1
|
Liaw YC, Matsuda K, Liaw YP. Identification of an novel genetic variant associated with osteoporosis: insights from the Taiwan Biobank Study. JBMR Plus 2024; 8:ziae028. [PMID: 38655459 PMCID: PMC11037432 DOI: 10.1093/jbmrpl/ziae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 04/26/2024] Open
Abstract
Purpose The purpose of this study was to identify new independent significant SNPs associated with osteoporosis using data from the Taiwan Biobank (TWBB). Material and Methods The dataset was divided into discovery (60%) and replication (40%) subsets. Following data quality control, genome-wide association study (GWAS) analysis was performed, adjusting for sex, age, and the top 5 principal components, employing the Scalable and Accurate Implementation of the Generalized mixed model approach. This was followed by a meta-analysis of TWBB1 and TWBB2. The Functional Mapping and Annotation (FUMA) platform was used to identify osteoporosis-associated loci. Manhattan and quantile-quantile plots were generated using the FUMA platform to visualize the results. Independent significant SNPs were selected based on genome-wide significance (P < 5 × 10-8) and independence from each other (r2 < 0.6) within a 1 Mb window. Positional, eQTL(expression quantitative trait locus), and Chromatin interaction mapping were used to map SNPs to genes. Results A total of 29 084 individuals (3154 osteoporosis cases and 25 930 controls) were used for GWAS analysis (TWBB1 data), and 18 918 individuals (1917 cases and 17 001 controls) were utilized for replication studies (TWBB2 data). We identified a new independent significant SNP for osteoporosis in TWBB1, with the lead SNP rs76140829 (minor allele frequency = 0.055, P-value = 1.15 × 10-08). Replication of the association was performed in TWBB2, yielding a P-value of 6.56 × 10-3. The meta-analysis of TWBB1 and TWBB2 data demonstrated a highly significant association for SNP rs76140829 (P-value = 7.52 × 10-10). In the positional mapping of rs76140829, 6 genes (HABP2, RP11-481H12.1, RNU7-165P, RP11-139 K1.2, RP11-57H14.3, and RP11-214 N15.5) were identified through chromatin interaction mapping in mesenchymal stem cells. Conclusions Our GWAS analysis using the Taiwan Biobank dataset unveils rs76140829 in the VTI1A gene as a key risk variant associated with osteoporosis. This finding expands our understanding of the genetic basis of osteoporosis and highlights the potential regulatory role of this SNP in mesenchymal stem cells.
Collapse
Affiliation(s)
- Yi-Ching Liaw
- Department of Computational Biology and Medical Sciences, Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
- Institute of Medical Science, The University of Tokyo, Laboratory of Genome Technology, Human Genome Center, Tokyo 108-8639, Japan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung 40201, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
2
|
Qin M, Gao Y, Zhang M, Wu J, Liu Y, Jiang Y, Zhang X, Wang X, Yang Y, Gao Y. Association between ADAMTS14_rs4747096 gene polymorphism and bone mineral density of Chinese Han population residing in fluorine exposed areas in ShanXi Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106059-106067. [PMID: 37725302 DOI: 10.1007/s11356-023-29698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
This study aimed to investigate the effects of fluorine and ADAMTS14_rs4747096 on bone mineral density (BMD). The survey was explored in a cross-sectional case-control study conducted in Shanxi, China. The BMD was measured by an ultrasonic bone mineral density instrument. The urine fluoride concentration was detected using the fluoride ion electrode. ADAMTS14_rs4747096 polymorphism was examined by multiplex polymerase chain reaction (PCR) and sequencing. The multinomial logistic regressions found that the urine fluoride was a risk factor for osteopenia (OR = 1.379, 95% CI: 1.127-1.687, P = 0.0018), osteoporosis (OR = 1.480, 95% CI: 1.1138-1.926, P = 0.0035), and rs4747096 AG + GG genotype increased the risk of osteoporosis (OR = 2.017, 95% CI: 1.208-3.369, P = 0.0073). In addition, the interaction between urine fluoride and rs4747096 polymorphism on the risk of decreased BMD also was observed. The study suggests that fluoride exposure and mutation G allele in ADAMTS14_rs4747096 may be risk factors for the decrease of BMD. And there is an interaction between the two influencing factors.
Collapse
Affiliation(s)
- Ming Qin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yue Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Junhua Wu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Xiaodi Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Xin Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China.
| |
Collapse
|
3
|
Lv X, Lin Y, Zhang Z, Li B, Zeng Z, Jiang X, Zhao Q, Li W, Wang Z, Yang C, Yan H, Wang Q, Huang R, Hu X, Gao L. Investigating the association between serum ADAM/ADAMTS levels and bone mineral density by mendelian randomization study. BMC Genomics 2023; 24:406. [PMID: 37468870 DOI: 10.1186/s12864-023-09449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
PURPOSE A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) have been reported potentially involved in bone metabolism and related to bone mineral density. This Mendelian Randomization (MR) analysis was performed to determine whether there are causal associations of serum ADAM/ADAMTS with BMD in rid of confounders. METHODS The genome-wide summary statistics of four site-specific BMD measurements were obtained from studies in individuals of European ancestry, including forearm (n = 8,143), femoral neck (n = 32,735), lumbar spine (n = 28,498) and heel (n = 426,824). The genetic instrumental variables for circulating levels of ADAM12, ADAM19, ADAM23, ADAMTS5 and ADAMTS6 were retrieved from the latest genome-wide association study of European ancestry (n = 5336 ~ 5367). The estimated causal effect was given by the Wald ratio for each variant, the inverse-variance weighted model was used as the primary approach to combine estimates from multiple instruments, and sensitivity analyses were conducted to assess the robustness of MR results. The Bonferroni-corrected significance was set at P < 0.0025 to account for multiple testing, and a lenient threshold P < 0.05 was considered to suggest a causal relationship. RESULTS The causal effects of genetically predicted serum ADAM/ADAMTS levels on BMD measurements at forearm, femoral neck and lumbar spine were not statistically supported by MR analyses. Although causal effect of ADAMTS5 on heel BMD given by the primary MR analysis (β = -0.006, -0.010 to 0.002, P = 0.004) failed to reach Bonferroni-corrected significance, additional MR approaches and sensitivity analyses indicated a robust causal relationship. CONCLUSION Our study provided suggestive evidence for the causal effect of higher serum levels of ADAMTS5 on decreased heel BMD, while there was no supportive evidence for the associations of ADAM12, ADAM19, ADAM23, and ADAMTS6 with BMD at forearm, femoral neck and lumbar spine in Europeans.
Collapse
Affiliation(s)
- Xin Lv
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Yuhong Lin
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhilei Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Ziliang Zeng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Xu Jiang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qiancheng Zhao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Wenpeng Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Zheyu Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Canchun Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Haolin Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qiwei Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Renyuan Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Xumin Hu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| | - Liangbin Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
4
|
Sheng H, Zhang J, Pan C, Wang S, Gu S, Li F, Ma Y, Ma Y. Genome-wide identification of bovine ADAMTS gene family and analysis of its expression profile in the inflammatory process of mammary epithelial cells. Int J Biol Macromol 2023:125304. [PMID: 37315674 DOI: 10.1016/j.ijbiomac.2023.125304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS) are secreted, multi-domain matrix-related zinc endopeptidases that play a role in organogenesis, assembly and degradation of extracellular matrix (ECM), cancer and inflammation. Genome-wide identification and analysis of the bovine ADAMTS gene family has not yet been carried out. In this study, 19 ADAMTS family genes were identified in Bos taurus by genome-wide bioinformatics analysis, and they were unevenly distributed on 12 chromosomes. Phylogenetic analysis shows that the Bos taurus ADAMTS are divided into eight subfamilies, with highly consistent gene structures and motifs within the same subfamily. Collinearity analysis showed that the Bos taurus ADAMTS gene family is homologous to other bovine subfamily species, and many ADAMTS genes may be derived from tandem replication and segmental replication. In addition, based on the analysis of RNA-seq data, we found the expression pattern of ADAMTS gene in different tissues. Meanwhile, we also analyzed the expression profile of ADAMTS gene in the inflammatory response of bovine mammary epithelial cells (BMECs) stimulated by LPS by qRT-PCR. The results can provide ideas for understanding the evolutionary relationship and expression pattern of ADAMTS gene in Bovidae, and clarify the theoretical basis of the function of ADAMTS in inflammation.
Collapse
Affiliation(s)
- Hui Sheng
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Junxing Zhang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Cuili Pan
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Shuzhe Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Shuaifeng Gu
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Fen Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Yanfen Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
5
|
Secreted protease ADAMTS18 in development and disease. Gene 2023; 858:147169. [PMID: 36632911 DOI: 10.1016/j.gene.2023.147169] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
ADAMTS18 was identified in 2002 as a member of the ADAMTS family of 19 secreted Zinc-dependent metalloproteinases. Prior to 2016, ADAMTS18 was known as a candidate gene associated with a wide range of pathologies, particularly various malignancies and eye disorders. However, functions and substrates of ADAMTS18 in normal conditions were unknown. Since 2016, with the development of Adamts18 knockout models, many studies had been conducted on the Adamts18 gene in vivo. These studies revealed that ADAMTS18 is essential for the morphology and organogenesis of several epithelial organs (e.g., lung, kidney, breast, salivary glands, and lacrimal glands), vascular and neuronal systems, adipose tissue, and reproductive tracts. In this review, we describe the current understanding of ADAMTS18 and its substrates and regulators. Limitations in translating new findings on ADAMTS18 to clinical practice are also discussed.
Collapse
|
6
|
Li Y, Liu Q, Ma Q, Ma Z, Chen J, Yu A, Ma C, Qiu L, Shi H, Liang H, Hu M. Identification of key variants correlated with susceptibility of primary osteoporosis in the Chinese Han group. Ann Hum Genet 2023; 87:63-74. [PMID: 36479902 DOI: 10.1111/ahg.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Primary osteoporosis is a systemic skeletal disease characterized by reduced bone mass and vulnerability to fractures. The genetics of osteoporosis in the Chinese population remain unclear, which hinders the prevention and treatment of osteoporosis in China. This study aimed to explore the susceptibility genes and the roles played by their variants in osteoporosis. METHODS Blood samples were collected from 45 osteoporosis patients and 30 healthy individuals, and genome-wide association study was performed on array data. The expression levels of the candidate gene in different genotypes were further determined by using quantitative real-time PCR. Moreover, the differentiation capacity of bone marrow mesenchymal stem cells under different genotypes from osteoporosis patients was investigated. RESULTS The most significant variant rs1891632 located in the upstream (918 bp) region of CRB2, which could down-regulate the expression levels of CRB2 in genotype-tissue expression database and played an essential role in the regulation of osteoblastic and osteoclastic differentiation during skeletal development. Another significant variant rs1061657 located within the 3'UTR region of TBX3 gene. We found that the mRNA levels of TBX3 decreased in the bMSCs of old osteoporosis patients. Interestingly, osteoblast differentiation capacity and TBX3 mRNA levels were similar between the young healthy individuals carrying derived and ancestral allele of rs1061657, whereas the differentiation capacity and TBX3 mRNA levels dramatically declined in elderly patients with osteoporosis. CONCLUSIONS The variant rs1061657 might affect the osteogenesis of bMSCs in an age-dependent manner and that TBX3 may be a key susceptibility gene for primary osteoporosis. In conclusion, CRB2 and TBX3 may influence the development of osteoporosis; additionally, rs1891632 and rs1061657, as the key variants first reported to be associated with primary osteoporosis, may potentially contribute to predicting the risk of osteoporosis (especially for older individuals) and may serve as therapeutic targets.
Collapse
Affiliation(s)
- Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Qi Liu
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Qiuye Ma
- Orthopedics, Chongqing Jiulongpo District Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zhaoxia Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Juan Chen
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - An Yu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Changguo Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Lihua Qiu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Hongsuo Liang
- Joint Surgery Department of the Second People's Hospital of Nanning City, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| |
Collapse
|
7
|
Transcriptome Sequencing Analysis of lncRNA and mRNA Expression Profiles in Bone Nonunion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9110449. [PMID: 36275904 PMCID: PMC9581694 DOI: 10.1155/2022/9110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
Background Bone nonunion is a serious complication of fracture. This study explored the differentially expressed lncRNAs (DELs) and mRNAs (DEGs) and identified potential lncRNA-mRNA interactions in bone nonunion. Methods We extracted total RNA from three bone nonunion and three bone union patient tissue samples. RNA sequencing was performed to detect DELs and DEGs between bone nonunion and union tissue samples. The lncRNAs and genes with absolute log2-fold change (log2FC) > 1 and adjusted p value < 0.05 were further chosen for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. lncRNA and targeted mRNA interaction networks were constructed. Results We observed 179 DELs and 415 DEGs between the bone nonunion and union tissue samples. GO analysis indicated that DELs and DEGs were mainly enriched in the chondroitin sulfate proteoglycan biosynthetic process. DELs and DEGs were enriched in “ECM-receptor interaction” and “Staphylococcus aureus infection” KEGG pathways. Several potential lncRNA-mRNA interactions were also predicted. Conclusions This study identified bone nonunion-associated lncRNAs and mRNAs using deep sequencing that may be useful as potential biomarkers for bone nonunion.
