1
|
Forneris NS, Bosse M, Gautier M, Druet T. Genomic Prediction of Individual Inbreeding Levels for the Management of Genetic Diversity in Populations With Small Effective Size. Mol Ecol Resour 2025; 25:e14068. [PMID: 39764642 DOI: 10.1111/1755-0998.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 04/05/2025]
Abstract
In populations of small effective size (Ne), such as those in conservation programmes, companion animals or livestock species, inbreeding control is essential. Homozygosity-by-descent (HBD) segments provide relevant information in that context, as they allow accurate estimation of the inbreeding coefficient, provide locus-specific information and their length is informative about the "age" of inbreeding. Our objective was to evaluate tools for predicting HBD in future offspring based on parental genotypes, a problem equivalent to identifying segments identical-by-descent (IBD) among the four parental chromosomes. In total, we reviewed and evaluated 16 approaches using simulated and real data from populations with small Ne. The methods included model-based approaches as well as more computationally efficient rule-based approaches. The accuracy of the methods was then evaluated, including with low-density marker panels, genotyping-by-sequencing data and small groups of individuals, typical features of such populations. Two model-based approaches performed consistently well, while some rule-based approaches proved accurate for genome-wide predictions. The model-based approaches were particularly efficient when genomic information was sparse or degraded. Methods using phased data proved to be more accurate, while some approaches relying on unphased genotype data were sensitive to the assumed allele frequencies. In some settings, pedigree-based predictions ranked high for recent inbreeding levels. Finally, we showed that our evaluation is also informative about the accuracy of the methods for estimating relatedness and identifying IBD segments between pairs of present-day individuals. This study shows that future inbreeding can be accurately predicted, including at specific loci, but not all methods perform equally well.
Collapse
Affiliation(s)
- Natalia Soledad Forneris
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Mirte Bosse
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
- Amsterdam Institute for Life and Environment (A-LIFE), Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mathieu Gautier
- CBGP, INRAE, CIRAD, IRD, L'institut Agro, Université de Montpellier, Montpellier, France
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Rostamzadeh Mahdabi E, Tian R, Tian J, Asadollahpour Nanaie H, Wang X, Zhao M, Li H, Dalai B, Sai Y, Guo W, Li Y, Zhang H, Esmailizadeh A. Uncovering genomic diversity and signatures of selection in red Angus × Chinese red steppe crossbred cattle population. Sci Rep 2025; 15:12977. [PMID: 40234714 DOI: 10.1038/s41598-025-98346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/10/2025] [Indexed: 04/17/2025] Open
Abstract
Crossbreeding is a cornerstone of modern livestock improvement, combining desirable traits to enhance productivity and environmental resilience. This study conducts the first comprehensive genomic analysis of Red Angus × Chinese Red Steppe (RACS) crossbred cattle, evaluating their genetic architecture, diversity, and selection signatures relative to founder breeds (Red Angus and Chinese Red Steppe) and global populations. A total of 119 cattle, comprising 104 RACS crossbreds and 15 Chinese Red Steppes cattle, were genotyped using the GGP Bovine 100k SNP array. Additionally, the public available genotypic data generated using the BovineSNP50 chip from 550 animals across eight beef breeds (Angus, Hereford, Limousin, Charolais, Mongolian, Shorthorn, Red Angus, and Simmental) and one dairy breed (Holstein) were incorporated into the analysis. We aimed to (1) define the population structure of RACS cattle, (2) quantify their genomic diversity and inbreeding levels, and (3) pinpoint regions under selection linked to adaptive and economic traits. We employed runs of homozygosity (ROH) and population differentiation (Fst) analyses to detect selection signals. The results revealed that the crossbred (RACS), Angus, and Red Angus breeds exhibited similar clustering patterns in principal component analysis (PCA), but the crossbred population showed the highest nucleotide diversity and lowest inbreeding coefficients compared to other breeds. Notably, candidate regions associated with immune response, cold adaptation, and carcass traits were identified within the RACS population. These findings enhance our understanding of the genetic makeup of crossbred beef cattle and highlight their potential for genetic improvement, informing future selection and breeding strategies aimed at optimizing beef production in challenging environments.
Collapse
Affiliation(s)
- Elaheh Rostamzadeh Mahdabi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PO BOX 76169-133, Kerman, Iran
| | - Rugang Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China.
| | - Jing Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | | | - Xiao Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Meng Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hui Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Baolige Dalai
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yin Sai
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Wenhua Guo
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yuan Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hao Zhang
- Forestry and Grassland Bureau of Siziwang Banner, Wulanchabu, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PO BOX 76169-133, Kerman, Iran.
| |
Collapse
|
3
|
Kerr SM, Klaric L, Muckian MD, Johnston K, Drake C, Halachev M, Cowan E, Snadden L, Dean J, Zheng SL, Thami PK, Ware JS, Tzoneva G, Shuldiner AR, Miedzybrodzka Z, Wilson JF. Actionable genetic variants in 4,198 Scottish participants from the Orkney and Shetland founder populations and implementation of return of results. Am J Hum Genet 2025; 112:793-807. [PMID: 40088892 DOI: 10.1016/j.ajhg.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025] Open
Abstract
The benefits of returning clinically actionable genetic results to participants in research cohorts are accruing, yet such a genome-first approach is challenging. Here, we describe the implementation of return of such results in two founder populations from Scotland. Between 2005 and 2015, we recruited >4,000 adults with grandparents from Orkney and Shetland into the Viking Genes research cohort. The return of genetic data was not offered at baseline, but in 2023, we sent invitations to participants for consent to return of actionable genetic findings. We generated exome sequence data from 4,198 participants and used the American College of Medical Genetics and Genomics (ACMG) v.3.2 list of 81 genes, ClinVar review, and pathogenicity status, plus manual curation, to develop a pipeline to identify potentially actionable variants. We identified 104 individuals (2.5%) with 108 actionable genotypes at 39 variants in 23 genes and validated these. Working with the NHS Clinical Genetics service, which provided genetic counseling and clinical verification of the research results, and after expert clinical review, we notified 64 consenting participants (or their next of kin) of their actionable genotypes. Ten actionable variants across seven genes (BRCA1, BRCA2, ATP7B, TTN, KCNH2, MUTYH, and GAA) have risen 50- to >3,000-fold in frequency through genetic drift in ancestral island localities. Viking Genes is one of the first UK research cohorts to return actionable findings, providing an ethical and logistical exemplar of return of results. The genetic structure in the Northern Isles of Scotland with multiple founder effects provides a unique opportunity for a tailored approach to disease prevention through genetic screening.
Collapse
Affiliation(s)
- Shona M Kerr
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Cancer, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Lucija Klaric
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Cancer, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Marisa D Muckian
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Kiera Johnston
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Camilla Drake
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Cancer, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Mihail Halachev
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Cancer, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Emma Cowan
- Department of Medical Genetics, Ashgrove House, NHS Grampian, Aberdeen AB25 2ZA, UK; Medical Genetics Group, University of Aberdeen, Polwarth Building, Aberdeen AB25 2ZD, UK
| | - Lesley Snadden
- Department of Medical Genetics, Ashgrove House, NHS Grampian, Aberdeen AB25 2ZA, UK; Medical Genetics Group, University of Aberdeen, Polwarth Building, Aberdeen AB25 2ZD, UK
| | - John Dean
- Medical Genetics Group, University of Aberdeen, Polwarth Building, Aberdeen AB25 2ZD, UK
| | - Sean L Zheng
- National Heart and Lung Institute, Imperial College London, London, UK; MRC Laboratory of Medical Sciences, Imperial College London, London, UK; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Prisca K Thami
- National Heart and Lung Institute, Imperial College London, London, UK; MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK; MRC Laboratory of Medical Sciences, Imperial College London, London, UK; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | | | | | - Zosia Miedzybrodzka
- Department of Medical Genetics, Ashgrove House, NHS Grampian, Aberdeen AB25 2ZA, UK; Medical Genetics Group, University of Aberdeen, Polwarth Building, Aberdeen AB25 2ZD, UK
| | - James F Wilson
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Cancer, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK; Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK; Centre for Genomic and Experimental Medicine, University of Edinburgh, Institute of Genetics and Cancer, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
4
|
Minn AKK, Matsuzaki M, Narita A, Funayama T, Kotsar Y, Makino S, Takayama J, Kuriyama S, Tamiya G. Profiling of runs of homozygosity from whole-genome sequence data in Japanese biobank. J Hum Genet 2025:10.1038/s10038-025-01331-3. [PMID: 40175513 DOI: 10.1038/s10038-025-01331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Runs of homozygosity (ROHs) are widely observed across the genomes of various species and have been reported to be associated with many traits and common diseases, as well as rare recessive diseases, in human populations. Although single nucleotide polymorphism (SNP) array data have been used in previous studies on ROHs, recent advances in whole-genome sequencing (WGS) technologies and the development of nationwide cohorts/biobanks are making high-density genomic data increasingly available, and it is consequently becoming more feasible to detect ROHs at higher resolution. In the study, we searched for ROHs in two high-coverage WGS datasets from 3552 Japanese individuals and 192 three-generation families (consisting of 1120 family members) in prospective genomic cohorts. The results showed that a considerable number of ROHs, especially short ones that may have remained undetected in conventionally used SNP-array data, can be detected in the WGS data. By filtering out sequencing errors and leveraging pedigree information, longer ROHs are more likely to be detected in WGS data than in SNP-array data. Additionally, we identified gene families within ROH islands that are associated with enriched pathways related to sensory perception of taste and odors, suggesting potential signatures of selection in these key genomic regions.
Collapse
Affiliation(s)
- Aye Ko Ko Minn
- Department of AI and Innovative Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Motomichi Matsuzaki
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Mathematical Intelligence for Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Akira Narita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takamitsu Funayama
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yurii Kotsar
- Department of AI and Innovative Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoshi Makino
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Jun Takayama
- Department of AI and Innovative Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Gen Tamiya
- Department of AI and Innovative Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan.
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
| |
Collapse
|
5
|
de Araújo WC, Falcão RM, Uchoa RAC, Garcia CA, da Silva AQB, Quirino KLM, Freire-Neto FP, Gurgel GP, Nascimento PRP, Ferreira LC, Duggal P, de Souza JES, Jeronimo SMB. Whole exome sequencing shows novel COL4A3 and COL4A4 variants as causes of Alport syndrome in Rio Grande do Norte, Brazil. BMC Genomics 2025; 26:331. [PMID: 40169949 PMCID: PMC11963644 DOI: 10.1186/s12864-025-11466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/10/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Alport syndrome is a progressive and hereditary nephropathy characterized by hematuria and proteinuria as well as extra renal manifestations as hearing loss and eye abnormalities. The disease can be expressed as autosomal recessive or autosomal dominant at COL4A3 and COL4A4 loci, respectively, or X-linked at the COL4A5 locus. This study investigated two unrelated families with nephropathy from Brazil with the aim to identify the mutations involved with the disease. METHODS Whole Exome Sequencing was performed for 4 people from each pedigree (case, parents and a sibling). DNA sequences were mapped against the human genome (GRCh38/hg38 build) to identify associated mutations. RESULTS Two novel deleterious variants in COL4A3 and COL4A4 loci on chromosome 2 were identified. The variants were detected in the probands with mutant alleles in the homozygous state, a premature stop codon at position 481 of COL4A3 protein and a frameshift mutation leading to a stop codon at position 786 of COL4A4 protein. For both Alport cases the putative variants were surrounded by broad Runs of Homozygosity as well as genes associated with other hereditary nephropathies. Genotyping for COL4A3 validated the exome findings. CONCLUSIONS Two novel variants were identified in two unrelated families from northeast of Brazil. The two deleterious variants identified are located on ROH´s locus with all variants in a homozygous state.
Collapse
Affiliation(s)
- Washington Candeia de Araújo
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raul Maia Falcão
- Biome, Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raquel Araujo Costa Uchoa
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carlos Alexandre Garcia
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Francisco Paulo Freire-Neto
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Genilson Pereira Gurgel
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Leonardo Capistrano Ferreira
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Priya Duggal
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jorge Estefano S de Souza
- Biome, Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Selma M B Jeronimo
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
- National Institute of Science and Technology of Tropical Diseases, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
6
|
Hewett AM, Johnston SE, Albery GF, Morris A, Morris SJ, Pemberton JM. Fine-scale spatial variation in fitness, inbreeding, and inbreeding depression in a wild ungulate. Evol Lett 2025; 9:292-301. [PMID: 40191412 PMCID: PMC11968190 DOI: 10.1093/evlett/qrae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 04/09/2025] Open
Abstract
Environmental stress can exacerbate inbreeding depression by amplifying differences between inbred and outbred individuals. In wild populations, where the environment is often unpredictable and stress can be highly detrimental, the interplay between inbreeding depression and environmental variation is potentially important. Here, we investigate variation in inbreeding level, fitness and strength of inbreeding depression across a fine-scale geographic area (~12 km2) in an individually monitored population of red deer (Cervus elaphus). We show that northern regions of the study area have lower birth weights, lower juvenile survival rates, and higher inbreeding coefficients. Such fine-scale differences in inbreeding coefficients could be caused by the mating system of red deer combined with female density variation. We then tested for an inbreeding depression-by-environment interaction (ID × E) in birth weight and juvenile survival, by fitting an interaction term between the inbreeding coefficient and geographic location. We find that inbreeding depression in juvenile survival is stronger in the harsher northern regions, indicating the presence of ID × E. We also highlight that the ability to infer ID × E is affected by the variation in inbreeding within each geographic region. Therefore, for future studies on ID × E in wild populations, we recommend first assessing whether inbreeding and traits vary spatially or temporally. Overall, this is one of only a handful of studies to find evidence for ID × E in a wild population-despite its prevalence in experimental systems-likely due to intense data demands or insufficient variation in environmental stress or inbreeding coefficients.
