1
|
Dong J, Chen Q, Xie T, Wang M, Wang M, Zha L. Polymorphism of IL-12/IL-23 axis is associated with coronary heart disease. J Cell Mol Med 2024; 28:e18100. [PMID: 38189641 PMCID: PMC10844691 DOI: 10.1111/jcmm.18100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
IL12B encodes the shared p40 subunit (IL-12p40) of IL-12 and IL-23, which have diverse immune functions and are closely related to the occurrence and development of atherosclerosis (AS). However, the exact role of IL12B in coronary heart disease (CHD) was still unknown. A case-control association analysis was performed between five single nucleotide polymorphisms (SNPs) of IL12B (rs1003199, rs3212219, rs2569254, rs2853694 and rs3212227) and CHD in Chinese Han population (1824 patients with CHD vs. 2784 controls). Logistic regression analyses were used to study the relationships between SNPs and CHD, while multiple linear regression analyses were used to test the association between the SNP and the severity of CHD. In addition, the plasma IL12B concentration of CHD patients were detected by ELISA. We detected a significant association between one of the SNPs, rs2853694-G and CHD (padj = 2.075 × 10-5 , OR, 0.773 [95% CI, 0.686-0.870]). Stratified analysis showed that rs2853694 was associated with CHD in both male and female populations and was significantly associated with both early- and late-onset CHD. In addition, rs2853694 is also related to the different types of CHD including clinical-CHD and anatomical-CHD. Moreover, there are significant differences in serum IL12B concentrations between rs2853694-TT carriers and rs2853694-GT carriers in CHD patients (p = 0.010). A common variant of IL12B was found significantly associated with CHD and its subgroups. As a shared subunit of IL-12 and IL-23, IL-12p40 may play a key role in IL-12/IL-23 axis mediated AS, which is expected to be an effective therapeutic target for CHD.
Collapse
Affiliation(s)
- Jiangtao Dong
- Department of Cardiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Cardiovascular SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Qianwen Chen
- Department of Cardiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tian Xie
- Department of Cardiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengru Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome ResearchCardio‐X Institute, Huazhong University of Science and TechnologyWuhanChina
| | - Mengqi Wang
- Department of Cardiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Zhang H, Nie S, Chen Q, Wang P, Xu C, Tu X, Zhang L, Kenneth Wang Q, Zha L. Gene polymorphism in IL17A and gene-gene interaction in the IL23R/IL17A axis are associated with susceptibility to coronary artery disease. Cytokine 2023; 164:156142. [PMID: 36804259 DOI: 10.1016/j.cyto.2023.156142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/28/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023]
Abstract
AIMS Studies have confirmed that the IL-23R/IL-17A axis plays an important role in the development of autoimmune and inflammatory diseases. However, its role in coronary artery disease (CAD) remains unclear. Here, we conducted a large sample case-control study to investigate the association between the IL23R/IL17A axis and CAD in the Chinese Han population. METHODS Two SNPs, rs2275913: G>A (IL17A) and rs6682925: T>C (IL23R), were genotyped in 3042 CAD cases and 3216 controls using the high-resolution melt technology (HRM). Logistic regression analyses were used to adjust the traditional risk factors for CAD and perform the gene interaction analyses. Multiple linear regression analyses were used to study the relationships between the selected SNPs and the levels of serum lipids. In addition, meta-analysis also was performed for the association between rs6682925 and rs2275913 with CAD in different popolations. RESULTS Our case-control and meta-analysis for single SNPs demonstrated that the frequencies of the alleles and the distribution of the genotypes had no significant differences in CAD cases compared with controls. In the stratified analysis, we observed that the frequency of the IL17A rs2275913-A allele was more epidemic in early-onset CAD than in the controls (Padj = 0.005, OR = 1.209, 95% CI: 1.059-1.382), and the minor allele C of rs6682925 was associated with a decreased level of serum total cholesterol under a recessive model (Padj = 0.011). We demonstrated a significant interaction between rs6682925 and rs2275913 and CAD in the Chinese Han population. Four genotypes (CTGG, CCAA, CCAG, CCGG) were significantly associated with CAD (Padj = 2.94 × 10-4, OR = 0.619, 95% CI: 0.478-0.803; Padj = 0.01, OR = 1.808, 95% CI: 1.152-1.869; Padj = 6 × 10-6, OR = 2.179, 95% CI: 1.558-3.049; Padj = 0.001, OR = 1.883, 95% CI: 1.282-2.762, respectively). CONCLUSION Our study found no single SNP of rs2275913 in IL17A and rs6682925 in IL23R was associated with CAD in the Chinese population, but the interaction of them were significantly associated with CAD susceptibility, highlighting the key role of the IL-23R/IL-17A axis in the development of CAD. In addition, we also found rs2275913 was associated with early-onset CAD and rs6682925 was associated with total cholesterol levels, which will contribute to the clinical stratified management of this common disease.