Collapse
|
8
|
Panteli M, Vun JSH, Pountos I, J Howard A, Jones E, Giannoudis PV. Biological and molecular profile of fracture non-union tissue: A systematic review and an update on current insights. J Cell Mol Med 2022; 26:601-623. [PMID: 34984803 PMCID: PMC8817135 DOI: 10.1111/jcmm.17096] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 01/13/2023] Open
Abstract
Fracture non‐union represents a common complication, seen in 5%–10% of all acute fractures. Despite the enhancement in scientific understanding and treatment methods, rates of fracture non‐union remain largely unchanged over the years. This systematic review investigates the biological, molecular and genetic profiles of both (i) non‐union tissue and (ii) non–union‐related tissues, and the genetic predisposition to fracture non‐union. This is crucially important as it could facilitate earlier identification and targeted treatment of high‐risk patients, along with improving our understanding on pathophysiology of fracture non‐union. Since this is an update on our previous systematic review, we searched the literature indexed in PubMed Medline; Ovid Medline; Embase; Scopus; Google Scholar; and the Cochrane Library using Medical Subject Heading (MeSH) or Title/Abstract words (non‐union(s), non‐union(s), human, tissue, bone morphogenic protein(s) (BMPs) and MSCs) from August 2014 (date of our previous publication) to 2 October 2021 for non‐union tissue studies, whereas no date restrictions imposed on non–union‐related tissue studies. Inclusion criteria of this systematic review are human studies investigating the characteristics and properties of non‐union tissue and non–union‐related tissues, available in full‐text English language. Limitations of this systematic review are exclusion of animal studies, the heterogeneity in the definition of non‐union and timing of tissue harvest seen in the included studies, and the search term MSC which may result in the exclusion of studies using historical terms such as ‘osteoprogenitors’ and ‘skeletal stem cells’. A total of 24 studies (non‐union tissue: n = 10; non–union‐related tissues: n = 14) met the inclusion criteria. Soft tissue interposition, bony sclerosis of fracture ends and complete obliteration of medullary canal are commonest macroscopic appearances of non‐unions. Non‐union tissue colour and surrounding fluid are two important characteristics that could be used clinically to distinguish between septic and aseptic non‐unions. Atrophic non‐unions had a predominance of endochondral bone formation and lower cellular density, when compared against hypertrophic non‐unions. Vascular tissues were present in both atrophic and hypertrophic non‐unions, with no difference in vessel density between the two. Studies have found non‐union tissue to contain biologically active MSCs with potential for osteoblastic, chondrogenic and adipogenic differentiation. Proliferative capacity of non‐union tissue MSCs was comparable to that of bone marrow MSCs. Rates of cell senescence of non‐union tissue remain inconclusive and require further investigation. There was a lower BMP expression in non‐union site and absent in the extracellular matrix, with no difference observed between atrophic and hypertrophic non‐unions. The reduced BMP‐7 gene expression and elevated levels of its inhibitors (Chordin, Noggin and Gremlin) could potentially explain impaired bone healing observed in non‐union MSCs. Expression of Dkk‐1 in osteogenic medium was higher in non‐union MSCs. Numerous genetic polymorphisms associated with fracture non‐union have been identified, with some involving the BMP and MMP pathways. Further research is required on determining the sensitivity and specificity of molecular and genetic profiling of relevant tissues as a potential screening biomarker for fracture non‐unions.
Collapse
Affiliation(s)
- Michalis Panteli
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK.,Leeds Orthopaedic & Trauma Sciences, Leeds General Infirmary, University of Leeds, Leeds, UK
| | - James S H Vun
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK.,Leeds Orthopaedic & Trauma Sciences, Leeds General Infirmary, University of Leeds, Leeds, UK
| | - Ippokratis Pountos
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Anthony J Howard
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK.,Leeds Orthopaedic & Trauma Sciences, Leeds General Infirmary, University of Leeds, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Peter V Giannoudis
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK.,Leeds Orthopaedic & Trauma Sciences, Leeds General Infirmary, University of Leeds, Leeds, UK.,NIHR Leeds Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK
| |
Collapse
|
9
|
Bae JH, Park D. Effect of dietary calcium on the gender-specific association between polymorphisms in the PTPRD locus and osteoporosis. Clin Nutr 2022; 41:680-686. [DOI: 10.1016/j.clnu.2022.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/01/2022] [Accepted: 01/21/2022] [Indexed: 11/03/2022]
|
10
|
Liu C, Liu Y, Yu Y, Zhao Y, Zhang D, Yu A. Identification of Up-Regulated ANXA3 Resulting in Fracture Non-Union in Patients With T2DM. Front Endocrinol (Lausanne) 2022; 13:890941. [PMID: 35813617 PMCID: PMC9263855 DOI: 10.3389/fendo.2022.890941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetes mellitus is a metabolic disorder that increases fracture risk and interferes with bone formation and impairs fracture healing. Genomic studies on diabetes and fracture healing are lacking. We used a weighted co-expression network analysis (WGCNA) method to identify susceptibility modules and hub genes associated with T2DM and fracture healing. First, we downloaded the GSE95849, GSE93213, GSE93215, and GSE142786 data from the Gene Expression Omnibus (GEO) website, analyzed differential expression genes and constructed a WGCNA network. Second, we screened out 30 hub genes, which were found to be enriched in neutrophil activation, translational initiation, RAGE receptor binding, propanoate metabolism, and other pathways through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) analyses. Third, we searched for genes related to bone metabolism and fracture healing in the published genome-wide single nucleotide polymorphism (SNP) data, built a protein-protein interaction (PPI) network with hub genes, and found that they were associated with metabolic process, blood vessel development, and extracellular matrix organization. ANXA3 was identified as the biomarker based on gene expression and correlation analysis. And the AUC value of it was 0.947. Fourth, we explored that ANXA3 was associated with neutrophils in fracture healing process by single-cell RNA sequencing analysis. Finally, we collected clinical patient samples and verified the expression of ANXA3 by qRT-PCR in patents with T2DM and fracture non-union. In conclusion, this is the first genomics study on the effect of T2DM on fracture healing. Our study identified some characteristic modules and hub genes in the etiology of T2DM-associated fracture non-union, which may help to further investigate the molecular mechanisms. Up-regulated ANXA3 potentially contributed to fracture non-union in T2DM by mediating neutrophils. It can be a prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Aixi Yu
- *Correspondence: Dong Zhang, ; Aixi Yu,
| |
Collapse
|
11
|
Bergholt NL, Demirel A, Pedersen M, Ding M, Kragstrup TW, Andersen T, Deleuran BW, Foldager CB. Intermittent Hypoxic Therapy Inhibits Allogenic Bone-Graft Resorption by Inhibition of Osteoclastogenesis in a Mouse Model. Int J Mol Sci 2021; 23:323. [PMID: 35008749 PMCID: PMC8745522 DOI: 10.3390/ijms23010323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 01/04/2023] Open
Abstract
Systemic Intermittent Hypoxic Therapy (IHT) relies on the adaptive response to hypoxic stress. We investigated allogenic bone-graft resorption in the lumbar spine in 48 mice. The mice were exposed to IHT for 1 week before surgery or 1 week after surgery and compared with controls after 1 and 4 weeks. Complete graft resorption was observed in 33-36% of the animals in the control group, but none in the preoperative IHT group. Increased bone-graft volume was demonstrated by micro-computed tomography in the preoperative IHT group after 1 week (p = 0.03) while a non-significant difference was observed after 4 weeks (p = 0.12). There were no significant differences in the postoperative IHT group. Increased concentration of immune cells was localized in the graft area, and more positive tartrate-resistant acid phosphatase (TRAP) staining was found in controls compared with IHT allogenic bone grafts. Systemic IHT resulted in a significant increase of the major osteoclast inhibitor osteoprotegerin as well as osteogenic and angiogenic regulators Tgfbr3, Fst3l, Wisp1, and Vegfd. Inflammatory cytokines and receptor activator of nuclear factor kappa-B ligand (RANKL) stimulators IL-6, IL-17a, IL-17f, and IL-23r increased after 1 and 4 weeks, and serum RANKL expression remained constant while Ccl3 and Ccl5 decreased. We conclude that the adaptive response to IHT activates numerous pathways leading to inhibition of osteoclastic activity and inhibition of allogenic bone-graft resorption.
Collapse
Affiliation(s)
- Natasja Leth Bergholt
- Orthopaedic Research Laboratory, Aarhus University Hospital, 8200 Aarhus, Denmark; (N.L.B.); (A.D.)
| | - Ari Demirel
- Orthopaedic Research Laboratory, Aarhus University Hospital, 8200 Aarhus, Denmark; (N.L.B.); (A.D.)
| | - Michael Pedersen
- Comparative Medicine Laboratory, Aarhus University, 8200 Aarhus, Denmark;
| | - Ming Ding
- Department of Orthopaedic Surgery and Traumatology, Odense University Hospital and University of Southern Denmark, 5000 Odense, Denmark;
| | - Tue Wenzel Kragstrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.W.K.); (T.A.); (B.W.D.)
- Department of Rheumatology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Thomas Andersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.W.K.); (T.A.); (B.W.D.)
| | - Bent Winding Deleuran
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.W.K.); (T.A.); (B.W.D.)
- Department of Rheumatology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Casper Bindzus Foldager
- Orthopaedic Research Laboratory, Aarhus University Hospital, 8200 Aarhus, Denmark; (N.L.B.); (A.D.)
- Comparative Medicine Laboratory, Aarhus University, 8200 Aarhus, Denmark;
| |
Collapse
|
12
|
Greenbaum J, Su KJ, Zhang X, Liu Y, Liu A, Zhao LJ, Luo Z, Tian Q, Shen H, Deng HW. A multiethnic whole genome sequencing study to identify novel loci for bone mineral density. Hum Mol Genet 2021; 31:1067-1081. [PMID: 34673960 PMCID: PMC8976433 DOI: 10.1093/hmg/ddab305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
At present, there have only been a few DNA sequencing-based studies to explore the genetic determinants of bone mineral density (BMD). We carried out the largest whole genome sequencing analysis to date for femoral neck and spine BMD (n = 4981), with one of the highest average sequencing depths implemented thus far at 22×, in a multiethnic sample (58% Caucasian and 42% African American) from the Louisiana Osteoporosis Study (LOS). The LOS samples were combined with summary statistics from the GEFOS consortium and several independent samples of various ethnicities to perform GWAS meta-analysis (n = 44 506). We identified 31 and 30 genomic risk loci for femoral neck and spine BMD, respectively. The findings substantiate many previously reported susceptibility loci (e.g. WNT16 and ESR1) and reveal several others that are either novel or have not been widely replicated in GWAS for BMD, including two for femoral neck (IGF2 and ZNF423) and one for spine (SIPA1). Although we were not able to uncover ethnicity specific differences in the genetic determinants of BMD, we did identify several loci which demonstrated sex-specific associations, including two for women (PDE4D and PIGN) and three for men (TRAF3IP2, NFIB and LYSMD4). Gene-based rare variant association testing detected MAML2, a regulator of the Notch signaling pathway, which has not previously been suggested, for association with spine BMD. The findings provide novel insights into the pathophysiological mechanisms of osteoporosis.