Collapse
Affiliation(s)
- Anna M Hewett
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Gregory F Albery
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Alison Morris
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sean J Morris
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Josephine M Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Wang Z, Pan D, Xie X, Zhong Z, Wang F, Xiao Q. Genome-wide detection of runs of homozygosity in Ding'an pigs revealed candidate genes relating to meat quality traits. BMC Genomics 2025; 26:316. [PMID: 40165050 PMCID: PMC11956453 DOI: 10.1186/s12864-025-11501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Ding'an (DA) pig, a native Chinese breed, is renowned for its excellent meat quality, disease resistance, high reproductive performance, and adaptability. Its meat quality traits hold significant economic value. However, its conservation population has been declining due to the impact of commercialized breeds and African swine fever, which is not conducive to its development and utilization. RESULTS This study utilized whole-genome resequencing data from 15 DA pigs to reveal their genetic characteristics and current resource status. We analyzed the length, number, and distribution patterns of Runs of Homozygosity (ROH) in DA pigs, as well as high-frequency ROH regions. The results identified 23,208,098 single nucleotide polymorphisms (SNPs), 4,497,242 insertion and deletion (InDels), 13,622 copy number variation (CNVs), and 399,934 structure variation (SVs). Further analysis revealed relatively high genetic diversity and low inbreeding levels in DA pigs. Through functional gene enrichment analysis of high-frequency ROH regions, we identified multiple candidate genes associated with specific traits in DA pigs, including meat quality (ANKRD1, CPNE5, MYOM1), fat deposition (OBSCN, MAPK4, PNPLA1, PACSIN1, GRM4), and skeletal muscle development (LRPPRC, WNT9A). CONCLUSIONS This study conducted whole-genome sequencing and ROH analysis on DA pigs, revealing high genetic diversity and low inbreeding levels within the population. Through functional gene enrichment analysis of high-frequency ROH regions, we identified multiple candidate genes associated with meat quality, fat deposition, and skeletal muscle development. These findings not only enhance our understanding of the genetic mechanisms underlying the unique traits of DA pigs but also provide valuable insights for practical applications. Specifically, the identified candidate genes and genomic regions can guide conservation efforts to maintain genetic diversity and mitigate inbreeding risks. Meanwhile, these genetic insights can be integrated into breeding programs to improve meat quality and other economically important traits, thereby supporting the sustainable development and utilization of DA pigs.
Collapse
Affiliation(s)
- Ziyi Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Deyou Pan
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xinfeng Xie
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Ziqi Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Feng Wang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Qian Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
8
|
Han J, Shao H, Sun M, Gao F, Hu Q, Yang G, Jafari H, Li N, Dang R. Genomic insights into the genetic diversity and genetic basis of body height in endangered Chinese Ningqiang ponies. BMC Genomics 2025; 26:292. [PMID: 40128652 PMCID: PMC11934595 DOI: 10.1186/s12864-025-11484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Genetic diversity in livestock and poultry is critical for adapting production systems to future challenges. However, inadequate management practices, particularly in developing countries, have led to the extinction or near extinction of several species. Understanding the genetic composition and historical background of local breeds is essential for their effective conservation and sustainable use. This study compared the genomes of 30 newly sequenced Ningqiang ponies with those of 56 other ponies and 104 horses to investigate genetic diversity, genetic differentiation, and the genetic basis of body height differences. RESULT Population structure and genetic diversity analyses revealed that Ningqiang ponies belong to southwestern Chinese ponies. They exhibit a moderate level of inbreeding compared to other pony and horse breeds. Mitochondrial DNA analysis indicated that Ningqiang and Debao ponies share the dominant haplogroups A and C, suggesting a likely common maternal origin. Our study identified low genetic differentiation and detectable gene flow between Ningqiang ponies and Datong horses. The study also indicated the effective population size of Ningqiang ponies showed a downward trend. These findings potentially reflect the historical formation of Ningqiang ponies and population size changes. A selection signal scan (CLR and θπ) within Ningqiang ponies detected several key genes associated with bone development (ANKRD11, OSGIN2, JUNB, and RPL13) and immune response (RIPK2). The combination of genome-wide association analysis and selective signature analysis (FST) revealed significant single nucleotide polymorphisms and selective genes associated with body height, with the most prominent finding being the TBX3 gene on equine chromosome (ECA) 8. Additionally, TBX5, ASAP1, CDK12, CA10, and CSMD1 were identified as important candidate genes for body height differences between ponies and horses. CONCLUSION The results of this study elucidate the genetic diversity, genetic differentiation, and effective population size of Ningqiang ponies compared to other ponies and horses, further deepen the understanding of their small stature, and provide valuable insights into the conservation and breeding of local horse breeds in China.
Collapse
Affiliation(s)
- Jiale Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China
| | - Hanrui Shao
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Minhao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China
| | - Feng Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China
| | - Qiaoyan Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China
| | - Ge Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China
| | - Halima Jafari
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China
| | - Na Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China.
| |
Collapse
|
9
|
Tiwari M, Sodhi M, Chanda D, Kataria RS, Niranjan SK, Singh I, Bharti VK, Iqbal M, Rabgais S, Amarjeet, Vivek P, Kumari P, Mukesh M. Deciphering genomic basis of unique adaptation of Ladakhi cattle to Trans-Himalayan high-altitude region of Leh-Ladakh in India. Gene 2025; 942:149251. [PMID: 39809370 DOI: 10.1016/j.gene.2025.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
In this study, whole genome sequence data of Ladakhi cattle from high altitude region of Leh-Ladakh and Sahiwal cattle from arid, semi-arid tropical region were compared. To gain a deeper understanding of the selective footprints in the genomes of Ladakhi and Sahiwal cattle, two strategies namely run of homozygosity (ROH), and fixation index (FST) were employed. A total of 975 and 1189 ROH regions were identified in Ladakhi and Sahiwal cattle, respectively. Several genes associated with high-altitude adaptation were enriched in many of the ROH hot spots in genome of Ladakhi cattle such as; HIF1A, VEGFA, VEGFC, EPHB1, ZEB1, CAV3, TEK, SENP2, GATA6, RAD51 and ADAMTSL4 etc.. The FST value of 0.32 also indicated strong genetic differentiation between Ladakhi and Sahiwal cattle. A total of 3616 genomic regions were identified to be under selection in the two cattle breeds. The FST selection signature analysis led to identification of several genes such as HIF1A, VEGFC, ZEB1, SOD1, EGLN3, EPAS1, ZNF, DYSF, ADAM, SENP2, MMP16, and CDK2 etc., that could be associated with high altitude adaptation in Ladakhi cattle. Additionally, several signalling pathways found in Ladakhi cattle like HIF1A, VEGF, DNA repair, and angiogenesis, which are associated with adaptation to high-altitude hypoxic environments. The phylogenetic, PCA and admixture analysis separated the individuals of Ladakhi and Sahiwal cattle according to their geographic origin. In the present study, the WGS data has helped to identify key genes and genic regions that contribute to high altitude adaptation in Ladakhi cattle.
Collapse
Affiliation(s)
- Manish Tiwari
- ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, Haryana, India
| | - Monika Sodhi
- ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, Haryana, India
| | - Divya Chanda
- ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, Haryana, India
| | - Ranjit S Kataria
- ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, Haryana, India
| | - Saket K Niranjan
- ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, Haryana, India
| | - Inderpal Singh
- ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, Haryana, India
| | - Vijay K Bharti
- DRDO-Defense Institute of High-Altitude Research (DIHAR), Leh, India
| | - M Iqbal
- Animal Husbandry Department, Leh, UT Ladakh, India
| | | | - Amarjeet
- ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, Haryana, India
| | - Prince Vivek
- ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, Haryana, India
| | - Parvesh Kumari
- ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, Haryana, India
| | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, Haryana, India.
| |
Collapse
|
10
|
Sievers J, Distl O. Genomic Patterns of Homozygosity and Genetic Diversity in the Rhenish German Draught Horse. Genes (Basel) 2025; 16:327. [PMID: 40149478 PMCID: PMC11942601 DOI: 10.3390/genes16030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The Rhenish German draught horse is an endangered German horse breed, originally used as working horse in agriculture. Therefore, the objective of this study was to evaluate the breed's genetic diversity using pedigree and genomic data in order to analyze classical and ancestral pedigree-based inbreeding, runs of homozygosity, ROH islands, and consensus ROH. METHODS We studied the genome-wide genotype data of 675 Rhenish German draught horses and collated pedigree-based inbreeding coefficients for these horses. The final dataset contained 64,737 autosomal SNPs. RESULTS The average number of ROH per individual was 43.17 ± 9.459 with an average ROH length of 5.087 Mb ± 1.03 Mb. The average genomic inbreeding coefficient FROH was 0.099 ± 0.03, the pedigree-based classical inbreeding coefficient FPED 0.016 ± 0.021, and ancestral inbreeding coefficients ranged from 0.03 (Fa_Kal) to 0.51 (Ahc). Most ROH (55.85%) were classified into the length category of 2-4 Mb, and the minority (0.43%) into the length category of >32 Mb. The effective population size (Ne) decreased in the last seven generations (~65 years) from 189.43 to 58.55. Consensus ROH shared by 45% of the horses were located on equine chromosomes 3 and 7, while ROH islands exceeding the 99th percentile threshold were identified on chromosomes 2, 3, 5, 7, 9, 10, and 11. These ROH islands contained genes associated with morphological development (HOXB cluster), fertility (AURKC, NLRP5, and DLX3), muscle growth, and skin physiology (ZNF gene cluster). CONCLUSIONS This study highlights how important it is to monitor genetic diversity in endangered populations with genomic data. The results of this study will help to develop breeding strategies to ensure the conservation of the German Rhenish draught horse population and show whether favorable alleles from the overrepresented candidate genes within ROH were transmitted to the next generation.
Collapse
Affiliation(s)
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| |
Collapse
|
11
|
Ma R, Liu J, Ma X, Yang J. Genome-Wide Runs of Homozygosity Reveal Inbreeding Levels and Trait-Associated Candidate Genes in Diverse Sheep Breeds. Genes (Basel) 2025; 16:316. [PMID: 40149467 PMCID: PMC11942120 DOI: 10.3390/genes16030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Quantifying and controlling the inbreeding level in livestock populations is crucial for the long-term sustainability of animal husbandry. However, the extent of inbreeding has not been fully understood in sheep populations on a global scale. METHODS Here, we analyzed high-depth genomes of 210 sheep from 20 worldwide breeds to identify the pattern and distribution of genome-wide runs of homozygosity (ROH) and detect candidate selected genes in ROH islands for agronomic and phenotypic traits. RESULTS Leveraging whole-genome sequencing data, we found a large number of short ROH (e.g., <1.0 Mb) in all breeds and observed the overall higher values of ROH statistics and inbreeding coefficient in European breeds than in Asian breeds and Dorper sheep. We identified some well-known candidate genes (e.g., CAMK4, HOXA gene family, ALOX12, FGF11, and MTOR) and 40 novel genes (e.g., KLHL1, FGFRL1, WDR62, GDF6, KHDRBS2, and PAX1) that are functionally associated with fecundity, body size, and wool-related traits in sheep. Based on the candidate genes, we revealed different genetic bases for the fecundity traits of European and Asian sheep. CONCLUSIONS This study improves the resolution of ROH detection and provides new insights into genomic inbreeding and trait architecture in sheep as well as useful markers for future breeding practice.
Collapse
Affiliation(s)
| | | | | | - Ji Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.M.); (J.L.); (X.M.)
| |
Collapse
|
12
|
Nolen ZJ. PopGLen-a Snakemake pipeline for performing population genomic analyses using genotype likelihood-based methods. Bioinformatics 2025; 41:btaf105. [PMID: 40067089 PMCID: PMC11932725 DOI: 10.1093/bioinformatics/btaf105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
SUMMARY PopGLen is a Snakemake workflow for performing population genomic analyses within a genotype-likelihood framework, integrating steps for raw sequence processing of both historical and modern DNA, quality control, multiple filtering schemes, and population genomic analysis. Currently, the population genomic analyses included allow for estimating linkage disequilibrium, kinship, genetic diversity, genetic differentiation, population structure, inbreeding, and allele frequencies. Through Snakemake, it is highly scalable, and all steps of the workflow are automated, with results compiled into an HTML report. PopGLen provides an efficient, customizable, and reproducible option for analyzing population genomic datasets across a wide variety of organisms. AVAILABILITY AND IMPLEMENTATION PopGLen is available under GPLv3 with code, documentation, and a tutorial at https://github.com/zjnolen/PopGLen. An example HTML report using the tutorial dataset is included in the Supplementary Material.
Collapse
|
13
|
Pegolo S, Bisutti V, Mota LFM, Cecchinato A, Amalfitano N, Dettori ML, Pazzola M, Vacca GM, Bittante G. Genome-wide landscape of genetic diversity, runs of homozygosity, and runs of heterozygosity in five Alpine and Mediterranean goat breeds. J Anim Sci Biotechnol 2025; 16:33. [PMID: 40025542 PMCID: PMC11874128 DOI: 10.1186/s40104-025-01155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/05/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Goat breeds in the Alpine area and Mediterranean basin exhibit a unique genetic heritage shaped by centuries of selection and adaptability to harsh environments. Understanding their adaptive traits can aid breeding programs target enhanced resilience and productivity, especially as we are facing important climate and agriculture challenges. To this aim the genomic architecture of 480 goats belonging to five breeds (i.e., Saanen [SAA], Camosciata delle Alpi [CAM], Murciano-Granadina [MUR], Maltese [MAL], Sarda [SAR]) reared in the Sardinia Island were genotyped and their genomic architecture evaluated to find molecular basis of adaptive traits. Inbreeding, runs of homozygosity (ROH) and runs of heterozygosity (ROHet) were identified. Finally, candidate genes in the ROH and ROHet regions were explored through a pathway analysis to assess their molecular role. RESULTS In total, we detected 10,341 ROH in the SAA genome, 11,063 ROH in the CAM genome, 12,250 ROH in the MUR genome, 8,939 ROH in the MAL genome, and 18,441 ROH in the SAR genome. Moreover, we identified 4,087 ROHet for SAA, 3,360 for CAM, 2,927 for MUR, 3,701 for MAL, and 3,576 for SAR, with SAR having the highest heterozygosity coefficient. Interestingly, when computing the inbreeding coefficient using homozygous segment (FROH), SAA showed the lowest value while MAL the highest one, suggesting the need to improve selecting strategies to preserve genetic diversity within the population. Among the most significant candidate genes, we identified several ones linked to different physiological functions, such as milk production (e.g., DGAT1, B4GALT1), immunity (GABARAP, GPS2) and adaptation to environment (e.g., GJA3, GJB2 and GJB6). CONCLUSIONS This study highlighted the genetic diversity within and among five goat breeds. The high levels of ROH identified in some breeds might indicate high levels of inbreeding and a lack in genetic variation, which might negatively impact the animal population. Conversely, high levels of ROHet might indicate regions of the genetic diversity, beneficial for breed health and resilience. Therefore, these findings could aid breeding programs in managing inbreeding and preserving genetic diversity.