Collapse
Affiliation(s)
- Hongsong Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaofang Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianwen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengyun Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Lifang Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Qing Kenneth Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Liu R, Liu L, Wei C, Li D. IL-33/ST2 immunobiology in coronary artery disease: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:990007. [PMID: 36337880 PMCID: PMC9630943 DOI: 10.3389/fcvm.2022.990007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
The IL-33/ST2 axis is reported to be controversially associated with coronary artery disease (CAD). A systematic review of the association between the IL-33/ST2 axis and CAD revealed that IL-33/ST2 plays a protective role in CAD and serum sST2 and IL-33 levels are increased in patients with cardiovascular disease. Therefore, the association of IL-33/ST2 single nucleotide polymorphisms (SNPs) with CAD prevalence, prognosis, and risk factors was assessed by performing a meta-analysis. Through a literature search of relevant articles in various databases using the relevant keywords, seven studies were included in the analysis. The meta-analysis showed that the IL-33/ST2 axis was associated with increased CAD risk [pooled odds ratio (OR) = 1.17, 95% confidence interval (CI): 1.13–1.20]. Gene subgroup analysis showed a close association of IL1RL1 (OR = 1.25, 95% CI: 1.20–1.30; I2 = 85.9%; p = 0.000) and IL1RAcP (OR = 1.42, 95% CI: 1.26–1.60; I2 = 27.1%; p = 0.203) with increased CAD risk. However, the association for the IL-33 gene was not statistically significant. SNPs rs7044343 (T), rs10435816 (G), rs11792633 (C) in IL-33 gene were associated with a protective effect in CAD. However, rs7025417 (T) in IL-33, rs11685424 (G) in IL1RL1, rs950880 (A) in sST2, and rs4624606 (A) in IL1RAcP were related to increased CAD risk. Overall, polymorphisms in IL-33/ST2 axis components were associated with increased CAD risk. These results may help identify key features of IL-33/ST2 immunobiology in CAD along with potential treatment strategies to lower disease burden.
Collapse
|
4
|
Hanton AJ, Scott F, Stenzel K, Nausch N, Zdesenko G, Mduluza T, Mutapi F. Frequency distribution of cytokine and associated transcription factor single nucleotide polymorphisms in Zimbabweans: Impact on schistosome infection and cytokine levels. PLoS Negl Trop Dis 2022; 16:e0010536. [PMID: 35759449 PMCID: PMC9236240 DOI: 10.1371/journal.pntd.0010536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Cytokines mediate T-helper (TH) responses that are crucial for determining the course of infection and disease. The expression of cytokines is regulated by transcription factors (TFs). Here we present the frequencies of single nucleotide polymorphisms (SNPs) in cytokine and TF genes in a Zimbabwean population, and further relate SNPs to susceptibility to schistosomiasis and cytokine levels. Individuals (N = 850) were genotyped for SNPs across the cytokines IL4, IL10, IL13, IL33, and IFNG, and their TFs STAT4, STAT5A/B, STAT6, GATA3, FOXP3, and TBX21 to determine allele frequencies. Circulatory levels of systemic and parasite-specific IL-4, IL-5, IL-10, IL-13, and IFNγ were quantified via enzyme-linked immunosorbent assay. Schistosoma haematobium infection was determined by enumerating parasite eggs excreted in urine by microscopy. SNP allele frequencies were related to infection status by case-control analysis and logistic regression, and egg burdens and systemic and parasite-specific cytokine levels by analysis of variance and linear regression. Novel findings were i) IL4 rs2070874*T’s association with protection from schistosomiasis, as carriage of ≥1 allele gave an odds ratio of infection of 0.597 (95% CIs, 0.421–0.848, p = 0.0021) and IFNG rs2069727*G’s association with susceptibility to schistosomiasis as carriage of ≥1 allele gave an odds ratio of infection of 1.692 (1.229–2.33, p = 0.0013). Neither IL4 rs2070874*T nor IFNG rs2069727*G were significantly associated with cytokine levels. This study found TH2-upregulating SNPs were more frequent among the Zimbabwean sample compared to African and European populations, highlighting the value of immunogenetic studies of African populations in the context of infectious diseases and other conditions, including allergic and atopic disease. In addition, the identification of novel infection-associated alleles in both TH1- and TH2-associated genes highlights the role of both in regulating and controlling responses to Schistosoma.