Collapse
Affiliation(s)
- Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Kuan-Jui Su
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Xiao Zhang
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Yong Liu
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA,School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, PR China
| | - Anqi Liu
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Lan-Juan Zhao
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zhe Luo
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Qing Tian
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hong-Wen Deng
- To whom correspondence should be addressed at: Section of Biomedical Informatics and Genomics, Director, Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal St., RM 1619F, New Orleans, LA 70112, USA.
| |
Collapse
|
13
|
Li X, Cheng J, Dong B, Yu X, Zhao X, Zhou Z. Common Variants of the OPG gene Are Associated with Osteoporosis Risk: A Meta-Analysis. Genet Test Mol Biomarkers 2021; 25:600-610. [PMID: 34515523 DOI: 10.1089/gtmb.2020.0282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: The RANKL/RANK/OPG signaling pathway plays a critical role in osteoclastogenesis and bone remodeling. The associations between sequence variants of the osteoprotegerin (OPG) gene and osteoporosis risk have been widely investigated but remain inconclusive. Objective: We performed a meta-analysis to evaluate the associations between OPG gene variants and osteoporosis risk. Methods: We searched electronic databases and included studies meeting inclusion criteria. The genetic associations of four common OPG variants, A163G, T245G, T950C, and G1181C, with osteoporosis risk were explored. Pooled odds ratios (OR) and 95% confidence intervals (95% CI) were calculated for multiple genetic models. Subgroup analyses including ethnicity, gender, menopausal status, sample size, and control source were also performed. Results: Twenty-six studies comprising 4879 osteoporosis cases and 5708 controls were included. The A163G variant was found to be significantly associated with an increased risk of osteoporosis under both the allelic (G vs. A: OR = 1.45, 95% CI 1.29-1.64, p < 0.001) and dominant models (GG+GA vs. AA: OR = 1.48, 95% CI 1.29-1.70, p < 0.001). Significant associations were also found between the T245G variant and osteoporosis risk. In addition, we observed a reduced risk of osteoporosis in women with the CC genotype at T950C (OR = 0.76, 95% CI 0.64-0.89, p = 0.001) and among Caucasians with the GG or CG genotypes at the G1181C locus (OR = 0.78, 95% CI 0.64-0.94, p = 0.010). In postmenopausal women, only the GG/GA genotypes at the A163G variant were more predisposed to osteoporosis (OR = 1.31, 95% CI 1.00-1.71), whereas CC/CG carriers of G1181C locus may have reduced risk (OR = 0.83, 95% CI 0.66-1.03). Conclusions: Common variants of the OPG gene are associated with osteoporosis risk, especially in the Caucasian population and in the female subgroup. These genetic markers could potentially be used as predictive markers for osteoporosis.
Collapse
Affiliation(s)
- Xiaobin Li
- Department of Orthopedic Trauma, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Junwen Cheng
- Department of Orthopedic Trauma, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Bin Dong
- Department of Orthopedic Trauma, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Xiaoping Yu
- Laboratory Department, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Xiaona Zhao
- Department of Orthopedic Trauma, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Zhikang Zhou
- Department of Orthopedic Trauma, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| |
Collapse
|
14
|
Lin X, Wu T, Wang L, Dang S, Zhang W. ADAMTS18 deficiency leads to preputial gland hypoplasia and fibrosis in male mice. Reprod Biol 2021; 21:100542. [PMID: 34388417 DOI: 10.1016/j.repbio.2021.100542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
ADAMTSs (A disintegrin and metalloproteinase with thrombospondin motifs) are a family of 19 secreted zinc metalloproteinases that play a major role in the assembly and degradation of the extracellular matrix (ECM) during development, morphogenesis, tissue repair, and remodeling. ADAMTS18 is a poorly characterized member of the ADAMTS family. Previously, ADAMTS18 was found to participate in the development of female reproductive tract in mice. However, whether ADAMTS18 also plays a role in the development of male reproductive system remains unclear. In this study, Adamts18 mRNA was found to be highly expressed in the basal cells of the developing preputial gland. Male Adamts18 knockout (Adamts18-/-) mice exhibit abnormal preputial gland morphogenesis, including reduced size and sharp outline. Histological analyses of preputial gland from 2-week-old male Adamts18-/- mice showed significant atrophy of the whole gland. Preputial glands from 7 months and older Adamts18-/- mice appeared macroscopic swelling on their surface. Histologically, preputial gland swelling is characterized by tissue fibrosis and thicker keratinized squamous cell layer. Preputial gland lesions in age-matched male Adamts18+/+ mice were barely detected. ADAMTS18 deficiency does not lead to significant changes in morphogenesis of prostate and testis in male mice. These results indicate that ADAMTS18 is required for normal morphogenesis and homeostasis of the preputial gland in male mice.
Collapse
Affiliation(s)
- Xiaotian Lin
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, East China Normal University, Shanghai, 200062, China
| | - Taojing Wu
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, East China Normal University, Shanghai, 200062, China
| | - Liya Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, East China Normal University, Shanghai, 200062, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
15
|
Yang N, Zhang Q, Ye S, Lu T, Sun M, Wang L, Wang M, Pan YH, Dang S, Zhang W. Adamts18 Deficiency Causes Spontaneous SMG Fibrogenesis in Adult Mice. J Dent Res 2021; 101:226-234. [PMID: 34323105 DOI: 10.1177/00220345211029270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chronic sclerosing sialadenitis of the submandibular gland (also known as Küttner tumor) is characterized by concomitant swelling of the submandibular glands secondary to strong lymphocytic infiltration and fibrosis. The pathogenesis of this disease has been unclear, but it is associated with immune disorders. ADAMTS18 is a member of the ADAMTS superfamily of extracellular proteinases. In this study, we showed that Adamts18 is highly expressed in submandibular salivary gland (SMG) during embryonic development and decreases but is retained in adult SMG tissue in mice. Adamts18 deficiency led to reduced cleft formation and epithelial branching in embryonic SMG before embryonic day 15.5 in mice. No significant histologic changes in the later stages of branching or the morphology of SMG were detected in Adamts18-/- mice. However, Adamts18 deficiency causes spontaneous SMG fibrogenesis and fibrosis in adult mice. At 8 wk of age, Adamts18-/- mice began to manifest the first signs of pathologic changes of mild fibrosis and CD11b+ cell infiltration in SMG tissues. At ≥8 mo, all male and female Adamts18-/- mice developed unilateral or bilateral SMG scleroma that is similar to patients with chronic sclerosing sialadenitis of the submandibular gland. Adamts18-/- mice also showed secretory dysfunction and severe dental caries. Histologically, SMG scleroma is characterized by progressive periductal fibrosis, acinar atrophy, irregular duct ectasis, and dense infiltration of IgG-positive plasma cells. A significant infiltration of CD4+ T lymphocytes and CD11b+ monocytes and macrophages was also detected in the SMG scleroma of Adamts18-/- mice. The levels of TGF-β1, IL-6, and IL-33 were significantly increased in Adamts18-/- SMGs, which induces chronic inflammation and myofibroblast activation, ultimately leading to fibrosis. This study indicates that Adamts18 regulates the early branching morphogenesis of embryonic SMG and plays a role in protecting from spontaneous SMG fibrogenesis via modulating local inflammation, autoimmune reaction, and myofibroblast activation in adult mice.
Collapse
Affiliation(s)
- N Yang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Q Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - S Ye
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - T Lu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - M Sun
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - L Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - M Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Y H Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - S Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
16
|
Lin X, Wang C, Zhang Q, Pan YH, Dang S, Zhang W. ADAMTS18 regulates vaginal opening through influencing the fusion of Mullerian duct and apoptosis of vaginal epithelial cells in mice. Reprod Biol 2021; 21:100537. [PMID: 34271244 DOI: 10.1016/j.repbio.2021.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/08/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) enzymes are secreted metalloproteinases with major roles in development, morphogenesis, and tissue repair via the assembly and degradation of extracellular matrix (ECM). In this study, we investigated the role of ADAMTS18 in the development of the reproductive tract in female mice by phenotyping Adamts18 knockout (Adamts18-/-) mice. The results showed that Adamst18 mRNAs were abundantly expressed in vaginal epithelial cells and muscularis cells of the developing vagina. At the time of vaginal opening (5 weeks of age), about 41 % of Adamts18-/- females showed enlarged protrusions in the upper and middle parts of the vagina, reduced vaginal length, and simultaneously exhibited vaginal atresia. 6% Adamts18-/- females exhibited vaginal septum. Histological analyses revealed that the paired Mullerian ducts in ∼33 % female Adamts18-/- embryos failed to fuse at embryonic day 15.5 (E15.5) resulting in the formation of two vaginal cavities. Results of TUNEL assay and immunohistochemistry for caspase-3 showed that the number of apoptotic cells in the terminal portion of the vagina of 5-week-old Adamts18-/- females with vaginal atresia was significantly decreased. Adamts18-/- females also showed a significant decrease in serum estradiol E2 compared to age-matched Adamts18+/+ females. Results of qRT-PCR showed that the expression level of the anti-apoptosis gene Bcl-2 was significantly increased and that of the apoptosis-related gene Epha1 was decreased in the vagina of 5-week-old Adamts18-/- females. These results suggest that ADAMTS18 regulates vaginal opening through influencing the fusion of Mullerian ducts and apoptosis of vaginal cells in mice.
Collapse
Affiliation(s)
- Xiaotian Lin
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Caiyun Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Qi Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
17
|
Ye S, Yang N, Lu T, Wu T, Wang L, Pan YH, Cao X, Yuan X, Wisniewski T, Dang S, Zhang W. Adamts18 modulates the development of the aortic arch and common carotid artery. iScience 2021; 24:102672. [PMID: 34189436 PMCID: PMC8215225 DOI: 10.1016/j.isci.2021.102672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/04/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Members of a disintegrin and metalloproteinases with thrombospondin motif (ADAMTS) family have been implicated in various vascular diseases. However, their functional roles in early embryonic vascular development are unknown. In this study, we showed that Adamts18 is highly expressed at E11.5-E14.5 in cells surrounding the embryonic aortic arch (AOAR) and the common carotid artery (CCA) during branchial arch artery development in mice. Adamts18 deficiency was found to cause abnormal development of AOAR, CCA, and the third and fourth branchial arch appendages, leading to hypoplastic carotid body, thymus, and variation of middle cerebral artery. Adamts18 was shown to affect the accumulation of extracellular matrix (ECM) components, in particular fibronectin (Fn), around AOAR and CCA. As a result of increased Fn accumulation, the Notch3 signaling pathway was activated to promote the differentiation of cranial neural crest cells (CNCCs) to vascular smooth muscle cells. These data indicate that Adamts18-mediated ECM homeostasis is crucial for the differentiation of CNCCs.
Collapse
Affiliation(s)
- Shuai Ye
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Ning Yang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Tiantian Lu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Taojing Wu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Liya Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xiaobing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, New York University Langone Health, New York, NY, USA
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
18
|
Huebner M, Börnigen D, Deckert A, Holle R, Meisinger C, Müller-Nurasyid M, Peters A, Rathmann W, Becher H. Genetic Variation and Cardiovascular Risk Factors: A Cohort Study on Migrants from the Former Soviet Union and a Native German Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126215. [PMID: 34201265 PMCID: PMC8227685 DOI: 10.3390/ijerph18126215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/17/2022]
Abstract
Resettlers are a large migrant group of more than 2 million people in Germany who migrated mainly from the former Soviet Union to Germany after 1989. We sought to compare the distribution of the major risk factors for cardiovascular disease (CVD) and to investigate the overall genetic differences in a study population which consisted of resettlers and native (autochthone) Germans. This was a joint analysis of two cohort studies which were performed in the region of Augsburg, Bavaria, Germany, with 3363 native Germans and 363 resettlers. Data from questionnaires and physical examinations were used to compare the risk factors for cardiovascular diseases between the resettlers and native Germans. A population-based genome-wide association analysis was performed in order to identify the genetic differences between the two groups. The distribution of the major risk factors for CVD differed between the two groups. The resettlers lead a less active lifestyle. While female resettlers smoked less than their German counterparts, the men showed similar smoking behavior. SNPs from three genes (BTNL2, DGKB, TGFBR3) indicated a difference in the two populations. In other studies, these genes have been shown to be associated with CVD, rheumatoid arthritis and osteoporosis, respectively.
Collapse
Affiliation(s)
- Marianne Huebner
- Institute for Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48864, USA
| | - Daniela Börnigen
- Bioinformatics Core Facility, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| | - Andreas Deckert
- Institute of Global Health, Epidemiology and Biostatistics, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany;
| | - Rolf Holle
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, GmbH, 85764 Neuherberg, Germany;
| | - Christa Meisinger
- German Research Center for Environmental Health, Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (C.M.); (A.P.)
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Annette Peters
- German Research Center for Environmental Health, Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (C.M.); (A.P.)
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 Neuherberg, Germany;
- German Diabetes Center, Institute for Biometrics and Epidemiology, 40225 Duesseldorf, Germany
| | - Heiko Becher
- Institute for Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
- Correspondence: ; Tel.: +49-(0)40-7410-59550
| |
Collapse
|
19
|
van Spelde AM, Schroeder H, Kjellström A, Lidén K. Approaches to osteoporosis in paleopathology: How did methodology shape bone loss research? INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 33:245-257. [PMID: 34044198 DOI: 10.1016/j.ijpp.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This paper will review how different methods employed to study bone loss in the past were used to explore different questions and aspects of bone loss, how methodology has changed over time, and how these different approaches have informed our understanding of bone loss in the past. MATERIALS AND METHODS A review and discussion is conducted on research protocols and results of 84 paleopathology publications on bone loss in archaeological skeletal collections published between 1969 and 2021. CONCLUSIONS The variety in research protocols confounds accurate meta-analysis of previously published research; however, more recent publications incorporate a combination of bone mass and bone quality based methods. Biased sample selection has resulted in a predominance of European and Medieval publications, limiting more general observations on bone loss in the past. Collection of dietary or paleopathological covariables is underemployed in the effort to interpret bone loss patterns. SIGNIFICANCE Paleopathology publications have demonstrated differences in bone loss between distinct archaeological populations, between sex and age groups, and have suggested factors underlying observed differences. However, a lack of a gold standard has encouraged the use of a wide range of methods. Understanding how this array of methods effects results is crucial in contextualizing our knowledge of bone loss in the past. LIMITATIONS The development of a research protocol is also influenced by available expertise, available equipment, restrictions imposed by the curator, and site-specific taphonomic aspects. These factors will likely continue to cause (minor) biases even if a best practice can be established. SUGGESTIONS FOR FUTURE RESEARCH Greater effort to develop uniform terminology and operational definitions of osteoporosis in skeletal remains, as well as the expansion of time scale and geographical areas studied. The Next-Generation Sequencing revolution has also opened up the possibility of ancient DNA analyses to study genetic predisposition to bone loss in the past.