Collapse
Affiliation(s)
- Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova (Padua), Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| | - Vittoria Bisutti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova (Padua), Viale Dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Lucio Flavio Macedo Mota
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova (Padua), Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova (Padua), Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| | - Nicolò Amalfitano
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova (Padua), Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, SS, Italy
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, SS, Italy
| | - Giuseppe Massimo Vacca
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, SS, Italy
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova (Padua), Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
14
|
Vlček J, Espinoza‐Ulloa S, Cowles SA, Ortiz‐Catedral L, Coutu C, Chaves JA, Andrés J, Štefka J. Genomes of Galápagos Mockingbirds Reveal the Impact of Island Size and Past Demography on Inbreeding and Genetic Load in Contemporary Populations. Mol Ecol 2025; 34:e17665. [PMID: 39912126 PMCID: PMC11842953 DOI: 10.1111/mec.17665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
Restricted range size brings about noteworthy genetic consequences that may affect the viability of a population and eventually its extinction. Particularly, the question if an increase in inbreeding can avert the accumulation of genetic load via purging is hotly debated in the conservation genetic field. Insular populations with limited range sizes represent an ideal setup for relating range size to these genetic factors. Leveraging a set of eight differently sized populations of Galápagos mockingbirds (Mimus), we investigated how island size shaped effective population size (Ne), inbreeding and genetic load. We assembled a genome of M. melanotis and genotyped three individuals per population by whole-genome resequencing. Demographic inference showed that the Ne of most populations remained high after the colonisation of the archipelago 1-2 Mya. Ne decline in M. parvulus happened only 10-20 Kya, whereas the critically endangered M. trifasciatus showed a longer history of reduced Ne. Despite these historical fluctuations, the current island size determines Ne in a linear fashion. In contrast, significant inbreeding coefficients, derived from runs of homozygosity, were identified only in the four smallest populations. The index of additive genetic load suggested purging in M. parvulus, where the smallest populations showed the lowest load. By contrast, M. trifasciatus carried the highest genetic load, possibly due to a recent rapid bottleneck. Overall, our study demonstrates a complex effect of demography on inbreeding and genetic load, providing implications in conservation genetics in general and in a conservation project of M. trifasciatus in particular.
Collapse
Affiliation(s)
- Jakub Vlček
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Institute of Parasitology, Biology Centre CASČeské BudějoviceCzech Republic
- Department of Botany, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Sebastian Espinoza‐Ulloa
- Department of BiologyUniversity of SaskatchewanSaskatoonCanada
- Facultad de MedicinaPontificia Universidad Católica del EcuadorQuitoEcuador
| | - Sarah A. Cowles
- Department of BiologyUniversity of MiamiCoral GablesFloridaUSA
| | - Luis Ortiz‐Catedral
- School of Natural Sciences, Ecology & Conservation LabMassey UniversityAucklandNew Zealand
| | - Cathy Coutu
- Agriculture & Agri‐Food CanadaSaskatoonCanada
| | - Jaime A. Chaves
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biologicas y AmbientalesUniversidad San Francisco de QuitoQuitoEcuador
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
- Galapagos Science CenterUniversidad San Francisco de QuitoQuitoEcuador
| | - Jose Andrés
- Department of BiologyUniversity of SaskatchewanSaskatoonCanada
| | - Jan Štefka
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Institute of Parasitology, Biology Centre CASČeské BudějoviceCzech Republic
| |
Collapse
|
15
|
González-Castellano I, Ordás P, Caballero A. Estimation of Inbreeding Depression From Overdominant Loci Using Molecular Markers. Evol Appl 2025; 18:e70085. [PMID: 40094104 PMCID: PMC11906488 DOI: 10.1111/eva.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Inbreeding depression is a highly relevant universal phenomenon in population and conservation genetics since it leads to a decline in the fitness of individuals. This phenomenon is due to the homozygous expression of alleles whose effects are hidden in heterozygotes (inbreeding load). The rate of inbreeding depression for quantitative traits can be quantified if the coefficient of inbreeding (F) of individuals is known. This coefficient can be estimated from pedigrees or from the information of molecular markers, such as SNPs, using measures of homozygosity of individual markers or runs of homozygosity (ROH) across the genome. Several studies have investigated the accuracy of different F measures to estimate inbreeding depression, but always assuming that this is only due to recessive or partially recessive deleterious mutations. It is possible, though, that part of the inbreeding depression is due to variants with overdominant gene action (heterozygote advantage). In this study, we carried out computer simulations to assess the impact of overdominance on the estimation of inbreeding depression based on different measures of F. The results indicate that the estimators based on ROH provide the most robust estimates of inbreeding depression when this is due to overdominant loci. The estimators that use measures of homozygosity from individual markers may provide estimates with substantial biases, depending on whether or not low-frequency alleles are discarded in the analyses; but among these SNP-by-SNP measures, those based on the correlation between uniting gametes are generally the most reliable.
Collapse
Affiliation(s)
- Inés González-Castellano
- Centro de Investigación Mariña, Universidade de Vigo Vigo Spain
- Universidade da Coruña A Coruña Spain
| | - Pilar Ordás
- Centro de Investigación Mariña, Universidade de Vigo Vigo Spain
| | | |
Collapse
|
16
|
Bell DA, Carim KJ, Kovach R, Eby LA, Barfoot C, Painter S, Lodmell A, Amish SJ, Smith S, Rosenthal L, Larkin B, Ramsey P, Whiteley AR. Genomic Insights Into Inbreeding and Adaptive Divergence of Trout Populations to Inform Genetic Rescue. Evol Appl 2025; 18:e70090. [PMID: 40115660 PMCID: PMC11923392 DOI: 10.1111/eva.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Genetic rescue, specifically translocation to facilitate gene flow among populations and reduce the effects of inbreeding, is an increasingly used approach in conservation. However, this approach comes with trade-offs, wherein gene flow may reduce fitness when populations have adaptive differentiation (i.e., outbreeding depression). A better understanding of the interaction between isolation, inbreeding, and adaptive divergence in key traits, such as life history traits, will help to inform genetic rescue efforts. Stream-dwelling salmonids, such as the westslope cutthroat trout (Oncorhynchus lewisi; WCT), are well-suited for examining these trade-offs because they are increasingly isolated by habitat degradation, exhibit substantial variation in life history traits among populations, and include many species of conservation concern. However, few genomic studies have examined the potential trade-offs in inbreeding versus outbreeding depression in salmonids. We used > 150,000 SNPs to examine genomic variation and inbreeding coefficients in 565 individuals across 25 WCT populations that differed in their isolation status and demographic histories. Analyses of runs of homozygosity revealed that several isolated WCT populations had "flatlined" having extremely low genetic variation and high inbreeding coefficients. Additionally, we conducted genome scans to identify potential outlier loci that could explain life history differences among 10 isolated populations. Genome scans identified one candidate genomic region that influenced maximum length and age-1 to age-2 growth. However, the limited number of candidate loci suggests that the life history traits examined may be driven by many genes of small effect or phenotypic plasticity. Although adaptive differentiation should be considered, the high inbreeding coefficients in several populations suggest that genetic rescue may benefit the most genetically depauperate WCT populations.
Collapse
Affiliation(s)
- Donovan A Bell
- Wildlife Biology Program University of Montana Missoula Montana USA
- Montana Fish Wildlife and Parks Missoula Montana USA
| | - Kellie J Carim
- U.S.D.A. Forest Service, Rocky Mountain Research Station Aldo Leopold Wilderness Research Institute Missoula Montana USA
| | - Ryan Kovach
- Montana Fish Wildlife and Parks Missoula Montana USA
| | - Lisa A Eby
- Wildlife Biology Program University of Montana Missoula Montana USA
| | - Craig Barfoot
- Confederated Salish and Kootenai Tribes Pablo Montana USA
| | - Sally Painter
- University of Montana Conservation Genomics lab Missoula Montana USA
| | - Angela Lodmell
- University of Montana Conservation Genomics lab Missoula Montana USA
| | - Stephen J Amish
- University of Montana Conservation Genomics lab Missoula Montana USA
| | - Seth Smith
- Washington Department of Fish and Wildlife Seattle Washington USA
| | - Leo Rosenthal
- Montana Fish Wildlife and Parks Missoula Montana USA
| | | | | | | |
Collapse
|
17
|
Nayak SS, Panigrahi M, Dutt T. Genome-wide insights into selection signatures for transcription factor binding sites in cattle ROH regions. Mamm Genome 2025:10.1007/s00335-025-10113-3. [PMID: 39984753 DOI: 10.1007/s00335-025-10113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Runs of Homozygosity (ROH) regions are characterized by homozygous genotypes inherited from a common ancestor, often arising from positive selection for adaptive traits. These homozygous regions may arise due to inbreeding, selective breeding, or demographic events like population bottlenecks. Transcription factor binding sites (TFBS) are short, specific DNA sequences where transcription factors bind to regulate the expression of nearby genes. These sites are essential for controlling biological processes such as development, metabolism, and immune response. TFBS act as key regulatory elements, and their variations can influence gene activity, contributing to phenotypic differences and adaptation. ROH often encompass regulatory elements, including TFBS, suggesting a functional connection between these genomic features. This study investigates TFBS within ROH regions in 297 animals of six cattle breeds: Gir (48), Tharparkar (72), Vrindavani (72), Frieswal (14), Holstein Friesian (63), and Jersey (28). Utilizing genotyped data of these animals, we identified genomic regions enriched with ROH. We focused on the central 10 kb regions of 50 ROH regions common across all breeds. Within these regions, 450 motifs were examined, identifying 168 transcription factors potentially binding to these regions. The results emphasize the role of TFBS in gene regulation and adaptive processes. By linking ROH patterns to regulatory elements, this study enhances our understanding of the genetic architecture underlying phenotypic traits and their adaptation to environmental pressures. These findings provide insights into the molecular mechanisms influencing genetic variation in cattle populations.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| |
Collapse
|
18
|
Karabaş M, Yılmaz O. Identification of selection signatures and genetic diversity in the sheep. Trop Anim Health Prod 2025; 57:68. [PMID: 39964635 PMCID: PMC11836209 DOI: 10.1007/s11250-025-04307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
In the study, data obtained from OvineSNP50K SNP chips using the Illumina® iScan platform for Eşme sheep were used. The integrated haplotype score (iHS) and runs of homozygosity (ROH) statistical approaches were used to identify selection signatures. Using the iHS analysis, it was discovered that there are 10 genomic regions and 51 genes on ovine chromosomes 1, 9, 11, and 12 that are under selection. Three genomic regions and 97 genes on ovine chromosomes 6 and 11 were found to be under selection using the ROH analysis. Candidate genes associated with economic and ecological traits were detected using both approaches. Among the genetic diversity parameters considered in this study, the minor allele frequency (MAF), the genetic distance between individuals (D), as well as observed (Ho) and expected heterozygosities (He) values were 0.300, 0.309, 0.388, and 0.390, respectively. The obtained Ho, He and D values indicate a moderate level of genetic diversity. The ratio of polymorphic SNPs (PN) was 0.947, and the average values of FROH and FHOM were 0.030 and 0.029, respectively. Considering the PN value obtained in the study, it is evident that the SNPs in the population exhibit a high level of polymorphism at 94.7%. While the FROH value obtained indicates high genetic diversity among the individuals in the present study, the FHOM value suggests that the population is predominantly composed of heterozygous individuals. As a result, evidence indicating genetic advancements have been made for target traits in breeding programs within the population. Additionally, candidate genes suitable for future molecular marker-supported breeding programs have been identified. In addition, a better understanding of the genetic structure and production potential of the population has been achieved. Findings have shown that Eşme sheep are a breed with high meat production potential and strong adaptation abilities.
Collapse
Affiliation(s)
- Mustafa Karabaş
- Faculty of Agriculture Animal Science Department, Aydın Adnan Menderes University, 09020, Aydın, Türkiye
| | - Onur Yılmaz
- Faculty of Agriculture Animal Science Department, Aydın Adnan Menderes University, 09020, Aydın, Türkiye.
| |
Collapse
|
19
|
Ojeda-Marín C, Gutiérrez JP, Formoso-Rafferty N, Cervantes I. Performance of homozygosity by descent in two mice lines divergently selected for birth weight environmental variability. Sci Rep 2025; 15:5511. [PMID: 39953099 PMCID: PMC11829033 DOI: 10.1038/s41598-025-89254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Inbreeding can have negative effects, such as increasing the expression of deleterious alleles or reducing fitness. A method based on Hidden Markov Models (HMM) was developed to determine the probability of an individual genome in a homozygous-by-descent state (HBD). As a result of an experiment of divergent selection for birth weight environmental variability two lines were created: high variability line (H-Line) and low variability line (L-Line). The L-Line demonstrated a better performance in traits related with robustness than the H-Line. From a selection period of 20 generations, a total of 655 individuals from the H-Line and 675 individuals from the L-Line were genotyped with a high-density SNP array. We used a predefined multiclass HMM with a total of 9 age related HBD classes and 1 non HBD class. The sum of the probabilities of each HBD class was defined as the total HBD inbreeding (FHBD). In addition, FHBD was divided into age related groups as recent and ancient. Moreover, recent pedigree inbreeding (FPEDR) was defined using different generation thresholds (4 to 14). The evolution of FHBD across generations was similar in both selected lines. However, the distribution in each age-related class was different between lines in more recent generations. The H-Line presented twice as much FHBD by ancestors from 8 generations ago than the L-Line. Moreover, the correlations between recent FHBD and FPEDR obtained with different generation thresholds were greater in the H-Line when very recent FHBD was calculated from classes related with ancestors from 1 to 8 generations ago. However, in the L-Line, considering more than 4 generations ago to define very recent inbreeding did not affect the correlations with FPEDR. The HBD was the first methodology that could detect differences in the inbreeding pattern between the selected lines that could be related with the divergent selection, despite being under the identical mating policy and similar intensity of selection.
Collapse
Affiliation(s)
| | | | - Nora Formoso-Rafferty
- Dpto. Producción Agraria, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Isabel Cervantes
- Dpto. Producción Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| |
Collapse
|
20
|
Gafni-Amsalem C, Warwar N, Khayat M, Tatour Y, Abuleil-Zuabi O, Campisi-Pinto S, Carmi S, Shalev SA. The distribution of regions of homozygosity (ROH) among consanguineous populations-implications for a routine genetic counseling service. J Hum Genet 2025; 70:99-104. [PMID: 39501123 DOI: 10.1038/s10038-024-01303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 01/27/2025]
Abstract
Regions of homozygosity (ROH) increase the risk of recessive disorders, and guidelines recommend reporting of excessive ROH in prenatal testing. However, ROH are common in populations that practice endogamy or consanguinity, and cutoffs for reporting ROH in such populations may not be evidence-based. We reviewed prenatal testing results (based on cytogenetic microarrays) from 2191 pregnancies in the Jewish and non-Jewish populations of Northern Israel and estimated the prevalence of ROH according to self-reported ethnicity and parental relationships. The proportion of the genome in ROH, ROH rate, was higher in non-Jews [Mean (SD) = 2.91% (3.92%); max = 25.54%; N = 689] than in Jews [Mean (SD) = 0.81% (0.49%); max = 3.93%; N = 1502]. In the non-Jewish populations, consanguineous marriages had the highest ROH rates [Mean (SD) = 7.14% (4.55%), N = 217], followed by endogamous [Mean (SD) = 1.13% (1.09%), N = 283] and non-endogamous [Mean (SD) = 0.69%(0. 56%), N = 189] marriages. ROH rates were greater than 5%, the ACMG-recommended cutoff, in 149/689 (21.63%) of the non-Jewish samples. Within the Jewish populations, the rates were similar between Ashkenazi, North African, and Middle Eastern Jews, but were higher for six consanguineous unions [Mean (SD) = 2.38% (1.23%)] and when spouses belonged to the same sub-population. Given the high ROH rates we observed in some subjects, we suggest that assessing the risk for recessive conditions in consanguineous/endogamous populations should be done before the first pregnancy, through genetic counseling and sequencing. Such an approach will: (1) identify couples who are at risk and counsel them on reproductive options; and (2) avoid the stress that couples who are not at risk may experience due to a prenatal ROH report.
