1
|
Rastad H, Samimisedeh P, Savad S, Seifi Alan M. A Novel Exon 2 Deletion Mutation in the GRXCR1 Gene Associated With Non-Syndromic Hearing Loss: A Case Report and Review of Literatures. Ann Otol Rhinol Laryngol 2023; 132:1493-1495. [PMID: 37009772 DOI: 10.1177/00034894231161866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
BACKGROUND About 80% of congenital hearing loss cases have genetic causes, often autosomal recessive and non-syndromic. Autosomal Recessive Non-syndromic hearing loss is characterized by extreme genetic heterogeneity. OBJECTIVES To report a case of congenital hearing loss with novel homozygous deletion in GRXCR1 gene. METHODS Case reports and review of literatures. RESULTS In this study, the proband was a 32-year-old woman seeking pre-marriage genetic counseling with non-syndromic congenital hearing loss. An owing negative test for GJB2 mutations, she underwent exome sequencing, unveiling a novel homozygous exon 2 deletion of the GRXCR1 gene. This mutation was confirmed in her affected mother and sibling by PCR and Quantitative Real-Time PCR. CONCLUSION We identified a novel GRXCR1 gene mutation related to congenital hearing loss in a family. Our study highlights the efficiency of exome sequencing in discovering gene mutations in cases of diseases with genetic heterogeneity.
Collapse
Affiliation(s)
- Hadith Rastad
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parham Samimisedeh
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mahnaz Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
2
|
Wang Y, Zhang C, Peng W, Du H, Xi Y, Xu Z. RBM24 is required for mouse hair cell development through regulating pre-mRNA alternative splicing and mRNA stability. J Cell Physiol 2023; 238:1095-1110. [PMID: 36947695 DOI: 10.1002/jcp.31003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
As the sensory receptor cells in vertebrate inner ear and lateral lines, hair cells are characterized by the hair bundle that consists of one tubulin-based kinocilium and dozens of actin-based stereocilia on the apical surface of each hair cell. Hair cell development is tightly regulated, and deficits in this process usually lead to hearing loss and/or balance dysfunctions. RNA-binding motif protein 24 (RBM24) is an RNA-binding protein that is specifically expressed in the hair cells in the inner ear. Previously, we showed that RBM24 affects hair cell development in zebrafish by regulating messenger RNA (mRNA) stability. In the present work, we further investigate the role of RBM24 in hearing and balance using conditional knockout mice. Our results show that Rbm24 knockout results in severe hearing and balance deficits. Hair cell development is significantly affected in Rbm24 knockout cochlea, as the hair bundles are poorly developed and eventually degenerated. Hair bundle disorganization is also observed in Rbm24 knockout vestibular hair cells, although to a lesser extent. Consistently, significant hair cell loss is observed in the cochlea but not vestibule. RNAseq analysis identified several genes whose mRNA stability or pre-mRNA alternative splicing is affected by Rbm24 knockout. Among them are Cdh23, Pcdh15, and Myo7a, which have been shown to play important roles in stereocilia development as well as mechano-electrical transduction. Taken together, our present work suggests that RBM24 is required for mouse hair cell development through regulating pre-mRNA alternative splicing as well as mRNA stability.
Collapse
Affiliation(s)
- Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Cuiqiao Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Wu Peng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
3
|
Li G, Yang X, Li J, Zhang B. Genome-Wide Analysis of lncRNA and mRNA Expression in the Uterus of Laying Hens during Aging. Genes (Basel) 2023; 14:genes14030639. [PMID: 36980911 PMCID: PMC10048286 DOI: 10.3390/genes14030639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Eggshell plays an essential role in preventing physical damage and microbial invasions. Therefore, the analysis of genetic regulatory mechanisms of eggshell quality deterioration during aging in laying hens is important for the biosecurity and economic performance of poultry egg production worldwide. This study aimed to compare the differences in the expression profiles of long non-coding RNAs (lncRNAs) and mRNAs between old and young laying hens by the method of high-throughput RNA sequencing to identify candidate genes associated with aging in the uterus of laying hens. Overall, we detected 176 and 383 differentially expressed (DE) lncRNAs and mRNAs, respectively. Moreover, functional annotation analysis based on the Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases revealed that DE-lncRNAs and DE-mRNAs were significantly enriched in “phosphate-containing compound metabolic process”, “mitochondrial proton-transporting ATP synthase complex”, “inorganic anion transport”, and other terms related to eggshell calcification and cuticularization. Through integrated analysis, we found that some important genes such as FGF14, COL25A1, GPX8, and GRXCR1 and their corresponding lncRNAs were expressed differentially between two groups, and the results of quantitative real-time polymerase chain reaction (qPCR) among these genes were also in excellent agreement with the sequencing data. In addition, our study found that TCONS_00181492, TCONS_03234147, and TCONS_03123639 in the uterus of laying hens caused deterioration of eggshell quality in the late laying period by up-regulating their corresponding target genes FGF14, COL25A1, and GRXCR1 as well as down-regulating the target gene GPX8 by TCONS_01464392. Our findings will provide a valuable reference for the development of breeding programs aimed at breeding excellent poultry with high eggshell quality or regulating dietary nutrient levels to improve eggshell quality.
Collapse
Affiliation(s)
- Guang Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Junyou Li
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 319-0206, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-6273-4978
| |
Collapse
|
4
|
Ouyang J, Wu Y, Li Y, Miao J, Zheng S, Tang H, Wang C, Xiong Y, Gao Y, Wang L, Yan X, Chen H. Identification of key candidate genes for wing length-related traits by whole-genome resequencing in 772 geese. Br Poult Sci 2022; 63:747-753. [PMID: 35848598 DOI: 10.1080/00071668.2022.2102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. A total of 772, 420-day-old Xingguo gray geese (XGG) were sequenced using a low-depth (~1×) whole-genome resequencing strategy to reveal the genetic mechanism of wing length-related traits by genome-wide association analysis (GWAS).2. The results showed that 119 SNPs had genome-wide significance for wing length in five regions of chromosome 4, of which the most significant locus (P=7.95E-11) was located upstream of RBM47 and explained 7.3% of phenotypic variation.3. A total of 219 SNPs located on chromosome 4 that were associated with 2-joint-wing length, of which four SNPs reached the genome-wide significant level. However, for the length of 1-joint-wing and primary feather, we did not detect any associated locus.4. Six promising candidate genes, RBM47, SLAIN2, GRXCR1, SLC10A4, APBB2 and NSUN7 on chromosome 4, may play an important role in the growth and development of feathers, muscles and bones.