Collapse
Affiliation(s)
- Anne-Marijn van Spelde
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 114 18 Stockholm, Sweden; The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark.
| | - Hannes Schroeder
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Anna Kjellström
- Osteological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 114 18 Stockholm, Sweden
| | - Kerstin Lidén
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 114 18 Stockholm, Sweden
| |
Collapse
|
20
|
Zhou Z, Wang M, Yang J, Liu B, Li L, Shi Y, Pu F, Xu P. Genome-wide association analysis reveals genetic variations and candidate genes associated with growth-related traits and condition factor in Takifugu bimaculatus. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
21
|
Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res 2021; 9:23. [PMID: 33927194 PMCID: PMC8085014 DOI: 10.1038/s41413-021-00143-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023] Open
Abstract
Osteoporosis is a common skeletal disease, affecting ~200 million people around the world. As a complex disease, osteoporosis is influenced by many factors, including diet (e.g. calcium and protein intake), physical activity, endocrine status, coexisting diseases and genetic factors. In this review, we first summarize the discovery from genome-wide association studies (GWASs) in the bone field in the last 12 years. To date, GWASs and meta-analyses have discovered hundreds of loci that are associated with bone mineral density (BMD), osteoporosis, and osteoporotic fractures. However, the GWAS approach has sometimes been criticized because of the small effect size of the discovered variants and the mystery of missing heritability, these two questions could be partially explained by the newly raised conceptual models, such as omnigenic model and natural selection. Finally, we introduce the clinical use of GWAS findings in the bone field, such as the identification of causal clinical risk factors, the development of drug targets and disease prediction. Despite the fruitful GWAS discoveries in the bone field, most of these GWAS participants were of European descent, and more genetic studies should be carried out in other ethnic populations to benefit disease prediction in the corresponding population.
Collapse
|
22
|
Rocha-Braz MGM, França MM, Fernandes AM, Lerario AM, Zanardo EA, de Santana LS, Kulikowski LD, Martin RM, Mendonca BB, Ferraz-de-Souza B. Comprehensive Genetic Analysis of 128 Candidate Genes in a Cohort With Idiopathic, Severe, or Familial Osteoporosis. J Endocr Soc 2020; 4:bvaa148. [PMID: 33195954 PMCID: PMC7645613 DOI: 10.1210/jendso/bvaa148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Context The genetic bases of osteoporosis (OP), a disorder with high heritability, are poorly understood at an individual level. Cases of idiopathic or familial OP have long puzzled clinicians as to whether an actionable genetic cause could be identified. Objective We performed a genetic analysis of 28 cases of idiopathic, severe, or familial osteoporosis using targeted massively parallel sequencing. Design Targeted sequencing of 128 candidate genes was performed using Illumina NextSeq. Variants of interest were confirmed by Sanger sequencing or SNP array. Patients and Setting Thirty-seven patients in an academic tertiary hospital participated (54% male; median age, 44 years; 86% with fractures), corresponding to 28 sporadic or familial cases. Main Outcome Measure The identification of rare stop-gain, indel, splice site, copy-number, or nonsynonymous variants altering protein function. Results Altogether, we identified 28 variants of interest, but only 3 were classified as pathogenic or likely pathogenic variants: COL1A2 p.(Arg708Gln), WNT1 p.(Gly169Asp), and IDUA p.(His82Gln). An association of variants in different genes was found in 21% of cases, including a young woman with severe OP bearing WNT1, PLS3, and NOTCH2 variants. Among genes of uncertain significance analyzed, a potential additional line of evidence has arisen for GWAS candidates GPR68 and NBR1, warranting further studies. Conclusions While we hope that continuing efforts to identify genetic predisposition to OP will lead to improved and personalized care in the future, the likelihood of identifying actionable pathogenic variants in intriguing cases of idiopathic or familial osteoporosis is seemingly low.
Collapse
Affiliation(s)
- Manuela G M Rocha-Braz
- Laboratorio de Endocrinologia Celular e Molecular LIM-25, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Monica M França
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,The University of Chicago, Department of Medicine, Section of Endocrinology, Chicago, Illinois USA
| | - Adriana M Fernandes
- Laboratorio de Endocrinologia Celular e Molecular LIM-25, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio M Lerario
- Laboratorio de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Evelin A Zanardo
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas S de Santana
- Laboratorio de Endocrinologia Celular e Molecular LIM-25, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Leslie D Kulikowski
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Regina M Martin
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Berenice B Mendonca
- Laboratorio de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Ferraz-de-Souza
- Laboratorio de Endocrinologia Celular e Molecular LIM-25, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Shinohara T, Urayama KY, Watanabe A, Akahane K, Goi K, Huang M, Kagami K, Abe M, Sugita K, Okada Y, Goto H, Minegishi M, Iwamoto S, Inukai T. Inherited genetic variants associated with glucocorticoid sensitivity in leukaemia cells. J Cell Mol Med 2020; 24:12920-12932. [PMID: 33002292 PMCID: PMC7701530 DOI: 10.1111/jcmm.15882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
Identification of genetic variants associated with glucocorticoids (GC) sensitivity of leukaemia cells may provide insight into potential drug targets and tailored therapy. In the present study, within 72 leukaemic cell lines derived from Japanese patients with B-cell precursor acute lymphoblastic leukaemia (ALL), we conducted genome-wide genotyping of single nucleotide polymorphisms (SNP) and attempted to identify genetic variants associated with GC sensitivity and NR3C1 (GC receptor) gene expression. IC50 measures for prednisolone (Pred) and dexamethasone (Dex) were available using an alamarBlue cell viability assay. IC50 values of Pred showed the strongest association with rs904419 (P = 4.34 × 10-8 ), located between the FRMD4B and MITF genes. The median IC50 values of prednisolone for cell lines with rs904419 AA (n = 13), AG (n = 31) and GG (n = 28) genotypes were 0.089, 0.139 and 297 µmol/L, respectively. For dexamethasone sensitivity, suggestive association was observed for SNP rs2306888 (P = 1.43 × 10-6 ), a synonymous SNP of the TGFBR3 gene. For NR3C1 gene expression, suggestive association was observed for SNP rs11982167 (P = 6.44 × 10-8 ), located in the PLEKHA8 gene. These genetic variants may affect GC sensitivity of ALL cells and may give rise to opportunities in personalized medicine for effective and safe chemotherapy in ALL patients.
Collapse
Affiliation(s)
- Tamao Shinohara
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kevin Y Urayama
- Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan.,Graduate School of Public Health, St Luke's International University, Tokyo, Japan
| | - Atsushi Watanabe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Meixian Huang
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Keiko Kagami
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masako Abe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Goto
- Hematology/Oncology and Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | | | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
24
|
Lu T, Lin X, Pan YH, Yang N, Ye S, Zhang Q, Wang C, Zhu R, Zhang T, Wisniewski TM, Cao Z, Ding BS, Dang S, Zhang W. ADAMTS18 Deficiency Leads to Pulmonary Hypoplasia and Bronchial Microfibril Accumulation. iScience 2020; 23:101472. [PMID: 32882513 PMCID: PMC7476315 DOI: 10.1016/j.isci.2020.101472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 07/02/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023] Open
Abstract
ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) are secreted metalloproteinases that play a major role in the assembly and degradation of the extracellular matrix (ECM). In this study, we show that ADAMTS18, produced by the epithelial cells of distal airways and mesenchymal cells in lung apex at early embryonic stages, serves as a morphogen in lung development. ADAMTS18 deficiency leads to reduced number and length of bronchi, tipped lung apexes, and dilated alveoli. These developmental defects worsen lipopolysaccharide-induced acute lung injury and bleomycin-induced lung fibrosis in adult Adamts18-deficient mice. ADAMTS18 deficiency also causes increased levels of fibrillin1 and fibrillin2, bronchial microfibril accumulation, decreased focal adhesion kinase signaling, and disruption of F-actin organization. Our findings indicate that ECM homeostasis mediated by ADAMTS18 is pivotal in airway branching morphogenesis.
Collapse
Affiliation(s)
- Tiantian Lu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xiaotian Lin
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Ning Yang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shuai Ye
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Qi Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Caiyun Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Rui Zhu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Tianhao Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Zhongwei Cao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
25
|
Zakrzewski PK, Forma E, Cygankiewicz AI, Bryś M, Wójcik-Krowiranda K, Bieńkiewicz A, Semczuk A, Krajewska WM. Betaglycan Gene ( TGFBR3) Polymorphism Is Associated with Increased Risk of Endometrial Cancer. J Clin Med 2020; 9:E3082. [PMID: 32987826 PMCID: PMC7650668 DOI: 10.3390/jcm9103082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 01/22/2023] Open
Abstract
We investigated single nucleotide polymorphism (SNP) of the betaglycan gene (TGFBR3) encoding the TGFβ co-receptor in endometrial cancer (EC) and its association with betaglycan expression. The study group included 153 women diagnosed with EC and 248 cancer-free controls. SNP genotyping and gene expression were analyzed using TaqMan probes. Three out of the eight SNPs tested, i.e., rs12566180 (CT; OR = 2.22; 95% CI = 1.15-4.30; p = 0.0177), rs6680463 (GC; OR = 2.34; 95% CI = 1.20-4.53; p = 0.0120) and rs2296621 (TT; OR = 6.40; 95% CI = 1.18-34.84; p = 0.0317) were found to be significantly associated with increased risk of EC (adjusted to age, body mass index, menarche and parity). Among the analyzed SNPs, only rs2296621 demonstrated the impact on the increased cancer aggressiveness evaluated by the WHO grading system (G3 vs. G1/2, GT-OR = 4.04; 95% CI = 1.56-10.51; p = 0.0026; T-OR = 2.38; 95% CI = 1.16-4.85; p = 0.0151). Linkage disequilibrium (LD) analysis revealed high LD (r2 ≥ 0.8) in two haploblocks, constructed by rs2770186/rs12141128 and rs12566180/rs6680463, respectively. In the case of C/C haplotype (OR = 4.82; 95% CI = 1.54-15.07; p = 0.0116-Bonferroni corrected) and T/G haplotype (OR = 3.25; 95% CI = 1.29-8.15; p = 0.0328-Bonferroni corrected) in haploblock rs12566180/rs6680463, significantly higher frequency was observed in patients with EC as compared to the control group. The genotype-phenotype studies showed that SNPs of the TGFBR3 gene associated with an increased risk of EC, i.e., rs12566180 and rs2296621 may affect betaglycan expression at the transcriptomic level (rs12566180-CC vs. TT, p < 0.01; rs2296621-GG vs. TT, p < 0.001, GT vs. TT, p < 0.05). Functional consequences of evaluated TGFBR3 gene SNPs were supported by RegulomeDB search. In conclusion, polymorphism of the TGFBR3 gene may be associated with an increased EC occurrence, as well as may be the molecular mechanism responsible for observed betaglycan down-regulation in EC patients.
Collapse
Affiliation(s)
- Piotr K. Zakrzewski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| | - Adam I. Cygankiewicz
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| | - Katarzyna Wójcik-Krowiranda
- Department of Gynecological Oncology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland; (K.W.-K.); (A.B.)
| | - Andrzej Bieńkiewicz
- Department of Gynecological Oncology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland; (K.W.-K.); (A.B.)
| | - Andrzej Semczuk
- IInd Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Wanda M. Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| |
Collapse
|
26
|
Satz-Jacobowitz B, Hubmacher D. The quest for substrates and binding partners: A critical barrier for understanding the role of ADAMTS proteases in musculoskeletal development and disease. Dev Dyn 2020; 250:8-26. [PMID: 32875613 DOI: 10.1002/dvdy.248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
Secreted ADAMTS metalloproteases are involved in the sculpting, remodeling, and erosion of connective tissues throughout the body, including in the musculoskeletal system. ADAMTS proteases contribute to musculoskeletal development, pathological tissue destruction, and are mutated in congenital musculoskeletal disorders. Examples include versican cleavage by ADAMTS9 which is required for interdigital web regression during limb development, ADAMTS5-mediated aggrecan degradation in osteoarthritis resulting in joint erosion, and mutations in ADAMTS10 or ADAMTS17 that cause Weill-Marchesani syndrome, a short stature syndrome with bone, joint, muscle, cardiac, and eye involvement. Since the function of ADAMTS proteases and proteases in general is primarily defined by the molecular consequences of proteolysis of their respective substrates, it is paramount to identify all physiological substrates for each individual ADAMTS protease. Here, we review the current knowledge of ADAMTS proteases and their involvement in musculoskeletal development and disease, focusing on some of their known physiological substrates and the consequences of substrate cleavage. We further emphasize the critical need for the identification and validation of novel ADAMTS substrates and binding partners by describing the principles of mass spectrometry-based approaches and by emphasizing strategies that need to be considered for validating the physiological relevance for ADAMTS-mediated proteolysis of novel putative substrates.
