1
|
Grine FE, Post NW, Greening V, Crevecoeur I, Billings BK, Meyer A, Holt S, Black W, Morris AG, Veeramah KR, Mongle CS. Frontal sinus size in South African Later Stone Age Holocene Khoe-San. Anat Rec (Hoboken) 2025; 308:801-826. [PMID: 39118368 DOI: 10.1002/ar.25556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Frontal size variation is comparatively poorly sampled among sub-Saharan African populations. This study assessed frontal sinus size in a sample of Khoe-San skeletal remains from South African Later Stone Age contexts. Volumes were determined from CT scans of 102 adult crania; individual sex could be estimated in 82 cases. Sinus volume is not sexually dimorphic in this sample. The lack of frontal sinus aplasia is concordant with the low incidences recorded for other sub-Saharan African and most other global populations save those that inhabit high latitudes. There is considerable variation in frontal sinus size among global populations, and the Khoe-San possess among the smallest. The Khoe-San have rather diminutive sinuses compared to sub-Saharan Bantu-speaking populations but resemble a northern African (Sudanese) population. Genetic studies indicate the earliest population divergence within Homo sapiens to have been between the Khoe-San and all other living groups, and that this likely occurred in Africa during the span of Marine Isotope Stages 8-6. There is scant information on frontal sinus development among Late Quaternary African fossils that are likely either closely related or attributable to Homo sapiens. Among these, the MIS 3 cranium from Hofmeyr, South Africa, exhibits distinct Khoe-San cranial affinities and despite its large size has a very small frontal sinus. This raises the possibility that the small frontal sinuses of the Holocene South African Khoe-San might be a feature retained from an earlier MIS 3 population.
Collapse
Affiliation(s)
- Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, New York, USA
- Department of Anatomical Sciences, School of Medicine, Stony Brook University, New York, USA
| | - Nicholas W Post
- Richard Gilder Graduate School and Division of Anthropology, American Museum of Natural History, New York, New York, USA
| | | | - Isabelle Crevecoeur
- Laboratoire de la Préhistoire à l'Actuel: Culture, Environnement et Anthropologie, Université de Bordeaux, Pessac Cedex, France
- Chargée de Recherche CNRS, Université de Bordeaux, Pessac Cedex, France
| | - Brendon K Billings
- Human Variation and Identification Research Unit, School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Parktown, Johannesburg, South Africa
| | - Anja Meyer
- Human Variation and Identification Research Unit, School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Parktown, Johannesburg, South Africa
| | - Sharon Holt
- Florisbad Quaternary Research Station, National Museum, Bloemfontein, South Africa
| | - Wendy Black
- Archaeology Unit, Iziko Museums of South Africa, Cape Town, South Africa
| | - Alan G Morris
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Krishna R Veeramah
- Department of Ecology & Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, New York, USA
- Turkana Basin Institute, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
He G, Liu C, Wang M. Perspectives and opportunities in forensic human, animal, and plant integrative genomics in the Pangenome era. Forensic Sci Int 2025; 367:112370. [PMID: 39813779 DOI: 10.1016/j.forsciint.2025.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The Human Pangenome Reference Consortium, the Chinese Pangenome Consortium, and other plant and animal pangenome projects have announced the completion of pilot work aimed at constructing high-quality, haplotype-resolved reference graph genomes representative of global ethno-linguistically different populations or different plant and animal species. These graph-based, gapless pangenome references, which are enriched in terms of genomic diversity, completeness, and contiguity, have the potential for enhancing long-read sequencing (LRS)-based genomic research, as well as improving mappability and variant genotyping on traditional short-read sequencing platforms. We comprehensively discuss the advancements in pangenome-based genomic integrative genomic discoveries across forensic-related species (humans, animals, and plants) and summarize their applications in variant identification and forensic genomics, epigenetics, transcriptomics, and microbiome research. Recent developments in multiplexed array sequencing have introduced a highly efficient and programmable technique to overcome the limitations of short forensic marker lengths in LRS platforms. This technique enables the concatenation of short RNA transcripts and DNA fragments into LRS-optimal molecules for sequencing, assembly, and genotyping. The integration of new pangenome reference coordinates and corresponding computational algorithms will benefit forensic integrative genomics by facilitating new marker identification, accurate genotyping, high-resolution panel development, and the updating of statistical algorithms. This review highlights the necessity of integrating LRS-based platforms, pangenome-based study designs, and graph-based pangenome references in short-read mapping and LRS-based innovations to achieve precision forensic science.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China.
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China.
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China.
| |
Collapse
|
3
|
D'Amato ME, Ristow P, Livesey M, Heynes K, Huber N, Bravi C, Hansen AJ, Parson W. Persistence of Ancestral KhoeSan Mitochondrial Patterns in Contemporary South African Populations. Ann Hum Genet 2025:e12589. [PMID: 39775598 DOI: 10.1111/ahg.12589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Southern Africa has been inhabited by hunter-gatherers for at least 20,000 years and has received diverse immigration flows in the last 2000 years. The original inhabitants have interacted with the pastoralist migrants from Eastern Africa (∼2000 ybp), followed by the southern Bantu migration arriving some 1000 ybp, and more recently with the European and Asian settlers after the 17th century. Many of the original Khoekhoe and San inhabitants have either become extinct or have disappeared through admixture in South Africa (SA), in a sex-biased manner involving KhoeSan women. METHODS In this study, we generated mitochondrial DNA (mtDNA) control region (CR) sequences for 247 South African individuals. The sampling effort was concentrated in regions and populations with historical links to the KhoeSan population groups: admixed (Coloured, Griqua), Nama (Khoekhoe) and Bantu in three provinces. Here we evaluate the composition and extent of connectivity between population groups and regions, and to assess the distribution of haplotypes for the practical application of mtDNA CR data in forensic identifications. RESULTS The analysis of the newly generated sequences revealed 142 distinct haplotypes, of which 122 were unique. Haplogroup L0 was predominant (overall 71.7%). A high-frequency L0d2a haplotype dominated the pool of the admixed groups with 10%-12.5% incidence overall or per region. Comparative analysis with 545 extant mtDNA CR sequences from South African KhoeSan and admixed descendants revealed extensive population structure and high within-group haplotype sharing. CONCLUSION The observed population and regional variations, combined with the prevalence of high-frequency haplotypes, align with patterns of matrilocality. These findings highlight the limitations of using mtDNA control region analysis for forensic applications in South Africa.
Collapse
Affiliation(s)
- Maria Eugenia D'Amato
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Peter Ristow
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Michelle Livesey
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Kirsty Heynes
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Nicole Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudio Bravi
- Laboratorio de Genética Molecular Poblacional, Instituto Multidisciplinario de Biología Celular, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Anders J Hansen
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Kobenhavn, Denmark
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Gretzinger J, Gibbon VE, Penske SE, Sealy JC, Rohrlach AB, Salazar-García DC, Krause J, Schiffels S. 9,000 years of genetic continuity in southernmost Africa demonstrated at Oakhurst rockshelter. Nat Ecol Evol 2024; 8:2121-2134. [PMID: 39300260 PMCID: PMC11541196 DOI: 10.1038/s41559-024-02532-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/02/2024] [Indexed: 09/22/2024]
Abstract
Southern Africa has one of the longest records of fossil hominins and harbours the largest human genetic diversity in the world. Yet, despite its relevance for human origins and spread around the globe, the formation and processes of its gene pool in the past are still largely unknown. Here, we present a time transect of genome-wide sequences from nine individuals recovered from a single site in South Africa, Oakhurst Rockshelter. Spanning the whole Holocene, the ancient DNA of these individuals allows us to reconstruct the demographic trajectories of the indigenous San population and their ancestors during the last 10,000 years. We show that, in contrast to most regions around the world, the population history of southernmost Africa was not characterized by several waves of migration, replacement and admixture but by long-lasting genetic continuity from the early Holocene to the end of the Later Stone Age. Although the advent of pastoralism and farming substantially transformed the gene pool in most parts of southern Africa after 1,300 BP, we demonstrate using allele-frequency and identity-by-descent segment-based methods that the ‡Khomani San and Karretjiemense from South Africa still show direct signs of relatedness to the Oakhurst hunter-gatherers, a pattern obscured by recent, extensive non-Southern African admixture. Yet, some southern San in South Africa still preserve this ancient, Pleistocene-derived genetic signature, extending the period of genetic continuity until today.
Collapse
Affiliation(s)
- Joscha Gretzinger
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Victoria E Gibbon
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa.
| | - Sandra E Penske
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Judith C Sealy
- Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | - Adam B Rohrlach
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Domingo C Salazar-García
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Stephan Schiffels
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany.
| |
Collapse
|
5
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Swart Y, van Eeden G, Uren C, van der Spuy G, Tromp G, Möller M. GWAS in the southern African context. PLoS One 2022; 17:e0264657. [PMID: 36170230 PMCID: PMC9518849 DOI: 10.1371/journal.pone.0264657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022] Open
Abstract
Researchers would generally adjust for the possible confounding effect of population structure by considering global ancestry proportions or top principle components. Alternatively, researchers would conduct admixture mapping to increase the power to detect variants with an ancestry effect. This is sufficient in simple admixture scenarios, however, populations from southern Africa can be complex multi-way admixed populations. Duan et al. (2018) first described local ancestry adjusted allelic (LAAA) analysis as a robust method for discovering association signals, while producing minimal false positive hits. Their simulation study, however, was limited to a two-way admixed population. Realizing that their findings might not translate to other admixture scenarios, we simulated a three- and five-way admixed population to compare the LAAA model to other models commonly used in genome-wide association studies (GWAS). We found that, given our admixture scenarios, the LAAA model identifies the most causal variants in most of the phenotypes we tested across both the three-way and five-way admixed populations. The LAAA model also produced a high number of false positive hits which was potentially caused by the ancestry effect size that we assumed. Considering the extent to which the various models tested differed in their results and considering that the source of a given association is unknown, we recommend that researchers use multiple GWAS models when analysing populations with complex ancestry.