Collapse
Affiliation(s)
- Jing Ouyang
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Yongfei Wu
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Yaxi Li
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Junjie Miao
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Sumei Zheng
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Hongbo Tang
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Cong Wang
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Yanpeng Xiong
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Yuren Gao
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Luping Wang
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | | | - Hao Chen
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| |
Collapse
|
5
|
Miyoshi T, Belyantseva IA, Kitajiri SI, Miyajima H, Nishio SY, Usami SI, Kim BJ, Choi BY, Omori K, Shroff H, Friedman TB. Human deafness-associated variants alter the dynamics of key molecules in hair cell stereocilia F-actin cores. Hum Genet 2022; 141:363-382. [PMID: 34232383 PMCID: PMC11351816 DOI: 10.1007/s00439-021-02304-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Stereocilia protrude up to 100 µm from the apical surface of vertebrate inner ear hair cells and are packed with cross-linked filamentous actin (F-actin). They function as mechanical switches to convert sound vibration into electrochemical neuronal signals transmitted to the brain. Several genes encode molecular components of stereocilia including actin monomers, actin regulatory and bundling proteins, motor proteins and the proteins of the mechanotransduction complex. A stereocilium F-actin core is a dynamic system, which is continuously being remodeled while maintaining an outwardly stable architecture under the regulation of F-actin barbed-end cappers, severing proteins and crosslinkers. The F-actin cores of stereocilia also provide a pathway for motor proteins to transport cargos including components of tip-link densities, scaffolding proteins and actin regulatory proteins. Deficiencies and mutations of stereocilia components that disturb this "dynamic equilibrium" in stereocilia can induce morphological changes and disrupt mechanotransduction causing sensorineural hearing loss, best studied in mouse and zebrafish models. Currently, at least 23 genes, associated with human syndromic and nonsyndromic hearing loss, encode proteins involved in the development and maintenance of stereocilia F-actin cores. However, it is challenging to predict how variants associated with sensorineural hearing loss segregating in families affect protein function. Here, we review the functions of several molecular components of stereocilia F-actin cores and provide new data from our experimental approach to directly evaluate the pathogenicity and functional impact of reported and novel variants of DIAPH1 in autosomal-dominant DFNA1 hearing loss using single-molecule fluorescence microscopy.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA
| | - Shin-Ichiro Kitajiri
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Hiroki Miyajima
- Department of Otolaryngology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
- Department of Otolaryngology, Aizawa Hospital, Matsumoto, 390-8510, Japan
| | - Shin-Ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, 30099, South Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, South Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Lorente-Cánovas B, Eckrich S, Lewis MA, Johnson SL, Marcotti W, Steel KP. Grxcr1 regulates hair bundle morphogenesis and is required for normal mechanoelectrical transduction in mouse cochlear hair cells. PLoS One 2022; 17:e0261530. [PMID: 35235570 PMCID: PMC8890737 DOI: 10.1371/journal.pone.0261530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
Tasmanian devil (tde) mice are deaf and exhibit circling behaviour. Sensory hair cells of mutants show disorganised hair bundles with abnormally thin stereocilia. The origin of this mutation is the insertion of a transgene which disrupts expression of the Grxcr1 (glutaredoxin cysteine rich 1) gene. We report here that Grxcr1 exons and transcript sequences are not affected by the transgene insertion in tde homozygous (tde/tde) mice. Furthermore, 5'RACE PCR experiments showed the presence of two different transcripts of the Grxcr1 gene, expressed in both tde/tde and in wild-type controls. However, quantitative analysis of Grxcr1 transcripts revealed a significantly decreased mRNA level in tde/tde mice. The key stereociliary proteins ESPN, MYO7A, EPS8 and PTPRQ were distributed in hair bundles of homozygous tde mutants in a similar pattern compared with control mice. We found that the abnormal morphology of the stereociliary bundle was associated with a reduction in the size and Ca2+-sensitivity of the mechanoelectrical transducer (MET) current. We propose that GRXCR1 is key for the normal growth of the stereociliary bundle prior to the onset of hearing, and in its absence hair cells are unable to mature into fully functional sensory receptors.
Collapse
Affiliation(s)
- Beatriz Lorente-Cánovas
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stephanie Eckrich
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
7
|
Liu C, Zhao B. Murine GRXCR1 Has a Different Function Than GRXCR2 in the Morphogenesis of Stereocilia. Front Cell Neurosci 2021; 15:714070. [PMID: 34366792 PMCID: PMC8333275 DOI: 10.3389/fncel.2021.714070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in human glutaredoxin domain-containing cysteine-rich protein 1 (GRXCR1) and its paralog GRXCR2 have been linked to hearing loss in humans. Although both GRXCR1 and GRXCR2 are required for the morphogenesis of stereocilia in cochlear hair cells, a fundamental question that remains unclear is whether GRXCR1 and GRXCR2 have similar functions in hair cells. Previously, we found that GRXCR2 is critical for the stereocilia morphogenesis by regulating taperin localization at the base of stereocilia. Reducing taperin expression level rescues the morphological defects of stereocilia and hearing loss in Grxcr2-deficient mice. So far, functions of GRXCR1 in mammalian hair cells are still unclear. Grxcr1-deficient hair cells have very thin stereocilia with less F-actin content inside, which is different from Grxcr2-deficient hair cells. In contrast to GRXCR2, which is concentrated at the base of stereocilia, GRXCR1 is diffusely distributed throughout the stereocilia. Notably, GRXCR1 interacts with GRXCR2. In Grxcr1-deficient hair cells, the expression level of GRXCR2 and taperin is reduced. Remarkably, different from that in Grxcr2-deficient mice, reducing taperin expression level does not rescue the morphological defects of stereocilia or hearing loss in Grxcr1-deficient mice. Thus, our findings suggest that GRXCR1 has different functions than GRXCR2 during the morphogenesis of stereocilia.
Collapse
Affiliation(s)
- Chang Liu
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bo Zhao
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Batai K, Cui Z, Arora A, Shah-Williams E, Hernandez W, Ruden M, Hollowell CMP, Hooker SE, Bathina M, Murphy AB, Bonilla C, Kittles RA. Genetic loci associated with skin pigmentation in African Americans and their effects on vitamin D deficiency. PLoS Genet 2021; 17:e1009319. [PMID: 33600456 PMCID: PMC7891745 DOI: 10.1371/journal.pgen.1009319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023] Open
Abstract
A recent genome-wide association study (GWAS) in African descent populations identified novel loci associated with skin pigmentation. However, how genomic variations affect skin pigmentation and how these skin pigmentation gene variants affect serum 25(OH) vitamin D variation has not been explored in African Americans (AAs). In order to further understand genetic factors that affect human skin pigmentation and serum 25(OH)D variation, we performed a GWAS for skin pigmentation with 395 AAs and a replication study with 681 AAs. Then, we tested if the identified variants are associated with serum 25(OH) D concentrations in a subset of AAs (n = 591). Skin pigmentation, Melanin Index (M-Index), was measured using a narrow-band reflectometer. Multiple regression analysis was performed to identify variants associated with M-Index and to assess their role in serum 25(OH)D variation adjusting for population stratification and relevant confounding variables. A variant near the SLC24A5 gene (rs2675345) showed the strongest signal of association with M-Index (P = 4.0 x 10-30 in the pooled dataset). Variants in SLC24A5, SLC45A2 and OCA2 together account for a large proportion of skin pigmentation variance (11%). The effects of these variants on M-Index was modified by sex (P for interaction = 0.009). However, West African Ancestry (WAA) also accounts for a large proportion of M-Index variance (23%). M-Index also varies among AAs with high WAA and high Genetic Score calculated from top variants associated with M-Index, suggesting that other unknown genomic factors related to WAA are likely contributing to skin pigmentation variation. M-Index was not associated with serum 25(OH)D concentrations, but the Genetic Score was significantly associated with vitamin D deficiency (serum 25(OH)D levels less than 12 ng/mL) (OR, 1.30; 95% CI, 1.04-1.64). The findings support the hypothesis suggesting that skin pigmentation evolved responding to increased demand for subcutaneous vitamin D synthesis in high latitude environments.
Collapse
Affiliation(s)
- Ken Batai
- Department of Urology, University of Arizona, Tucson, Arizona, United States of America
| | - Zuxi Cui
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Amit Arora
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, United States of America
| | - Ebony Shah-Williams
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana United States of America
| | - Wenndy Hernandez
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Maria Ruden
- Department of Surgery, Cook County Health and Hospitals System, Chicago, Illinois, United States of America
| | - Courtney M. P. Hollowell
- Department of Surgery, Cook County Health and Hospitals System, Chicago, Illinois, United States of America
| | - Stanley E. Hooker
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Madhavi Bathina
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Adam B. Murphy
- Department of Urology, Northwestern University, Chicago, Illinois, United States of America
| | - Carolina Bonilla
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Rick A. Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Wonkam A, Lebeko K, Mowla S, Noubiap JJ, Chong M, Pare G. Whole exome sequencing reveals a biallelic frameshift mutation in GRXCR2 in hearing impairment in Cameroon. Mol Genet Genomic Med 2021; 9:e1609. [PMID: 33528103 PMCID: PMC8104159 DOI: 10.1002/mgg3.1609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hearing impairment (HI) genes are poorly studied in African populations. METHODS We used whole exome sequencing (WES) to investigate pathogenic and likely pathogenic (PLP) variants in 10 individuals with HI, from four multiplex families from Cameroon, two of which were previously unresolved with a targeted gene enrichment (TGE) panel of 116 genes. In silico protein modelling, western blotting and live imaging of transfected HEK293 cells were performed to study protein structure and functions. RESULTS All PLP variants previously identified with TGE were replicated. In one previously unresolved family, we found a homozygous frameshift PLP variant in GRXCR2 (OMIM: 615762), NM_001080516.1(GRXCR2):c.251delC p.(Ile85SerfsTer33), in two affected siblings; and additionally, in 1/80 unrelated individuals affected with non-syndromic hearing impairment (NSHI). The GRXCR2-c.251delC variant introduced a premature stop codon, leading to truncation and loss of a zinc-finger domain. Fluorescence confocal microscopy tracked the wild-type GRXCR2 protein to the cellular membrane, unlike the mutated GRXCR2 protein. CONCLUSION This study confirms GRXCR2 as a HI-associated gene. GRXCR2 should be included to the currently available TGE panels for HI diagnosis.