Collapse
Affiliation(s)
- Brandon Satz-Jacobowitz
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
27
|
Yang TL, Shen H, Liu A, Dong SS, Zhang L, Deng FY, Zhao Q, Deng HW. A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol 2020; 16:91-103. [PMID: 31792439 PMCID: PMC6980376 DOI: 10.1038/s41574-019-0282-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Osteoporosis is a highly prevalent disorder characterized by low bone mineral density and an increased risk of fracture, termed osteoporotic fracture. Notably, bone mineral density, osteoporosis and osteoporotic fracture are highly heritable; however, determining the genetic architecture, and especially the underlying genomic and molecular mechanisms, of osteoporosis in vivo in humans is still challenging. In addition to susceptibility loci identified in genome-wide association studies, advances in various omics technologies, including genomics, transcriptomics, epigenomics, proteomics and metabolomics, have all been applied to dissect the pathogenesis of osteoporosis. However, each technology individually cannot capture the entire view of the disease pathology and thus fails to comprehensively identify the underlying pathological molecular mechanisms, especially the regulatory and signalling mechanisms. A change to the status quo calls for integrative multi-omics and inter-omics analyses with approaches in 'systems genetics and genomics'. In this Review, we highlight findings from genome-wide association studies and studies using various omics technologies individually to identify mechanisms of osteoporosis. Furthermore, we summarize current studies of data integration to understand, diagnose and inform the treatment of osteoporosis. The integration of multiple technologies will provide a road map to illuminate the complex pathogenesis of osteoporosis, especially from molecular functional aspects, in vivo in humans.
Collapse
Affiliation(s)
- Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hui Shen
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Anqi Liu
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hong-Wen Deng
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA.
- School of Basic Medical Science, Central South University, Changsha, China.
| |
Collapse
|
28
|
Liu L, Zhao M, Xie ZG, Liu J, Peng HP, Pei YF, Sun HP, Zhang L. Twelve New Genomic Loci Associated With Bone Mineral Density. Front Endocrinol (Lausanne) 2020; 11:243. [PMID: 32390946 PMCID: PMC7188784 DOI: 10.3389/fendo.2020.00243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
Aiming to identify more genomic loci associated with bone mineral density (BMD), we conducted a joint association analysis of 2 genome-wide association study (GWAS) by the integrative association method multi-trait analysis of GWAS (MTAG). The first one is the single GWAS of estimated heel BMD (eBMD) in the UK biobank (UKB) cohort (N = 426,824), and the second one is the GWAS meta-analysis of total body BMD (TB-BMD) in 66,628 participants from 30 studies. Approximate conditional association analysis was performed in the identified novel loci to identify secondary association signal. Statistical fine-mapping was conducted to prioritize plausible credible risk variants (CRVs). Candidate genes were prioritized based on the analyses of cis- expression quantitative trait locus (cis-eQTL) and cis-protein QTL (cis-pQTL) information as well as the functional category of the SNP. By integrating the information carried in over 490,000 participants, this largest joint analysis of BMD GWAS identified 12 novel genomic loci at the genome-wide significance level (GWS, p = 5.0 × 10-8), nine of which were for eBMD and four were for TB-BMD, explaining an additional 0.11 and 0.23% heritability for the two traits, respectively. These loci include 1p33 (lead SNP rs10493130, peBMD = 3.19 × 10-8), 5q13.2 (rs4703589, peBMD = 4.78 × 10-8), 5q31.3 (rs9324887, pTB-BMD = 1.36 × 10-9), 6p21.32 (rs6905837, peBMD = 3.32 × 10-8), 6q14.1 (rs10806234, peBMD = 2.63 × 10-8), 7q21.11 (rs10806234, pTB-BMD = 3.37 × 10-8), 8q24.12 (rs11995866, peBMD = 6.72 × 10-9), 12p13.31 (rs1639122, peBMD = 4.43 × 10-8), 12p12.1 (rs58489179, peBMD = 4.74 × 10-8), 12q24.23 (rs75499226, peBMD = 1.44 × 10-8), 19q13.31 (rs7255083, pTB-BMD = 2.18 × 10-8) and 22q11.23 (rs13056137, pTB-BMD = 2.54 × 10-8). All lead SNPs in these 12 loci are nominally significant in both original studies as well as consistent in effect direction between them, providing solid evidence of replication. Approximate conditional analysis identified one secondary signal in 5q13.2 (rs11738874, pconditional = 5.06 × 10-9). Statistical fine-mapping analysis prioritized 269 CRVs. A total of 65 candidate genes were prioritized, including those with known biological function to bone development (such as FGF1, COL11A2 and DEPTOR). Our findings provide novel insights into a better understanding of the genetic mechanism underlying bone development as well as candidate genes for future functional investigation.
Collapse
Affiliation(s)
- Lu Liu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China
- Kunshan Hospital of Traditional Chinese Medicine, Jiangsu, China
| | - Min Zhao
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China
| | - Zong-Gang Xie
- The Second Affiliated Hospital of Soochow University, Jiangsu, China
| | - Ju Liu
- Kunshan Hospital of Traditional Chinese Medicine, Jiangsu, China
| | - Hui-Ping Peng
- Kunshan Hospital of Traditional Chinese Medicine, Jiangsu, China
| | - Yu-Fang Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Jiangsu, China
- *Correspondence: Yu-Fang Pei
| | - Hong-Peng Sun
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China
- Department of Children Health and Social Medicine, School of Public Health, Medical College of Soochow University, Jiangsu, China
- Hong-Peng Sun
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China
- Lei Zhang
| |
Collapse
|
29
|
Hu W, He J, Qi L, Wang C, Yue H, Gu J, Zhang H, Wang Y, Zhang Z. Association of HIVEP3 Gene and Lnc RNA with Femoral Neck Bone Mineral Content and Hip Geometry by Genome-Wide Association Analysis in Chinese People. Int J Endocrinol 2020; 2020:6929073. [PMID: 33110425 PMCID: PMC7579678 DOI: 10.1155/2020/6929073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/27/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE GWAS has successfully located and analyzed the pathogenic genes of osteoporosis. Genetic studies have found that heritability of BMD is 50%-85% while the other half is caused by hip geometric parameters and tissue horizontal characteristics. This study was designed to study the GWAS of osteoporosis in Shanghai Han population. METHODS We collected 1224 unrelated healthy young men (20-40 years old), young women (20-40 years old), and postmenopausal women (over 50 years old) who lived in Shanghai. BMD and hip geometric parameters were measured by dual-energy X-ray absorptiometry. The genomic DNA of peripheral blood was extracted and analyzed by using Illumina Human Asian Screening Array-24 + v1.0 (ASA) gene chip. Statistical analysis was carried out to evaluate the relationship between these SNPs and BMD and hip geometric parameters. RESULTS A total of 1155 subjects were included. We found that one SNP rs35282355 located in the human immunodeficiency virus type 1 enhancer-binding protein 3 gene (HIVEP3) and another 25 SNPs located in LINC RNA were significantly correlated with bone mineral content (BMC) in the femoral neck (P= 2.30 × 10-9, P < 5 × 10-8). We also found that the correlation between SNP rs35282355 and cross-sectional area (CSA) of hip geometry was a significant marginal statistical difference (P = 5.95 × 10-8). CONCLUSIONS Through this study, we found that HIVEP3 gene and LINC RNA are potentially correlated with femoral neck BMC. These results provide important information for us to further understand the etiology and genetic pathogenesis of osteoporosis. In the future, we will expand the sample size to verify these loci and carry out molecular research.
Collapse
Affiliation(s)
- Weiwei Hu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| | - Jinwei He
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| | - Luyue Qi
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| | - Chun Wang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| | - Hua Yue
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| | - Jiemei Gu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| | - Hao Zhang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| | - Yi Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| |
Collapse
|
30
|
Adamts18 deficiency in zebrafish embryo causes defective trunk angiogenesis and caudal vein plexus formation. Biochem Biophys Res Commun 2019; 521:907-913. [PMID: 31711643 DOI: 10.1016/j.bbrc.2019.10.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023]
Abstract
ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin type I motifs) enzymes play an important role in various morphogenesis processes. To determine the functions of Adamts18 in the early stages of organogenesis, we created Adamts18 deficient zebrafish using morpholino antisense oligonucleotides (MO) to generate exon 3 skipped adamts18 mRNA transcripts. Results showed that Adamts18 deficiency in zebrafish embryos caused developmental defects, including expanded brain ventricle and hindbrain edema, eye defects, and accumulation of blood in the caudal vein. Adamts18 deficiency also led to impaired trunk angiogenesis and formation of the caudal vein plexus (CVP). Consequently, Adamts18 deficient zebrafish embryos exhibited incomplete formation of intersegment vessels (ISVs), disruption of the honeycomb structure of CVP, and reduced CVP area and loop number. Furthermore, Adamts18 deficiency resulted in impaired blood circulation in major trunk, caudal vein (CV), and common cardinal vein (CCV). These aberrant vascular phenotypes in mutant zebrafish embryos were shown to be associated with a decreased expression of multiple angiogenesis-related signaling genes, including slit/robo, dll4/Notch, cox2, and fgfr. These findings indicate the critical role of Adamts18 in the early stages of vascular network development.
Collapse
|
31
|
Shaik S, Martin EC, Hayes DJ, Gimble JM, Devireddy RV. Transcriptomic Profiling of Adipose Derived Stem Cells Undergoing Osteogenesis by RNA-Seq. Sci Rep 2019; 9:11800. [PMID: 31409848 PMCID: PMC6692320 DOI: 10.1038/s41598-019-48089-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) are multipotent in nature that can be differentiated into various cells lineages such as adipogenic, osteogenic, and chondrogenic. The commitment of a cell to differentiate into a particular lineage is regulated by the interplay between various intracellular pathways and their resultant secretome. Similarly, the interactions of cells with the extracellular matrix (ECM) and the ECM bound growth factors instigate several signal transducing events that ultimately determine ASC differentiation. In this study, RNA-sequencing (RNA-Seq) was performed to identify the transcriptome profile of osteogenic induced ASCs to understand the associated genotype changes. Gene ontology (GO) functional annotations analysis using Database for Annotation Visualization and Integrated Discovery (DAVID) bioinformatics resources on the differentially expressed genes demonstrated the enrichment of pathways mainly associated with ECM organization and angiogenesis. We, therefore, studied the expression of genes coding for matrisome proteins (glycoproteins, collagens, proteoglycans, ECM-affiliated, regulators, and secreted factors) and ECM remodeling enzymes (MMPs, integrins, ADAMTSs) and the expression of angiogenic markers during the osteogenesis of ASCs. The upregulation of several pro-angiogenic ELR+ chemokines and other angiogenic inducers during osteogenesis indicates the potential role of the secretome from differentiating ASCs in the vascular development and its integration with the bone tissue. Furthermore, the increased expression of regulatory genes such as CTNNB1, TGBR2, JUN, FOS, GLI3, and MAPK3 involved in the WNT, TGF-β, JNK, HedgeHog and ERK1/2 pathways suggests the regulation of osteogenesis through interplay between these pathways. The RNA-Seq data was also validated by performing QPCR on selected up- and down-regulated genes (COL10A1, COL11A1, FBLN, FERMT1, FN1, FOXF1, LAMA3, LAMA4, LAMB1, IGF1, WNT10B, MMP1, MMP3, MMP16, ADAMTS6, and ADAMTS14).