Collapse
Affiliation(s)
| | - Nasim Warwar
- Genetics Institute, Emek Medical Center, Afula, Israel
| | - Morad Khayat
- Genetics Institute, Emek Medical Center, Afula, Israel
| | - Yasmin Tatour
- Genetics Institute, Emek Medical Center, Afula, Israel
| | | | | | - Shai Carmi
- Faculty of Medicine, Braun School of Public Health, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Stavit A Shalev
- Genetics Institute, Emek Medical Center, Afula, Israel
- Technion Israel Institute of Technology The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| |
Collapse
|
21
|
Shafer ABA, Kardos M. Runs of Homozygosity and Inferences in Wild Populations. Mol Ecol 2025; 34:e17641. [PMID: 39760145 PMCID: PMC11754702 DOI: 10.1111/mec.17641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Long homozygous chromosome segments are known as runs of homozygosity (ROH); these reflect patterns of identity by descent and can be used to measure individual inbreeding, map recessive traits, and reconstruct demographic histories. Here, we review some key considerations with ROH detection and the inferences pertaining to inbreeding and demographic analyses in wild populations.
Collapse
Affiliation(s)
- Aaron B. A. Shafer
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughOntarioCanada
- Department of Forensic ScienceTrent UniversityPeterboroughOntarioCanada
| | - Marty Kardos
- Conservation Biology Division, Northwest Fisheries Science CenterNational Marine Fisheries Service, National Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
| |
Collapse
|
22
|
Halford G, Maes D, Yung CJ, Whiteford S, Bourn NAD, Bulman CR, Goffart P, Hodgson JA, Saccheri IJ. Genomic Monitoring of a Reintroduced Butterfly Uncovers Contrasting Founder Lineage Survival. Evol Appl 2025; 18:e70074. [PMID: 39925617 PMCID: PMC11802331 DOI: 10.1111/eva.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Genetic factors can have a major influence on both short- and long-term success of reintroductions. Genomic monitoring can give a range of insights into the early life of a reintroduced population and ultimately can help to avoid wasting limited conservation resources. In this study, we characterise the genetic diversity of a reintroduced Carterocephalus palaemon (Chequered Skipper butterfly) population in England with respect to the spatial genetic structure and diversity of the source populations in south Belgium. We aim to evaluate the success of the reintroduction, including the effectiveness of the donor sampling strategy, and assess genetic vulnerabilities that may affect the population's future. We also use an isolation-by-distance approach to make quantitative inferences about dispersal, and we explore covariance between host mitochondrial and Wolbachia genomes. We find that, four generations following the initial release, the reintroduced population, founded by 66 wild-caught adults, has an effective size of c. 33, yet has retained similar levels of genomic heterozygosity to those in the source subpopulations in Belgium and shows low levels of inbreeding. However, the restricted number of founders and variance in reproductive success among the surviving families have resulted in a higher level of kinship, likely to result in somewhat higher rates of inbreeding in the future. Furthermore, there is a distinct split between two source landscapes in Belgium, and all genomic evidence suggests that the reintroduced population is descended from only one of these landscapes (called Fagne). We discuss potential causes behind these results, including whether Wolbachia strains are causing genetic incompatibility between clades. We conclude that a conservative strategy for any further translocations would prefer Fagne sites as sources because of the strong evidence of their ability to survive. However, our results warrant further investigation into the reasons for the divergence found in Belgium.
Collapse
Affiliation(s)
- Georgina Halford
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | - Dirk Maes
- Research Institute for Nature and Forest (INBO)BrusselsBelgium
- Radboud Institute for Biological and Environmental Sciences (RIBES)Radboud UniversityNijmegenThe Netherlands
| | - Carl J. Yung
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | - Sam Whiteford
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | | | | | - Philippe Goffart
- Département d'Étude du Milieu Naturel et Agricole/Service Public de Wallonie (DEMNA/SPW)GemblouxBelgium
| | - Jenny A. Hodgson
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | - Ilik J. Saccheri
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
23
|
Ma X, Chen Z, Zhang Z, Liu S, Wang M, Zhang X, Shi J, Gao H, Gu J, Han H, Pan Y, Wang Q. Comprehensive genomic analysis and selection signature detection in endangered Beigang pigs using whole-genome sequencing data. Anim Genet 2025; 56:e13502. [PMID: 39844685 DOI: 10.1111/age.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
The Beigang pig was recently identified as one of the endangered breeds during a Chinese indigenous pig genetic resource survey. The Beigang breed is notable for its remarkable roughage tolerance and high reproductive capacity according to historical records. Morphologically, the Beigang pig resembles many indigenous pigs in eastern China, especially in its large ears. This makes the Beigang pig a valuable reference for studying the genetic mechanisms on large ear size in pigs. However, there is currently a lack of clear understanding regarding the genetic structure and inbreeding levels of the Beigang pig population. This study used whole-genome sequencing data from Beigang pig (N = 145 pigs) and integrated genetic information from commercial pigs and indigenous pigs in eastern China to conduct a comprehensive analysis of the Beigang pig's genetic structure. Three selection signal detection methods-runs of homozygosity, fixation index, and integrated haplotype score-were employed to explore the differences in genomic selection signatures between Beigang pig and other pig populations. Additionally, we used a public project for regulatory variants discovery and molecular phenotype prediction in farm animal species called FarmGtex to explore the expression of three genes (WIF1, LEMD3, and MSRB3) related to ear size in Beigang pig. This research identified five homozygous variant sites in the WIF1 gene as important candidate loci potentially influencing ear size in Beigang pig. The results indicate that the Beigang pig holds a unique status among Chinese indigenous pigs, characterized by high genetic diversity and low levels of inbreeding. The study also revealed that WIF1 may play a significant role in influencing ear size in this breed. These findings contribute to a deeper understanding of the population structure and genetic characteristics of Beigang pig.
Collapse
Affiliation(s)
- Xuejian Ma
- Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zitao Chen
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhenyang Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Shengqiang Liu
- Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Meng Wang
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Xiaowei Zhang
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Zhejiang, Hangzhou, China
| | - Jinhu Shi
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Zhejiang, Hangzhou, China
| | - Hui Gao
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Zhejiang, Hangzhou, China
| | - Jiamin Gu
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - He Han
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Qishan Wang
- Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Saleh MS, Landi V, Derks MFL, Centoducati G, Groenen MAM, De Palo P, Ciani E, Pugliese N, Circella E, Camarda A. Genomic scans for selection and runs of homozygosity in southern Italian turkey populations. Poult Sci 2025; 104:104750. [PMID: 39827693 PMCID: PMC11787592 DOI: 10.1016/j.psj.2024.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Basilicata and Apulian (BAS-APU) turkeys, a native population in the Basilicata and Puglia regions of southern Italy, are known for their high meat quality and tolerance to local conditions. Understanding the genomic patterns of BAS-APU turkeys is critical for effective breeding and preservation strategies. In this study, we characterized runs of homozygosity (ROH), and selection signatures using the integrated haplotype score (iHS) and ROH approaches. A total of 73 BAS-APU turkeys from five populations were sequenced (12X). The inbreeding coefficients based on ROH ranged from 0.177 to 0.405. A total of 120,956 ROH were detected in BAS-APU populations. We identified 27 genomic regions that harbor 61 candidate genes in ROH islands in which single nucleotide polymorphisms (SNPs) occur in more than 90 % of individuals. In addition, we detected 608 genomic regions under positive selection using the iHS method being 104, 98, 130, 102, and 174 for BAS, APU_C, APU_M, APU_PN, and APU_PS, respectively. For both methods, most of the genes within these regions are related to production performance, reproduction, immune responses, and adaptation. This study contributes significantly to our understanding of the genetic makeup of native turkey populations in southern Italy. The identified genes under selection can aid future breeding and conservations programs for southern Italian native turkeys. The results of inbreeding levels, especially in the absence of complete pedigrees or when only a few samples are available, which is often the case for local breeds, will help to avoid genetic relatedness in the mating plan in breeding and conservation plans for BAS-APU populations. Also, the detected genes in the selective sweep regions could be used as a marker-assisted selection to improve productive traits and adaptation of BAS-APU local populations.
Collapse
Affiliation(s)
- Medhat S Saleh
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, Wageningen, 6700 AH, the Netherlands; Department of Animal Production, Faculty of Agriculture, Benha University, Benha 13736, Egypt.
| | - Vincenzo Landi
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, Wageningen, 6700 AH, the Netherlands.
| | - Gerardo Centoducati
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, Wageningen, 6700 AH, the Netherlands.
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy.
| | - Nicola Pugliese
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Elena Circella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| |
Collapse
|
25
|
Jaafar M, Harris B, Huson HJ. The Effect of Continuous Selection in KiwiCross ® Composite Breed on Breed Ancestry and Productivity Performance. Animals (Basel) 2025; 15:175. [PMID: 39858175 PMCID: PMC11758328 DOI: 10.3390/ani15020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Composite crosses result from the mating of two or more distinct cattle breeds. Breeding performance may improve rapidly using a well-organized composite breeding system and a clear selection index. The KiwiCross® is a popular composite cross in New Zealand, combining Holstein-Friesian (high milk production) and Jersey (high milk fat). Production efficiency (PR), a key selection index, is calculated by dividing milk solids produced by mature live weight. Over decades of genetic improvement, KiwiCross® increased milk production significantly. We hypothesized that certain genomic regions from Holstein-Friesian or Jersey breeds were preserved due to artificial selection based on PR. Analysis of genomic regions using XP-EHH, hapFLK, and ROH haplotype statistics revealed selection signatures on BTA 7 and 20 in both high- and low-performance animals, with distinct regions linked to Holstein-Friesian and Jersey ancestry. Our findings suggest that selection acted on different genomic regions across generations and that preserving key ancestry-specific haplotypes is crucial for maintaining performance in composite breeds. Breeders must recognize that selection for specific traits can alter allele frequencies and lead to the loss of beneficial breed-specific haplotypes over time.
Collapse
Affiliation(s)
- Mohd Jaafar
- Animal Science Department, Cornell University, Ithaca, NY 14850, USA;
| | - Bevin Harris
- Livestock Improvement, Private Bag 3016, Hamilton 3240, New Zealand;
| | - Heather J. Huson
- Animal Science Department, Cornell University, Ithaca, NY 14850, USA;
| |
Collapse
|
26
|
Derkx I, Ceballos F, Biagini SA, Subedi S, Rajbhandari P, Gyawali A, Bosch E, Vinicius L, Migliano AB, Bertranpetit J. The genetic demographic history of the last hunter-gatherer population of the Himalayas. Sci Rep 2025; 15:1505. [PMID: 39789000 PMCID: PMC11718311 DOI: 10.1038/s41598-024-80156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025] Open
Abstract
Nepal, largely covered by the Himalayan mountains, hosts indigenous populations with distinct linguistic, cultural, and genetic characteristics. Among these populations, the Raute, Nepal's last nomadic hunter-gatherers, offer a unique insight into the genetic and demographic history of Himalayan foragers. Despite strong cultural connections to other regional foragers, the genetic history of this population remains understudied. This study presents newly genotyped genome-wide SNP data of the Raute to explore their genetic isolation, their origins and potential as an older foraging lineage, and their genetic connections to other regional foragers. Our results show that high levels of inbreeding in the Raute indicate recent genetic isolation. Effective population size estimates suggest a dramatic population decline around 50 generations ago. Strong genetic similarity to Nepalese populations of various subsistence styles highlights a dynamic history of genetic interactions prior to isolation, with particular closeness to historical foragers like the Kusunda and Tharu, but excludes an ancient foraging lineage origin. The study underscores the complexity of human population dynamics in the Himalayas, suggesting a history of extensive interaction between foragers and farmers, followed by isolation and demographic decline among the Raute.
Collapse
Affiliation(s)
- Inez Derkx
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland.
| | - Francisco Ceballos
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Simone Andrea Biagini
- Department of Archaeology and Museology, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medicine and Life Sciences, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Anita Gyawali
- Committee to study the social, cultural, economic and geographical and habitat of Raute community, Surkhet, Nepal
| | - Elena Bosch
- Department of Medicine and Life Sciences, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Lucio Vinicius
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | | | - Jaume Bertranpetit
- Department of Medicine and Life Sciences, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
27
|
Ojeda-Marín C, Cervantes I, Formoso-Rafferty N, Gutiérrez JP, Rodríguez-Ramilo ST. Inbreeding depression for litter size in two mice lines under divergent selection for environmental birth weight variability using genomic data. J Anim Sci 2025; 103:skaf023. [PMID: 39921654 PMCID: PMC11914883 DOI: 10.1093/jas/skaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/07/2025] [Indexed: 02/10/2025] Open
Abstract
Inbreeding depression (ID) is usually observed as reduced survival and fertility and may have a variable impact in different populations. The aim of this study was to estimate ID from genomic and pedigree data in the litter size (LS) of the high variability (H-Line) and the low variability (L-Line) mice lines divergently selected for environmental birth weight variability. Of these, the L-Line performed better on traits related to robustness. A total of 1587 females from 26 selection generations were genotyped with a high-density SNP array. LS data of 732 L-Line and 648 of H-Line animals were used. The following were calculated: pedigree inbreeding coefficient (FPED), genomic inbreeding derived from different genomic matrices (FNEJ, FL&H,FVR1, FVR2, and FYAN), from runs of homozygosity (FROH) and from homozygosity by descent probabilities (FHBD). FROH were calculated in the 19 autosomes (CHR). FROH and FHBD were divided into nine lengths and age classes, respectively. All the inbreeding coefficients were standardized by the mean inbreeding coefficient of the 1st generation. Regression coefficients (m) obtained from genomic data were between -3.71 with FVR2 and -5.09 with FHBD in the H-Line, and that estimated from FPED was -5.67. In the L-Line the m obtained from genomic data were between -3.52 with FVR2 and -4.55 with FHBD, and that obtained with FPED was -4.08. Significant ID effects were detected in CHR13 in the H-Line and CHR1 and CHR9 in the L-Line. The m negative trended to be lower as the ROH length increased. The age of the homozygosity by descent segment performed differently in each line, for example FHBD raised 128 generations ago produced a significant positive effect only in the L-Line. The effect of global inbreeding coefficients on the LS was negative in both lines with a higher impact in the H-Line than in the L-Line, suggesting the L-Line having higher robustness. CHR 1, 9, and 13 were candidates for future gene search. In general, more recent FROH and FHBD presented negative effects on LS while older FROH and FHBD presented positive effects on LS in both selected lines.