Collapse
Affiliation(s)
- Andrew John Hanton
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- * E-mail:
| | - Fiona Scott
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Katharina Stenzel
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Norman Nausch
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Grace Zdesenko
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Takafira Mduluza
- Department of Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Chou HH, Hsu LA, Juang JMJ, Chiang FT, Teng MS, Wu S, Ko YL. Synergistic Effects of Weighted Genetic Risk Scores and Resistin and sST2 Levels on the Prognostication of Long-Term Outcomes in Patients with Coronary Artery Disease. Int J Mol Sci 2022; 23:ijms23084292. [PMID: 35457109 PMCID: PMC9025936 DOI: 10.3390/ijms23084292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Resistin and soluble suppression of tumorigenicity 2 (sST2) are useful predictors in patients with coronary artery disease (CAD). Their serum levels are significantly attributed to variations in RETN and IL1RL1 loci. We investigated candidate variants in the RETN locus for resistin levels and those in the IL1RL1 locus for sST2 levels and evaluated the prognostication of these two biomarkers and the corresponding variants for long-term outcomes in the patients with CAD. We included 4652, 557, and 512 Chinese participants from the Taiwan Biobank (TWB), cardiovascular health examination (CH), and CAD cohorts, respectively. Candidate variants in RETN and IL1RL1 were investigated using whole-genome sequence (WGS) and genome-wide association study (GWAS) data in the TWB cohort. The weighted genetic risk scores (WGRS) of RETN and IL1RL1 with resistin and sST2 levels were calculated. Kaplan–Meier curves were used to analyze the prognostication of resistin and sST2 levels, WGRS of RETN and IL1RL1, and their combinations. Three RETN variants (rs3219175, rs370006313, and rs3745368) and two IL1RL1 variants (rs10183388 and rs4142132) were independently associated with resistin and sST2 levels as per the WGS and GWAS data in the TWB cohort and were further validated in the CH and CAD cohorts. In combination, these variants explained 53.7% and 28.0% of the variation in resistin and sST2 levels, respectively. In the CAD cohort, higher resistin and sST2 levels predicted higher rates of all-cause mortality and major adverse cardiac events (MACEs) during long-term follow-up, but WGRS of RETN and IL1RL1 variants had no impact on these outcomes. A synergistic effect of certain combinations of biomarkers with RETN and IL1RL1 variants was found on the prognostication of long-term outcomes: Patients with high resistin levels/low RETN WGRS and those with high sST2 levels/low IL1RL1 WGRS had significantly higher all-cause mortality and MACEs rates, and those with both these combinations had the poorest outcomes. Both higher resistin and sST2 levels, but not RETN and IL1RL1 variants, predict poor long-term outcomes in patients with CAD. Furthermore, combining resistin and sST2 levels with the WGRS of RETN and IL1RL1 genotyping exerts a synergistic effect on the prognostication of CAD outcomes. Future studies including a large sample size of participants with different ethnic populations are needed to verify this finding.
Collapse
Affiliation(s)
- Hsin-Hua Chou
- Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Lung-An Hsu
- Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (J.-M.J.J.); (F.-T.C.)