Collapse
Affiliation(s)
- Yolandi Swart
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerald van Eeden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Caitlin Uren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Gian van der Spuy
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- SAMRC-SHIP South African Tuberculosis Bioinformatics Initiative (SATBBI), Center for Bioinformatics and Computational Biology, Cape Town, South Africa
| | - Gerard Tromp
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
- SAMRC-SHIP South African Tuberculosis Bioinformatics Initiative (SATBBI), Center for Bioinformatics and Computational Biology, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
- * E-mail:
| |
Collapse
|
7
|
van Eeden G, Uren C, Pless E, Mastoras M, van der Spuy GD, Tromp G, Henn BM, Möller M. The recombination landscape of the Khoe-San likely represents the upper limits of recombination divergence in humans. Genome Biol 2022; 23:172. [PMID: 35945619 PMCID: PMC9361568 DOI: 10.1186/s13059-022-02744-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recombination maps are important resources for epidemiological and evolutionary analyses; however, there are currently no recombination maps representing any African population outside of those with West African ancestry. We infer the demographic history for the Nama, an indigenous Khoe-San population of southern Africa, and derive a novel, population-specific recombination map from the whole genome sequencing of 54 Nama individuals. We hypothesise that there are no publicly available recombination maps representative of the Nama, considering the deep population divergence and subsequent isolation of the Khoe-San from other African groups. RESULTS We show that the recombination landscape of the Nama does not cluster with any continental groups with publicly available representative recombination maps. Finally, we use selection scans as an example of how fine-scale differences between the Nama recombination map and the combined Phase II HapMap recombination map can impact the outcome of selection scans. CONCLUSIONS Fine-scale differences in recombination can meaningfully alter the results of a selection scan. The recombination map we infer likely represents an upper bound on the extent of divergence we expect to see for a recombination map in humans and would be of interest to any researcher that wants to test the sensitivity of population genetic or GWAS analysis to recombination map input.
Collapse
Affiliation(s)
- Gerald van Eeden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Caitlin Uren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, 7602 South Africa
| | - Evlyn Pless
- Department of Anthropology, Center for Population Biology and the Genome Center, University of California (UC) Davis, Davis, CA USA
| | - Mira Mastoras
- Department of Anthropology, Center for Population Biology and the Genome Center, University of California (UC) Davis, Davis, CA USA
| | - Gian D. van der Spuy
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, 7602 South Africa
- SAMRC-SHIP South African Tuberculosis Bioinformatics Initiative (SATBBI), Center for Bioinformatics and Computational Biology, Cape Town, South Africa
| | - Gerard Tromp
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, 7602 South Africa
- SAMRC-SHIP South African Tuberculosis Bioinformatics Initiative (SATBBI), Center for Bioinformatics and Computational Biology, Cape Town, South Africa
| | - Brenna M. Henn
- Department of Anthropology, Center for Population Biology and the Genome Center, University of California (UC) Davis, Davis, CA USA
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, 7602 South Africa
| |
Collapse
|
8
|
African mitochondrial haplogroup L7: a 100,000-year-old maternal human lineage discovered through reassessment and new sequencing. Sci Rep 2022; 12:10747. [PMID: 35750688 PMCID: PMC9232647 DOI: 10.1038/s41598-022-13856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Archaeological and genomic evidence suggest that modern Homo sapiens have roamed the planet for some 300–500 thousand years. In contrast, global human mitochondrial (mtDNA) diversity coalesces to one African female ancestor (“Mitochondrial Eve”) some 145 thousand years ago, owing to the ¼ gene pool size of our matrilineally inherited haploid genome. Therefore, most of human prehistory was spent in Africa where early ancestors of Southern African Khoisan and Central African rainforest hunter-gatherers (RFHGs) segregated into smaller groups. Their subdivisions followed climatic oscillations, new modes of subsistence, local adaptations, and cultural-linguistic differences, all prior to their exodus out of Africa. Seven African mtDNA haplogroups (L0–L6) traditionally captured this ancient structure—these L haplogroups have formed the backbone of the mtDNA tree for nearly two decades. Here we describe L7, an eighth haplogroup that we estimate to be ~ 100 thousand years old and which has been previously misclassified in the literature. In addition, L7 has a phylogenetic sublineage L7a*, the oldest singleton branch in the human mtDNA tree (~ 80 thousand years). We found that L7 and its sister group L5 are both low-frequency relics centered around East Africa, but in different populations (L7: Sandawe; L5: Mbuti). Although three small subclades of African foragers hint at the population origins of L5'7, the majority of subclades are divided into Afro-Asiatic and eastern Bantu groups, indicative of more recent admixture. A regular re-estimation of the entire mtDNA haplotype tree is needed to ensure correct cladistic placement of new samples in the future.
Collapse
|
9
|
Vicente M, Lankheet I, Russell T, Hollfelder N, Coetzee V, Soodyall H, Jongh MD, Schlebusch CM. Male-biased migration from East Africa introduced pastoralism into southern Africa. BMC Biol 2021; 19:259. [PMID: 34872534 PMCID: PMC8650298 DOI: 10.1186/s12915-021-01193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Hunter-gatherer lifestyles dominated the southern African landscape up to ~ 2000 years ago, when herding and farming groups started to arrive in the area. First, herding and livestock, likely of East African origin, appeared in southern Africa, preceding the arrival of the large-scale Bantu-speaking agro-pastoralist expansion that introduced West African-related genetic ancestry into the area. Present-day Khoekhoe-speaking Namaqua (or Nama in short) pastoralists show high proportions of East African admixture, linking the East African ancestry with Khoekhoe herders. Most other historical Khoekhoe populations have, however, disappeared over the last few centuries and their contribution to the genetic structure of present-day populations is not well understood. In our study, we analyzed genome-wide autosomal and full mitochondrial data from a population who trace their ancestry to the Khoekhoe-speaking Hessequa herders from the southern Cape region of what is now South Africa. RESULTS We generated genome-wide data from 162 individuals and mitochondrial DNA data of a subset of 87 individuals, sampled in the Western Cape Province, South Africa, where the Hessequa population once lived. Using available comparative data from Khoe-speaking and related groups, we aligned genetic date estimates and admixture proportions to the archaeological proposed dates and routes for the arrival of the East African pastoralists in southern Africa. We identified several Afro-Asiatic-speaking pastoralist groups from Ethiopia and Tanzania who share high affinities with the East African ancestry present in southern Africa. We also found that the East African pastoralist expansion was heavily male-biased, akin to a pastoralist migration previously observed on the genetic level in ancient Europe, by which Pontic-Caspian Steppe pastoralist groups represented by the Yamnaya culture spread across the Eurasian continent during the late Neolithic/Bronze Age. CONCLUSION We propose that pastoralism in southern Africa arrived through male-biased migration of an East African Afro-Asiatic-related group(s) who introduced new subsistence and livestock practices to local southern African hunter-gatherers. Our results add to the understanding of historical human migration and mobility in Africa, connected to the spread of food-producing and livestock practices.
Collapse
Affiliation(s)
- Mário Vicente
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Imke Lankheet
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Thembi Russell
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| | - Nina Hollfelder
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Vinet Coetzee
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Himla Soodyall
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Academy of Science of South Africa, Pretoria, South Africa
| | - Michael De Jongh
- Department of Anthropology and Archaeology, University of South Africa, Pretoria, South Africa
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa.
- SciLife Lab, Uppsala, Sweden.
| |
Collapse
|
10
|
Rotival M, Cossart P, Quintana-Murci L. Reconstructing 50,000 years of human history from our DNA: lessons from modern genomics. C R Biol 2021; 344:177-187. [PMID: 34213855 DOI: 10.5802/crbiol.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/24/2022]
Abstract
The advent of high throughput sequencing approaches and ancient DNA techniques have enabled reconstructing the history of human populations at an unprecedented level of resolution. The symposium from the French Academy of Sciences "50,000 ans d'épopée humaine dans notre ADN" has reviewed some of the latest contributions from the fields of genomics, archaeology, and linguistics to our understanding of >300,000 years of human history. DNA has revealed the richness of the human journey, from the deep divergences between human populations in Africa, to the first encounters of Homo Sapiens with other hominins on their way to Eurasia and the peopling of Remote Oceania. The symposium has also emphasized how migrations, cultural practices, and environmental pathogens have contributed to shape the genetic diversity of modern humans, through admixture, genetic drift or genetic adaptation. Finally, special attention was also given to how human behaviours have shaped the genome of other species, through the spreading of microbes and pathogens, as in the case of Yersinia Pestis, or through domestication, as elegantly demonstrated for dogs, horses, and apples. Altogether, this conference illustrated how the complex history of human populations is tightly linked with their contemporary genetic diversity that, in turn, has direct effects on their identity and health.
Collapse
Affiliation(s)
- Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris 75015, France
| | - Pascale Cossart
- Bacteria/Cell Interactions Unit, Institut Pasteur, U604, Inserm, Paris 75015, France
| | - Lluis Quintana-Murci
- Chair of Human Genomics and Evolution, Collège de France, Paris, 75005, France.,Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris 75015, France
| |
Collapse
|
11
|
Choudhury A, Sengupta D, Ramsay M, Schlebusch C. Bantu-speaker migration and admixture in southern Africa. Hum Mol Genet 2021; 30:R56-R63. [PMID: 33367711 PMCID: PMC8117461 DOI: 10.1093/hmg/ddaa274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 01/16/2023] Open
Abstract
The presence of Early and Middle Stone Age human remains and associated archeological artifacts from various sites scattered across southern Africa, suggests this geographic region to be one of the first abodes of anatomically modern humans. Although the presence of hunter-gatherer cultures in this region dates back to deep times, the peopling of southern Africa has largely been reshaped by three major sets of migrations over the last 2000 years. These migrations have led to a confluence of four distinct ancestries (San hunter-gatherer, East-African pastoralist, Bantu-speaker farmer and Eurasian) in populations from this region. In this review, we have summarized the recent insights into the refinement of timelines and routes of the migration of Bantu-speaking populations to southern Africa and their admixture with resident southern African Khoe-San populations. We highlight two recent studies providing evidence for the emergence of fine-scale population structure within some South-Eastern Bantu-speaker groups. We also accentuate whole genome sequencing studies (current and ancient) that have both enhanced our understanding of the peopling of southern Africa and demonstrated a huge potential for novel variant discovery in populations from this region. Finally, we identify some of the major gaps and inconsistencies in our understanding and emphasize the importance of more systematic studies of southern African populations from diverse ethnolinguistic groups and geographic locations.