Collapse
Affiliation(s)
- Ambroise Wonkam
- Department of Medicine, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kamogelo Lebeko
- Department of Medicine, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shaheen Mowla
- Department of Pathology, Division of Haematology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jean Jacques Noubiap
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Mike Chong
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Guillaume Pare
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
McGowen MR, Tsagkogeorga G, Williamson J, Morin PA, Rossiter ASJ. Positive Selection and Inactivation in the Vision and Hearing Genes of Cetaceans. Mol Biol Evol 2020; 37:2069-2083. [DOI: 10.1093/molbev/msaa070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
The transition to an aquatic lifestyle in cetaceans (whales and dolphins) resulted in a radical transformation in their sensory systems. Toothed whales acquired specialized high-frequency hearing tied to the evolution of echolocation, whereas baleen whales evolved low-frequency hearing. More generally, all cetaceans show adaptations for hearing and seeing underwater. To determine the extent to which these phenotypic changes have been driven by molecular adaptation, we performed large-scale targeted sequence capture of 179 sensory genes across the Cetacea, incorporating up to 54 cetacean species from all major clades as well as their closest relatives, the hippopotamuses. We screened for positive selection in 167 loci related to vision and hearing and found that the diversification of cetaceans has been accompanied by pervasive molecular adaptations in both sets of genes, including several loci implicated in nonsyndromic hearing loss. Despite these findings, however, we found no direct evidence of positive selection at the base of odontocetes coinciding with the origin of echolocation, as found in studies examining fewer taxa. By using contingency tables incorporating taxon- and gene-based controls, we show that, although numbers of positively selected hearing and nonsyndromic hearing loss genes are disproportionately high in cetaceans, counts of vision genes do not differ significantly from expected values. Alongside these adaptive changes, we find increased evidence of pseudogenization of genes involved in cone-mediated vision in mysticetes and deep-diving odontocetes.
Collapse
Affiliation(s)
- Michael R McGowen
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC
| | - Georgia Tsagkogeorga
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Joseph Williamson
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA
| | - and Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| |
Collapse
|
11
|
Lee S, Dondzillo A, Gubbels SP, Raphael Y. Practical aspects of inner ear gene delivery for research and clinical applications. Hear Res 2020; 394:107934. [PMID: 32204962 DOI: 10.1016/j.heares.2020.107934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
The application of gene therapy is widely expanding in research and continuously improving in preparation for clinical applications. The inner ear is an attractive target for gene therapy for treating environmental and genetic diseases in both the auditory and vestibular systems. With the lack of spontaneous cochlear hair cell replacement, hair cell regeneration in adult mammals is among the most important goals of gene therapy. In addition, correcting gene defects can open up a new era for treating inner ear diseases. The relative isolation and small size of the inner ear dictate local administration routes and carefully calculated small volumes of reagents. In the current review, we will cover effective timing, injection routes and types of vectors for successful gene delivery to specific target cells within the inner ear. Differences between research purposes and clinical applications are also discussed.
Collapse
Affiliation(s)
- Sungsu Lee
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, USA
| | - Anna Dondzillo
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Samuel P Gubbels
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Liu LM, Zhao LP, Wu LJ, Guo L, Li WY, Chen Y. Characterization of the transcriptomes of Atoh1-induced hair cells in the mouse cochlea. AMERICAN JOURNAL OF STEM CELLS 2020; 9:1-15. [PMID: 32211215 PMCID: PMC7076321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Postnatal mammalian cochlear hair cells (HCs) can be regenerated by direct transdifferentiation or by mitotic regeneration from supporting cells through many pathways, including Atoh1, Wnt, Hedgehog and Notch signaling. However, most new HCs are immature HCs. In this study we used RNA-Seq analysis to compare the differences between the transcriptomes of Atoh1 overexpression-induced new HCs and the native HCs, and to define the factors that might help to promote the maturation of new HCs. As expected, we found Atoh1-induced new HCs had obvious HC characteristics as demonstrated by the expression of HC markers such as Pou4f3 and Myosin VIIA (Myo7a). However, Atoh1-induced new HCs had significantly lower expression of genes that are related to HC function such as Slc26a5 (Prestin), Slc17a8 and Otof. We found that genes related to HC cell differentiation and maturation (Kcnma1, Myo6, Myo7a, Grxcr1, Gfi1, Wnt5a, Fgfr1, Gfi1, Fgf8 etc.) had significantly lower expression levels in new HCs compared to native HCs. In conclusion, we found a set of genes that might regulate the differentiation and maturation of new HCs, and these genes might serve as potential new therapeutic targets for functional HC regeneration and hearing recovery.
Collapse
Affiliation(s)
- Li-Man Liu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
| | - Li-Ping Zhao
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| | - Ling-Jie Wu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| | - Wen-Yan Li
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| |
Collapse
|
13
|
GRXCR2 Regulates Taperin Localization Critical for Stereocilia Morphology and Hearing. Cell Rep 2019; 25:1268-1280.e4. [PMID: 30380417 PMCID: PMC6317715 DOI: 10.1016/j.celrep.2018.09.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
Mutations in human GRXCR2, which encodes a protein of undetermined function, cause hearing loss by unknown mechanisms. We found that mouse GRXCR2 localizes to the base of the stereocilia, which are actin-based mechanosensing organelles in cochlear hair cells that convert sound-induced vibrations into electrical signals. The stereocilia base also contains taperin, another protein of unknown function required for human hearing. We show that taperin and GRXCR2 form a complex and that taperin is diffused throughout the stereocilia length in Grxcr2-deficient hair cells. Stereocilia lacking GRXCR2 are longer than normal and disorganized due to the mislocalization of taperin, which could modulate the actin cytoskeleton in stereocilia. Remarkably, reducing taperin expression levels could rescue the morphological defects of stereocilia and restore the hearing of Grxcr2-deficient mice. Thus, our findings suggest that GRXCR2 is critical for the morphogenesis of stereocilia and auditory perception by restricting taperin to the stereocilia base. Liu et al. show that GRXCR2 and taperin form a complex at the base of the stereocilia in cochlear hair cells. Stereocilia lacking GRXCR2 are longer than normal and disorganized due to the mislocalization of taperin, which could modulate the actin cytoskeleton in stereocilia. Reducing taperin expression levels could rescue the morphological defects of stereocilia and restore the hearing of Grxcr2-deficient mice.
Collapse
|
14
|
Pickett SB, Raible DW. Water Waves to Sound Waves: Using Zebrafish to Explore Hair Cell Biology. J Assoc Res Otolaryngol 2019; 20:1-19. [PMID: 30635804 DOI: 10.1007/s10162-018-00711-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023] Open
Abstract
Although perhaps best known for their use in developmental studies, over the last couple of decades, zebrafish have become increasingly popular model organisms for investigating auditory system function and disease. Like mammals, zebrafish possess inner ear mechanosensory hair cells required for hearing, as well as superficial hair cells of the lateral line sensory system, which mediate detection of directional water flow. Complementing mammalian studies, zebrafish have been used to gain significant insights into many facets of hair cell biology, including mechanotransduction and synaptic physiology as well as mechanisms of both hereditary and acquired hair cell dysfunction. Here, we provide an overview of this literature, highlighting some of the particular advantages of using zebrafish to investigate hearing and hearing loss.