Collapse
Affiliation(s)
- Candela Ojeda-Marín
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Cervantes
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Nora Formoso-Rafferty
- Departamento de Producción Agraria, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
28
|
Goli RC, Mahar K, Chishi KG, Choudhary S, Rathi P, Sree CC, Haritha P, Sukhija N, Kanaka KK. Runs of homozygosity assessment using reduced representation sequencing highlight the evidence of random mating in emu ( Dromaius novaehollandiae). Genome 2025; 68:1-8. [PMID: 39666966 DOI: 10.1139/gen-2024-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The domestication of emu (Dromaius novaehollandiae) began in the 1970s, but their productive characteristics have not undergone significant genetic enhancement. This study investigated the inbreeding and genetic diversity of 50 emus from various farms in Japan using Double digest restriction-site associated DNA sequencing (ddRAD-seq) markers. Single nucleotide polymorphism (SNP) calling revealed 171 975 high-quality SNPs while runs of homozygosity (ROH) analysis identified 1843 homozygous segments, with an average of 36.86 ROH per individual and a mean genome length of 27 Mb under ROH. The majority (86%) of ROH were short (0.5-1 Mb), indicating ancient or remote inbreeding. The average genomic inbreeding coefficient (FROH) was 0.0228, suggesting nearly no inbreeding. Overlapping ROH regions were identified, with top consensus regions found on chromosomes 8 and Z. Seven candidate genes related to egg production, feather development, and energy metabolism were annotated in these regions. The findings highlight the prevalence of genetic diversity and low inbreeding levels in the studied emu population. This research highlights the potentiality of random mating in genetic management and conservation of emus. Further studies should focus on enhancing productive traits through selective breeding while preserving genetic diversity to ensure the sustainable growth of the emu farming.
Collapse
Affiliation(s)
- Rangasai Chandra Goli
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Karan Mahar
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Kiyevi G Chishi
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Sonu Choudhary
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Pallavi Rathi
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Chandana Chinnareddyvari Sree
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Pala Haritha
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Nidhi Sukhija
- CSB-Central Tasar Research and Training Institute, Ranchi, Jharkhand, India
| | - K K Kanaka
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi 834010, Jharkhand, India
| |
Collapse
|
29
|
Ceballos FC, Vilas R, Álvarez G. Inbreeding Effect on Maternal Mortality and Fertility in the Habsburg Dynasty. Am J Hum Biol 2025; 37:e24166. [PMID: 39400933 DOI: 10.1002/ajhb.24166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVE We investigated inbreeding effects on longevity and fertility in the House of Habsburg, one of the principal royal dynasties of Europe. METHODS A total number of 124 Habsburg marriages, involving 107 men and 124 women, in the period of approximately 1450-1800 were considered for the analysis. Kinship and inbreeding coefficients were computed from genealogical information, which included more than 8000 individuals. RESULTS We found a significant negative association between age of death and inbreeding coefficient (F) in those women who had children (regression coefficient b = -1.06, p = 0.0008). This result led us to investigate possible inbreeding effects on maternal mortality in the period of 4 weeks after the childbirth. A strong inbreeding depression on maternal survival was detected through the Kaplan-Meier curve for groups of women with different level of inbreeding (log-rank test p = 0.0001) and the Cox proportional hazards regression analysis (hazard ratio = 2.36, p = 0.0008). Effect on fertility was also found as more inbred women had longer interbirth intervals (b = 154.66, p = 0.022). Effects of male or female inbreeding on the number of children per woman were not detected through zero-inflated regression models suggesting that reproductive compensation might be occurring among the more inbred and less-fecund women. CONCLUSION The effect of inbreeding in adulthood in the Habsburg lineage was at least as important as that previously reported on prereproductive survival. To our knowledge, our results are the first evidence of an inbreeding effect on maternal mortality in humans.
Collapse
Affiliation(s)
- Francisco C Ceballos
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Román Vilas
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Gonzalo Álvarez
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
30
|
Rostamzadeh Mahdabi E, Esmailizadeh A, Han J, Wang M. Comparative Analysis of Runs of Homozygosity Islands in Indigenous and Commercial Chickens Revealed Candidate Loci for Disease Resistance and Production Traits. Vet Med Sci 2025; 11:e70074. [PMID: 39655377 PMCID: PMC11629026 DOI: 10.1002/vms3.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 12/13/2024] Open
Abstract
Runs of homozygosity (ROH) are contiguous stretches of identical genomic regions inherited from both parents. Assessment of ROH in livestock species contributes significantly to our understanding of genetic health, population genetic structure, selective pressure and conservation efforts. In this study, whole genome re-sequencing data from 140 birds of 10 Iranian indigenous chicken ecotypes, 3 commercial chicken breeds and 1 red junglefowl (RJF) population were used to investigate their population genetic structure, ROH characteristics (length and frequency) and genomic inbreeding coefficients (FROH). Additionally, we examined ROH islands for selection footprints in the indigenous chicken populations. Our results revealed distinct genetic backgrounds, among which the White Leghorn breed exhibited the greatest genetic distance from other populations, while the gamecock populations formed a separate cluster. We observed significant differences in ROH characteristics, in which the commercial breeds showed a higher number of ROH compared to indigenous chickens and red junglefowls. Short ROH ranging from 0.1 to 1 Mb were dominant among the populations. The Arian line had the highest mean length of ROH, while the White Leghorn breed showed the highest number of ROH. Among indigenous chickens, the Lari-Afghani ecotype exhibited the highest FROH, but the Sari inherited the richest genetic diversity. Interestingly, GGA16 carried no ROH in the red junglefowls, whereas GGA22 had the highest FROH across all populations, except in the Isfahan ecotype. We also identified ROH islands associated with genetic adaptations in indigenous ecotypes. These islands harboured immune-related genes contributing to disease resistance (TLR2, TICAM1, IL22RA1, NOS2, CCL20 and IFNLR1), heat tolerance and oxidative stress response (NFKB1, HSF4, OSGIN1 and BDNF), and muscle development, lipid metabolism and reproduction (MEOX2, CEBPB, CDS2 and GnRH-I). Overall, this study highlights the genetic potential of indigenous chickens to survive and adapt to their respective environments.
Collapse
Affiliation(s)
| | - Ali Esmailizadeh
- Department of Animal ScienceFaculty of AgricultureShahid Bahonar University of KermanKermanIran
- Key Laboratory of Genetic Evolution & Animal ModelsState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Jianlin Han
- CAAS‐ILRI Joint Laboratory on Livestock and Forage Genetic ResourcesInstitute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Ming‐Shan Wang
- Key Laboratory of Genetic Evolution & Animal ModelsState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
31
|
Tsartsianidou V, Otapasidis A, Papakostas S, Karaiskou N, Vouraki S, Triantafyllidis A. Genome-Wide Patterns of Homozygosity and Heterozygosity and Candidate Genes in Greek Insular and Mainland Native Goats. Genes (Basel) 2024; 16:27. [PMID: 39858574 PMCID: PMC11765163 DOI: 10.3390/genes16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Runs of homozygosity (ROHs) and heterozygosity (ROHets) serve for the identification of genomic regions as candidates of selection, local adaptation, and population history. METHODS The present study aimed to comprehensively explore the ROH and ROHet patterns and hotspots in Greek native dairy goats, Eghoria and Skopelos, genotyped with the Illumina Goat SNP50 BeadChip. SNP and functional enrichment analyses were conducted to further characterize hotspots and the candidate genes located within these genomic regions. Genetic relationships between and within breeds and inbreeding coefficients were also evaluated. RESULTS Clear genetic differentiation and diversified management practices were depicted between the two native populations. The ROH and ROHet average genome coverage for Skopelos (65.35 and 35 Mb) and Eghoria (47.64 and 43 Mb) indicated differences in mainland and insular goats, with Skopelos showing more long ROH fragments, reflecting its geographic isolation and small population size. An ROH hotspot (CHR12: 43.59-44.61 Mb) detected in the Skopelos population has been also reported across European goats and co-localizes with a selection signal detected in the Egyptian Barki goats and sheep adapted to hot-arid conditions. A novel ROH hotspot (CHR18: 60.12-61.81 Mb), shared among the Greek breeds, harbors candidate genes enriched in biosynthesis, metabolism, and immune response. Two well-conserved ROHet islands were detected in Greek goats on chromosomes 1 and 18, with genes participating in development and embryogenesis. The Eghoria population showed the highest number of ROHet islands, potentially reflecting its adaptability to diverse environments. CONCLUSIONS These findings offer new insights into the environmental adaptation and artificial selection in Greek goats and could be utilized in future breeding strategies for sustainable goat farming.
Collapse
Affiliation(s)
- Valentina Tsartsianidou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.O.); (N.K.); (A.T.)
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Antonis Otapasidis
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.O.); (N.K.); (A.T.)
| | - Spiros Papakostas
- Department of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Nikoleta Karaiskou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.O.); (N.K.); (A.T.)
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Sotiria Vouraki
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Laboratory of Animal Production, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece
| | - Alexandros Triantafyllidis
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.O.); (N.K.); (A.T.)
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| |
Collapse
|
32
|
Maxman G, van Marle-Köster E, Lashmar SF, Visser C. Selection signatures associated with adaptation in South African Drakensberger, Nguni, and Tuli beef breeds. Trop Anim Health Prod 2024; 57:13. [PMID: 39729174 PMCID: PMC11680604 DOI: 10.1007/s11250-024-04265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
In the present study 1,709 cattle, including 1,118 Drakensberger (DRB), 377 Nguni (NGI), and 214 Tuli (TUL), were genotyped using the GeneSeek® Genomic Profiler™ 150 K bovine SNP panel. A genomic data set of 122,632 quality-filtered single nucleotide polymorphisms (SNPs) were used to identify selection signatures within breeds based on conserved runs of homozygosity (ROH) and heterozygosity (ROHet) estimated with the detectRUNS R package. The mean number of ROH per animal varied across breeds ranging from 36.09 ± 12.82 (NGI) to 51.82 ± 21.01 (DRB), and the mean ROH length per breed ranged between 2.31 Mb (NGI) and 3.90 Mb (DRB). The smallest length categories i.e., ROH < 4 Mb were most frequent, indicating historic inbreeding effects for all breeds. The ROH based inbreeding coefficients (FROH) ranged between 0.033 ± 0.024 (NGI) and 0.081 ± 0.046 (DRB). Genes mapped to candidate regions were associated with immunity (ADAMTS12, LY96, WDPCP) and adaptation (FKBP4, CBFA2T3, TUBB3) in cattle and genes previously only reported for immunity in mice and human (EXOC3L1, MYO1G). The present study contributes to the understanding of the genetic mechanisms of adaptation, providing information for potential molecular application in genetic evaluation and selection programs.
Collapse
Affiliation(s)
- Gomo Maxman
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| | - Este van Marle-Köster
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Carina Visser
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
33
|
Wang X, Zhou Z, Chai X, Li J, Wang W, Pang Z, Cheng L, Cheng C, Qiao L, Pan Y, Yang K, Liu W, Liu J. Whole-Genome Resequencing to Identify Selection Signatures Associated with High Fertility in Lüliang Black Goat. Animals (Basel) 2024; 15:36. [PMID: 39794979 PMCID: PMC11718830 DOI: 10.3390/ani15010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Lüliang black goat (LBG) is a unique livestock genetic resource of great significance for the local agriculture and economic development of Shanxi, China. However, the kidding rate of LBG is relatively low, which limits efforts to improve the reproductive performance and economic benefits of this breed. Therefore, improving the kidding characteristics of LBG is crucial for increasing its economic benefits. In this study, 20 LBG does were selected for whole-genome resequencing and divided into two groups: 10 in the T group (does with three consecutive kiddings of twin kids) and 10 in the S group (does with three consecutive kiddings of single kids). Based on whole-genome resequencing data, this study comprehensively assessed the population structure and genetic diversity of LBG and explored the related genes that affect reproductive performance. Three selection signal analysis methods-Fst (Fixation Index), π (nucleotide diversity), and XP-CLR (Cross Population Composite Likelihood Ratio)-were applied to screen a total of 838 genes, and enrichment analysis was performed to identify genes closely related to the reproductive performance of LBG, including ENPP3, APC, and GLI2. A generalized linear model was used to conduct a correlation analysis between non-synonymous mutations in the three genes and the number of kids produced. Two loci that were significantly correlated with kidding number were identified (p < 0.05): GLI2 g.63400363 C>T and GLI2 g.63417538 C>T. In general, the LBG population has high genetic diversity and good prospects for genetic improvement. The findings revealed that mining high-fecundity selection characteristics provides a basis for research on goat reproductive mechanisms.
Collapse
Affiliation(s)
- Xu Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Zhenqi Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Xinrui Chai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Jie Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Wannian Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Zhixu Pang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Lifen Cheng
- Shanxi Animal Husbandry Technology Extension Service Center, Taiyuan 030001, China; (L.C.); (C.C.)
| | - Caihong Cheng
- Shanxi Animal Husbandry Technology Extension Service Center, Taiyuan 030001, China; (L.C.); (C.C.)
| | - Liying Qiao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Yangyang Pan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Kaijie Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Wenzhong Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Jianhua Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
- Key Laboratory of Farm Animal Genetic Resources Exploration and Precision Breeding of Shanxi Province, Jinzhong 030801, China
| |
Collapse
|
34
|
Azcona F, Molina A, Demyda-Peyrás S. Genomic-Inbreeding Landscape and Selection Signatures in the Polo Argentino Horse Breed. Int J Mol Sci 2024; 26:26. [PMID: 39795883 PMCID: PMC11720259 DOI: 10.3390/ijms26010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Analyzing genetic variability and inbreeding trends is essential for effective breed management in animal populations. To this, the characterization of runs of homozygosity (ROH) provides a good genomic approach to study the phenomena. The Polo Argentino (PA) breed, globally recognized as the best adapted to playing polo, is known for its strong influence of Thoroughbreds, intense selective breeding, and extensive use of reproductive biotechnologies. This study investigates the PA's genomic variability, by characterizing the ROH landscape and identifying ROH islands (ROHi) as potential genomic footprints for the breed. PA horses (n = 506) were genotyped using EquineGGP™ array v5 (70 k). We calculated the inbreeding coefficient based on ROH (FROH-ancestral and recent) using a chromosomal approach. Finally, we identified genomic regions with increased ROH frequency (ROHi) and their associated genes. An average of 79.5 ROH per horse was detected, with a mean length of 4.6 Mb. The average FROH was 0.151, but most of them (54%) corresponded to ancestral inbreeding (ROH < 5.5 Mb). However, 4 ROHi were identified in ECA 1, 3, 7 and 17, containing 67 genes, some of which were related to behavior, neurodevelopment, and metabolic functions. This genomic analysis determined, for the first time, the length and location of homozygosity segments in the PA breed and identified ROHi associated with potential genomic regions and genes for positive selection in the breed.