Collapse
Affiliation(s)
- Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Carina Schlebusch
- Palaeo-Research Institute, University of Johannesburg, Auckland Park 2006, South Africa
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala 75326, Sweden
- SciLifeLab, Uppsala 75237, Sweden
| |
Collapse
|
12
|
Hollfelder N, Breton G, Sjödin P, Jakobsson M. The deep population history in Africa. Hum Mol Genet 2021; 30:R2-R10. [PMID: 33438014 PMCID: PMC8117439 DOI: 10.1093/hmg/ddab005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022] Open
Abstract
Africa is the continent with the greatest genetic diversity among humans and the level of diversity is further enhanced by incorporating non-majority groups, which are often understudied. Many of today's minority populations historically practiced foraging lifestyles, which were the only subsistence strategies prior to the rise of agriculture and pastoralism, but only a few groups practicing these strategies remain today. Genomic investigations of Holocene human remains excavated across the African continent show that the genetic landscape was vastly different compared to today's genetic landscape and that many groups that today are population isolate inhabited larger regions in the past. It is becoming clear that there are periods of isolation among groups and geographic areas, but also genetic contact over large distances throughout human history in Africa. Genomic information from minority populations and from prehistoric remains provide an invaluable source of information on the human past, in particular deep human population history, as Holocene large-scale population movements obscure past patterns of population structure. Here we revisit questions on the nature and time of the radiation of early humans in Africa, the extent of gene-flow among human populations as well as introgression from archaic and extinct lineages on the continent.
Collapse
Affiliation(s)
- Nina Hollfelder
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Gwenna Breton
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Per Sjödin
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Physical, Cnr Kingsway & University Roads, Auckland Park, Johannesburg 2092, South Africa
- SciLifeLab, Stockholm and Uppsala, Entrance C11, BMC, Husargatan 3, 752 37 Uppsala, Sweden
| |
Collapse
|
13
|
Pakendorf B, Stoneking M. The genomic prehistory of peoples speaking Khoisan languages. Hum Mol Genet 2020; 30:R49-R55. [PMID: 33075813 PMCID: PMC8117426 DOI: 10.1093/hmg/ddaa221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 11/14/2022] Open
Abstract
Peoples speaking so-called Khoisan languages-that is, indigenous languages of southern Africa that do not belong to the Bantu family-are culturally and linguistically diverse. They comprise herders, hunter-gatherers as well as groups of mixed modes of subsistence, and their languages are classified into three distinct language families. This cultural and linguistic variation is mirrored by extensive genetic diversity. We here review the recent genomics literature and discuss the genetic evidence for a formerly wider geographic spread of peoples with Khoisan-related ancestry, for the deep divergence among populations speaking Khoisan languages overlaid by more recent gene flow among these groups and for the impact of admixture with immigrant food-producers in their prehistory.
Collapse
Affiliation(s)
- Brigitte Pakendorf
- Dynamique du Langage, UMR5596, CNRS & Université de Lyon, 14 avenue Berthelot, 69007 Lyon, France
| | - Mark Stoneking
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Vicente M, Jakobsson M, Ebbesen P, Schlebusch CM. Genetic Affinities among Southern Africa Hunter-Gatherers and the Impact of Admixing Farmer and Herder Populations. Mol Biol Evol 2020; 36:1849-1861. [PMID: 31288264 PMCID: PMC6735883 DOI: 10.1093/molbev/msz089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Southern African indigenous groups, traditionally hunter-gatherers (San) and herders (Khoekhoe), are commonly referred to as “Khoe-San” populations and have a long history in southern Africa. Their ancestors were largely isolated up until ∼2,000 years ago before the arrival of pastoralists and farmers in southern Africa. Assessing relationships among regional Khoe-San groups has been challenging due to admixture with immigrant populations that obscure past population affinities and gene flow among these autochthonous communities. We re-evaluate a combined genome-wide data set of previously published southern Africa Khoe-San populations in conjunction with novel data from Khoe-San individuals collected in Xade (Central Kalahari Game Reserve, Botswana) prior to their resettlement outside the reserve. After excluding regions in the genome that trace their ancestry to recent migrant groups, the genetic diversity of 20 Khoe-San groups fitted an isolation-by-distance model. Even though isolation-by-distance explained most genetic affinities between the different autochthonous groups, additional signals of contact between Khoe-San groups could be detected. For instance, we found stronger genetic affinities, than what would be explained by isolation-by-distance gene flow, between the two geographically separated Khoe-San groups, who speak branches of the Kx’a-language family (ǂHoan and Ju). We also scanned the genome-wide data for signals of adaptive gene flow from farmers/herders into Khoe-San groups and identified a number of genomic regions potentially introduced by the arrival of the new groups. This study provides a comprehensive picture of affinities among Khoe-San groups, prior to the arrival of recent migrants, and found that these affinities are primarily determined by the geographic landscape.
Collapse
Affiliation(s)
- Mário Vicente
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.,SciLifeLab, Uppsala, Sweden
| | - Peter Ebbesen
- Department of Health Science and Technology, University of Aalborg, Aalborg, Denmark
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.,SciLifeLab, Uppsala, Sweden
| |
Collapse
|
15
|
Chan EKF, Timmermann A, Baldi BF, Moore AE, Lyons RJ, Lee SS, Kalsbeek AMF, Petersen DC, Rautenbach H, Förtsch HEA, Bornman MSR, Hayes VM. Human origins in a southern African palaeo-wetland and first migrations. Nature 2019; 575:185-189. [PMID: 31659339 DOI: 10.1038/s41586-019-1714-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/24/2019] [Indexed: 01/17/2023]
Abstract
Anatomically modern humans originated in Africa around 200 thousand years ago (ka)1-4. Although some of the oldest skeletal remains suggest an eastern African origin2, southern Africa is home to contemporary populations that represent the earliest branch of human genetic phylogeny5,6. Here we generate, to our knowledge, the largest resource for the poorly represented and deepest-rooting maternal L0 mitochondrial DNA branch (198 new mitogenomes for a total of 1,217 mitogenomes) from contemporary southern Africans and show the geographical isolation of L0d1'2, L0k and L0g KhoeSan descendants south of the Zambezi river in Africa. By establishing mitogenomic timelines, frequencies and dispersals, we show that the L0 lineage emerged within the residual Makgadikgadi-Okavango palaeo-wetland of southern Africa7, approximately 200 ka (95% confidence interval, 240-165 ka). Genetic divergence points to a sustained 70,000-year-long existence of the L0 lineage before an out-of-homeland northeast-southwest dispersal between 130 and 110 ka. Palaeo-climate proxy and model data suggest that increased humidity opened green corridors, first to the northeast then to the southwest. Subsequent drying of the homeland corresponds to a sustained effective population size (L0k), whereas wet-dry cycles and probable adaptation to marine foraging allowed the southwestern migrants to achieve population growth (L0d1'2), as supported by extensive south-coastal archaeological evidence8-10. Taken together, we propose a southern African origin of anatomically modern humans with sustained homeland occupation before the first migrations of people that appear to have been driven by regional climate changes.
Collapse
Affiliation(s)
- Eva K F Chan
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Axel Timmermann
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea. .,Pusan National University, Busan, South Korea.
| | - Benedetta F Baldi
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Andy E Moore
- Department of Geology, Rhodes University, Grahamstown, South Africa
| | - Ruth J Lyons
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sun-Seon Lee
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.,Pusan National University, Busan, South Korea
| | - Anton M F Kalsbeek
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Desiree C Petersen
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,The Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Hannes Rautenbach
- Climate Change and Variability, South African Weather Service, Pretoria, South Africa.,School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Akademia, Johannesburg, South Africa
| | | | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. .,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia. .,School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa. .,Faculty of Health Sciences, University of Limpopo, Sovenga, South Africa. .,Central Clinical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
16
|
Thami PK, Chimusa ER. Population Structure and Implications on the Genetic Architecture of HIV-1 Phenotypes Within Southern Africa. Front Genet 2019; 10:905. [PMID: 31611910 PMCID: PMC6777512 DOI: 10.3389/fgene.2019.00905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
The interesting history of Southern Africa has put the region in the spotlight for population medical genetics. Major events including the Bantu expansion and European colonialism have imprinted unique genetic signatures within autochthonous populations of Southern Africa, this resulting in differential allele frequencies across the region. This genetic structure has potential implications on susceptibility and resistance to infectious diseases such as human immunodeficiency virus (HIV) infection. Southern Africa is the region affected worst by HIV. Here, we discuss advances made in genome-wide association studies (GWAS) of HIV-1 in the past 12 years and dissect population diversity within Southern Africa. Our findings accentuate that a plethora of factors such as migration, language and culture, admixture, and natural selection have profiled the genetics of the people of Southern Africa. Genetic structure has been observed among the Khoe-San, among Bantu speakers, and between the Khoe-San, Coloureds, and Bantu speakers. Moreover, Southern African populations have complex admixture scenarios. Few GWAS of HIV-1 have been conducted in Southern Africa, with only one of these identifying two novel variants (HCG22rs2535307 and CCNG1kgp22385164) significantly associated with HIV-1 acquisition and progression. High genetic diversity, multi-wave genetic mixture and low linkage disequilibrium of Southern African populations constitute a challenge in identifying genetic variants with modest risk or protective effect against HIV-1. We therefore posit that it is compelling to assess genome-wide contribution of ancestry to HIV-1 infection. We further suggest robust methods that can pin-point population-specific variants that may contribute to the control of HIV-1 in Southern Africa.