- College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Fu-Tien Chiang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (J.-M.J.J.); (F.-T.C.)
- College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Cardiovascular Center and Division of Cardiology, Fu-Jen Catholic University Hospital, New Taipei City 24352, Taiwan
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (M.-S.T.); (S.W.)
| | - Semon Wu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (M.-S.T.); (S.W.)
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan
| | - Yu-Lin Ko
- Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (M.-S.T.); (S.W.)
- Correspondence: ; Tel.: +886-2-6628-9779 (ext. 5355); Fax: +886-2-6628-9009
| |
Collapse
|
6
|
Yuan X, Chinnaswamy K, Stuckey JA, Yang CY. Computational Cosolvent Mapping Analysis Leads to Identify Salicylic Acid Analogs as Weak Inhibitors of ST2 and IL33 Binding. J Phys Chem B 2022; 126:2394-2406. [PMID: 35294837 PMCID: PMC9354565 DOI: 10.1021/acs.jpcb.2c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytokine signaling initiated by the binding of the cytokine receptors to cytokines plays important roles in immune regulation and diseases. Structurally, cytokine receptors interact with cytokines via an extensive, rugged interface that represents a challenge in inhibitor development. Our computational analysis has previously indicated that butyric acid, mimicking acidic residues, preferentially binds to sites in ST2 (Stimulation-2) that interact with acidic residues of IL33, the endogenous cytokine for ST2. To investigate if a charged group in small molecules facilitates ligand binding to ST2, we developed a biochemical homogeneous time resolved fluorescence assay to determine the inhibition of ST2/IL33 binding by five molecules containing an aromatic ring and a charged group. Three molecules, including niacin, salicylic acid, and benzamidine, exhibit inhibition activities at millimolar concentrations. We further employed the computational cosolvent mapping analysis to identify a shared mode of interaction between niacin, salicylic acid, and ST2. The mode of interaction was further confirmed by four analogous compounds that exhibited similar or improved activities. Our study provided the evidence of inhibition of ST2 and IL33 binding by salicylic acid and analogs. The results suggest that biological activity of salicylic acid may be partly mediated through modulating extracellular cytokine receptors and cytokine interaction.
Collapse
Affiliation(s)
- Xinrui Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | | | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
7
|
Wang P, Wang Y, Peng H, Wang J, Zheng Q, Wang P, Wang J, Zhang H, Huang Y, Xiong L, Zhang R, Xia Y, Wang QK, Xu C. Functional rare variant in a C/EBP beta binding site in NINJ2 gene increases the risk of coronary artery disease. Aging (Albany NY) 2021; 13:25393-25407. [PMID: 34897030 PMCID: PMC8714150 DOI: 10.18632/aging.203755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022]
Abstract
Objective: NINJ2 regulates activation of vascular endothelial cells, and genome-wide association studies showed that variants in NINJ2 confer risk to stroke. However, whether variants in NINJ2 are associated with coronary artery disease (CAD) is unknown. Methods: We genotyped rs34166160 in NINJ2 in two independent Chinese GeneID populations which included 2,794 CAD cases and 4,131 controls, and performed genetics association studies. Functional studies were also performed to reveal the mechanisms. Results: Allele rs34166160 significantly confers risk to CAD in the GeneID Hubei population which contained 1,440 CAD cases and 2,660 CAD-free controls (observed P-obs = 6.39 × 10−3 with an odds ratio (OR) was 3.39, adjusted P-adj = 8.12 × 10−3 with an OR of 3.10). The association was replicated in another population, GeneID Shandong population contained 1,354 CAD cases and 1,471 controls (P-obs = 3.33 × 10−3 with an OR of 3.14, P-adj = 0.01 with an OR of 2.74). After combining the two populations, the association was more significant (P-obs = 1.57 × 10−5 with an OR of 3.58, P-adj = 3.41 × 10−4 with an OR of 2.80). In addition, we found that rs34166160 was associated with the mRNA expression level of NINJ2 and the flanking region of rs34166160 can directly bind with transcriptional factor CCAAT-box/enhancer-binding protein beta, and the risk A allele has more transcription activity than non-risk C allele with or without LPS in HUVEC cells. Conclusions: Our study demonstrates that the functional rare variant rs34166160 in NINJ2 confers risk to CAD for the first time, and these findings further expand the range of the pathology of CAD and atherosclerosis.