Collapse
Affiliation(s)
- Shahensha Shaik
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Jeffrey M Gimble
- La Cell LLC and Center for Stem Cell Research & Regenerative Medicine and Departments of Medicine, Structural & Cellular Biology, and Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ram V Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
32
|
Yang ML, Huang Z, Wu LN, Wu R, Ding HX, Wang BG. lncRNA- PCAT1 rs2632159 polymorphism could be a biomarker for colorectal cancer susceptibility. Biosci Rep 2019; 39:BSR20190708. [PMID: 31253700 PMCID: PMC6629943 DOI: 10.1042/bsr20190708] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/29/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Single-nucleotide polymorphisms (SNPs) in lncRNAs could be biomarkers for susceptibility to colorectal cancer (CRC), but the association of PCAT1 polymorphisms and CRC susceptibility is yet to be studied. Methods: Five tagSNPs covering the PCAT1 gene were detected through Kompetitive Allele-Specific PCR among 436 CRC patients and 510 controls. An expression quantitative trait locus (eQTL) bioinformatic analysis was then performed. Results: In the present study, PCAT1 rs2632159 polymorphism increased CRC risk by 1.37-fold and 2.19-fold in the dominant and recessive models, respectively (P=0.040 and 0.041). When the CRC cases were divided into colon cancer and rectal cancer, we found that this polymorphism affected colon cancer risk under the dominant model (P=0.022, OR = 1.51) and affected rectal cancer susceptibility under the recessive model (P=0.009, OR = 3.03). A more pronounced effect was observed in the male subgroup in that PCAT1 rs2632159 SNP increased rectal cancer risk by 3.97-fold (P=0.017). When PCAT1 rs2632159 was present, epistatic effects were observed with rs1902432 and rs785005 (P=0.011 and 0.008, respectively). eQTL analysis showed that rs2632159 could influence binding with the transcription factors EBF, LUN-1, and TCF12. Conclusion:PCAT1 rs2632159 SNP could be a biomarker for CRC risk. And the rs1902432 SNP might only have potential to be a biomarker for colon cancer risk.
Collapse
Affiliation(s)
- Ming-Li Yang
- The 2nd Oncology Department of Affiliated Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Zhe Huang
- Genery Surgery Department of Affiliated Shengjing Hospital of China Medical University, Shenyang 110015, China
| | - Li-Na Wu
- The 2nd Oncology Department of Affiliated Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Rong Wu
- The 2nd Oncology Department of Affiliated Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Han-Xi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ben-Gang Wang
- Department 1 of General Surgery, the First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
33
|
Rutledge EA, Parvez RK, Short KM, Smyth IM, McMahon AP. Morphogenesis of the kidney and lung requires branch-tip directed activity of the Adamts18 metalloprotease. Dev Biol 2019; 454:156-169. [PMID: 31242448 DOI: 10.1016/j.ydbio.2019.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Adamts18 encodes a secreted metalloprotease restricted to branch-tip progenitor pools directing the morphogenesis of multiple mammalian organs. Adamts18 was targeted to explore a potential role in branching morphogenesis. In the kidney, an arborized collecting system develops through extensive branching morphogenesis of an initial epithelial outgrowth of the mesonephric duct, the ureteric bud. Adamts18 mutants displayed a weakly penetrant phenotype: duplicated ureteric outgrowths forming enlarged, bi-lobed kidneys with an increased nephron endowment. In contrast, Adamts18 mutants showed a fully penetrant lung phenotype: epithelial growth was markedly reduced and early secondary branching scaled to the reduced length of the primary airways. Furthermore, there was a pronounced delay in the appearance of differentiated cell types in both proximal and distally positions of the developing airways. Adamts18 is closely related to Adamts16. In the kidney but not the lung, broad epithelial Adamts16 expression overlaps Adamts18 in branch tips. However, compound Adamts16/18 mutants displayed a comparable low penetrance duplicated ureteric phenotype, ruling out a possible role for Adamts16 as a functional modifier of the Adamts18 kidney phenotype. Given the predicted action of secreted Adamts18 metalloprotease, and broad expression of Adamts18 in branching organ systems, these findings suggest distinct requirements for matrix modelling in the morphogenesis of epithelial networks.
Collapse
Affiliation(s)
- Elisabeth A Rutledge
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA
| | - Kieran M Short
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia; Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia; Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA.
| |
Collapse
|
34
|
Yuan J, Tickner J, Mullin BH, Zhao J, Zeng Z, Morahan G, Xu J. Advanced Genetic Approaches in Discovery and Characterization of Genes Involved With Osteoporosis in Mouse and Human. Front Genet 2019; 10:288. [PMID: 31001327 PMCID: PMC6455049 DOI: 10.3389/fgene.2019.00288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis is a complex condition with contributions from, and interactions between, multiple genetic loci and environmental factors. This review summarizes key advances in the application of genetic approaches for the identification of osteoporosis susceptibility genes. Genome-wide linkage analysis (GWLA) is the classical approach for identification of genes that cause monogenic diseases; however, it has shown limited success for complex diseases like osteoporosis. In contrast, genome-wide association studies (GWAS) have successfully identified over 200 osteoporosis susceptibility loci with genome-wide significance, and have provided most of the candidate genes identified to date. Phenome-wide association studies (PheWAS) apply a phenotype-to-genotype approach which can be used to complement GWAS. PheWAS is capable of characterizing the association between osteoporosis and uncommon and rare genetic variants. Another alternative approach, whole genome sequencing (WGS), will enable the discovery of uncommon and rare genetic variants in osteoporosis. Meta-analysis with increasing statistical power can offer greater confidence in gene searching through the analysis of combined results across genetic studies. Recently, new approaches to gene discovery include animal phenotype based models such as the Collaborative Cross and ENU mutagenesis. Site-directed mutagenesis and genome editing tools such as CRISPR/Cas9, TALENs and ZNFs have been used in functional analysis of candidate genes in vitro and in vivo. These resources are revolutionizing the identification of osteoporosis susceptibility genes through the use of genetically defined inbred mouse libraries, which are screened for bone phenotypes that are then correlated with known genetic variation. Identification of osteoporosis-related susceptibility genes by genetic approaches enables further characterization of gene function in animal models, with the ultimate aim being the identification of novel therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Benjamin H Mullin
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Zhiyu Zeng
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
35
|
ADAMTS18 Deficiency Affects Neuronal Morphogenesis and Reduces the Levels of Depression-like Behaviors in Mice. Neuroscience 2018; 399:53-64. [PMID: 30579834 DOI: 10.1016/j.neuroscience.2018.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/18/2018] [Accepted: 12/16/2018] [Indexed: 12/20/2022]
Abstract
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that modify extracellular matrix components and play crucial roles in development and numerous diseases. ADAMTS18 is a member of the ADAMTS family, and genome-wide association studies made an initial association of ADAMTS18 with white matter integrity in healthy people of 72-74 years old. However, the potential roles of ADAMTS18 in central nervous system remain unclear. In this study, we showed that Adamts18 mRNA is highly abundant in developing brains, especially in the cerebellum granular cell layer and the hippocampus dentate gyrus (DG) granular cell layer. Adamts18 knockout (KO) mice displayed higher dendritic branching complexity and spine density on hippocampal DG granular cells. Behavioral tests showed that Adamts18 KO mice had reduced levels of depression-like behaviors compared to their wild-type (WT) littermates. The increased neurite formation could be attributed in part to reduced phosphorylation levels of the collapsin response mediator protein-2 (CRMP2) due to activation of the laminin/PI3K/AKT/GSK-3β signaling pathway. Our findings revealed a critical role of ADAMTS18 in neuronal morphogenesis and emotional control in mice.
Collapse
|
36
|
Hu Y, Tan LJ, Chen XD, Greenbaum J, Deng HW. Identification of novel variants associated with osteoporosis, type 2 diabetes and potentially pleiotropic loci using pleiotropic cFDR method. Bone 2018; 117:6-14. [PMID: 30172742 PMCID: PMC6364698 DOI: 10.1016/j.bone.2018.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022]
Abstract
AIMS Clinical and epidemiological findings point to an association between type 2 diabetes (T2D) and osteoporosis. Genome-wide association studies (GWASs) have been fruitful in identifying some loci potentially associated with osteoporosis and T2D respectively. However, the total genetic variance for each of these two diseases and the shared genetic determination between them are largely unknown. The aim of this study was to identify novel genetic variants for osteoporosis and/or T2D. METHODS First, using a pleiotropic conditional false discovery rate (cFDR) method, we analyzed two GWAS summary data of femoral neck bone mineral density (FN_BMD, n = 53,236) and T2D (n = 159,208) to identify novel shared genetic loci. FN_BMD is an important risk factor for osteoporosis. Next, to explore the potential functions of the identified potential pleiotropic genes, differential expression analysis was performed for them in monocytes and peripheral blood mononuclear cells (PBMCs) as these cells are relevant to the etiology of osteoporosis and/or T2D. Further, weighted gene co-expression analysis (WGCNA) was conducted to identify functional connections between novel pleiotropic genes and known osteoporosis/T2D susceptibility genes by using transcriptomic expression datasets in bone biopsies (E-MEXP-1618) and pancreatic islets (GSE50397). Finally, multi-trait fine mapping for the detected pleiotropic risk loci were conducted to identify the SNPs that have the highest probability of being causal for both FN_BMD and T2D. RESULTS We identified 27 significant SNPs with cFDR<0.05 for FN_BMD and 61 SNPs for T2D respectively. Four loci, rs7068487 (PLEKHA1), rs10885421 (TCF7L2), rs944082 (GNG12-AS1 (WLS)) and rs2065929 (PIFO||PGCP1), were found to be potentially pleiotropic and shared between FN_BMD and T2D (ccFDR<0.05). PLEKHA1 was found differentially expressed in circulating monocytes between high and low BMD subjects, and PBMCs between diabetic and non-diabetic conditions. WGCNA showed that PLEKHA1 and TCF7L2 were interconnected with multiple osteoporosis and T2D associated genes in bone biopsy and pancreatic islets, such as JAG, EN1 and CPE. Fine mapping showed that rs11200594 was a potentially causal variant in the locus of PLEKHA1. rs11200594 is also an eQTL of PLEKHA1 in multiple tissue (e.g. peripheral blood cells, adipose and ovary) and is in strong LD with a number of functional variants. CONCLUSIONS Four potential pleiotropic loci were identified for shared genetic determination of osteoporosis and T2D. Our study highlights PLEKHA1 as an important potentially pleiotropic gene. The findings may help us gain a better understanding of the shared genetic determination between these two important disorders.
Collapse
Affiliation(s)
- Yuan Hu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jonathan Greenbaum
- School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Hong-Wen Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China; Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
37
|
Liang X, Wu C, Zhao H, Liu L, Du Y, Li P, Wen Y, Zhao Y, Ding M, Cheng B, Cheng S, Ma M, Zhang L, Guo X, Shen H, Tian Q, Zhang F, Deng HW. Assessing the genetic correlations between early growth parameters and bone mineral density: A polygenic risk score analysis. Bone 2018; 116:301-306. [PMID: 30172743 PMCID: PMC6298225 DOI: 10.1016/j.bone.2018.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The relationships between early growth parameters and bone mineral density (BMD) remain elusive now. In this study, we performed a large scale polygenic risk score (PRS) analysis to evaluate the potential impact of early growth parameters on the variations of BMD. METHODS We used 2286 Caucasian subjects as cohort 1 and 3404 Framingham Heart Study (FHS) subjects as cohort 2 in this study. BMD at ulna & radius, hip and spine were measured using dual energy X-ray absorptiometry. BMD values were adjusted for age, sex, height and weight as covariates. Genome-wide single-nucleotide polymorphism (SNP) genotyping of the 2286 Caucasian subjects was performed using Affymetrix Human SNP Array 6.0. The GWAS datasets of early growth parameters were driven from the Early Growth Genetics Consortium, including birth weight (BW), birth head circumference (BHC), childhood body mass index (CBMI), pubertal height growth related indexes and tanner stage. Polygenic Risk Score (PRSice) and linkage disequilibrium (LD) score regression analysis were conducted to assess the genetic correlation between early growth parameters and BMD. RESULTS We detected significant genetic correlations in cohort 1, such as total spine BMD vs. CBMI (p value = 1.51 × 10-4, rg = 0.4525), right ulna and radius BMD vs. CBMI (p value = 1.51 × 10-4, rg = 0.4399) and total body BMD vs. tanner stage (p value = 7.00 × 10-4, rg = -0.0721). For cohort 2, significant correlations were observed for total spine BMD vs. height change standard deviation score (SDS) between 8 years and adult (denoted as PGF + PGM) (p value = 3.97 × 10-4, rg = -0.1425), femoral neck BMD vs. the timing of peak height velocity by looking at the height change SDS between age 14 years and adult (denoted as PTF + PTM) (p value = 7.04 × 10-4, rg = -0.2185), and total spine BMD vs. PTF + PTM (p value = 6.86 × 10-4, rg = -0.2180). CONCLUSION Our study results suggest that some early growth parameters could affect the variations of BMD.