Collapse
Affiliation(s)
- Prisca K Thami
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Ishiya K, Mizuno F, Wang L, Ueda S. MitoIMP: A Computational Framework for Imputation of Missing Data in Low-Coverage Human Mitochondrial Genome. Bioinform Biol Insights 2019; 13:1177932219873884. [PMID: 31523131 PMCID: PMC6732850 DOI: 10.1177/1177932219873884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022] Open
Abstract
The incompleteness of partial human mitochondrial genome sequences makes it difficult to perform relevant comparisons among multiple resources. To deal with this issue, we propose a computational framework for deducing missing nucleotides in the human mitochondrial genome. We applied it to worldwide mitochondrial haplogroup lineages and assessed its performance. Our approach can deduce the missing nucleotides with a precision of 0.99 or higher in most human mitochondrial DNA lineages. Furthermore, although low-coverage mitochondrial genome sequences often lead to a blurred relationship in the multidimensional scaling analysis, our approach can correct this positional arrangement according to the corresponding mitochondrial DNA lineages. Therefore, our framework will provide a practical solution to compensate for the lack of genome coverage in partial and fragmented human mitochondrial genome sequences. In this study, we developed an open-source computer program, MitoIMP, implementing our imputation procedure. MitoIMP is freely available from https://github.com/omics-tools/mitoimp.
Collapse
Affiliation(s)
- Koji Ishiya
- Computational Bio Big Data Open Innovation Lab (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST)-Waseda University, Tokyo, Japan
| | - Fuzuki Mizuno
- Department of Legal Medicine, School of Medicine, Toho University, Tokyo, Japan
| | - Li Wang
- School of Medicine, Hangzhou Normal University, Zhejiang, China
| | - Shintaroh Ueda
- Department of Legal Medicine, School of Medicine, Toho University, Tokyo, Japan.,School of Medicine, Hangzhou Normal University, Zhejiang, China.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Fan S, Kelly DE, Beltrame MH, Hansen MEB, Mallick S, Ranciaro A, Hirbo J, Thompson S, Beggs W, Nyambo T, Omar SA, Meskel DW, Belay G, Froment A, Patterson N, Reich D, Tishkoff SA. African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations. Genome Biol 2019; 20:82. [PMID: 31023338 PMCID: PMC6485071 DOI: 10.1186/s13059-019-1679-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Africa is the origin of modern humans within the past 300 thousand years. To infer the complex demographic history of African populations and adaptation to diverse environments, we sequenced the genomes of 92 individuals from 44 indigenous African populations. RESULTS Genetic structure analyses indicate that among Africans, genetic ancestry is largely partitioned by geography and language, though we observe mixed ancestry in many individuals, consistent with both short- and long-range migration events followed by admixture. Phylogenetic analysis indicates that the San genetic lineage is basal to all modern human lineages. The San and Niger-Congo, Afroasiatic, and Nilo-Saharan lineages were substantially diverged by 160 kya (thousand years ago). In contrast, the San and Central African rainforest hunter-gatherer (CRHG), Hadza hunter-gatherer, and Sandawe hunter-gatherer lineages were diverged by ~ 120-100 kya. Niger-Congo, Nilo-Saharan, and Afroasiatic lineages diverged more recently by ~ 54-16 kya. Eastern and western CRHG lineages diverged by ~ 50-31 kya, and the western CRHG lineages diverged by ~ 18-12 kya. The San and CRHG populations maintained the largest effective population size compared to other populations prior to 60 kya. Further, we observed signatures of positive selection at genes involved in muscle development, bone synthesis, reproduction, immune function, energy metabolism, and cell signaling, which may contribute to local adaptation of African populations. CONCLUSIONS We observe high levels of genomic variation between ethnically diverse Africans which is largely correlated with geography and language. Our study indicates ancient population substructure and local adaptation of Africans.
Collapse
Affiliation(s)
- Shaohua Fan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Present Address: State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, China
| | - Derek E Kelly
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marcia H Beltrame
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Alessia Ranciaro
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jibril Hirbo
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Present Address: Division of Genetic Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, 37232, USA
| | - Simon Thompson
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William Beggs
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas Nyambo
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences, Dares Salaam, Tanzania
| | - Sabah A Omar
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Gurja Belay
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Nick Patterson
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Bajić V, Barbieri C, Hübner A, Güldemann T, Naumann C, Gerlach L, Berthold F, Nakagawa H, Mpoloka SW, Roewer L, Purps J, Stoneking M, Pakendorf B. Genetic structure and sex-biased gene flow in the history of southern African populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:656-671. [PMID: 30192370 PMCID: PMC6667921 DOI: 10.1002/ajpa.23694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 12/31/2022]
Abstract
Objectives We investigated the genetic history of southern African populations with a special focus on their paternal history. We reexamined previous claims that the Y‐chromosome haplogroup E1b1b (E‐M293) was brought to southern Africa by pastoralists from eastern Africa, and investigated patterns of sex‐biased gene flow in southern Africa. Materials and methods We analyzed previously published complete mtDNA genome sequences and ∼900 kb of NRY sequences from 23 populations from Namibia, Botswana, and Zambia, as well as haplogroup frequencies from a large sample of southern African populations and 23 newly genotyped Y‐linked STR loci for samples assigned to haplogroup E1b1b. Results Our results support an eastern African origin for Y‐chromosome haplogroup E1b1b (E‐M293); however, its current distribution in southern Africa is not strongly associated with pastoralism, suggesting more complex demographic events and/or changes in subsistence practices in this region. The Bantu expansion in southern Africa had a notable genetic impact and was probably a rapid, male‐dominated expansion. Our finding of a significant increase in the intensity of the sex‐biased gene flow from north to south may reflect changes in the social dynamics between Khoisan and Bantu groups over time. Conclusions Our study shows that the population history of southern Africa has been complex, with different immigrating groups mixing to different degrees with the autochthonous populations. The Bantu expansion led to heavily sex‐biased admixture as a result of interactions between Khoisan females and Bantu males, with a geographic gradient which may reflect changes in the social dynamics between Khoisan and Bantu groups over time.
Collapse
Affiliation(s)
- Vladimir Bajić
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Leipzig, Germany
| | - Chiara Barbieri
- Department of Linguistic and Cultural Evolution, MPI for the Science of Human History, Jena, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alexander Hübner
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Leipzig, Germany
| | - Tom Güldemann
- Department of Linguistic and Cultural Evolution, MPI for the Science of Human History, Jena, Germany.,Institute of Asian and African Studies, Humboldt University, Berlin, Germany
| | - Christfried Naumann
- Institute of Asian and African Studies, Humboldt University, Berlin, Germany
| | - Linda Gerlach
- Department of Human Behavior, Ecology and Culture, MPI for Evolutionary Anthropology, Leipzig, Germany
| | - Falko Berthold
- Max Planck Research Group on Comparative Population Linguistics, MPI for Evolutionary Anthropology, Leipzig, Germary
| | - Hirosi Nakagawa
- Institute of Global Studies, Tokyo University of Foreign Studies, Tokyo, Japan
| | - Sununguko W Mpoloka
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Lutz Roewer
- Charité - Universitätsmedizin Berlin, Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Berlin, Germany
| | - Josephine Purps
- Charité - Universitätsmedizin Berlin, Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Berlin, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Leipzig, Germany
| | - Brigitte Pakendorf
- Laboratoire «Dynamique du Langage», CNRS & Université de Lyon, Lyon, France
| |
Collapse
|
20
|
Schlebusch CM, Jakobsson M. Tales of Human Migration, Admixture, and Selection in Africa. Annu Rev Genomics Hum Genet 2018; 19:405-428. [DOI: 10.1146/annurev-genom-083117-021759] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last three decades, genetic studies have played an increasingly important role in exploring human history. They have helped to conclusively establish that anatomically modern humans first appeared in Africa roughly 250,000–350,000 years before present and subsequently migrated to other parts of the world. The history of humans in Africa is complex and includes demographic events that influenced patterns of genetic variation across the continent. Through genetic studies, it has become evident that deep African population history is captured by relationships among African hunter–gatherers, as the world's deepest population divergences occur among these groups, and that the deepest population divergence dates to 300,000 years before present. However, the spread of pastoralism and agriculture in the last few thousand years has shaped the geographic distribution of present-day Africans and their genetic diversity. With today's sequencing technologies, we can obtain full genome sequences from diverse sets of extant and prehistoric Africans. The coming years will contribute exciting new insights toward deciphering human evolutionary history in Africa.
Collapse
Affiliation(s)
- Carina M. Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden;,
- Centre for Anthropological Research and Department of Anthropology and Development Studies, University of Johannesburg, 2006 Johannesburg, South Africa
- SciLifeLab, SE-751 23 Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden;,
- Centre for Anthropological Research and Department of Anthropology and Development Studies, University of Johannesburg, 2006 Johannesburg, South Africa
- SciLifeLab, SE-751 23 Uppsala, Sweden
| |
Collapse
|
21
|
Whole-genome sequencing for an enhanced understanding of genetic variation among South Africans. Nat Commun 2017; 8:2062. [PMID: 29233967 PMCID: PMC5727231 DOI: 10.1038/s41467-017-00663-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 07/17/2017] [Indexed: 11/08/2022] Open
Abstract
The Southern African Human Genome Programme is a national initiative that aspires to unlock the unique genetic character of southern African populations for a better understanding of human genetic diversity. In this pilot study the Southern African Human Genome Programme characterizes the genomes of 24 individuals (8 Coloured and 16 black southeastern Bantu-speakers) using deep whole-genome sequencing. A total of ~16 million unique variants are identified. Despite the shallow time depth since divergence between the two main southeastern Bantu-speaking groups (Nguni and Sotho-Tswana), principal component analysis and structure analysis reveal significant (p < 10−6) differentiation, and FST analysis identifies regions with high divergence. The Coloured individuals show evidence of varying proportions of admixture with Khoesan, Bantu-speakers, Europeans, and populations from the Indian sub-continent. Whole-genome sequencing data reveal extensive genomic diversity, increasing our understanding of the complex and region-specific history of African populations and highlighting its potential impact on biomedical research and genetic susceptibility to disease. African populations show a high level of genetic diversity and extensive regional admixture. Here, the authors sequence the whole genomes of 24 South African individuals of different ethnolinguistic origin and find substantive genomic divergence between two southeastern Bantu-speaking groups.