Collapse
Affiliation(s)
- Sarah B Pickett
- Department of Biological Structure, University of Washington, Health Sciences Building H-501, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195-7420, USA
- Graduate Program in Neuroscience, University of Washington, 1959 NE Pacific Street, Box 357270, Seattle, WA, 98195-7270, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Health Sciences Building H-501, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195-7420, USA.
- Graduate Program in Neuroscience, University of Washington, 1959 NE Pacific Street, Box 357270, Seattle, WA, 98195-7270, USA.
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, 1701 NE Columbia Rd, Box 357923, Seattle, WA, 98195-7923, USA.
| |
Collapse
|
15
|
Blanco-Sánchez B, Clément A, Fierro J, Stednitz S, Phillips JB, Wegner J, Panlilio JM, Peirce JL, Washbourne P, Westerfield M. Grxcr1 Promotes Hair Bundle Development by Destabilizing the Physical Interaction between Harmonin and Sans Usher Syndrome Proteins. Cell Rep 2018; 25:1281-1291.e4. [PMID: 30380418 PMCID: PMC6284068 DOI: 10.1016/j.celrep.2018.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/11/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
Morphogenesis and mechanoelectrical transduction of the hair cell mechanoreceptor depend on the correct assembly of Usher syndrome (USH) proteins into highly organized macromolecular complexes. Defects in these proteins lead to deafness and vestibular areflexia in USH patients. Mutations in a non-USH protein, glutaredoxin domain-containing cysteine-rich 1 (GRXCR1), cause non-syndromic sensorineural deafness. To understand the deglutathionylating enzyme function of GRXCR1 in deafness, we generated two grxcr1 zebrafish mutant alleles. We found that hair bundles are thinner in homozygous grxcr1 mutants, similar to the USH1 mutants ush1c (Harmonin) and ush1ga (Sans). In vitro assays showed that glutathionylation promotes the interaction between Ush1c and Ush1ga and that Grxcr1 regulates mechanoreceptor development by preventing physical interaction between these proteins without affecting the assembly of another USH1 protein complex, the Ush1c-Cadherin23-Myosin7aa tripartite complex. By elucidating the molecular mechanism through which Grxcr1 functions, we also identify a mechanism that dynamically regulates the formation of Usher protein complexes.
Collapse
Affiliation(s)
| | - Aurélie Clément
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Javier Fierro
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Sarah Stednitz
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - Jeremy Wegner
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - Judy L Peirce
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Philip Washbourne
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
16
|
Li Y, Liu H, Giffen KP, Chen L, Beisel KW, He DZZ. Transcriptomes of cochlear inner and outer hair cells from adult mice. Sci Data 2018; 5:180199. [PMID: 30277483 PMCID: PMC6167952 DOI: 10.1038/sdata.2018.199] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023] Open
Abstract
Inner hair cells (IHCs) and outer hair cells (OHCs) are the two anatomically and functionally distinct types of mechanosensitive receptor cells in the mammalian cochlea. The molecular mechanisms defining their morphological and functional specializations are largely unclear. As a first step to uncover the underlying mechanisms, we examined the transcriptomes of IHCs and OHCs isolated from adult CBA/J mouse cochleae. One thousand IHCs and OHCs were separately collected using the suction pipette technique. RNA sequencing of IHCs and OHCs was performed and their transcriptomes were analyzed. The results were validated by comparing some IHC and OHC preferentially expressed genes between present study and published microarray-based data as well as by real-time qPCR. Antibody-based immunocytochemistry was used to validate preferential expression of SLC7A14 and DNM3 in IHCs and OHCs. These data are expected to serve as a highly valuable resource for unraveling the molecular mechanisms underlying different biological properties of IHCs and OHCs as well as to provide a road map for future characterization of genes expressed in IHCs and OHCs.
Collapse
Affiliation(s)
- Yi Li
- Department of Otorhinolaryngology, Beijing Tongren Hospital, Beijing Capital Medical University, Beijing 100730, China
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - Kimberlee P. Giffen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - Lei Chen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Kirk W. Beisel
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - David Z. Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| |
Collapse
|
17
|
Avenarius MR, Jung JY, Askew C, Jones SM, Hunker KL, Azaiez H, Rehman AU, Schraders M, Najmabadi H, Kremer H, Smith RJH, Géléoc GSG, Dolan DF, Raphael Y, Kohrman DC. Grxcr2 is required for stereocilia morphogenesis in the cochlea. PLoS One 2018; 13:e0201713. [PMID: 30157177 PMCID: PMC6114524 DOI: 10.1371/journal.pone.0201713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/22/2018] [Indexed: 11/18/2022] Open
Abstract
Hearing and balance depend upon the precise morphogenesis and mechanosensory function of stereocilia, the specialized structures on the apical surface of sensory hair cells in the inner ear. Previous studies of Grxcr1 mutant mice indicated a critical role for this gene in control of stereocilia dimensions during development. In this study, we analyzed expression of the paralog Grxcr2 in the mouse and evaluated auditory and vestibular function of strains carrying targeted mutations of the gene. Peak expression of Grxcr2 occurs during early postnatal development of the inner ear and GRXCR2 is localized to stereocilia in both the cochlea and in vestibular organs. Homozygous Grxcr2 deletion mutants exhibit significant hearing loss by 3 weeks of age that is associated with developmental defects in stereocilia bundle orientation and organization. Despite these bundle defects, the mechanotransduction apparatus assembles in relatively normal fashion as determined by whole cell electrophysiological evaluation and FM1-43 uptake. Although Grxcr2 mutants do not exhibit overt vestibular dysfunction, evaluation of vestibular evoked potentials revealed subtle defects of the mutants in response to linear accelerations. In addition, reduced Grxcr2 expression in a hypomorphic mutant strain is associated with progressive hearing loss and bundle defects. The stereocilia localization of GRXCR2, together with the bundle pathologies observed in the mutants, indicate that GRXCR2 plays an intrinsic role in bundle orientation, organization, and sensory function in the inner ear during development and at maturity.
Collapse
Affiliation(s)
- Matthew R. Avenarius
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jae-Yun Jung
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Charles Askew
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, United States of America
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sherri M. Jones
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States of America
| | - Kristina L. Hunker
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Atteeq U. Rehman
- Section on Human Genetics, Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Margit Schraders
- Hearing & Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hannie Kremer
- Hearing & Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Gwenaëlle S. G. Géléoc
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David F. Dolan
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yehoash Raphael
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - David C. Kohrman
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
18
|
Fitzakerley JL, Trachte GJ. Genetics of guanylyl cyclase pathways in the cochlea and their influence on hearing. Physiol Genomics 2018; 50:780-806. [PMID: 29958079 DOI: 10.1152/physiolgenomics.00056.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although hearing loss is the most common sensory deficit in Western societies, there are no successful pharmacological treatments for this disorder. Recent experiments have demonstrated that manipulation of intracellular cyclic guanosine monophosphate (cGMP) concentrations can have both beneficial and harmful effects on hearing. In this review, we will examine the role of cGMP as a key second messenger involved in many aspects of cochlear function and discuss the known functions of downstream effectors of cGMP in sound processing. The nitric oxide-stimulated soluble guanylyl cyclase system (sGC) and the two natriuretic peptide-stimulated particulate GCs (pGCs) will be more extensively covered because they have been studied most thoroughly. The cochlear GC systems are attractive targets for medical interventions that improve hearing while simultaneously representing an under investigated source of sensorineural hearing loss.