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - CuiYan Wu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hongmou Zhao
- Department of Orthopedics Surgery, Red Cross Hospital, Xi'an 710054, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yanan Du
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Miao Ding
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hui Shen
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, USA
| | - Qing Tian
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, USA.
| |
Collapse
|
38
|
Mead TJ, Apte SS. ADAMTS proteins in human disorders. Matrix Biol 2018; 71-72:225-239. [PMID: 29885460 DOI: 10.1016/j.matbio.2018.06.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
ADAMTS proteins are a superfamily of 26 secreted molecules comprising two related, but distinct families. ADAMTS proteases are zinc metalloendopeptidases, most of whose substrates are extracellular matrix (ECM) components, whereas ADAMTS-like proteins lack a metalloprotease domain, reside in the ECM and have regulatory roles vis-à-vis ECM assembly and/or ADAMTS activity. Evolutionary conservation and expansion of ADAMTS proteins in mammals is suggestive of crucial embryologic or physiological roles in humans. Indeed, Mendelian disorders or birth defects resulting from naturally occurring ADAMTS2, ADAMTS3, ADAMTS10, ADAMTS13, ADAMTS17, ADAMTS20, ADAMTSL2 and ADAMTSL4 mutations as well as numerous phenotypes identified in genetically engineered mice have revealed ADAMTS participation in major biological pathways. Important roles have been identified in a few acquired conditions. ADAMTS5 is unequivocally implicated in pathogenesis of osteoarthritis via degradation of aggrecan, a major structural proteoglycan in cartilage. ADAMTS7 is strongly associated with coronary artery disease and promotes atherosclerosis. Autoantibodies to ADAMTS13 lead to a platelet coagulopathy, thrombotic thrombocytopenic purpura, which is similar to that resulting from ADAMTS13 mutations. ADAMTS proteins have numerous potential connections to other human disorders that were identified by genome-wide association studies. Here, we review inherited and acquired human disorders in which ADAMTS proteins participate, and discuss progress and prospects in therapeutics.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States.
| |
Collapse
|
39
|
Alonso N, Estrada K, Albagha OME, Herrera L, Reppe S, Olstad OK, Gautvik KM, Ryan NM, Evans KL, Nielson CM, Hsu YH, Kiel DP, Markozannes G, Ntzani EE, Evangelou E, Feenstra B, Liu X, Melbye M, Masi L, Brandi ML, Riches P, Daroszewska A, Olmos JM, Valero C, Castillo J, Riancho JA, Husted LB, Langdahl BL, Brown MA, Duncan EL, Kaptoge S, Khaw KT, Usategui-Martín R, Del Pino-Montes J, González-Sarmiento R, Lewis JR, Prince RL, D’Amelio P, García-Giralt N, NoguéS X, Mencej-Bedrac S, Marc J, Wolstein O, Eisman JA, Oei L, Medina-Gómez C, Schraut KE, Navarro P, Wilson JF, Davies G, Starr J, Deary I, Tanaka T, Ferrucci L, Gianfrancesco F, Gennari L, Lucas G, Elosua R, Uitterlinden AG, Rivadeneira F, Ralston SH. Identification of a novel locus on chromosome 2q13, which predisposes to clinical vertebral fractures independently of bone density. Ann Rheum Dis 2018; 77:378-385. [PMID: 29170203 PMCID: PMC5912156 DOI: 10.1136/annrheumdis-2017-212469] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To identify genetic determinants of susceptibility to clinical vertebral fractures, which is an important complication of osteoporosis. METHODS Here we conduct a genome-wide association study in 1553 postmenopausal women with clinical vertebral fractures and 4340 controls, with a two-stage replication involving 1028 cases and 3762 controls. Potentially causal variants were identified using expression quantitative trait loci (eQTL) data from transiliac bone biopsies and bioinformatic studies. RESULTS A locus tagged by rs10190845 was identified on chromosome 2q13, which was significantly associated with clinical vertebral fracture (P=1.04×10-9) with a large effect size (OR 1.74, 95% CI 1.06 to 2.6). Bioinformatic analysis of this locus identified several potentially functional SNPs that are associated with expression of the positional candidate genes TTL (tubulin tyrosine ligase) and SLC20A1 (solute carrier family 20 member 1). Three other suggestive loci were identified on chromosomes 1p31, 11q12 and 15q11. All these loci were novel and had not previously been associated with bone mineral density or clinical fractures. CONCLUSION We have identified a novel genetic variant that is associated with clinical vertebral fractures by mechanisms that are independent of BMD. Further studies are now in progress to validate this association and evaluate the underlying mechanism.
Collapse
Affiliation(s)
- Nerea Alonso
- Rheumatology and Bone disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Karol Estrada
- Departments of Internal Medicine and Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Omar M E Albagha
- Rheumatology and Bone disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Lizbeth Herrera
- Departments of Internal Medicine and Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Clinical Biochemistry, Lovisenberg Diakonale Hospital, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ole K Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kaare M Gautvik
- Department of Clinical Biochemistry, Lovisenberg Diakonale Hospital, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niamh M Ryan
- Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Carrie M Nielson
- Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Yi-Hsiang Hsu
- Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Musculoskeletal Research Center, Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Douglas P Kiel
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Musculoskeletal Research Center, Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - George Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Evangelia E Ntzani
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Centre for Evidence Synthesis in Health, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Rhode Island, USA
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Xueping Liu
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Laura Masi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Philip Riches
- Rheumatology and Bone disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Anna Daroszewska
- Rheumatology and Bone disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Ageing and Chronic Disease, The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, Liverpool, UK
| | - José Manuel Olmos
- Department of Internal Medicine, Hospital UM Valdecilla, University of Cantabria, IDIVAL, RETICEF, Santander, Spain
| | - Carmen Valero
- Department of Internal Medicine, Hospital UM Valdecilla, University of Cantabria, IDIVAL, RETICEF, Santander, Spain
| | - Jesús Castillo
- Department of Internal Medicine, Hospital UM Valdecilla, University of Cantabria, IDIVAL, RETICEF, Santander, Spain
| | - José A Riancho
- Department of Internal Medicine, Hospital UM Valdecilla, University of Cantabria, IDIVAL, RETICEF, Santander, Spain
| | - Lise B Husted
- Department of Endocrinology and Internal Medicine THG, Aarhus University Hospital, Aarhus, Denmark
| | - Bente L Langdahl
- Department of Endocrinology and Internal Medicine THG, Aarhus University Hospital, Aarhus, Denmark
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Emma L Duncan
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Endocrinology, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Stephen Kaptoge
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, School of Medicine, University of Cambridge, Cambridge, UK
| | - Ricardo Usategui-Martín
- Molecular Medicine Unit, Department of Medicine and Biomedical Research Institute of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca – CSIC, Salamanca, Spain
| | - Javier Del Pino-Montes
- Molecular Medicine Unit, Department of Medicine and Biomedical Research Institute of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca – CSIC, Salamanca, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine and Biomedical Research Institute of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca – CSIC, Salamanca, Spain
| | - Joshua R Lewis
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
- Centre for Kidney Research, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Richard L Prince
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Patrizia D’Amelio
- Gerontology and Bone Metabolic Diseases Unit, Department of Medical Science, University of Torino, Torino, Italy
| | - Natalia García-Giralt
- Department of Internal Medicine, Hospital del Mar-IMIM, RETICEF, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Xavier NoguéS
- Department of Internal Medicine, Hospital del Mar-IMIM, RETICEF, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Simona Mencej-Bedrac
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Orit Wolstein
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - John A Eisman
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ling Oei
- Departments of Internal Medicine and Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Carolina Medina-Gómez
- Departments of Internal Medicine and Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Katharina E Schraut
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Edinburgh/British Heart Foundation Centre for Cardiovascular Science, QMRI, University of Edinburgh, Edinburgh, UK
| | - Pau Navarro
- MRC Human Genetics Unit, MRC, IGMM, University of Edinburgh, Edinburgh, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC, IGMM, University of Edinburgh, Edinburgh, UK
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - John Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ian Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Fernando Gianfrancesco
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council of Italy, Naples, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Gavin Lucas
- Grup de Recerca en Genètica i Epidemiologia Cardiovascular, IMIM, Barcelona, Spain
| | - Roberto Elosua
- Grup de Recerca en Genètica i Epidemiologia Cardiovascular, IMIM, Barcelona, Spain
| | - André G Uitterlinden
- Departments of Internal Medicine and Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Departments of Internal Medicine and Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Stuart H Ralston
- Rheumatology and Bone disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
40
|
Hegarty KG, Drummond FJ, Daly M, Shanahan F, Molloy MG. GREB1 genetic variants are associated with bone mineral density in Caucasians. J Bone Miner Metab 2018; 36:189-199. [PMID: 28293781 DOI: 10.1007/s00774-017-0823-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/11/2017] [Indexed: 01/23/2023]
Abstract
Gaining an understanding of factors contributing to bone quality is key to the development of effective preventative treatments for osteoporosis and reduction in osteoporotic fractures. Oestrogen is a strong regulator of bone remodelling which maintains skeletal structural integrity. The growth regulation by oestrogen in breast cancer 1 (GREB1) gene, with an as yet undefined function, is an early response gene in the oestrogen-regulated pathway. Suggestive evidence of linkage with bone mineral density (BMD) variation has been reported with D2S168, located telomeric of GREB1. The aim of this study was to determine if genetic variation within GREB1 was associated with BMD variation at two sites with high fracture rates-the lumbar spine (LS) and the femoral neck (FN). Informative GREB1 single-nucleotide polymorphisms (SNPs) (n = 12) were selected for genotyping and tested for association in a family-based dataset (n = 508 individuals from 229 families). Significantly associated SNPs were tested further in a postmenopausal dataset from the same geographic region (n = 477 individuals). One intronic SNP, rs5020877, was significantly associated with LS and FN BMD in the family-based dataset (P ≤ 0.005). The association was not observed in the postmenopausal dataset (P > 0.017); however, rs10929757 was significantly associated with FN BMD (P = 0.006). Markers, rs5020877 and rs10929757, were constituent SNPs in one GREB1 linkage disequilibrium block, although not historically correlated (r 2 = 0.07). Our findings suggest that GREB1 is a novel gene target for osteoporosis genetics and needs to be investigated further.
Collapse
Affiliation(s)
- Kevin G Hegarty
- Department of Medicine, University College Cork, Cork, Ireland.
| | - Frances J Drummond
- Department of Epidemiology and Public Health, University College Cork, Cork, Ireland
| | - Mary Daly
- Department of Medicine, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- Department of Medicine, University College Cork, Cork, Ireland
| | - Michael G Molloy
- Department of Rheumatology and Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Abstract
PURPOSE The authors' purpose is to reveal the value of osteoblast-derived exosomes in bone diseases. METHODS Microvesicles from supernatants of mouse Mc3t3 were isolated by ultracentrifugation and then the authors presented the protein profile by proteomics analysis. RESULTS The authors detected a total number of 1536 proteins by mass spectrometry and found 172 proteins overlap with bone database. The Ingenuity Pathway Analysis shows network of "Skeletal and Muscular System Development and Function, Developmental Disorder, Hereditary Disorder" and pathway about osteogenesis. EFNB1 and transforming growth factor beta receptor 3 in the network, LRP6, bone morphogenetic protein receptor type-1, and SMURF1 in the pathway seemed to be valuable in the exosome research of related bone disease. CONCLUSIONS The authors' study unveiled the content of osteoblast-derived exosome and discussed valuable protein in it which might provide novel prospective in bone diseases research.
Collapse
|
42
|
Dang S, Bu D, Lu T, Wang Z, Liu J, Zhang W. Adamts18 deficiency increases arterial thrombus formation associated with vascular defects in mice. Biochem Biophys Res Commun 2018; 496:1362-1368. [DOI: 10.1016/j.bbrc.2018.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/04/2018] [Indexed: 12/31/2022]
|
43
|
Rupp M, Biehl C, Budak M, Thormann U, Heiss C, Alt V. Diaphyseal long bone nonunions - types, aetiology, economics, and treatment recommendations. INTERNATIONAL ORTHOPAEDICS 2017; 42:247-258. [PMID: 29273837 DOI: 10.1007/s00264-017-3734-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
The intention of the current article is to review the epidemiology with related socioeconomic costs, pathophysiology, and treatment options for diaphyseal long bone delayed unions and nonunions. Diaphyseal nonunions in the tibia and in the femur are estimated to occur 4.6-8% after modern intramedullary nailing of closed fractures with an even much higher risk in open fractures. There is a high socioeconomic burden for long bone nonunions mainly driven by indirect costs, such as productivity losses due to long treatment duration. The classic classification of Weber and Cech of the 1970s is based on the underlying biological aspect of the nonunion differentiating between "vital" (hypertrophic) and "avital" (hypo-/atrophic) nonunions, and can still be considered to represent the basis for basic evaluation of nonunions. The "diamond concept" units biomechanical and biological aspects and provides the pre-requisites for successful bone healing in nonunions. For humeral diaphyseal shaft nonunions, excellent results for augmentation plating were reported. In atrophic humeral shaft nonunions, compression plating with stimulation of bone healing by bone grafting or BMPs seem to be the best option. For femoral and tibial diaphyseal shaft fractures, dynamization of the nail is an atraumatic, effective, and cheap surgical possibility to achieve bony consolidation, particularly in delayed nonunions before 24 weeks after initial surgery. In established hypertrophic nonunions in the tibia and femur, biomechanical stability should be addressed by augmentation plating or exchange nailing. Hypotrophic or atrophic nonunions require additional biological stimulation of bone healing for augmentation plating.