Collapse
|
22
|
Uren C, Möller M, van Helden PD, Henn BM, Hoal EG. Population structure and infectious disease risk in southern Africa. Mol Genet Genomics 2017; 292:499-509. [PMID: 28229227 DOI: 10.1007/s00438-017-1296-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023]
Abstract
The KhoeSan populations are the earliest known indigenous inhabitants of southern Africa. The relatively recent expansion of Bantu-speaking agropastoralists, as well as European colonial settlement along the south-west coast, dramatically changed patterns of genetic diversity in a region which had been largely isolated for thousands of years. Owing to this unique history, population structure in southern Africa reflects both the underlying KhoeSan genetic diversity as well as differential recent admixture. This population structure has a wide range of biomedical and sociocultural implications; such as changes in disease risk profiles. Here, we consolidate information from various population genetic studies that characterize admixture patterns in southern Africa with an aim to better understand differences in adverse disease phenotypes observed among groups. Our review confirms that ancestry has a direct impact on an individual's immune response to infectious diseases. In addition, we emphasize the importance of collaborative research, especially for populations in southern Africa that have a high incidence of potentially fatal infectious diseases such as HIV and tuberculosis.
Collapse
Affiliation(s)
- Caitlin Uren
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Paul D van Helden
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eileen G Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa.
| |
Collapse
|
23
|
Marchi N, Hegay T, Mennecier P, Georges M, Laurent R, Whitten M, Endicott P, Aldashev A, Dorzhu C, Nasyrova F, Chichlo B, Ségurel L, Heyer E. Sex-specific genetic diversity is shaped by cultural factors in Inner Asian human populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 162:627-640. [PMID: 28158897 DOI: 10.1002/ajpa.23151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Sex-specific genetic structures have been previously documented worldwide in humans, even though causal factors have not always clearly been identified. In this study, we investigated the impact of ethnicity, geography and social organization on the sex-specific genetic structure in Inner Asia. Furthermore, we explored the process of ethnogenesis in multiple ethnic groups. METHODS We sampled DNA in Central and Northern Asia from 39 populations of Indo-Iranian and Turkic-Mongolic native speakers. We focused on genetic data of the Y chromosome and mitochondrial DNA. First, we compared the frequencies of haplogroups to South European and East Asian populations. Then, we investigated the genetic differentiation for eight Y-STRs and the HVS1 region, and tested for the effect of geography and ethnicity on such patterns. Finally, we reconstructed the male demographic history, inferred split times and effective population sizes of different ethnic groups. RESULTS Based on the haplogroup data, we observed that the Indo-Iranian- and Turkic-Mongolic-speaking populations have distinct genetic backgrounds. However, each population showed consistent mtDNA and Y chromosome haplogroups patterns. As expected in patrilocal populations, we found that the Y-STRs were more structured than the HVS1. While ethnicity strongly influenced the genetic diversity on the Y chromosome, geography better explained that of the mtDNA. Furthermore, when looking at various ethnic groups, we systematically found a genetic split time older than historical records, suggesting a cultural rather than biological process of ethnogenesis. CONCLUSIONS This study highlights that, in Inner Asia, specific cultural behaviors, especially patrilineality and patrilocality, leave a detectable signature on the sex-specific genetic structure.
Collapse
Affiliation(s)
- Nina Marchi
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Tatyana Hegay
- Uzbek Academy of Sciences, Institute of Immunology, Tashkent, Uzbekistan
| | - Philippe Mennecier
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Myriam Georges
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Romain Laurent
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Mark Whitten
- MPRG on Comparative Population Linguistics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp Endicott
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Almaz Aldashev
- Institute molecular biology and medicine, Bishkek, 720040, Kyrgyzstan
| | | | - Firuza Nasyrova
- Laboratory of Plant Genetics, Institute of Botany, Plant Physiology and Genetics, TAS, Dushanbe, 734063, Tajikistan
| | - Boris Chichlo
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Laure Ségurel
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Evelyne Heyer
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| |
Collapse
|
24
|
Rowold DJ, Perez-Benedico D, Stojkovic O, Alfonso-Sanchez MA, Garcia-Bertrand R, Herrera RJ. On the Bantu expansion. Gene 2016; 593:48-57. [PMID: 27451076 DOI: 10.1016/j.gene.2016.07.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Here we report the results of fine resolution Y chromosomal analyses (Y-SNP and Y-STR) of 267 Bantu-speaking males from three populations located in the southeast region of Africa. In an effort to determine the relative Y chromosomal affinities of these three genotyped populations, the findings are interpreted in the context of 74 geographically and ethnically targeted African reference populations representing four major ethno-linguistic groups (Afro-Asiatic, Niger Kordofanin, Khoisan and Pygmoid). In this investigation, we detected a general similarity in the Y chromosome lineages among the geographically dispersed Bantu-speaking populations suggesting a shared heritage and the shallow time depth of the Bantu Expansion. Also, micro-variations in the Bantu Y chromosomal composition across the continent highlight location-specific gene flow patterns with non-Bantu-speaking populations (Khoisan, Pygmy, Afro-Asiatic). Our Y chromosomal results also indicate that the three Bantu-speaking Southeast populations genotyped exhibit unique gene flow patterns involving Eurasian populations but fail to reveal a prevailing genetic affinity to East or Central African Bantu-speaking groups. In addition, the Y-SNP data underscores a longitudinal partitioning in sub-Sahara Africa of two R1b1 subgroups, R1b1-P25* (west) and R1b1a2-M269 (east). No evidence was observed linking the B2a haplogroup detected in the genotyped Southeast African Bantu-speaking populations to gene flow from contemporary Khoisan groups.
Collapse
Affiliation(s)
- Daine J Rowold
- Foundation for Applied Molecular Evolution, Gainesville, FL 32601, USA
| | | | - Oliver Stojkovic
- Institute of Forensic Medicine, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | - Rene J Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, USA
| |
Collapse
|
25
|
Complex Ancient Genetic Structure and Cultural Transitions in Southern African Populations. Genetics 2016; 205:303-316. [PMID: 27838627 PMCID: PMC5223510 DOI: 10.1534/genetics.116.189209] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
The characterization of the structure of southern African populations has been the subject of numerous genetic, medical, linguistic, archaeological, and anthropological investigations. Current diversity in the subcontinent is the result of complex events of genetic admixture and cultural contact between early inhabitants and migrants that arrived in the region over the last 2000 years. Here, we analyze 1856 individuals from 91 populations, comprising novel and published genotype data, to characterize the genetic ancestry profiles of 631 individuals from 51 southern African populations. Combining both local ancestry and allele frequency based analyses, we identify a tripartite, ancient, Khoesan-related genetic structure. This structure correlates neither with linguistic affiliation nor subsistence strategy, but with geography, revealing the importance of isolation-by-distance dynamics in the area. Fine-mapping of these components in southern African populations reveals admixture and cultural reversion involving several Khoesan groups, and highlights that Bantu speakers and Coloured individuals have different mixtures of these ancient ancestries.
Collapse
|
26
|
Fine-Scale Human Population Structure in Southern Africa Reflects Ecogeographic Boundaries. Genetics 2016; 204:303-14. [PMID: 27474727 DOI: 10.1534/genetics.116.187369] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/07/2016] [Indexed: 01/08/2023] Open
Abstract
Recent genetic studies have established that the KhoeSan populations of southern Africa are distinct from all other African populations and have remained largely isolated during human prehistory until ∼2000 years ago. Dozens of different KhoeSan groups exist, belonging to three different language families, but very little is known about their population history. We examine new genome-wide polymorphism data and whole mitochondrial genomes for >100 South Africans from the ≠Khomani San and Nama populations of the Northern Cape, analyzed in conjunction with 19 additional southern African populations. Our analyses reveal fine-scale population structure in and around the Kalahari Desert. Surprisingly, this structure does not always correspond to linguistic or subsistence categories as previously suggested, but rather reflects the role of geographic barriers and the ecology of the greater Kalahari Basin. Regardless of subsistence strategy, the indigenous Khoe-speaking Nama pastoralists and the N|u-speaking ≠Khomani (formerly hunter-gatherers) share ancestry with other Khoe-speaking forager populations that form a rim around the Kalahari Desert. We reconstruct earlier migration patterns and estimate that the southern Kalahari populations were among the last to experience gene flow from Bantu speakers, ∼14 generations ago. We conclude that local adoption of pastoralism, at least by the Nama, appears to have been primarily a cultural process with limited genetic impact from eastern Africa.
Collapse
|
27
|
Barbieri C, Hübner A, Macholdt E, Ni S, Lippold S, Schröder R, Mpoloka SW, Purps J, Roewer L, Stoneking M, Pakendorf B. Refining the Y chromosome phylogeny with southern African sequences. Hum Genet 2016; 135:541-553. [PMID: 27043341 PMCID: PMC4835522 DOI: 10.1007/s00439-016-1651-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/18/2016] [Indexed: 12/04/2022]
Abstract
The recent availability of large-scale sequence data for the human Y chromosome has revolutionized analyses of and insights gained from this non-recombining, paternally inherited chromosome. However, the studies to date focus on Eurasian variation, and hence the diversity of early-diverging branches found in Africa has not been adequately documented. Here, we analyze over 900 kb of Y chromosome sequence obtained from 547 individuals from southern African Khoisan- and Bantu-speaking populations, identifying 232 new sequences from basal haplogroups A and B. We identify new clades in the phylogeny, an older age for the root, and substantially older ages for some individual haplogroups. Furthermore, while haplogroup B2a is traditionally associated with the spread of Bantu speakers, we find that it probably also existed in Khoisan groups before the arrival of Bantu speakers. Finally, there is pronounced variation in branch length between major haplogroups; in particular, haplogroups associated with Bantu speakers have significantly longer branches. Technical artifacts cannot explain this branch length variation, which instead likely reflects aspects of the demographic history of Bantu speakers, such as recent population expansion and an older average paternal age. The influence of demographic factors on branch length variation has broader implications both for the human Y phylogeny and for similar analyses of other species.
