan Z, Wu S, Zheng M, Zhong C, Xin X, Lan S, Zhu Z, Liu M, Wu H, Huang Q, Zhang J, Liu Z, Si Y, Tu H, Deng Z, Yu Y, Liu H, Zhong Y, Guo J, Cai J, Xian S. Emodin palliates high-fat diet-induced nonalcoholic fatty liver disease in mice via activating the farnesoid X receptor pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114340. [PMID: 34171397 DOI: 10.1016/j.jep.2021.114340] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/29/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cassia mimosoides Linn (CMD) is a traditional Chinese herb that clears liver heat and dampness. It has been widely administered in clinical practice to treat jaundice associated with damp-heat pathogen and obesity. Emodin (EMO) is a major bioactive constituent of CMD that has apparent therapeutic efficacy against obesity and fatty liver. Here, we investigated the protective effects and underlying mechanisms of EMO against high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD). OBJECTIVE We aimed to investigate whether EMO activates farnesoid X receptor (FXR) signaling to alleviate HFD-induced NAFLD. MATERIALS AND METHODS In vivo assays included serum biochemical indices tests, histopathology, western blotting, and qRT-PCR to evaluate the effects of EMO on glucose and lipid metabolism disorders in wild type (WT) and FXR knockout mice maintained on an HFD. In vitro experiments included intracellular triglyceride (TG) level measurement and Oil Red O staining to assess the capacity of EMO to remove lipids induced by oleic acid and palmitic acid in WT and FXR knockout mouse primary hepatocytes (MPHs). We also detected mRNA expression of FXR signaling genes in MPHs. RESULTS After HFD administration, body weight and serum lipid and inflammation levels were dramatically increased in the WT mice. The animals also presented with impaired glucose tolerance, insulin resistance, and antioxidant capacity, liver tissue attenuation, and pathological injury. EMO remarkably reversed the foregoing changes in HFD-induced mice. EMO improved HFD-induced lipid accumulation, insulin resistance, inflammation, and oxidative stress in a dose-dependent manner in WT mice by inhibiting FXR expression. EMO also significantly repressed TG hyperaccumulation by upregulating FXR expression in MPHs. However, it did not improve lipid accumulation, insulin sensitivity, or glucose tolerance in HFD-fed FXR knockout mice. CONCLUSIONS The present study demonstrated that EMO alleviates HFD-induced NAFLD by activating FXR signaling which improves lipid accumulation, insulin resistance, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Chuangpeng Shen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; The First People's Hospital of Kashgar Prefecture, Kashgar, Xinjiang Uygur Autonomous Region, China; The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhisen Pan
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuangcheng Wu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Xin
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shaoyang Lan
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhangzhi Zhu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Liu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoxiang Wu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingyin Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junmei Zhang
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhangzhou Liu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqi Si
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haitao Tu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijun Deng
- Department of Science and Education, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yuanyuan Yu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Liu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhua Zhong
- Department of Acupuncture-rehabilitation, Guangzhou-Liwan Hospital of Chinese Medicine, Guangzhou, China.
| | - Jiewen Guo
- Department of Science and Education, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China.
| | - Jiazhong Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Shaoxiang Xian
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|