Collapse
Affiliation(s)
- Markus Rupp
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385, Giessen, Germany
| | - Christoph Biehl
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385, Giessen, Germany
| | - Matthäus Budak
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385, Giessen, Germany
| | - Ulrich Thormann
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385, Giessen, Germany
| | - Christian Heiss
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385, Giessen, Germany
| | - Volker Alt
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385, Giessen, Germany.
| |
Collapse
|
44
|
Jenkins LM, Horst B, Lancaster CL, Mythreye K. Dually modified transmembrane proteoglycans in development and disease. Cytokine Growth Factor Rev 2017; 39:124-136. [PMID: 29291930 DOI: 10.1016/j.cytogfr.2017.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Aberrant cell signaling in response to secreted growth factors has been linked to the development of multiple diseases, including cancer. As such, understanding mechanisms that control growth factor availability and receptor-growth factor interaction is vital. Dually modified transmembrane proteoglycans (DMTPs), which are classified as cell surface macromolecules composed of a core protein decorated with covalently linked heparan sulfated (HS) and/or chondroitin sulfated (CS) glycosaminoglycan (GAG) chains, provide one type of regulatory mechanism. Specifically, DMTPs betaglycan and syndecan-1 (SDC1) play crucial roles in modulating key cell signaling pathways, such as Wnt, transforming growth factor-β and fibroblast growth factor signaling, to affect epithelial cell biology and cancer progression. This review outlines current and potential functions for betaglycan and SDC1, with an emphasis on comparing individual roles for HS and CS modified DMTPs. We highlight the mutual dependence of DMTPs' GAG chains and core proteins and provide comprehensive knowledge on how these DMTPs, through regulation of ligand availability and receptor internalization, control cell signaling pathways involved in development and disease.
Collapse
Affiliation(s)
- Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Ben Horst
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Carly L Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
45
|
Zhu R, Cheng M, Lu T, Yang N, Ye S, Pan YH, Hong T, Dang S, Zhang W. A Disintegrin and Metalloproteinase with Thrombospondin Motifs 18 Deficiency Leads to Visceral Adiposity and Associated Metabolic Syndrome in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:461-473. [PMID: 29169989 DOI: 10.1016/j.ajpath.2017.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/01/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Visceral adiposity is of greater risk than obesity in s.c. adipose tissue for diabetes and cardiovascular disease. Its pathogenesis remains unclear, but it is associated with extracellular matrix (ECM) remodeling. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) are a family of secreted zinc-dependent metalloproteinases that play crucial roles in development and various diseases because of their ECM remodeling activity. ADAMTS18 is an orphan ADAMTS whose function and substrate remain unclear. Herein, we showed that Adamts18 mRNA was abundantly expressed in visceral (gonadal) white adipose tissue (vWAT) during the early stage of development after birth. Adamts18 knockout (KO) mice showed increased body fat percentage and larger adipocyte size in vWAT relative to wild-type littermates. These findings may be partly attributed to ECM remodeling, especially increased expression of laminin 1 and adipokine thrombospondin 1 in vWAT. Attenuated extracellular signal-regulated kinase 1 and 2 activity, along with increased expression of adipocyte-specific transcription factors peroxisome proliferator-activated receptor-γ, CCAAT/enhancer binding protein β, and marker gene Fabp4, was detected in vWAT of Adamts18 KO mice. Furthermore, Adamts18 KO mice showed early metabolic syndrome, including hyperlipidemia, blood glucose metabolic disorder, and hypertension. ADAMTS18 deficiency promotes atherosclerosis in apolipoprotein E-deficient mice. These results indicate a novel function of ADAMTS18 in vWAT development and associated metabolic disorders.
Collapse
Affiliation(s)
- Rui Zhu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China
| | - Mengting Cheng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China
| | - Tiantian Lu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China
| | - Ning Yang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China
| | - Shuai Ye
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China
| | - Tao Hong
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, Republic of China; Shanghai Research Center for Model Organisms, Shanghai, Republic of China.
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China.
| |
Collapse
|
46
|
Genetic Dissection of Trabecular Bone Structure with Mouse Intersubspecific Consomic Strains. G3-GENES GENOMES GENETICS 2017; 7:3449-3457. [PMID: 28855285 PMCID: PMC5633393 DOI: 10.1534/g3.117.300213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trabecular bone structure has an important influence on bone strength, but little is known about its genetic regulation. To elucidate the genetic factor(s) regulating trabecular bone structure, we compared the trabecular bone structures of two genetically remote mouse strains, C57BL/6J and Japanese wild mouse-derived MSM/Ms. Phenotyping by X-ray micro-CT revealed that MSM/Ms has structurally more fragile trabecular bone than C57BL/6J. Toward identification of genetic determinants for the difference in fragility of trabecular bone between the two mouse strains, we employed phenotype screening of consomic mouse strains in which each C57BL/6J chromosome is substituted by its counterpart from MSM/Ms. The results showed that many chromosomes affect trabecular bone structure, and that the consomic strain B6-Chr15MSM, carrying MSM/Ms-derived chromosome 15 (Chr15), has the lowest values for the parameters BV/TV, Tb.N, and Conn.D, and the highest values for the parameters Tb.Sp and SMI. Subsequent phenotyping of subconsomic strains for Chr15 mapped four novel trabecular bone structure-related QTL (Tbsq1-4) on mouse Chr15. These results collectively indicate that genetic regulation of trabecular bone structure is highly complex, and that even in the single Chr15, the combined action of the four Tbsqs controls the fragility of trabecular bone. Given that Tbsq4 is syntenic to human Chr 12q12-13.3, where several bone-related SNPs are assigned, further study of Tbsq4 should facilitate our understanding of the genetic regulation of bone formation in humans.
Collapse
|
47
|
Kemp JP, Morris JA, Medina-Gomez C, Forgetta V, Warrington NM, Youlten SE, Zheng J, Gregson CL, Grundberg E, Trajanoska K, Logan JG, Pollard AS, Sparkes PC, Ghirardello EJ, Allen R, Leitch VD, Butterfield NC, Komla-Ebri D, Adoum AT, Curry KF, White JK, Kussy F, Greenlaw KM, Xu C, Harvey NC, Cooper C, Adams DJ, Greenwood CMT, Maurano MT, Kaptoge S, Rivadeneira F, Tobias JH, Croucher PI, Ackert-Bicknell CL, Bassett JHD, Williams GR, Richards JB, Evans DM. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Genet 2017; 49:1468-1475. [PMID: 28869591 PMCID: PMC5621629 DOI: 10.1038/ng.3949] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 08/11/2017] [Indexed: 02/08/2023]
Abstract
Osteoporosis is a common disease diagnosed primarily by measurement of bone mineral density (BMD). We undertook a genome-wide association study (GWAS) in 142,487 individuals from the UK Biobank to identify loci associated with BMD as estimated by quantitative ultrasound of the heel. We identified 307 conditionally independent single-nucleotide polymorphisms (SNPs) that attained genome-wide significance at 203 loci, explaining approximately 12% of the phenotypic variance. These included 153 previously unreported loci, and several rare variants with large effect sizes. To investigate the underlying mechanisms, we undertook (1) bioinformatic, functional genomic annotation and human osteoblast expression studies; (2) gene-function prediction; (3) skeletal phenotyping of 120 knockout mice with deletions of genes adjacent to lead independent SNPs; and (4) analysis of gene expression in mouse osteoblasts, osteocytes and osteoclasts. The results implicate GPC6 as a novel determinant of BMD, and also identify abnormal skeletal phenotypes in knockout mice associated with a further 100 prioritized genes.
Collapse
Affiliation(s)
- John P Kemp
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, UK
| | - John A Morris
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vincenzo Forgetta
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Nicole M Warrington
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Australia
| | - Scott E Youlten
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, UK
| | - Celia L Gregson
- Musculoskeletal Research Unit, Department of Translational Health Sciences, University of Bristol, Bristol, UK
| | - Elin Grundberg
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Andrea S Pollard
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Penny C Sparkes
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Elena J Ghirardello
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Rebecca Allen
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Anne-Tounsia Adoum
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Katharine F Curry
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Jacqueline K White
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Fiona Kussy
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Keelin M Greenlaw
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Changjiang Xu
- Donnelly Center for Cellular and Biomedical Research, University of Toronto, Toronto, Canada
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - David J Adams
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Celia MT Greenwood
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montréal, Québec, Canada
| | - Matthew T Maurano
- Department of Pathology and Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, USA
| | - Stephen Kaptoge
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Strangeways Research Laboratory, Worts’ Causeway, Cambridge, UK
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jonathan H Tobias
- Musculoskeletal Research Unit, Department of Translational Health Sciences, University of Bristol, Bristol, UK
| | - Peter I Croucher
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2015, Australia
| | - Cheryl L Ackert-Bicknell
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, Rochester, NY, USA
| | - JH Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - J Brent Richards
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - David M Evans
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, UK
| |
Collapse
|
48
|
Zhu R, Cheng M, Ye S, Liu M, Sun L, Lu T, Yang N, Hong T, Dang S, Zhang W. The development of monoclonal anti-ADAMTS18 antibodies with precise validation of ADAMTS18 post-translational modification status in living organisms. Biochem Biophys Res Commun 2017; 492:404-411. [DOI: 10.1016/j.bbrc.2017.08.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 01/26/2023]
|
49
|
Lu T, Dang S, Zhu R, Wang Y, Nie Z, Hong T, Zhang W. Adamts18 deficiency promotes colon carcinogenesis by enhancing β-catenin and p38MAPK/ERK1/2 signaling in the mouse model of AOM/DSS-induced colitis-associated colorectal cancer. Oncotarget 2017; 8:18979-18990. [PMID: 28145888 PMCID: PMC5386663 DOI: 10.18632/oncotarget.14866] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/18/2017] [Indexed: 12/19/2022] Open
Abstract
ADAMTS18 is a novel tumor suppressor and is critical to the pathology of human colorectal cancer. However, the underlying mechanism is not clear. Here we generated an Adamts18-deficient mouse strain as an in vivo model to investigate the role of ADAMTS18 in the pathogenesis of colorectal cancer. In AOM/DSS-induced colitis-associated colorectal cancer, the deficiency of Adamts18 in mice resulted in enhanced tumorigenesis and colon inflammation that could be attributed in part to enhanced nuclear translocation of β-catenin and elevated expression of its downstream target genes, cyclin D1 and c-myc. Moreover, increased p38MAPK and ERK1/2 activities were detected in colon cancer cells from Adamts18-deficient mice. Further studies revealed that ADAMTS18 deficiency reduced intestinal E-cadherin levels in mice, which ultimately led to intestinal barrier dysfunction. These data indicate that Adamts18 deficiency enhances tumorigenesis and intestinal inflammation through elevated Wnt/β-catenin and p38MAPK/ERK1/2 signaling and promotes colon cancer in this mouse model.
Collapse
Affiliation(s)
- Tiantian Lu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Research Center for Model Organisms, Shanghai, China
| | - Rui Zhu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Ying Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Zongying Nie
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Tao Hong
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| |
Collapse
|
50
|
A Pilot Genome-Wide Association Study in Postmenopausal Mexican-Mestizo Women Implicates the RMND1/CCDC170 Locus Is Associated with Bone Mineral Density. Int J Genomics 2017; 2017:5831020. [PMID: 28840121 PMCID: PMC5559934 DOI: 10.1155/2017/5831020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/24/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022] Open
Abstract
To identify genetic variants influencing bone mineral density (BMD) in the Mexican-Mestizo population, we performed a GWAS for femoral neck (FN) and lumbar spine (LS) in Mexican-Mestizo postmenopausal women. In the discovery sample, 300,000 SNPs were genotyped in a cohort of 411 postmenopausal women and seven SNPs were analyzed in the replication cohort (n = 420). The combined results of a meta-analysis from the discovery and replication samples identified two loci, RMND1 (rs6904364, P = 2.77 × 10-4) and CCDC170 (rs17081341, P = 1.62 × 10-5), associated with FN BMD. We also compared our results with those of the Genetic Factors for Osteoporosis (GEFOS) Consortium meta-analysis. The comparison revealed two loci previously reported in the GEFOS meta-analysis: SOX6 (rs7128738) and PKDCC (rs11887431) associated with FN and LS BMD, respectively, in our study population. Interestingly, rs17081341 rare in Caucasians (minor allele frequency < 0.03) was found in high frequency in our population, which suggests that this association could be specific to non-Caucasian populations. In conclusion, the first pilot Mexican GWA study of BMD confirmed previously identified loci and also demonstrated the importance of studying variability in diverse populations and/or specific populations.
Collapse
|