Collapse
Affiliation(s)
- Janet L Fitzakerley
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| | - George J Trachte
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| |
Collapse
|
19
|
Nazari-Ghadikolaei A, Mehrabani-Yeganeh H, Miarei-Aashtiani SR, Staiger EA, Rashidi A, Huson HJ. Genome-Wide Association Studies Identify Candidate Genes for Coat Color and Mohair Traits in the Iranian Markhoz Goat. Front Genet 2018; 9:105. [PMID: 29670642 PMCID: PMC5893768 DOI: 10.3389/fgene.2018.00105] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
The Markhoz goat provides an opportunity to study the genetics underlying coat color and mohair traits of an Angora type goat using genome-wide association studies (GWAS). This indigenous Iranian breed is valued for its quality mohair used in ceremonial garments and has the distinction of exhibiting an array of coat colors including black, brown, and white. Here, we performed 16 GWAS for different fleece (mohair) traits and coat color in 228 Markhoz goats sampled from the Markhoz Goat Research Station in Sanandaj, Kurdistan province, located in western Iran using the Illumina Caprine 50K beadchip. The Efficient Mixed Model Linear analysis was used to identify genomic regions with potential candidate genes contributing to coat color and mohair characteristics while correcting for population structure. Significant associations to coat color were found within or near the ASIP, ITCH, AHCY, and RALY genes on chromosome 13 for black and brown coat color and the KIT and PDGFRA genes on chromosome 6 for white coat color. Individual mohair traits were analyzed for genetic association along with principal components that allowed for a broader perspective of combined traits reflecting overall mohair quality and volume. A multitude of markers demonstrated significant association to mohair traits highlighting potential candidate genes of POU1F1 on chromosome 1 for mohair quality, MREG on chromosome 2 for mohair volume, DUOX1 on chromosome 10 for yearling fleece weight, and ADGRV1 on chromosome 7 for grease percentage. Variation in allele frequencies and haplotypes were identified for coat color and differentiated common markers associated with both brown and black coat color. This demonstrates the potential for genetic markers to be used in future breeding programs to improve selection for coat color and mohair traits. Putative candidate genes, both novel and previously identified in other species or breeds, require further investigation to confirm phenotypic causality and potential epistatic relationships.
Collapse
Affiliation(s)
- Anahit Nazari-Ghadikolaei
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hassan Mehrabani-Yeganeh
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyed R. Miarei-Aashtiani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Amir Rashidi
- Department of Animal Science, Faculty of Agriculture Engineering, University of Kurdistan, Sanandaj, Iran
| | - Heather J. Huson
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
20
|
Pulido P, Leister D. Novel DNAJ-related proteins in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2018; 217:480-490. [PMID: 29271039 DOI: 10.1111/nph.14827] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Classical DNAJ proteins are co-chaperones that together with HSP70s control protein homeostasis. All three classical types of DNAJ proteins (DNAJA, DNAJB and DNAJC types) possess the J-domain for interaction with HSP70. DNAJA proteins contain, in addition, both the zinc-finger motif and the C-terminal domain which are involved in substrate binding, while DNAJB retains only the latter and DNAJC comprises only the J-domain. There is increasing evidence that some of the activities of DNAJ proteins do not require the J-domain, highlighting the functional significance of the other two domains. Indeed, the so-called DNAJ-like proteins with a degenerate J-domain have been previously coined as DNAJD proteins, and also proteins containing only a DNAJ-like zinc-finger motif appear to be involved in protein homeostasis. Therefore, we propose to extend the classification of DNAJ-related proteins into three different groups. The DNAJD type comprises proteins with a J-like domain only, and has 15 members in Arabidopsis thaliana, whereas proteins of the DNAJE (33 Arabidopsis members) and DNAJF (three Arabidopsis members) types contain a DNAJA-like zinc-finger domain and DNAJA/B-like C-terminal domain, respectively. Here, we provide an overview of the entire repertoire of these proteins in A. thaliana with respect to their physiological function and possible evolutionary origin.
Collapse
Affiliation(s)
- Pablo Pulido
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
| |
Collapse
|
21
|
Avenarius MR, Krey JF, Dumont RA, Morgan CP, Benson CB, Vijayakumar S, Cunningham CL, Scheffer DI, Corey DP, Müller U, Jones SM, Barr-Gillespie PG. Heterodimeric capping protein is required for stereocilia length and width regulation. J Cell Biol 2017; 216:3861-3881. [PMID: 28899994 PMCID: PMC5674897 DOI: 10.1083/jcb.201704171] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Control of the dimensions of actin-rich processes like filopodia, lamellipodia, microvilli, and stereocilia requires the coordinated activity of many proteins. Each of these actin structures relies on heterodimeric capping protein (CAPZ), which blocks actin polymerization at barbed ends. Because dimension control of the inner ear's stereocilia is particularly precise, we studied the CAPZB subunit in hair cells. CAPZB, present at ∼100 copies per stereocilium, concentrated at stereocilia tips as hair cell development progressed, similar to the CAPZB-interacting protein TWF2. We deleted Capzb specifically in hair cells using Atoh1-Cre, which eliminated auditory and vestibular function. Capzb-null stereocilia initially developed normally but later shortened and disappeared; surprisingly, stereocilia width decreased concomitantly with length. CAPZB2 expressed by in utero electroporation prevented normal elongation of vestibular stereocilia and irregularly widened them. Together, these results suggest that capping protein participates in stereocilia widening by preventing newly elongating actin filaments from depolymerizing.
Collapse
MESH Headings
- Animals
- Auditory Threshold
- Behavior, Animal
- Brain Stem/metabolism
- Brain Stem/physiopathology
- CapZ Actin Capping Protein/deficiency
- CapZ Actin Capping Protein/genetics
- CapZ Actin Capping Protein/metabolism
- Chick Embryo
- Cilia/metabolism
- Cilia/ultrastructure
- Evoked Potentials, Auditory, Brain Stem
- Gene Expression Regulation, Developmental
- Genotype
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/ultrastructure
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mass Spectrometry
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Otoacoustic Emissions, Spontaneous
- Phenotype
- Vestibular Evoked Myogenic Potentials
- Vestibule, Labyrinth/metabolism
- Vestibule, Labyrinth/physiopathology
Collapse
Affiliation(s)
- Matthew R Avenarius
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR
| | - Jocelyn F Krey
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR
| | - Rachel A Dumont
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR
| | - Clive P Morgan
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR
| | - Connor B Benson
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR
| | - Sarath Vijayakumar
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE
| | | | | | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Ulrich Müller
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR
| |
Collapse
|
22
|
Andreini C, Banci L, Rosato A. Exploiting Bacterial Operons To Illuminate Human Iron–Sulfur Proteins. J Proteome Res 2016; 15:1308-22. [DOI: 10.1021/acs.jproteome.6b00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
23
|
Rodríguez-de la Rosa L, Sánchez-Calderón H, Contreras J, Murillo-Cuesta S, Falagan S, Avendaño C, Dopazo J, Varela-Nieto I, Milo M. Comparative gene expression study of the vestibular organ of the Igf1 deficient mouse using whole-transcript arrays. Hear Res 2015; 330:62-77. [PMID: 26341476 DOI: 10.1016/j.heares.2015.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
The auditory and vestibular organs form the inner ear and have a common developmental origin. Insulin like growth factor 1 (IGF-1) has a central role in the development of the cochlea and maintenance of hearing. Its deficiency causes sensorineural hearing loss in man and mice. During chicken early development, IGF-1 modulates neurogenesis of the cochleovestibular ganglion but no further studies have been conducted to explore the potential role of IGF-1 in the vestibular system. In this study we have compared the whole transcriptome of the vestibular organ from wild type and Igf1(-/-) mice at different developmental and postnatal times. RNA was prepared from E18.5, P15 and P90 vestibular organs of Igf1(-/-) and Igf1(+/+) mice and the transcriptome analysed in triplicates using Affymetrix(®) Mouse Gene 1.1 ST Array Plates. These plates are whole-transcript arrays that include probes to measure both messenger (mRNA) and long intergenic non-coding RNA transcripts (lincRNA), with a coverage of over 28 thousand coding transcripts and over 7 thousands non-coding transcripts. Given the complexity of the data we used two different methods VSN-RMA and mmBGX to analyse and compare the data. This is to better evaluate the number of false positives and to quantify uncertainty of low signals. We identified a number of differentially expressed genes that we described using functional analysis and validated using RT-qPCR. The morphology of the vestibular organ did not show differences between genotypes and no evident alterations were observed in the vestibular sensory areas of the null mice. However, well-defined cellular alterations were found in the vestibular neurons with respect their number and size. Although these mice did not show a dramatic vestibular phenotype, we conducted a functional analysis on differentially expressed genes between genotypes and across time. This was with the aim to identify new pathways that are involved in the development of the vestibular organ as well as pathways that maybe affected by the lack of IGF-1 and be associated to the morphological changes of the vestibular neurons that we observed in the Igf1(-/-) mice.