Collapse
Affiliation(s)
- Florencia Azcona
- Cátedra de Medicina Equina, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata 1900, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata 1900, Argentina
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, CN IV KM 396 Edificio Gregor Mendel, 14007 Córdoba, Spain;
| | - Sebastián Demyda-Peyrás
- Departamento de Genética, Universidad de Córdoba, CN IV KM 396 Edificio Gregor Mendel, 14007 Córdoba, Spain;
| |
Collapse
|
35
|
Ceballos F, Boekstegers F, Scherer D, Barahona Ponce C, Marcelain K, Gárate-Calderón V, Waldenberger M, Morales E, Rojas A, Munoz C, Retamales J, de Toro G, Vera Kortmann A, Barajas O, Rivera MT, Cortés A, Loader D, Saavedra J, Gutiérrez L, Ortega A, Bertrán ME, Bartolotti L, Gabler F, Campos M, Alvarado J, Moisán F, Spencer L, Nervi B, Carvajal-Hausdorf D, Losada H, Almau M, Fernández P, Olloquequi J, Salinas P, Lorenzo Bermejo J. Inbreeding and Gallbladder Cancer Risk: Homozygosity Associations Adjusted for Indigenous American Ancestry, BMI, and Genetic Risk of Gallstone Disease. Cancers (Basel) 2024; 16:4195. [PMID: 39766094 PMCID: PMC11674764 DOI: 10.3390/cancers16244195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/03/2025] Open
Abstract
Latin Americans have a rich genetic make-up that translates into heterogeneous fractions of the autosomal genome in runs of homozygosity (FROH) and heterogeneous types and proportions of indigenous American ancestry. While autozygosity has been linked to several human diseases, very little is known about the relationship between inbreeding, genetic ancestry, and cancer risk in Latin Americans. Chile has one of the highest incidences of gallbladder cancer (GBC) in the world, and we investigated the association between inbreeding, GBC, gallstone disease (GSD), and body mass index (BMI) in 4029 genetically admixed Chileans. We calculated individual FROH above 1.5 Mb and weighted polygenic risk scores for GSD, and applied multiple logistic regression to assess the association between homozygosity and GBC risk. We found that homozygosity was due to a heterogeneous mixture of genetic drift and consanguinity in the study population. Although we found no association between homozygosity and overall GBC risk, we detected interactions of FROH with sex, age, and genetic risk of GSD that affected GBC risk. Specifically, the increase in GBC risk per 1% FROH was 19% in men (p-value = 0.002), 30% in those under 60 years of age (p-value = 0.001), and 12% in those with a genetic risk of GSD above the median (p-value = 0.01). The present study highlighted the complex interplay between inbreeding, genetic ancestry, and genetic risk of GSD in the development of GBC. The applied methodology and our findings underscored the importance of considering the population-specific genetic architecture, along with sex- and age-specific effects, when investigating the genetic basis of complex traits in Latin Americans.
Collapse
Affiliation(s)
- Francisco Ceballos
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany; (F.B.); (D.S.); (C.B.P.); (V.G.-C.)
- Health Institute Carlos III (ISCIII), 28029 Madrid, Spain
| | - Felix Boekstegers
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany; (F.B.); (D.S.); (C.B.P.); (V.G.-C.)
| | - Dominique Scherer
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany; (F.B.); (D.S.); (C.B.P.); (V.G.-C.)
| | - Carol Barahona Ponce
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany; (F.B.); (D.S.); (C.B.P.); (V.G.-C.)
| | - Katherine Marcelain
- Department of Basic and Clinical Oncology, Center for Cancer Prevention and Control (CECAN), Medical Faculty, University of Chile, Santiago 380000, Chile; (K.M.); (O.B.)
| | - Valentina Gárate-Calderón
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany; (F.B.); (D.S.); (C.B.P.); (V.G.-C.)
- Department of Basic and Clinical Oncology, Center for Cancer Prevention and Control (CECAN), Medical Faculty, University of Chile, Santiago 380000, Chile; (K.M.); (O.B.)
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology and Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Erik Morales
- Hospital Regional de Talca, Talca 3460000, Chile; (E.M.); (C.M.)
- Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Armando Rojas
- Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile;
| | - César Munoz
- Hospital Regional de Talca, Talca 3460000, Chile; (E.M.); (C.M.)
- Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile;
| | | | - Gonzalo de Toro
- Hospital de Puerto Montt, Puerto Montt 5480000, Chile; (G.d.T.); (A.V.K.)
- Escuela de Tecnología Médica, Universidad Austral de Chile sede Puerto Montt, Puerto Montt 5480000, Chile
| | | | - Olga Barajas
- Department of Basic and Clinical Oncology, Center for Cancer Prevention and Control (CECAN), Medical Faculty, University of Chile, Santiago 380000, Chile; (K.M.); (O.B.)
- Hospital Clínico Universidad de Chile, Santiago 8380456, Chile
| | | | - Analía Cortés
- Hospital del Salvador, Santiago 7500922, Chile; (M.T.R.); (A.C.)
| | - Denisse Loader
- Hospital Padre Hurtado, Santiago 8880456, Chile; (D.L.); (J.S.)
| | | | | | | | | | | | - Fernando Gabler
- Hospital San Borja Arriarán, Santiago 8320000, Chile; (F.G.); (M.C.)
| | - Mónica Campos
- Hospital San Borja Arriarán, Santiago 8320000, Chile; (F.G.); (M.C.)
| | - Juan Alvarado
- Hospital Regional Guillermo Grant Benavente, Concepción 4070386, Chile; (J.A.); (F.M.); (L.S.)
| | - Fabricio Moisán
- Hospital Regional Guillermo Grant Benavente, Concepción 4070386, Chile; (J.A.); (F.M.); (L.S.)
| | - Loreto Spencer
- Hospital Regional Guillermo Grant Benavente, Concepción 4070386, Chile; (J.A.); (F.M.); (L.S.)
| | - Bruno Nervi
- Department of Hematology and Oncology, Center for Cancer Prevention and Control (CECAN), School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile;
| | | | - Héctor Losada
- Departamento de Cirugía, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Mauricio Almau
- Hospital de Rancagua, Rancagua 2820000, Chile; (M.A.); (P.F.)
| | | | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain;
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Pamela Salinas
- Instituto de Alta Investigación, Tarapacá University, Arica 1000000, Chile;
| | - Justo Lorenzo Bermejo
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany; (F.B.); (D.S.); (C.B.P.); (V.G.-C.)
- Laboratory of Biostatistics for Precision Oncology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| |
Collapse
|
36
|
Peng W, Zhang Y, Gao L, Wang S, Liu M, Sun E, Lu K, Zhang Y, Li B, Li G, Cao J, Yang M. Examination of homozygosity runs and selection signatures in native goat breeds of Henan, China. BMC Genomics 2024; 25:1184. [PMID: 39643897 PMCID: PMC11624592 DOI: 10.1186/s12864-024-11098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024] Open
Abstract
Understanding the genomic characteristics of livestock is crucial for improving breeding efficiency and conservation efforts. However, there is a relative lack of information on the genetic makeup of local goat breeds in Henan, China. In this study, we identified runs of homozygosity (ROH), genomic inbreeding coefficients (FROH), and selection signatures in four breeds including Funiu White (FNW), Huai (HG), Lushan Bullleg (LS), and Taihang black (THB). The genomic analysis utilized a dataset of 46,278 SNP markers and 102 animals. A total of 342, 567, 1285, and 180 ROH segments were detected in FNW, HG, LS, and THB, respectively, with an average of 15.55, 29.84, 32.95, and 8.18 segments per individual. The lengths of ROH segments varied from 69.36 Mb in THB to 417.06 Mb in LS, with the most common lengths being 2-4 Mb and 4-8 Mb. The highest number of longest ROH segments (> 16 Mb) were found in LS (328) and the highest average FROH value was observed in LS (0.173), followed by HG (0.128), while the lowest FROH values were in THB (0.029) and FNW (0.070). Furthermore, the analysis of ROH islands and Composite Likelihood Ratio (CLR) identified a total of 175 significant genes. Among these, 25 genes were found to overlap, detected by both methods. These genes were associated with a diverse range of traits including reproductive ability (GPRIN3), weight (CCSER1), immune response (HERC5 and TIGD2), embryo development (NAP1L5), environmental adaptation (KLHL3, TRHDE, and IFNGR1), and milk characteristics (FAM13A). Significant Gene Ontology (GO) terms related to embryo skeletal system morphogenesis, brain ventricle development, and growth were also identified. This study helps reveal the genetic architecture of Henan goat breeds and provides valuable insights for the effective conservation and breeding programs of local goat breeds in Henan.
Collapse
Affiliation(s)
- Weifeng Peng
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.
| | - Yiyuan Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Lei Gao
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Mengting Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Enrui Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Kaixin Lu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yunxia Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Bing Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Jingya Cao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou, China.
| |
Collapse
|
37
|
Budin-Ljøsne I, Fredheim NAG, Jevne CA, Kleven BM, Charles MA, Felix JF, Flaig R, García MP, Havdahl A, Islam S, Kerr SM, Meder IK, Molloy L, Morton SMB, Pizzi C, Rahman A, Willemsen G, Wood D, Harris JR. Participant engagement and involvement in longitudinal cohort studies: qualitative insights from a selection of pregnancy and birth, twin, and family-based population cohort studies. BMC Med Res Methodol 2024; 24:297. [PMID: 39623293 PMCID: PMC11613753 DOI: 10.1186/s12874-024-02419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Longitudinal cohort studies are pivotal to understand how socioeconomic, environmental, biological, and lifestyle factors influence health and disease. The added value of cohort studies increases as they accumulate life course data and expand across generations. Ensuring that participants stay motivated to contribute over decades of follow-up is, however, challenging. Participant engagement and involvement (PEI) aims to secure the long-term commitment of participants and promote researcher-participant interaction. This study explored PEI practices in a selection of pregnancy and birth, twin, and family-based population cohort studies. METHODS Purposive sampling was used to identify cohorts in Europe, Australia and New Zealand. Fourteen semi-structured digital interviews were conducted with cohort study representatives to explore strategies for participant recruitment, informed consent, communication of general and individual information to participants, data collection, and participant involvement. Experiences, resources allocated to PEI, and reflections on future PEI, were discussed. The interview data were analyzed using a content analysis approach and summary results were reviewed and discussed by the representatives. RESULTS The cohort studies used various strategies to recruit participants including support from health professionals and organizations combined with information on the studies' web sites and social media. New approaches such as intra-cohort recruitment, were being investigated. Most cohorts transitioned from paper-based to digital solutions to collect the participants' consent and data. While digital solutions increased efficiency, they also brought new challenges. The studies experimented with the use of participant advisory panels and focus groups to involve participants in making decisions, although their success varied across age and socio-economic background. Most representatives reported PEI resources to be limited and called for more human, technical, educational and financial resources to maximize the positive effects of PEI. CONCLUSIONS This study of PEI among well-established cohort studies underscores the importance of PEI for project sustainability and highlights key factors to consider in developing PEI. Our analysis shows that knowledge gaps exist regarding which approaches have highest impact on retention rates and are best suited for different participant groups. Research is needed to support the development of best practices for PEI as well as knowledge exchange between cohorts through network building.
Collapse
Affiliation(s)
- Isabelle Budin-Ljøsne
- Department of Food Safety, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, Oslo, NO-0213, Norway.
| | | | | | | | | | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robin Flaig
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - María Paz García
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Alexandra Havdahl
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Psychology, PROMENTA Research Centre, University of Oslo, Oslo, Norway
| | - Shahid Islam
- Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, UK
| | - Shona M Kerr
- Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | | | - Lynn Molloy
- Population Health Sciences, Bristol Medical School, ALSPAC (Children of the 90s), University of Bristol, Bristol, UK
| | - Susan M B Morton
- Research Institute for Innovative Solutions for Well-Being and Health (INSIGHT), Faculty of Health, University of Technology, Sydney, Australia
| | - Costanza Pizzi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Aamnah Rahman
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Diane Wood
- The Raine Study, School of Population and Global Health, The University of Western Australia, Perth, Australia
| | - Jennifer R Harris
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
38
|
Goli RC, Mahar K, Manohar PS, Chishi KG, Prabhu IG, Choudhary S, Rathi P, Chinnareddyvari CS, Haritha P, Metta M, Shetkar M, Kumar A, N D CP, Vidyasagar, Sukhija N, Kanaka KK. Insights from homozygous signatures of cervus nippon revealed genetic architecture for components of fitness. Mamm Genome 2024; 35:657-672. [PMID: 39191871 DOI: 10.1007/s00335-024-10064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
This study investigates the genomic landscape of Sika deer populations, emphasizing the detection and characterization of runs of homozygosity (ROH) and their contribution towards components of fitness. Using 85,001 high-confidence SNPs, the investigation into ROH distribution unveiled nuanced patterns of autozygosity across individuals especially in 2 out of the 8 farms, exhibiting elevated ROH levels and mean genome coverage under ROH segments. The prevalence of shorter ROH segments (0.5-4 Mb) suggests historical relatedness and potential selective pressures within these populations. Intriguingly, despite observed variations in ROH profiles, the overall genomic inbreeding coefficient (FROH) remained relatively low across all farms, indicating a discernible degree of genetic exchange and effective mitigation of inbreeding within the studied Sika deer populations. Consensus ROH (cROH) were found to harbor genes for important functions viz., EGFLAM gene which is involved in the vision function of the eye, SKP2 gene which regulates cell cycle, CAPSL involved in adipogenesis, SPEF2 which is essential for sperm flagellar assembly, DCLK3 involved in the heat stress. This first ever study on ROH in Sika deer, to shed light on the adaptive role of genes in these homozygous regions. The insights garnered from this study have broader implications in the management of genetic diversity in this vulnerable species.