Collapse
Affiliation(s)
- Chiara Barbieri
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Enrico Macholdt
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Shengyu Ni
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Sebastian Lippold
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Roland Schröder
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | | | - Josephine Purps
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin, 10559, Berlin, Germany
| | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin, 10559, Berlin, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Brigitte Pakendorf
- Dynamique du Langage, UMR5596, CNRS & Université Lyon 2, 69363, Lyon Cedex 07, France.
| |
Collapse
|
28
|
De Fanti S, Barbieri C, Sarno S, Sevini F, Vianello D, Tamm E, Metspalu E, van Oven M, Hübner A, Sazzini M, Franceschi C, Pettener D, Luiselli D. Fine Dissection of Human Mitochondrial DNA Haplogroup HV Lineages Reveals Paleolithic Signatures from European Glacial Refugia. PLoS One 2015; 10:e0144391. [PMID: 26640946 PMCID: PMC4671665 DOI: 10.1371/journal.pone.0144391] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 11/17/2015] [Indexed: 02/08/2023] Open
Abstract
Genetic signatures from the Paleolithic inhabitants of Eurasia can be traced from the early divergent mitochondrial DNA lineages still present in contemporary human populations. Previous studies already suggested a pre-Neolithic diffusion of mitochondrial haplogroup HV*(xH,V) lineages, a relatively rare class of mtDNA types that includes parallel branches mainly distributed across Europe and West Asia with a certain degree of structure. Up till now, variation within haplogroup HV was addressed mainly by analyzing sequence data from the mtDNA control region, except for specific sub-branches, such as HV4 or the widely distributed haplogroups H and V. In this study, we present a revised HV topology based on full mtDNA genome data, and we include a comprehensive dataset consisting of 316 complete mtDNA sequences including 60 new samples from the Italian peninsula, a previously underrepresented geographic area. We highlight points of instability in the particular topology of this haplogroup, reconstructed with BEAST-generated trees and networks. We also confirm a major lineage expansion that probably followed the Late Glacial Maximum and preceded Neolithic population movements. We finally observe that Italy harbors a reservoir of mtDNA diversity, with deep-rooting HV lineages often related to sequences present in the Caucasus and the Middle East. The resulting hypothesis of a glacial refugium in Southern Italy has implications for the understanding of late Paleolithic population movements and is discussed within the archaeological cultural shifts occurred over the entire continent.
Collapse
Affiliation(s)
- Sara De Fanti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Chiara Barbieri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- * E-mail: (CB); (DL)
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federica Sevini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Bologna, Italy
| | - Dario Vianello
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Bologna, Italy
| | - Erika Tamm
- Estonian Biocentre, Evolutionary Biology group, Tartu, Estonia
- Department of Evolutionary Biology, University of Tartu, Tartu, Estonia
| | - Ene Metspalu
- Estonian Biocentre, Evolutionary Biology group, Tartu, Estonia
- Department of Evolutionary Biology, University of Tartu, Tartu, Estonia
| | - Mannis van Oven
- Estonian Biocentre, Evolutionary Biology group, Tartu, Estonia
- Department of Forensic Molecular Biology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Marco Sazzini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Bologna, Italy
- IRCCS, Institute of Neurological Sciences of Bologna, Ospedale Bellaria, Bologna, Italy
- CNR, Institute of Organic Synthesis and Photoreactivity (ISOF), Bologna, Italy
| | - Davide Pettener
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- * E-mail: (CB); (DL)
| |
Collapse
|
29
|
Chaitanya L, Ralf A, van Oven M, Kupiec T, Chang J, Lagacé R, Kayser M. Simultaneous Whole Mitochondrial Genome Sequencing with Short Overlapping Amplicons Suitable for Degraded DNA Using the Ion Torrent Personal Genome Machine. Hum Mutat 2015; 36:1236-47. [PMID: 26387877 PMCID: PMC5057296 DOI: 10.1002/humu.22905] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/01/2015] [Indexed: 11/13/2022]
Abstract
Whole mitochondrial (mt) genome analysis enables a considerable increase in analysis throughput, and improves the discriminatory power to the maximum possible phylogenetic resolution. Most established protocols on the different massively parallel sequencing (MPS) platforms, however, invariably involve the PCR amplification of large fragments, typically several kilobases in size, which may fail due to mtDNA fragmentation in the available degraded materials. We introduce a MPS tiling approach for simultaneous whole human mt genome sequencing using 161 short overlapping amplicons (average 200 bp) with the Ion Torrent Personal Genome Machine. We illustrate the performance of this new method by sequencing 20 DNA samples belonging to different worldwide mtDNA haplogroups. Additional quality control, particularly regarding the potential detection of nuclear insertions of mtDNA (NUMTs), was performed by comparative MPS analysis using the conventional long-range amplification method. Preliminary sensitivity testing revealed that detailed haplogroup inference was feasible with 100 pg genomic input DNA. Complete mt genome coverage was achieved from DNA samples experimentally degraded down to genomic fragment sizes of about 220 bp, and up to 90% coverage from naturally degraded samples. Overall, we introduce a new approach for whole mt genome MPS analysis from degraded and nondegraded materials relevant to resolve and infer maternal genetic ancestry at complete resolution in anthropological, evolutionary, medical, and forensic applications.
Collapse
Affiliation(s)
- Lakshmi Chaitanya
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Arwin Ralf
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Mannis van Oven
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Tomasz Kupiec
- Institute of Forensic ResearchSection of Forensic GeneticsKrakówPoland
| | - Joseph Chang
- Thermo Fisher ScientificSouth San FranciscoCalifornia, USA
| | - Robert Lagacé
- Thermo Fisher ScientificSouth San FranciscoCalifornia, USA
| | - Manfred Kayser
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
30
|
Cerezo M, Gusmão L, Černý V, Uddin N, Syndercombe-Court D, Gómez-Carballa A, Göbel T, Schneider PM, Salas A. Comprehensive Analysis of Pan-African Mitochondrial DNA Variation Provides New Insights into Continental Variation and Demography. J Genet Genomics 2015; 43:133-43. [PMID: 27020033 DOI: 10.1016/j.jgg.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/30/2015] [Accepted: 09/15/2015] [Indexed: 01/15/2023]
Abstract
Africa is the cradle of all human beings, and although it has been the focus of a number of genetic studies, there are many questions that remain unresolved. We have performed one of the largest and most comprehensive meta-analyses of mitochondrial DNA (mtDNA) lineages carried out in the African continent to date. We generated high-throughput mtDNA single nucleotide polymorphism (SNP) data (230 SNPs) from 2024 Africans, where more than 500 of them were additionally genotyped for the control region. These data were analyzed together with over 12,700 control region profiles collected from the literature, representing more than 300 population samples from Africa. Insights into the African homeland of humans are discussed. Phylogeographic patterns for the African continent are shown at a high phylogeographic resolution as well as at the population and regional levels. The deepest branch of the mtDNA tree, haplogroup L0, shows the highest sub-haplogroup diversity in Southeast and East Africa, suggesting this region as the homeland for modern humans. Several demographic estimates point to the coast as a facilitator of human migration in Africa, but the data indicate complex patterns, perhaps mirroring the effect of recent continental-scaled demographic events in re-shaping African mtDNA variability.
Collapse
Affiliation(s)
- María Cerezo
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Medicina Legal, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia 15782, Spain; The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Leonor Gusmão
- DNA Diagnostic Laboratory, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; IPATIMUP Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-465, Portugal
| | - Viktor Černý
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague 118-01, Czech Republic
| | - Nabeel Uddin
- Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| | | | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Medicina Legal, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia 15782, Spain
| | - Tanja Göbel
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Cologne D-50823, Germany
| | - Peter M Schneider
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Cologne D-50823, Germany
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Medicina Legal, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia 15782, Spain.
| |
Collapse
|
31
|
González-Santos M, Montinaro F, Oosthuizen O, Oosthuizen E, Busby GBJ, Anagnostou P, Destro-Bisol G, Pascali V, Capelli C. Genome-Wide SNP Analysis of Southern African Populations Provides New Insights into the Dispersal of Bantu-Speaking Groups. Genome Biol Evol 2015; 7:2560-8. [PMID: 26363465 PMCID: PMC4607521 DOI: 10.1093/gbe/evv164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The expansion of Bantu-speaking agropastoralist populations had a great impact on the genetic, linguistic, and cultural variation of sub-Saharan Africa. It is generally accepted that Bantu languages originated in an area around the present border between Cameroon and Nigeria approximately 5,000 years ago, from where they spread South and East becoming the largest African linguistic branch. The demic consequences of this event are reflected in the relatively high genetic homogeneity observed across most of sub-Saharan Africa populations. In this work, we explored genome-wide single nucleotide polymorphism data from 28 populations to characterize the genetic components present in sub-Saharan African populations. Combining novel data from four Southern African populations with previously published results, we reject the hypothesis that the “non-Bantu” genetic component reported in South-Eastern Africa (Mozambique) reflects extensive gene flow between incoming agriculturalist and resident hunter-gatherer communities. We alternatively suggest that this novel component is the result of demographic dynamics associated with the Bantu dispersal.