Collapse
Affiliation(s)
- Lourdes Rodríguez-de la Rosa
- Neurobiology of Hearing, Department of Endocrine and Nervous System Pathophysiology, Alberto Sols Biomedical Research Institute (IIBM), CSIC-UAM, Madrid, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain; IdiPAZ Institute for Health Research, Madrid, Spain
| | - Hortensia Sánchez-Calderón
- Neurobiology of Hearing, Department of Endocrine and Nervous System Pathophysiology, Alberto Sols Biomedical Research Institute (IIBM), CSIC-UAM, Madrid, Spain
| | - Julio Contreras
- Neurobiology of Hearing, Department of Endocrine and Nervous System Pathophysiology, Alberto Sols Biomedical Research Institute (IIBM), CSIC-UAM, Madrid, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain; Department of Anatomy, Faculty of Veterinary, Complutense University, Madrid, Spain
| | - Silvia Murillo-Cuesta
- Neurobiology of Hearing, Department of Endocrine and Nervous System Pathophysiology, Alberto Sols Biomedical Research Institute (IIBM), CSIC-UAM, Madrid, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain; IdiPAZ Institute for Health Research, Madrid, Spain
| | - Sandra Falagan
- Department of Anatomy, Faculty of Medicine, Autonomous University, Madrid, Spain
| | - Carlos Avendaño
- IdiPAZ Institute for Health Research, Madrid, Spain; Department of Anatomy, Faculty of Medicine, Autonomous University, Madrid, Spain
| | - Joaquín Dopazo
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain; Department of Computational Genomics, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Isabel Varela-Nieto
- Neurobiology of Hearing, Department of Endocrine and Nervous System Pathophysiology, Alberto Sols Biomedical Research Institute (IIBM), CSIC-UAM, Madrid, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain; IdiPAZ Institute for Health Research, Madrid, Spain
| | - Marta Milo
- Department of Biomedical Science, University of Sheffield, Sheffield, UK.
| |
Collapse
|
24
|
Characterization of the transcriptome of nascent hair cells and identification of direct targets of the Atoh1 transcription factor. J Neurosci 2015; 35:5870-83. [PMID: 25855195 DOI: 10.1523/jneurosci.5083-14.2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hair cells are sensory receptors for the auditory and vestibular system in vertebrates. The transcription factor Atoh1 is both necessary and sufficient for the differentiation of hair cells, and is strongly upregulated during hair-cell regeneration in nonmammalian vertebrates. To identify genes involved in hair cell development and function, we performed RNA-seq profiling of purified Atoh1-expressing hair cells from the neonatal mouse cochlea. We identified >600 enriched transcripts in cochlear hair cells, of which 90% have not been previously shown to be expressed in hair cells. We identified 233 of these hair cell genes as candidates to be directly regulated by Atoh1 based on the presence of Atoh1 binding sites in their regulatory regions and by analyzing Atoh1 ChIP-seq datasets from the cerebellum and small intestine. We confirmed 10 of these genes as being direct Atoh1 targets in the cochlea by ChIP-PCR. The identification of candidate Atoh1 target genes is a first step in identifying gene regulatory networks for hair-cell development and may inform future studies on the potential role of Atoh1 in mammalian hair cell regeneration.
Collapse
|
25
|
Nishio SY, Hattori M, Moteki H, Tsukada K, Miyagawa M, Naito T, Yoshimura H, Iwasa YI, Mori K, Shima Y, Sakuma N, Usami SI. Gene expression profiles of the cochlea and vestibular endorgans: localization and function of genes causing deafness. Ann Otol Rhinol Laryngol 2015; 124 Suppl 1:6S-48S. [PMID: 25814645 DOI: 10.1177/0003489415575549] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES We sought to elucidate the gene expression profiles of the causative genes as well as the localization of the encoded proteins involved in hereditary hearing loss. METHODS Relevant articles (as of September 2014) were searched in PubMed databases, and the gene symbols of the genes reported to be associated with deafness were located on the Hereditary Hearing Loss Homepage using localization, expression, and distribution as keywords. RESULTS Our review of the literature allowed us to systematize the gene expression profiles for genetic deafness in the inner ear, clarifying the unique functions and specific expression patterns of these genes in the cochlea and vestibular endorgans. CONCLUSIONS The coordinated actions of various encoded molecules are essential for the normal development and maintenance of auditory and vestibular function.
Collapse
Affiliation(s)
- Shin-Ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mitsuru Hattori
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideaki Moteki
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Keita Tsukada
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Maiko Miyagawa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takehiko Naito
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hidekane Yoshimura
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoh-Ichiro Iwasa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kentaro Mori
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yutaka Shima
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoko Sakuma
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Otorhinolaryngology and Head and Neck Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
26
|
Mori K, Miyanohara I, Moteki H, Nishio SY, Kurono Y, Usami SI. Novel Mutations in GRXCR1 at DFNB25 Lead to Progressive Hearing Loss and Dizziness. Ann Otol Rhinol Laryngol 2015; 124 Suppl 1:129S-34S. [DOI: 10.1177/0003489415575061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: We identified 2 patients in 1 family who had novel mutations in GRXCR1, which caused progressive hearing loss. Methods: One thousand one hundred twenty Japanese hearing loss patients with sensorineural hearing loss from unrelated families were enrolled in this study. Targeted genomic enrichment with massively parallel sequencing of all known nonsyndromic hearing loss genes was used to identify the genetic causes of hearing loss. Results: In this study, 2 affected individuals with compound heterozygous mutations—c.439C>T (p.R147C) and c.784C>T (p.R262X)—in GRXCR1 were identified. The proband had moderate to severe hearing loss and suffered from dizziness with bilateral canal paralysis. Conclusion: Our cases are the first identified in the Japanese population and are consistent with previously reported cases. The frequency of mutations in GRXCR1 seems to be extremely rare. This study underscores the importance of using comprehensive genetic testing for hearing loss. Furthermore, longitudinal audiologic assessment and precise vestibular testing are necessary for a better understanding of the mechanisms of hearing loss and vestibular dysfunction caused by GRXCR1 mutations.
Collapse
Affiliation(s)
- Kentaro Mori
- Department of Otolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ikuyo Miyanohara
- Department of Otolaryngology-Head and Neck Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hideaki Moteki
- Department of Otolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-ya Nishio
- Department of Otolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuichi Kurono
- Department of Otolaryngology-Head and Neck Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shin-ichi Usami
- Department of Otolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
27
|
Suzuki S, Ishikawa M, Ueda T, Ohshiba Y, Miyasaka Y, Okumura K, Yokohama M, Taya C, Matsuoka K, Kikkawa Y. Quantitative trait loci on chromosome 5 for susceptibility to frequency-specific effects on hearing in DBA/2J mice. Exp Anim 2015; 64:241-51. [PMID: 25765874 PMCID: PMC4547997 DOI: 10.1538/expanim.14-0110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The DBA/2J strain is a model for early-onset, progressive hearing loss in humans, as
confirmed in the present study. DBA/2J mice showed progression of hearing loss to
low-frequency sounds from ultrasonic-frequency sounds and profound hearing loss at all
frequencies before 7 months of age. It is known that the early-onset hearing loss of
DBA/2J mice is caused by affects in the ahl
(Cdh23ahl) and ahl8
(Fscn2ahl8) alleles of the cadherin 23 and fascin 2 genes,
respectively. Although the strong contributions of the
Fscn2ahl8 allele were detected in hearing loss at 8- and
16-kHz stimuli with LOD scores of 5.02 at 8 kHz and 8.84 at 16 kHz, hearing loss effects
were also demonstrated for three new quantitative trait loci (QTLs) for the intervals of
50.3–54.5, 64.6–119.9, and 119.9–137.0 Mb, respectively, on chromosome 5, with significant
LOD scores of 2.80–3.91 for specific high-frequency hearing loss at 16 kHz by quantitative
trait loci linkage mapping using a (DBA/2J × C57BL/6J) F1 × DBA/2J backcross
mice. Moreover, we showed that the contribution of Fscn2ahl8
to early-onset hearing loss with 32-kHz stimuli is extremely low and raised the
possibility of effects from the Cdh23ahl allele and another
dominant quantitative trait locus (loci) for hearing loss at this ultrasonic frequency.