Collapse
Affiliation(s)
- Rangasai Chandra Goli
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Karan Mahar
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Peela Sai Manohar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Kiyevi G Chishi
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | | | - Sonu Choudhary
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Pallavi Rathi
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Chandana Sree Chinnareddyvari
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Pala Haritha
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Muralidhar Metta
- College of Veterinary Science, SVVU, Garividi, Andhra Pradesh, India
| | - Mahantesh Shetkar
- College of Veterinary Sciences and Animal Husbandry, DUVASU, Mathura, Uttar Pradesh, India
| | - Amit Kumar
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Chethan Patil N D
- Department of Agricultural Economics & Extension, Lovely Professional University, Punjab, India
| | - Vidyasagar
- Veterinary College, KVAFSU, Bidar, Karnataka, India
| | - Nidhi Sukhija
- CSB-Central Tasar Research and Training Institute, Ranchi, Jharkhand, India.
| | - K K Kanaka
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
39
|
Lavanchy E, Cumer T, Topaloudis A, Ducrest AL, Simon C, Roulin A, Goudet J. Too big to purge: persistence of deleterious Mutations in Island populations of the European Barn Owl (Tyto alba). Heredity (Edinb) 2024; 133:437-449. [PMID: 39397112 PMCID: PMC11589586 DOI: 10.1038/s41437-024-00728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
A key aspect of assessing the risk of extinction/extirpation for a particular wild species or population is the status of inbreeding, but the origin of inbreeding and the current mutational load are also two crucial factors to consider when determining survival probability of a population. In this study, we used samples from 502 barn owls from continental and island populations across Europe, with the aim of quantifying and comparing the level of inbreeding between populations with differing demographic histories. In addition to comparing inbreeding status, we determined whether inbreeding is due to non-random mating or high co-ancestry within the population. We show that islands have higher levels of inbreeding than continental populations, and that this is mainly due to small effective population sizes rather than recent consanguineous mating. We assess the probability that a region is autozygous along the genome and show that this probability decreased as the number of genes present in that region increased. Finally, we looked for evidence of reduced selection efficiency and purging in island populations. Among island populations, we found an increase in numbers of both neutral and deleterious minor alleles, possibly as a result of drift and decreased selection efficiency but we found no evidence of purging.
Collapse
Affiliation(s)
- Eléonore Lavanchy
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Alexandros Topaloudis
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
40
|
Liu C, Liu P, Liu S, Guo H, Zhu T, Li W, Wang K, Kang X, Sun G. Genetic structure, selective characterization and specific molecular identity cards of high-yielding Houdan chickens based on genome-wide SNP. Poult Sci 2024; 103:104325. [PMID: 39316988 PMCID: PMC11462333 DOI: 10.1016/j.psj.2024.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
The high-yielding Houdan chicken (GGF) is characterized by high egg production and disease resistance. This study conducted whole genome resequencing of the GGF population and compared it to data from other breeds. Genetic diversity analysis revealed higher observed heterozygosity (Ho), Polymorphism information content (PIC), number of runs of homozygosity (ROH), and inbreeding coefficient (FROH) in GGF. Linkage disequilibrium (LD) decay was slowest in GGF, indicating intensive inbreeding and strong selection. These findings suggest a need for appropriate strategies to enhance genetic diversity conservation in this breed. Population structure analysis demonstrated that GGF was genetically distinct from both the red jungle fowl (RJF) and Chinese indigenous chicken (CIC) populations, highlighting GGF as a unique genetic resource warranting intensive protection and utilization. Selective sweep analysis identified genes under selection in GGF, primarily enriched in signaling pathways related to oocyte meiosis and progesterone-mediated oocyte maturation. Key candidate genes included: CCNE1, SKP1, CDC20, CDK2, ADCY8, RPS6KA6, PPP3CB, PDE3B, HSP90AB1, and AKT3. These findings provide a theoretical foundation for their potential application in poultry breeding. Additionally, this study combined bioinformatics analysis with PCR amplification and Sanger sequencing to identify 4 SNPs that can serve as a molecular identity card (ID) for GGF: SNP1 (Chr2: 136130976), SNP3 (Chr4:11705164), SNP4 (Chr4: 63255588), and SNP5 (Chr24: 3271008). This study provides a scientific basis for effective management and conservation of GGF genetic resources, and establishes a simple, economical, and accurate set of molecular IDs to combat the proliferation of inferior breeds and protect genetic resources.
Collapse
Affiliation(s)
- Cong Liu
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China
| | - Pingquan Liu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuangxing Liu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Haishan Guo
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Tingqi Zhu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenting Li
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Kejun Wang
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
41
|
Lindtke D, Lerch S, Morel I, Neuditschko M. Assessment of genome complementarity in three beef-on-dairy crossbreds reveals sire-specific effects on production traits with comparable rates of genomic inbreeding reduction. BMC Genomics 2024; 25:1118. [PMID: 39567870 PMCID: PMC11577664 DOI: 10.1186/s12864-024-11029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Crossbreeding beef bulls with dairy cows can improve the economic value and fitness of calves not entering dairy production owing to increased meat yield and heterosis. However, outcrossing might reduce the dosage of alleles that confer local adaptation or result in a higher risk of dystocia due to increased calf size. Given the clear phenotypic differences between beef breeds, the varying phylogenetic distances between beef and dairy breeds, and the genomic variations within breeds, the attainable economic and fitness gains of calves will strongly depend on the selection of sires for crossing. Thus, the aim of this study was to assess genome complementarity between Angus (AAN), Limousin (LIM), or Simmental (SIM) beef bulls and Brown Swiss (BSW) dairy cows by quantifying genomic inbreeding reduction in F1 crosses and identifying genes potentially under BSW-specific selection that might be affected by outcrossing. RESULTS Low-pass sequencing data from 181 cows, 34 bulls, and 301 of their F1 progeny, and body weight and carcass composition measurements of 248 F1s were obtained. The high genomic inbreeding levels detected in the BSW cows were substantially reduced in the crossbreds, with only minor differences between the sire breeds. In the BSW cows, 585 candidate genes under selection were identified, overrepresenting genes associated with milk, meat and carcass, and production traits. Only a few genes were strongly differentiated at nonsynonymous variants between the BSW and beef breeds, including four tightly clustered genes (FAM184B, NCAPG, DCAF16, and LCORL) nearly fixed for alternate alleles in the BSW cows but mostly heterozygous or homozygous for the reference alleles in the AAN and LIM bulls. The alternate allele dosage at these genes significantly correlated with reduced carcass weight and protein mass in F1s. CONCLUSION Some of the few genes that were highly divergent between the BSW and beef breeds at nonsynonymous variants were likely under strong selection for reduced carcass weight in the BSW breed, potentially due to trade-offs between beef and dairy productions. As alleles with opposing effects still segregate in beef cattle, marker-assisted selection of mating pairs may be used to modulate the desired phenotypes and simultaneously decrease genomic inbreeding.
Collapse
Affiliation(s)
| | - Sylvain Lerch
- Ruminant Nutrition and Emissions, 1725 Posieux, Agroscope, Switzerland
| | - Isabelle Morel
- Ruminant Nutrition and Emissions, 1725 Posieux, Agroscope, Switzerland
| | | |
Collapse
|
42
|
Hervás-Rivero C, Mejuto-Vázquez N, López-Carbonell D, Altarriba J, Diaz C, Molina A, Rodríguez-Bermúdez R, Piedrafita J, Baro JA, Varona L. Runs of Homozygosity Islands in Autochthonous Spanish Cattle Breeds. Genes (Basel) 2024; 15:1477. [PMID: 39596677 PMCID: PMC11593383 DOI: 10.3390/genes15111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Understanding the genetic architecture of autochthonous European cattle breeds is important for developing effective conservation strategies and sustainable breeding programs. Spanish beef cattle, which trace their origins to ancient migrations from the Near East with later admixture from African populations, exhibit a rich genetic diversity shaped by environmental adaptation and selective breeding. Runs of Homozygosity (ROH) are extended stretches of identical genetic material inherited from both parents. They serve as indicators of inbreeding and selection signatures within populations. ROH islands, or regions of the genome where ROH segments are highly concentrated across individuals within a breed, indicate genomic regions under selective pressure. METHODS This study explores the distribution of ROH islands across seven Spanish beef cattle breeds (Asturiana de los Valles, Avileña-Negra Ibérica, Bruna dels Pirineus, Morucha, Retinta, Pirenaica, and Rubia Gallega). By analyzing high-density SNP data, we characterized ROH patterns and identified genomic regions with high levels of homozygosity, which may indicate selection pressures or common ancestry. RESULTS Our findings revealed breed-specific ROH patterns as well as shared ROH islands, underscoring genetic relationships and differentiation among the breeds. Notably, Morucha displayed the highest number of ROH, while Asturiana de los Valles had the fewest. FROH values, which indicate genomic inbreeding, varied among the breeds, with Morucha and Retinta being associated with higher values. We identified 57 ROH islands, with shared regions among populations that suggest common ancestral selection pressures. Key genes within these regions, like MSTN, are associated with muscle growth, body weight, and fertility. CONCLUSIONS This study offers valuable insights for breeding strategies and conservation efforts, highlighting the genetic diversity and historical background of Spanish cattle breeds.
Collapse
Affiliation(s)
- C. Hervás-Rivero
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - N. Mejuto-Vázquez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Av. Carvallo Calero, 27002 Lugo, Spain; (N.M.-V.); (R.R.-B.)
| | - D. López-Carbonell
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - J. Altarriba
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - C. Diaz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain
| | - A. Molina
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - R. Rodríguez-Bermúdez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Av. Carvallo Calero, 27002 Lugo, Spain; (N.M.-V.); (R.R.-B.)
| | - J. Piedrafita
- Departamento de Ciencia Animal y de los Alimentos, Facultat de Veterinaria, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - J. A. Baro
- Departamento de Ciencias Agroforestales, ETS de Ingenierías Agrarias, Universidad de Valladolid, 34004 Palencia, Spain;
| | - L. Varona
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| |
Collapse
|
43
|
Tiwari M, Gujar G, Shashank CG, Ponsuksili S. Selection signatures for high altitude adaptation in livestock: A review. Gene 2024; 927:148757. [PMID: 38986751 DOI: 10.1016/j.gene.2024.148757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
High altitude adapted livestock species (cattle, yak, goat, sheep, and horse) has critical role in the human socioeconomic sphere and acts as good source of animal source products including milk, meat, and leather, among other things. These species sustain production and reproduction even in harsh environments on account of adaptation resulting from continued evolution of beneficial traits. Selection pressure leads to various adaptive strategies in livestock whose footprints are evident at the different genomic sites as the "Selection Signature". Scrutiny of these signatures provides us crucial insight into the evolutionary process and domestication of livestock adapted to diverse climatic conditions. These signatures have the potential to change the sphere of animal breeding and further usher the selection programmes in right direction. Technological revolution and recent strides made in genomic studies has opened the routes for the identification of selection signatures. Numerous statistical approaches and bioinformatics tools have been developed to detect the selection signature. Consequently, studies across years have identified candidate genes under selection region found associated with numerous traits which have a say in adaptation to high-altitude environment. This makes it pertinent to have a better understanding about the selection signature, the ways to identify and how to utilize them for betterment of livestock populations as well as farmers. This review takes a closer look into the general concept, various methodologies, and bioinformatics tools commonly employed in selection signature studies and summarize the results of recent selection signature studies related to high-altitude adaptation in various livestock species. This review will serve as an informative and useful insight for researchers and students in the field of animal breeding and evolutionary biology.
Collapse
Affiliation(s)
- Manish Tiwari
- ICAR-National Dairy Research Institute, Karnal, India; U.P. Pt. Deen Dayal Upadhyaya Veterinary Science University and Cattle Research Institute, Mathura, India.
| | | | - C G Shashank
- ICAR-National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
44
|
Bonfiglio F, Legati A, Lasorsa VA, Palombo F, De Riso G, Isidori F, Russo S, Furini S, Merla G, Coppedè F, Tartaglia M, Bruselles A, Pippucci T, Ciolfi A, Pinelli M, Capasso M. Best practices for germline variant and DNA methylation analysis of second- and third-generation sequencing data. Hum Genomics 2024; 18:120. [PMID: 39501379 PMCID: PMC11536923 DOI: 10.1186/s40246-024-00684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/09/2024] Open
Abstract
This comprehensive review provides insights and suggested strategies for the analysis of germline variants using second- and third-generation sequencing technologies (SGS and TGS). It addresses the critical stages of data processing, starting from alignment and preprocessing to quality control, variant calling, and the removal of artifacts. The document emphasized the importance of meticulous data handling, highlighting advanced methodologies for annotating variants and identifying structural variations and methylated DNA sites. Special attention is given to the inspection of problematic variants, a step that is crucial for ensuring the accuracy of the analysis, particularly in clinical settings where genetic diagnostics can inform patient care. Additionally, the document covers the use of various bioinformatics tools and software that enhance the precision and reliability of these analyses. It outlines best practices for the annotation of variants, including considerations for problematic genetic alterations such as those in the human leukocyte antigen region, runs of homozygosity, and mitochondrial DNA alterations. The document also explores the complexities associated with identifying structural variants and copy number variations, underscoring the challenges posed by these large-scale genomic alterations. The objective is to offer a comprehensive framework for researchers and clinicians, ensuring that genetic analyses conducted with SGS and TGS are both accurate and reproducible. By following these best practices, the document aims to increase the diagnostic accuracy for hereditary diseases, facilitating early diagnosis, prevention, and personalized treatment strategies. This review serves as a valuable resource for both novices and experts in the field, providing insights into the latest advancements and methodologies in genetic analysis. It also aims to encourage the adoption of these practices in diverse research and clinical contexts, promoting consistency and reliability across studies.
Collapse
Affiliation(s)
- Ferdinando Bonfiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnology Franco Salvatore, Naples, Italy
| | - Andrea Legati
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Flavia Palombo
- Programma Di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Giulia De Riso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnology Franco Salvatore, Naples, Italy
| | - Federica Isidori
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Silvia Russo
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Laboratorio di Ricerca di Citogenetica Medica e Genetica Molecolare, Istituto Auxologico Italiano, IRCCS, 20145, Milano, Italy
| | - Simone Furini
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| | - Giuseppe Merla
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michele Pinelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnology Franco Salvatore, Naples, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
- CEINGE Advanced Biotechnology Franco Salvatore, Naples, Italy.
| |
Collapse
|
45
|
Sagi-Dain L, Levy M, Matar R, Kahana S, Agmon-Fishman I, Klein C, Gurevitch M, Basel-Salmon L, Maya I. Exploring the human genomic landscape: patterns of common homozygosity regions in a large middle eastern cohort. Hum Mol Genet 2024; 33:1908-1915. [PMID: 39222050 DOI: 10.1093/hmg/ddae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Regions of Homozygosity (ROH) typically reflect normal demographic history of a human population, but may also relate to cryptic consanguinity, and, additionally, have been associated with specific medical conditions. The objective of this study was to investigate the location, size, and prevalence of common ROH segments in a Middle Eastern cohort. This retrospective study included 13 483 samples collected from all Chromosomal Microarray analyses (CMA) performed using Single Nucleotide Polymorphism (SNP) arrays at the genetic clinical laboratory of Rabin Medical Center between 2017-2023 (primary data set). An additional replication cohort including 100 842 samples from another SNP array platform, obtained from Maccabi Health Organization, was analyzed. Common ROH locations were defined as those ROH locations involving 1% or more of the samples. A total of 66 710 ROH segments, involving 13 035 samples (96.7%) were identified in the primary data set. Of the 4069 cytogenetic ROH locations, 68 were identified as common. The prevalence of non-common ROH was relatively high in affected individuals, and for acrocentric chromosomes, chromosomes associated with common trisomies, and non-imprinted chromosomes. In addition, differences in common ROH locations were observed between the primary and the replication cohorts. Our findings highlight the need for population-specific guidelines in determining ROH reporting cutoffs, considering factors such as population-specific prevalence and testing platform differences. Future research with larger, varied cohorts is essential to advance understanding of ROH's associations with medical conditions and to improve clinical practices accordingly.