Collapse
Affiliation(s)
| | - Francesco Montinaro
- Department of Zoology, University of Oxford, United Kingdom Institute of Legal Medicine, Catholic University, Rome, Italy
| | | | | | - George B J Busby
- Department of Zoology, University of Oxford, United Kingdom Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Paolo Anagnostou
- Dipartimento di Biologia Ambientale, Università "La Sapienza", Rome, Italy Istituto Italiano di Antropologia, Rome, Italy
| | - Giovanni Destro-Bisol
- Dipartimento di Biologia Ambientale, Università "La Sapienza", Rome, Italy Istituto Italiano di Antropologia, Rome, Italy
| | | | | |
Collapse
|
32
|
60,000 years of interactions between Central and Eastern Africa documented by major African mitochondrial haplogroup L2. Sci Rep 2015. [PMID: 26211407 PMCID: PMC4515592 DOI: 10.1038/srep12526] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial DNA (mtDNA) haplogroup L2 originated in Western Africa but is nowadays spread across the entire continent. L2 movements were previously postulated to be related to the Bantu expansion, but L2 expansions eastwards probably occurred much earlier. By reconstructing the phylogeny of L2 (44 new complete sequences) we provide insights on the complex net of within-African migrations in the last 60 thousand years (ka). Results show that lineages in Southern Africa cluster with Western/Central African lineages at a recent time scale, whereas, eastern lineages seem to be substantially more ancient. Three moments of expansion from a Central African source are associated to L2: (1) one migration at 70–50 ka into Eastern or Southern Africa, (2) postglacial movements (15–10 ka) into Eastern Africa; and (3) the southward Bantu Expansion in the last 5 ka. The complementary population and L0a phylogeography analyses indicate no strong evidence of mtDNA gene flow between eastern and southern populations during the later movement, suggesting low admixture between Eastern African populations and the Bantu migrants. This implies that, at least in the early stages, the Bantu expansion was mainly a demic diffusion with little incorporation of local populations.
Collapse
|
33
|
Pugach I, Stoneking M. Genome-wide insights into the genetic history of human populations. INVESTIGATIVE GENETICS 2015; 6:6. [PMID: 25834724 PMCID: PMC4381409 DOI: 10.1186/s13323-015-0024-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
Although mtDNA and the non-recombining Y chromosome (NRY) studies continue to provide valuable insights into the genetic history of human populations, recent technical, methodological and computational advances and the increasing availability of large-scale, genome-wide data from contemporary human populations around the world promise to reveal new aspects, resolve finer points, and provide a more detailed look at our past demographic history. Genome-wide data are particularly useful for inferring migrations, admixture, and fine structure, as well as for estimating population divergence and admixture times and fluctuations in effective population sizes. In this review, we highlight some of the stories that have emerged from the analyses of genome-wide SNP genotyping data concerning the human history of Southern Africa, India, Oceania, Island South East Asia, Europe and the Americas and comment on possible future study directions. We also discuss advantages and drawbacks of using SNP-arrays, with a particular focus on the ascertainment bias, and ways to circumvent it.
Collapse
Affiliation(s)
- Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany
| |
Collapse
|
34
|
Chan EKF, Hardie RA, Petersen DC, Beeson K, Bornman RMS, Smith AB, Hayes VM. Revised timeline and distribution of the earliest diverged human maternal lineages in southern Africa. PLoS One 2015; 10:e0121223. [PMID: 25807545 PMCID: PMC4373779 DOI: 10.1371/journal.pone.0121223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/29/2015] [Indexed: 02/05/2023] Open
Abstract
The oldest extant human maternal lineages include mitochondrial haplogroups L0d and L0k found in the southern African click-speaking forager peoples broadly classified as Khoesan. Profiling these early mitochondrial lineages allows for better understanding of modern human evolution. In this study, we profile 77 new early-diverged complete mitochondrial genomes and sub-classify another 105 L0d/L0k individuals from southern Africa. We use this data to refine basal phylogenetic divergence, coalescence times and Khoesan prehistory. Our results confirm L0d as the earliest diverged lineage (∼172 kya, 95%CI: 149–199 kya), followed by L0k (∼159 kya, 95%CI: 136–183 kya) and a new lineage we name L0g (∼94 kya, 95%CI: 72–116 kya). We identify two new L0d1 subclades we name L0d1d and L0d1c4/L0d1e, and estimate L0d2 and L0d1 divergence at ∼93 kya (95%CI:76–112 kya). We concur the earliest emerging L0d1’2 sublineage L0d1b (∼49 kya, 95%CI:37–58 kya) is widely distributed across southern Africa. Concomitantly, we find the most recent sublineage L0d2a (∼17 kya, 95%CI:10–27 kya) to be equally common. While we agree that lineages L0d1c and L0k1a are restricted to contemporary inland Khoesan populations, our observed predominance of L0d2a and L0d1a in non-Khoesan populations suggests a once independent coastal Khoesan prehistory. The distribution of early-diverged human maternal lineages within contemporary southern Africans suggests a rich history of human existence prior to any archaeological evidence of migration into the region. For the first time, we provide a genetic-based evidence for significant modern human evolution in southern Africa at the time of the Last Glacial Maximum at between ∼21–17 kya, coinciding with the emergence of major lineages L0d1a, L0d2b, L0d2d and L0d2a.
Collapse
Affiliation(s)
- Eva K. F. Chan
- Laboratory for Human Comparative and Prostate Cancer Genomics, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales Australia, Randwick, NSW, Australia
| | - Rae-Anne Hardie
- Laboratory for Human Comparative and Prostate Cancer Genomics, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales Australia, Randwick, NSW, Australia
| | - Desiree C. Petersen
- Laboratory for Human Comparative and Prostate Cancer Genomics, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales Australia, Randwick, NSW, Australia
- J. Craig Venter Institute, 4120 Torrey Pines Road, La Jolla, California, 92037, United States of America
| | - Karen Beeson
- J. Craig Venter Institute, 4120 Torrey Pines Road, La Jolla, California, 92037, United States of America
| | - Riana M. S. Bornman
- School of Health Systems and Public Health, University of Pretoria, Hatfield, South Africa
| | - Andrew B. Smith
- Department of Archaeology, University of Cape Town, Rondebosch, South Africa
| | - Vanessa M. Hayes
- Laboratory for Human Comparative and Prostate Cancer Genomics, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales Australia, Randwick, NSW, Australia
- J. Craig Venter Institute, 4120 Torrey Pines Road, La Jolla, California, 92037, United States of America
- School of Health Systems and Public Health, University of Pretoria, Hatfield, South Africa
- Central Clinical School, The University of Sydney, Camperdown, NSW, Australia
- * E-mail:
| |
Collapse
|
35
|
Maternal ancestry and population history from whole mitochondrial genomes. INVESTIGATIVE GENETICS 2015; 6:3. [PMID: 25798216 PMCID: PMC4367903 DOI: 10.1186/s13323-015-0022-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/04/2015] [Indexed: 01/12/2023]
Abstract
MtDNA has been a widely used tool in human evolutionary and population genetic studies over the past three decades. Its maternal inheritance and lack of recombination have offered the opportunity to explore genealogical relationships among individuals and to study the frequency differences of matrilineal clades among human populations at continental and regional scales. The whole mtDNA genome sequencing delivers molecular resolution that is sufficient to distinguish patterns that have arisen over thousands of years. However, mutation rate is highly variable among the functional and non-coding domains of mtDNA which makes it challenging to obtain accurate split dates of the mitochondrial clades. Due to the shallow coalescent time of mitochondrial TMRCA at approximately 100 to 200 thousand years (ky), mtDNA data have only limited power to inform us about the more distant past and the early stages of human evolutionary history. The variation shared by mitochondrial genomes of individuals drawn from different continents outside Africa has been used to illuminate the details of the colonization process of the Old World, whereas regional patterns of variation have been at the focus of studies addressing questions of a more recent time scale. In the era of whole nuclear genome sequencing, mitochondrial genomes are continuing to be informative as a unique tool for the assessment of female-specific aspects of the demographic history of human populations.
Collapse
|
36
|
Marks SJ, Montinaro F, Levy H, Brisighelli F, Ferri G, Bertoncini S, Batini C, Busby GBJ, Arthur C, Mitchell P, Stewart BA, Oosthuizen O, Oosthuizen E, D'Amato ME, Davison S, Pascali V, Capelli C. Static and moving frontiers: the genetic landscape of Southern African Bantu-speaking populations. Mol Biol Evol 2014; 32:29-43. [PMID: 25223418 DOI: 10.1093/molbev/msu263] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A consensus on Bantu-speaking populations being genetically similar has emerged in the last few years, but the demographic scenarios associated with their dispersal are still a matter of debate. The frontier model proposed by archeologists postulates different degrees of interaction among incoming agropastoralist and resident foraging groups in the presence of "static" and "moving" frontiers. By combining mitochondrial DNA and Y chromosome data collected from several southern African populations, we show that Bantu-speaking populations from regions characterized by a moving frontier developing after a long-term static frontier have larger hunter-gatherer contributions than groups from areas where a static frontier was not followed by further spatial expansion. Differences in the female and male components suggest that the process of assimilation of the long-term resident groups into agropastoralist societies was gender biased. Our results show that the diffusion of Bantu languages and culture in Southern Africa was a process more complex than previously described and suggest that the admixture dynamics between farmers and foragers played an important role in shaping the current patterns of genetic diversity.