Therefore, our results suggested that frequency-specific QTLs control early-onset hearing
loss in DBA/2J mice.
Collapse
Affiliation(s)
- Sari Suzuki
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Najmabadi H, Kahrizi K. Genetics of non-syndromic hearing loss in the Middle East. Int J Pediatr Otorhinolaryngol 2014; 78:2026-36. [PMID: 25281338 DOI: 10.1016/j.ijporl.2014.08.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/24/2014] [Accepted: 08/25/2014] [Indexed: 12/23/2022]
Abstract
Hearing impairment is the most common sensory disorder, present 1 in every 500 newborns. About 80% of genetic HL is classified as non-syndromic deafness. To date, over 115 non-syndromic loci have been identified of which fifty associated with autosomal recessive non-syndromic hearing loss (ARNSHL). In this review article, we represent the 40 genes function and contribution to genetic deafness in different Middle Eastern populations as well as gene frequencies and mutation spectrum. The wide variety of mutations have so far detected in 19 countries reflects the heterogeneity of the genes involved in HL in this region. The deafness genes can cause dysfunction of cochlear homeostasis, cellular organization, neuronal transmission, cell growth, differentiation, and survival, some coding for tectorial membrane-associated proteins, and the remaining with unknown functions. Non-syndromic deafness is highly heterogeneous and mutations in the GJB2 are responsible for almost 30-50% in northwest to as low as 0-5% in south and southeast of the Middle East, it remain as major gene in ARNSHL in Middle East. The other genes contributing to AR/ADNSHL in some countries have been determined while for many other countries in the Middle East have not been studied or little study has been done. With the advancement of next generation sequencing one could expect in next coming year many of the remaining genes to be determine and to understand their function in the inner ear.
Collapse
Affiliation(s)
- Hossein Najmabadi
- Genetics Research Centre (GRC), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Kimia Kahrizi
- Genetics Research Centre (GRC), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
29
|
Taylor R, Bullen A, Johnson SL, Grimm-Günter EM, Rivero F, Marcotti W, Forge A, Daudet N. Absence of plastin 1 causes abnormal maintenance of hair cell stereocilia and a moderate form of hearing loss in mice. Hum Mol Genet 2014; 24:37-49. [PMID: 25124451 PMCID: PMC4262491 DOI: 10.1093/hmg/ddu417] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hearing relies on the mechanosensory inner and outer hair cells (OHCs) of the organ of Corti, which convert mechanical deflections of their actin-rich stereociliary bundles into electrochemical signals. Several actin-associated proteins are essential for stereocilia formation and maintenance, and their absence leads to deafness. One of the most abundant actin-bundling proteins of stereocilia is plastin 1, but its function has never been directly assessed. Here, we found that plastin 1 knock-out (Pls1 KO) mice have a moderate and progressive form of hearing loss across all frequencies. Auditory hair cells developed normally in Pls1 KO, but in young adult animals, the stereocilia of inner hair cells were reduced in width and length. The stereocilia of OHCs were comparatively less affected; however, they also showed signs of degeneration in ageing mice. The hair bundle stiffness and the acquisition of the electrophysiological properties of hair cells were unaffected by the absence of plastin 1, except for a significant change in the adaptation properties, but not the size of the mechanoelectrical transducer currents. These results show that in contrast to other actin-bundling proteins such as espin, harmonin or Eps8, plastin 1 is dispensable for the initial formation of stereocilia. However, the progressive hearing loss and morphological defects of hair cells in adult Pls1 KO mice point at a specific role for plastin 1 in the preservation of adult stereocilia and optimal hearing. Hence, mutations in the human PLS1 gene may be associated with relatively mild and progressive forms of hearing loss.
Collapse
Affiliation(s)
- Ruth Taylor
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| | - Anwen Bullen
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK and
| | - Eva-Maria Grimm-Günter
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, University of Hull, Hull, UK
| | - Francisco Rivero
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, University of Hull, Hull, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK and
| | - Andrew Forge
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| | - Nicolas Daudet
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| |
Collapse
|
30
|
Imtiaz A, Kohrman DC, Naz S. A frameshift mutation in GRXCR2 causes recessively inherited hearing loss. Hum Mutat 2014; 35:618-24. [PMID: 24619944 DOI: 10.1002/humu.22545] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/04/2014] [Indexed: 01/06/2023]
Abstract
More than 360 million humans are affected with some degree of hearing loss, either early or later in life. A genetic cause for the disorder is present in a majority of the cases. We mapped a locus (DFNB101) for hearing loss in humans to chromosome 5q in a consanguineous Pakistani family. Exome sequencing revealed an insertion mutation in GRXCR2 as the cause of moderate-to-severe and likely progressive hearing loss in the affected individuals of the family. The frameshift mutation is predicted to affect a conserved, cysteine-rich region of GRXCR2, and to result in an abnormal extension of the C-terminus. Functional studies by cell transfections demonstrated that the mutant protein is unstable and mislocalized relative to wild-type GRXCR2, consistent with a loss-of-function mutation. Targeted disruption of Grxcr2 is concurrently reported to cause hearing loss in mice. The structural abnormalities in this animal model suggest a role for GRXCR2 in the development of stereocilia bundles, specialized structures on the apical surface of sensory cells in the cochlea that are critical for sound detection. Our results indicate that GRXCR2 should be considered in differential genetic diagnosis for individuals with early onset, moderate-to-severe and progressive hearing loss.
Collapse
Affiliation(s)
- Ayesha Imtiaz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | | |
Collapse
|
31
|
Chen J, Johnson SL, Lewis MA, Hilton JM, Huma A, Marcotti W, Steel KP. A reduction in Ptprq associated with specific features of the deafness phenotype of the miR-96 mutant mouse diminuendo. Eur J Neurosci 2014; 39:744-56. [PMID: 24446963 PMCID: PMC4065360 DOI: 10.1111/ejn.12484] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 12/23/2022]
Abstract
miR-96 is a microRNA, a non-coding RNA gene which regulates a wide array of downstream genes. The miR-96 mouse mutant diminuendo exhibits deafness and arrested hair cell functional and morphological differentiation. We have previously shown that several genes are markedly downregulated in the diminuendo organ of Corti; one of these is Ptprq, a gene known to be important for maturation and maintenance of hair cells. In order to study the contribution that downregulation of Ptprq makes to the diminuendo phenotype, we carried out microarrays, scanning electron microscopy and single hair cell electrophysiology to compare diminuendo mutants (heterozygous and homozygous) with mice homozygous for a functional null allele of Ptprq. In terms of both morphology and electrophysiology, the auditory phenotype of mice lacking Ptprq resembles that of diminuendo heterozygotes, while diminuendo homozygotes are more severely affected. A comparison of transcriptomes indicates there is a broad similarity between diminuendo homozygotes and Ptprq-null mice. The reduction in Ptprq observed in diminuendo mice appears to be a major contributor to the morphological, transcriptional and electrophysiological phenotype, but does not account for the complete diminuendo phenotype.