Collapse
Affiliation(s)
- Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Michal Levy
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Reut Matar
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Sarit Kahana
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Ifaat Agmon-Fishman
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Cochava Klein
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Merav Gurevitch
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Lina Basel-Salmon
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
- School of Medicine, Faculty of Medical and Health sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva 4920235, Israel
| | - Idit Maya
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
- School of Medicine, Faculty of Medical and Health sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
46
|
Vilaça ST, Dalapicolla J, Soares R, Guedes NMR, Miyaki CY, Aleixo A. Prioritizing Conservation Areas for the Hyacinth Macaw ( Anodorhynchus hyacinthinus) in Brazil From Low-Coverage Genomic Data. Evol Appl 2024; 17:e70039. [PMID: 39564451 PMCID: PMC11573696 DOI: 10.1111/eva.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Estimates of current genetic diversity and population connectivity are especially important for endangered species that are subject to illegal harvesting and trafficking. Genetic monitoring can also ensure that management units are sustaining viable populations, while estimating genetic structure and population dynamics can influence genetic rescue efforts and reintroduction from captive breeding and confiscated animals. The Hyacinth Macaw (Anodorhynchus hyacinthinus) is a charismatic endangered species with a fragmented (allopatric) distribution. Using low coverage genomes, we aimed to investigate the dynamics across the remaining three large disjunct populations of Hyacinth Macaws in Brazil to inform conservation strategies. We obtained low coverage DNA data for 54 individuals from seven sampling sites. Our results showed that Hyacinth Macaws have four genetically structured clusters with relatively high levels of diversity. The Pantanal biome had two genetically distinct populations, with no obvious physical barriers that might explain this differentiation. We detected signs of gene flow between populations, with some geographical regions being more connected than others. Estimates of effective population size in the past million years of the species' evolutionary history showed a decline trend with the lowest Ne in all populations reached within the last few thousand years. Our findings suggest that populations from the Pantanal biome are key to connecting sites across its distribution, and maintaining the integrity of this habitat is important for protecting the species. Given the genetic structure found, we also highlight the need of conserving all wild populations to ensure the protection of the species' evolutionary potential.
Collapse
Affiliation(s)
| | - Jeronymo Dalapicolla
- Instituto Tecnológico Vale Belém Pará Brazil
- Departamento de Sistemática e Ecologia Universidade Federal da Paraíba João Pessoa Paraíba Brazil
| | - Renata Soares
- Instituto de Biociências Universidade de São Paulo São Paulo São Paulo Brazil
| | - Neiva Maria Robaldo Guedes
- Instituto Arara Azul Campo Grande Mato Grosso do Sul Brazil
- Programa de Pós-graduação em Meio Ambiente e Desenvolvimento Regional Universidade para o Desenvolvimento do Estado e da Região do Pantanal Campo Grande Mato Grosso do Sul Brazil
| | - Cristina Y Miyaki
- Instituto de Biociências Universidade de São Paulo São Paulo São Paulo Brazil
| | | |
Collapse
|
47
|
Bertolini F, Schiavo G, Bovo S, Ribani A, Dall'Olio S, Zambonelli P, Gallo M, Fontanesi L. Signatures of selection analyses reveal genomic differences among three heavy pig breeds that constitute the genetic backbone of a dry-cured ham production system. Animal 2024; 18:101335. [PMID: 39405958 DOI: 10.1016/j.animal.2024.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 11/18/2024] Open
Abstract
The Italian pig farming industry is unique in its focus on raising heavy pigs primarily for the production of high-quality dry-cured hams. These products require pigs to be slaughtered at a live weight of around 170 kg at 9 months of age. The primary breeds used in this system are Italian Duroc, Italian Landrace, and Italian Large White which are crossed to produce lines that meet standard requirements. Over the past four decades, selection and breeding programmes for these breeds have been subjected to distinct selective pressures to highlight the characteristics of each breed. In this study, we investigated the genome of these breeds by analysing high-density single nucleotide polymorphism data from over 9 000 pigs to scan for signatures of selection using four different methods, two within breeds and two across breeds. This allowed to identify the genomic regions that differentiate these breeds as well as any relevant genes and biological terms. On a global scale, we found that the Italian Duroc breed exhibited a higher genetic differentiation from the Italian Landrace and Italian Large White breeds, with a pairwise FST value of 0.20 compared with the 0.13 between Italian Landrace and Italian Large White. This may reflect either their different origins or the different breeding goals, which are more similar for the Italian Landrace and Italian Large White breeds. Despite these genetic differences at a global level, few signatures of selection regions reached complete fixation, possibly due to challenges in detecting selection linked to quantitative polygenic traits. The differences among the three breeds are confirmed by the low level of overlap in the regions detected. Genetic enrichment analyses of the three breeds revealed pathways and genes related to various productive traits associated with growth and fat deposition. This may indicate a common selection direction aimed at enhancing specific production traits, though different biological mechanisms are likely targeted by the same directional selection in these three breeds. Therefore, these genes may play a critical role in determining the distinctive characteristics of Italian Duroc, Italian Landrace, and Italian Large White, and potentially influence the traits in crossbred pigs derived from them. Overall, the insights gained from this study will contribute to understanding how directional selection has shaped the genome of these heavy pig breeds and to better address selection strategies aimed at enhancing the meat processing industry linked with dry-cured ham production chains.
Collapse
Affiliation(s)
- F Bertolini
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.
| | - G Schiavo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - S Bovo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - A Ribani
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - S Dall'Olio
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - P Zambonelli
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - M Gallo
- Associazione Nazionale Allevatori Suini, Roma, Italy
| | - L Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
48
|
Fang S, Zhang H, Long H, Zhang D, Chen H, Yang X, Pan H, Pan X, Liu D, E G. Phylogenetic Relations and High-Altitude Adaptation in Wild Boar ( Sus scrofa), Identified Using Genome-Wide Data. Animals (Basel) 2024; 14:2984. [PMID: 39457914 PMCID: PMC11503864 DOI: 10.3390/ani14202984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
The Qinghai-Tibet Plateau (QTP) wild boar is an excellent model for investigating high-altitude adaptation. In this study, we analyzed genome-wide data from 93 wild boars compiled from various studies worldwide, including the QTP, southern and northern regions of China, Europe, Northeast Asia, and Southeast Asia, to explore their phylogenetic patterns and high-altitude adaptation based on genome-wide selection signal analysis and run of homozygosity (ROH) estimation. The findings demonstrate the alignment between the phylogenetic associations among wild boars and their geographical location. An ADMIXTURE analysis indicated a relatively close genetic relationship between QTP and southern Chinese wild boars. Analyses of the fixation index and cross-population extended haplotype homozygosity between populations revealed 295 candidate genes (CDGs) associated with high-altitude adaptation, such as TSC2, TELO2, SLC5A1, and SLC5A4. These CDGs were significantly overrepresented in pathways such as the mammalian target of rapamycin signaling and Fanconi anemia pathways. In addition, 39 ROH islands and numerous selective CDGs (e.g., SLC5A1, SLC5A4, and VCP), which are implicated in glucose metabolism and mitochondrial function, were discovered in QTP wild boars. This study not only assessed the phylogenetic history of QTP wild boars but also advanced our comprehension of the genetic mechanisms underlying the adaptation of wild boars to high altitudes.
Collapse
Affiliation(s)
- Shiyong Fang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (S.F.); (H.Z.); (H.L.)
| | - Haoyuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (S.F.); (H.Z.); (H.L.)
| | - Haoyuan Long
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (S.F.); (H.Z.); (H.L.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Hongyue Chen
- Chongqing Animal Husbandry Technology Extension Station, Chongqing 401121, China;
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China;
| | - Hongmei Pan
- Chongqing Academy of Animal Sciences, Chongqing 408599, China;
| | - Xiao Pan
- Chongqing Hechuan Animal Husbandry Station, Chongqing 401520, China;
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (S.F.); (H.Z.); (H.L.)
| |
Collapse
|
49
|
Mota LFM, Carvajal AB, Silva Neto JB, Díaz C, Carabaño MJ, Baldi F, Munari DP. Assessment of inbreeding coefficients and inbreeding depression on complex traits from genomic and pedigree data in Nelore cattle. BMC Genomics 2024; 25:944. [PMID: 39379819 PMCID: PMC11460123 DOI: 10.1186/s12864-024-10842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Nelore cattle play a key role in tropical production systems due to their resilience to harsh conditions, such as heat stress and seasonally poor nutrition. Monitoring their genetic diversity is essential to manage the negative impacts of inbreeding. Traditionally, inbreeding and inbreeding depression are assessed by pedigree-based coefficients (F), but recently, genetic markers have been preferred for their precision in capturing the inbreeding level and identifying animals at risk of reduced productive and reproductive performance. Hence, we compared the inbreeding and inbreeding depression for productive and reproductive performance traits in Nelore cattle using different inbreeding coefficient estimation methods from pedigree information (FPed), the genomic relationship matrix (FGRM), runs of homozygosity (FROH) of different lengths (> 1 Mb (genome), between 1 and 2 Mb - FROH 1-2; 2-4 Mb FROH 2-4 or > 8 Mb FROH >8) and excess homozygosity (FSNP). RESULTS The correlation between FPed and FROH was lower when the latter was based on shorter segments (r = 0.15 with FROH 1-2, r = 0.20 with FROH 2-4 and r = 0.28 with FROH 4-8). Meanwhile, the FPed had a moderate correlation with FSNP (r = 0.47) and high correlation with FROH >8 (r = 0.58) and FROH-genome (r = 0.60). The FROH-genome was highly correlated with inbreeding based on FROH>8 (r = 0.93) and FSNP (r = 0.88). The FGRM exhibited a high correlation with FROH-genome (r = 0.55) and FROH >8 (r = 0.51) and a lower correlation with other inbreeding estimators varying from 0.30 for FROH 2-4 to 0.37 for FROH 1-2. Increased levels of inbreeding had a negative impact on the productive and reproductive performance of Nelore cattle. The unfavorable inbreeding effect on productive and reproductive traits ranged from 0.12 to 0.51 for FPed, 0.19-0.59 for FGRM, 0.21-0.58 for FROH-genome, and 0.19-0.54 for FSNP per 1% of inbreeding scaled on the percentage of the mean. When scaling the linear regression coefficients on the standard deviation, the unfavorable inbreeding effect varied from 0.43 to 1.56% for FPed, 0.49-1.97% for FGRM, 0.34-2.2% for FROH-genome, and 0.50-1.62% for FSNP per 1% of inbreeding. The impact of the homozygous segments on reproductive and performance traits varied based on the chromosomes. This shows that specific homozygous chromosome segments can be signs of positive selection due to their beneficial effects on the traits. CONCLUSIONS The low correlation observed between FPed and genomic-based inbreeding estimates suggests that the presence of animals with one unknown parent (sire or dam) in the pedigree does not account for ancient inbreeding. The ROH hotspots surround genes related to reproduction, growth, meat quality, and adaptation to environmental stress. Inbreeding depression has adverse effects on productive and reproductive traits in Nelore cattle, particularly on age at puberty in young bulls and heifer calving at 30 months, as well as on scrotal circumference and body weight when scaled on the standard deviation of the trait.
Collapse
Affiliation(s)
- Lucio F M Mota
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil.
| | - Alejandro B Carvajal
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil
| | - João B Silva Neto
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil
| | - Clara Díaz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-C SIC), Madrid, 28040, Spain
| | - Maria J Carabaño
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-C SIC), Madrid, 28040, Spain
| | - Fernando Baldi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil
- National Association of Breeders and Researchers, Rua João Godoy 463, Ribeirão Preto, 14020-230, SP, Brazil
| | - Danísio P Munari
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil
- National Council for Science and Technological Development (CNPq), Brasilia, 71605-001, DF, Brazil
| |
Collapse
|
50
|
Mahar K, Goli RC, Chishi KG, Ganguly I, Dixit SP, Singh S, Choudhary S, Rathi P, Chinnareddyvari CS, Diwakar V, Metta M, Prabhu IG, Kumar A, Sarkar S, Sukhija N, Kareningappa KK. [Runs of Homozygosity Decipher Genetic Diversity in Cattle Breed Dwelling in the Colder Regions of the World]. Cytogenet Genome Res 2024; 164:154-164. [PMID: 39369710 DOI: 10.1159/000541723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Our study focuses on Yakutian cattle, a Siberian native breed, examining its inbreeding and diversity through genome-wide analysis of runs of homozygosity (ROHs). Yakutian cattle are adapted to Siberia's harsh sub-arctic conditions, enduring temperatures below -70°C. However, the population genetics studies on this breed are scanty, to document the genetic uniqueness in these cattle. RESULTS We analyzed 40 Yakutian cattle with strict quality control for ROH detection yielding 683 homozygous segments, averaging 17 per individual with an average length of 9 Mb. ROH regions were found to be involved in important pathways pertaining to cold adaptation. Autozygosity ranged from 1% to 12% of the genome, with a relatively low average inbreeding coefficient (FROH) of 0.057, as compared to other breeds. Also, the different diversity indicators, namely, principal component analysis, heterozygosity, and effective population size analysis, revealed the prevalence of genetic diversity within the breed. CONCLUSION Our findings on ROH are the first of its kind in Yakutian cattle that support their adaptability to colder environments, as evidenced by low inbreeding and high genetic diversity.
Collapse
Affiliation(s)
- Karan Mahar
- ICAR-National Dairy Research Institute, Karnal-Haryana, Karnal, India
| | - Rangasai Chandra Goli
- ICAR-National Dairy Research Institute, Karnal-Haryana, Karnal, India,
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India,
| | - Kiyevi G Chishi
- ICAR-National Dairy Research Institute, Karnal-Haryana, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | | - S P Dixit
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Sanjeev Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Sonu Choudhary
- ICAR-National Dairy Research Institute, Karnal-Haryana, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pallavi Rathi
- ICAR-National Dairy Research Institute, Karnal-Haryana, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Chandana Sree Chinnareddyvari
- ICAR-National Dairy Research Institute, Karnal-Haryana, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Vikas Diwakar
- ICAR-National Dairy Research Institute, Karnal-Haryana, Karnal, India
| | | | | | - Amit Kumar
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Soumajit Sarkar
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Nidhi Sukhija
- CSB-Central Tasar Research and Training Institute, Ranchi, India
| | | |
Collapse
|