Collapse
Affiliation(s)
- Sarah J Marks
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Francesco Montinaro
- Department of Zoology, University of Oxford, Oxford, United Kingdom Institute of Legal Medicine, Catholic University, Rome, Italy
| | - Hila Levy
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Gianmarco Ferri
- Dipartimento ad Attività Integrata di Laboratori, Anatomia Patologica, Medicina Legale, U.O. Struttura Complessa di Medicina Legale, Azienda Ospedaliero, Universitaria di Modena, Modena, Italy
| | | | - Chiara Batini
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - George B J Busby
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Charles Arthur
- School of Archaeology, University of Oxford, Oxford, United Kingdom
| | - Peter Mitchell
- School of Archaeology, University of Oxford, Oxford, United Kingdom School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | - Maria Eugenia D'Amato
- Biotechnology Department, Forensic DNA Laboratory, University of the Western Cape, Bellville, South Africa
| | - Sean Davison
- Biotechnology Department, Forensic DNA Laboratory, University of the Western Cape, Bellville, South Africa
| | | | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Morris AG, Heinze A, Chan EKF, Smith AB, Hayes VM. First ancient mitochondrial human genome from a prepastoralist southern African. Genome Biol Evol 2014; 6:2647-53. [PMID: 25212860 PMCID: PMC4224329 DOI: 10.1093/gbe/evu202] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The oldest contemporary human mitochondrial lineages arose in Africa. The earliest divergent extant maternal offshoot, namely haplogroup L0d, is represented by click-speaking forager peoples of southern Africa. Broadly defined as Khoesan, contemporary Khoesan are today largely restricted to the semidesert regions of Namibia and Botswana, whereas archeological, historical, and genetic evidence promotes a once broader southerly dispersal of click-speaking peoples including southward migrating pastoralists and indigenous marine-foragers. No genetic data have been recovered from the indigenous peoples that once sustained life along the southern coastal waters of Africa prepastoral arrival. In this study we generate a complete mitochondrial genome from a 2,330-year-old male skeleton, confirmed through osteological and archeological analysis as practicing a marine-based forager existence. The ancient mtDNA represents a new L0d2c lineage (L0d2c1c) that is today, unlike its Khoe-language based sister-clades (L0d2c1a and L0d2c1b) most closely related to contemporary indigenous San-speakers (specifically Ju). Providing the first genomic evidence that prepastoral Southern African marine foragers carried the earliest diverged maternal modern human lineages, this study emphasizes the significance of Southern African archeological remains in defining early modern human origins.
Collapse
Affiliation(s)
- Alan G Morris
- Department of Human Biology, University of Cape Town, South Africa
| | - Anja Heinze
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Eva K F Chan
- Laboratory for Human Comparative and Prostate Cancer Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Andrew B Smith
- Department of Archeology, University of Cape Town, South Africa
| | - Vanessa M Hayes
- Laboratory for Human Comparative and Prostate Cancer Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia Genomeic Medicine Group, J. Craig Venter Institute, La Jolla, California Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia Department of Urology, University of Pretoria, South Africa Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
| |
Collapse
|
38
|
Barbieri C, Vicente M, Oliveira S, Bostoen K, Rocha J, Stoneking M, Pakendorf B. Migration and interaction in a contact zone: mtDNA variation among Bantu-speakers in Southern Africa. PLoS One 2014; 9:e99117. [PMID: 24901532 PMCID: PMC4047067 DOI: 10.1371/journal.pone.0099117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/11/2014] [Indexed: 01/10/2023] Open
Abstract
Bantu speech communities expanded over large parts of sub-Saharan Africa within the last 4000–5000 years, reaching different parts of southern Africa 1200–2000 years ago. The Bantu languages subdivide in several major branches, with languages belonging to the Eastern and Western Bantu branches spreading over large parts of Central, Eastern, and Southern Africa. There is still debate whether this linguistic divide is correlated with a genetic distinction between Eastern and Western Bantu speakers. During their expansion, Bantu speakers would have come into contact with diverse local populations, such as the Khoisan hunter-gatherers and pastoralists of southern Africa, with whom they may have intermarried. In this study, we analyze complete mtDNA genome sequences from over 900 Bantu-speaking individuals from Angola, Zambia, Namibia, and Botswana to investigate the demographic processes at play during the last stages of the Bantu expansion. Our results show that most of these Bantu-speaking populations are genetically very homogenous, with no genetic division between speakers of Eastern and Western Bantu languages. Most of the mtDNA diversity in our dataset is due to different degrees of admixture with autochthonous populations. Only the pastoralist Himba and Herero stand out due to high frequencies of particular L3f and L3d lineages; the latter are also found in the neighboring Damara, who speak a Khoisan language and were foragers and small-stock herders. In contrast, the close cultural and linguistic relatives of the Herero and Himba, the Kuvale, are genetically similar to other Bantu-speakers. Nevertheless, as demonstrated by resampling tests, the genetic divergence of Herero, Himba, and Kuvale is compatible with a common shared ancestry with high levels of drift, while the similarity of the Herero, Himba, and Damara probably reflects admixture, as also suggested by linguistic analyses.
Collapse
Affiliation(s)
- Chiara Barbieri
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Leipzig, Germany
- Department of Biological, Geological and Environmental Sciences, Laboratory of Molecular Anthropology, University of Bologna, Bologna, Italy
- * E-mail: (CB); (BP)
| | - Mário Vicente
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal
- STAB VIDA, Investigação e Serviços em Ciências Biológicas, Lda, Oeiras, Portugal
| | - Sandra Oliveira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Koen Bostoen
- Department of African Languages and Cultures, Ghent University, KongoKing Research Group, Ghent, Belgium
- Université libre de Bruxelles, Faculté de Philosophie et Lettres, Brussels, Belgium
| | - Jorge Rocha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Mark Stoneking
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Leipzig, Germany
| | - Brigitte Pakendorf
- Laboratoire Dynamique du Langage, UMR5596, CNRS and Université Lyon Lumière 2, Lyon, France
- * E-mail: (CB); (BP)
| |
Collapse
|
39
|
Irish JD, Black W, Sealy J, Ackermann RR. Questions of khoesan continuity: Dental affinities among the indigenous holocene peoples of South Africa. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 155:33-44. [DOI: 10.1002/ajpa.22526] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/21/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Joel D. Irish
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University; Liverpool L3 3AF UK
| | - Wendy Black
- Department of Archaeology; University of Cape Town; Rondebosch 7701 South Africa
- Iziko Museums of South Africa, Social History Collections; 17 Church Square Cape Town South Africa
| | - Judith Sealy
- Department of Archaeology; University of Cape Town; Rondebosch 7701 South Africa
| | | |
Collapse
|
40
|
Affiliation(s)
- Tom Güldemann
- Humboldt University Berlin / Max Planck Institute for Evolutionary Anthropology Leipzig
| |
Collapse
|
41
|
Barbieri C, Güldemann T, Naumann C, Gerlach L, Berthold F, Nakagawa H, Mpoloka SW, Stoneking M, Pakendorf B. Unraveling the complex maternal history of Southern African Khoisan populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 153:435-48. [PMID: 24323467 DOI: 10.1002/ajpa.22441] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 02/03/2023]
Abstract
The Khoisan populations of southern Africa are known to harbor some of the deepest-rooting lineages of human mtDNA; however, their relationships are as yet poorly understood. Here, we report the results of analyses of complete mtDNA genome sequences from nearly 700 individuals representing 26 populations of southern Africa who speak diverse Khoisan and Bantu languages. Our data reveal a multilayered history of the indigenous populations of southern Africa, who are likely to be the result of admixture of different genetic substrates, such as resident forager populations and pre-Bantu pastoralists from East Africa. We find high levels of genetic differentiation of the Khoisan populations, which can be explained by the effect of drift together with a partial uxorilocal/multilocal residence pattern. Furthermore, there is evidence of extensive contact, not only between geographically proximate groups, but also across wider areas. The results of this contact, which may have played a role in the diffusion of common cultural and linguistic features, are especially evident in the Khoisan populations of the central Kalahari.
Collapse
Affiliation(s)
- Chiara Barbieri
- Max Planck Research Group on Comparative Population Linguistics, MPI for Evolutionary Anthropology, Leipzig, 04103, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rito T, Richards MB, Fernandes V, Alshamali F, Cerny V, Pereira L, Soares P. The first modern human dispersals across Africa. PLoS One 2013; 8:e80031. [PMID: 24236171 PMCID: PMC3827445 DOI: 10.1371/journal.pone.0080031] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/26/2013] [Indexed: 12/11/2022] Open
Abstract
The emergence of more refined chronologies for climate change and archaeology in prehistoric Africa, and for the evolution of human mitochondrial DNA (mtDNA), now make it feasible to test more sophisticated models of early modern human dispersals suggested by mtDNA distributions. Here we have generated 42 novel whole-mtDNA genomes belonging to haplogroup L0, the most divergent clade in the maternal line of descent, and analysed them alongside the growing database of African lineages belonging to L0's sister clade, L1'6. We propose that the last common ancestor of modern human mtDNAs (carried by "mitochondrial Eve") possibly arose in central Africa ~180 ka, at a time of low population size. By ~130 ka two distinct groups of anatomically modern humans co-existed in Africa: broadly, the ancestors of many modern-day Khoe and San populations in the south and a second central/eastern African group that includes the ancestors of most extant worldwide populations. Early modern human dispersals correlate with climate changes, particularly the tropical African "megadroughts" of MIS 5 (marine isotope stage 5, 135-75 ka) which paradoxically may have facilitated expansions in central and eastern Africa, ultimately triggering the dispersal out of Africa of people carrying haplogroup L3 ~60 ka. Two south to east migrations are discernible within haplogroup LO. One, between 120 and 75 ka, represents the first unambiguous long-range modern human dispersal detected by mtDNA and might have allowed the dispersal of several markers of modernity. A second one, within the last 20 ka signalled by L0d, may have been responsible for the spread of southern click-consonant languages to eastern Africa, contrary to the view that these eastern examples constitute relicts of an ancient, much wider distribution.
Collapse
Affiliation(s)
- Teresa Rito
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal
| | - Martin B. Richards
- School of Applied Sciences, University of Huddersfield, QueensGate, Huddersfield, United Kingdom
| | - Verónica Fernandes
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Farida Alshamali
- Dubai Police GHQ - General Department of Forensic Sciences & Criminology, Dubai, United Arab Emirates
| | - Viktor Cerny
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
- Institute for Advanced Study, Paris, France
| | - Luísa Pereira
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Pedro Soares
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal
- * E-mail:
| |
Collapse
|