Collapse
Affiliation(s)
- Jing Chen
- Wellcome Trust Sanger Institute, Cambridge, UK; Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
33
|
Babanejad M, Fattahi Z, Bazazzadegan N, Nishimura C, Meyer N, Nikzat N, Sohrabi E, Najmabadi A, Jamali P, Habibi F, Smith RJH, Kahrizi K, Najmabadi H. A comprehensive study to determine heterogeneity of autosomal recessive nonsyndromic hearing loss in Iran. Am J Med Genet A 2012; 158A:2485-92. [PMID: 22903915 DOI: 10.1002/ajmg.a.35572] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 06/23/2012] [Indexed: 11/05/2022]
Abstract
Hearing loss is the most common sensory disorder worldwide and affects 1 of every 500 newborns. In developed countries, at least 50% of cases are genetic, most often resulting in nonsyndromic deafness (70%), which is usually autosomal recessive (∼80%). Although the cause of hearing loss is heterogeneous, mutations in GJB2 gene at DFNB1 locus are the major cause of autosomal recessive nonsyndromic hearing loss (ARNSHL) in many populations. Our previous study showed that mutations of GJB2 gene do not contribute to the major genetic load of deafness in the Iranian population (∼16%). Therefore, to define the importance of other genes in contributing to an ARNSHL phenotype in the Iranian population, we used homozygosity mapping to identify regions of autozygosity-by-descent in 144 families which two or more progeny had ARNSHL but were negative for GJB2 gene mutations. Using flanking or intragenic short-tandem repeat markers for 33 loci we identified 33 different homozygous variations in 10 genes, of which 9 are novel. In aggregate, these data explain ∼40% of genetic background of ARNHSL in the Iranian population.
Collapse
Affiliation(s)
- Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Davisson MT, Bergstrom DE, Reinholdt LG, Donahue LR. Discovery Genetics - The History and Future of Spontaneous Mutation Research. ACTA ACUST UNITED AC 2012; 2:103-118. [PMID: 25364627 DOI: 10.1002/9780470942390.mo110200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Historically, spontaneous mutations in mice have served as valuable models of heritable human diseases, contributing substantially to our understanding of both disease mechanisms and basic biological pathways. While advances in molecular technologies have improved our ability to create mouse models of human disease through targeted mutagenesis and transgenesis, spontaneous mutations continue to provide valuable research tools for discovery of novel genes and functions. In addition, the genetic defects caused by spontaneous mutations are molecularly similar to mutations in the human genome and, therefore often produce phenotypes that more closely resemble those characteristic of human disease than do genetically engineered mutations. Due to the rarity with which spontaneous mutations arise and the animal intensive nature of their genetic analysis, large-scale spontaneous mutation analysis has traditionally been limited to large mammalian genetics institutes. More recently, ENU mutagenesis and new screening methods have increased the rate of mutant strain discovery, and high-throughput DNA sequencing has enabled rapid identification of the underlying genes and their causative mutations. Here, we discuss the continued value of spontaneous mutations for biomedical research.
Collapse
|
35
|
Abstract
Hereditary deafness is genetically heterogeneous such that mutations of many different genes can cause hearing loss. This review focuses on the evidence and implications that several of these deafness genes encode actin-interacting proteins or actin itself. There is a growing appreciation of the contribution of the actin interactome in stereocilia development, maintenance, mechanotransduction and malfunction of the auditory system.
Collapse
|
36
|
Integrating the biophysical and molecular mechanisms of auditory hair cell mechanotransduction. Nat Commun 2011; 2:523. [PMID: 22045002 DOI: 10.1038/ncomms1533] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mechanosensation is a primitive and somewhat ubiquitous sense. At the inner ear, sensory hair cells are refined to enhance sensitivity, dynamic range and frequency selectivity. Thirty years ago, mechanisms of mechanotransduction and adaptation were well accounted for by simple mechanical models that incorporated physiological and morphological properties of hair cells. Molecular and genetic tools, coupled with new optical techniques, are now identifying and localizing specific components of the mechanotransduction machinery. These new findings challenge long-standing theories, and require modification of old and development of new models. Future advances require the integration of molecular and physiological data to causally test these new hypotheses.
Collapse
|
37
|
Kong SG, Wada M. New insights into dynamic actin-based chloroplast photorelocation movement. MOLECULAR PLANT 2011; 4:771-81. [PMID: 21772030 DOI: 10.1093/mp/ssr061] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chloroplast movement is essential for plants to survive under various environmental light conditions. Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction. Recently, novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement. Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses. This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments, thus providing a basis for reflection on their biochemical activities and functions.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Biology, Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | |
Collapse
|
38
|
Whippo CW, Khurana P, Davis PA, DeBlasio SL, DeSloover D, Staiger CJ, Hangarter RP. THRUMIN1 is a light-regulated actin-bundling protein involved in chloroplast motility. Curr Biol 2010; 21:59-64. [PMID: 21185188 DOI: 10.1016/j.cub.2010.11.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/25/2010] [Accepted: 11/23/2010] [Indexed: 02/04/2023]
Abstract
Chloroplast movement in response to changing light conditions optimizes photosynthetic light absorption. This repositioning is stimulated by blue light perceived via the phototropin photoreceptors and is transduced to the actin cytoskeleton. Some actin-based motility systems use filament reorganizations rather than myosin-based translocations. Recent research favors the hypothesis that chloroplast movement is driven by actin reorganization at the plasma membrane, but no proteins affecting chloroplast movements have been shown to associate with both the plasma membrane and actin filaments in vivo. Here we identified THRUMIN1 as a critical link between phototropin photoreceptor activity at the plasma membrane and actin-dependent chloroplast movements. THRUMIN1 bundles filamentous actin in vitro, and it localizes to the plasma membrane and displays light- and phototropin-dependent localization to microfilaments in vivo. These results suggest that phototropin-induced actin bundling via THRUMIN1 is important for chloroplast movement. A mammalian homolog of THRUMIN1, GRXCR1, has been implicated in auditory responses and hair cell stereocilla development as a regulator of actin architecture. Studies of THRUMIN1 will help elucidate the function of this family of eukaryotic proteins.
Collapse
Affiliation(s)
- Craig W Whippo
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Schraders M, Lee K, Oostrik J, Huygen PLM, Ali G, Hoefsloot LH, Veltman JA, Cremers FPM, Basit S, Ansar M, Cremers CWRJ, Kunst HPM, Ahmad W, Admiraal RJC, Leal SM, Kremer H. Homozygosity mapping reveals mutations of GRXCR1 as a cause of autosomal-recessive nonsyndromic hearing impairment. Am J Hum Genet 2010; 86:138-47. [PMID: 20137778 DOI: 10.1016/j.ajhg.2009.12.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/07/2009] [Accepted: 12/22/2009] [Indexed: 01/20/2023] Open
Abstract
We identified overlapping homozygous regions within the DFNB25 locus in two Dutch and ten Pakistani families with sensorineural autosomal-recessive nonsyndromic hearing impairment (arNSHI). Only one of the families, W98-053, was not consanguineous, and its sibship pointed toward a reduced critical region of 0.9 Mb. This region contained the GRXCR1 gene, and the orthologous mouse gene was described to be mutated in the pirouette (pi) mutant with resulting hearing loss and circling behavior. Sequence analysis of the GRXCR1 gene in hearing-impaired family members revealed splice-site mutations in two Dutch families and a missense and nonsense mutation, respectively, in two Pakistani families. The splice-site mutations are predicted to cause frameshifts and premature stop codons. In family W98-053, this could be confirmed by cDNA analysis. GRXCR1 is predicted to contain a GRX-like domain. GRX domains are involved in reversible S-glutathionylation of proteins and thereby in the modulation of activity and/or localization of these proteins. The missense mutation is located in this domain, whereas the nonsense and splice-site mutations may result in complete or partial absence of the GRX-like domain or of the complete protein. Hearing loss in patients with GRXCR1 mutations is congenital and is moderate to profound. Progression of the hearing loss was observed in family W98-053. Vestibular dysfunction was observed in some but not all affected individuals. Quantitative analysis of GRXCR1 transcripts in fetal and adult human tissues revealed a preferential expression of the gene in fetal cochlea, which may explain the nonsyndromic nature of the hearing impairment.
Collapse
Affiliation(s)
- Margit Schraders
- Department of Otorhinolaryngology, Head and Neck Surgery, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|