Collapse
Affiliation(s)
- Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yifan Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Huixin Peng
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Jingjing Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, PR China
| | - Qian Zheng
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Pengxia Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Jing Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Hongfu Zhang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Yufeng Huang
- Precision Medical Laboratory, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Huazhong University of Science and Technology, Wuhan, PR China
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Qing K Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Chengqi Xu
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
8
|
Zha L, Dong J, Chen Q, Liao Y, Zhang H, Xie T, Tang T, Xia N, Zhang M, Jiao J, Zhou Y, Wu J, Yang X, Xu C, Wang QK, Tu X, Cheng X, Nie S. Genetic association analysis between IL9 and coronary artery disease in a Chinese Han population. Cytokine 2021; 150:155761. [PMID: 34814015 DOI: 10.1016/j.cyto.2021.155761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/04/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Interleukin-9 (IL-9) plays important role in coronary artery disease (CAD). However, the exact relationship between them is not explored yet. Here, four tag SNPs covering IL9 (rs31563, rs2069868, rs2069870 and rs31564) were selected to conduct case-control association analyses in a total of 3704 individuals from Chinese Han population (1863 CAD vs 1841 control). Results showed that: first, rs2069868 was associated with CAD combined with hypertension (Padj = 0.027); second, IL9 haplotype (CGAT) was associated with CAD (Padj = 0.035), and the combination genotype of "rs31563_CC/rs31564_TT" would remarkably decrease the risk of CAD (Padj = 0.001); third, significant associations were found between rs2069870 and decreased LDL-c levels and decreased total cholesterol levels, and between rs31563 and increased HDL-c levels (Padj < 0.05). Therefore, we conclude that IL9 might play a causal role in CAD by interacted with CAD traditional risk factors, which might confer a new way to improve the prevention and treatment of CAD.
Collapse
Affiliation(s)
- Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiangtao Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianwen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Maternal and Child Health Hospital, Wuhan 430070, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongsong Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Tian Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiao Jiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingchao Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianfei Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangping Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaofang Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Prieto-Peña D, Remuzgo-Martínez S, Genre F, Pulito-Cueto V, Atienza-Mateo B, Llorca J, Sevilla-Pérez B, Ortego-Centeno N, Marquez A, Lera-Gómez L, Leonardo MT, Peñalba A, Narváez J, Martín-Penagos L, Rodrigo E, Miranda-Filloy JA, Caminal-Montero L, Collado P, Sánchez Pérez J, de Argila D, Rubio E, León Luque M, Blanco-Madrigal JM, Galíndez-Agirregoikoa E, Gualillo O, Martín J, Castañeda S, Blanco R, González-Gay MA, López-Mejías R. Role of the IL33 and IL1RL1 pathway in the pathogenesis of Immunoglobulin A vasculitis. Sci Rep 2021; 11:16163. [PMID: 34373564 PMCID: PMC8352942 DOI: 10.1038/s41598-021-95762-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/30/2021] [Indexed: 12/27/2022] Open
Abstract
Cytokines signalling pathway genes are crucial factors of the genetic network underlying the pathogenesis of Immunoglobulin-A vasculitis (IgAV), an inflammatory vascular condition. An influence of the interleukin (IL)33- IL1 receptor like (IL1RL)1 signalling pathway on the increased risk of several immune-mediated diseases has been described. Accordingly, we assessed whether the IL33-IL1RL1 pathway represents a novel genetic risk factor for IgAV. Three tag polymorphisms within IL33 (rs3939286, rs7025417 and rs7044343) and three within IL1RL1 (rs2310173, rs13015714 and rs2058660), that also were previously associated with several inflammatory diseases, were genotyped in 380 Caucasian IgAV patients and 845 matched healthy controls. No genotypes or alleles differences were observed between IgAV patients and controls when IL33 and IL1RL1 variants were analysed independently. Likewise, no statistically significant differences were found in IL33 or IL1RL1 genotype and allele frequencies when IgAV patients were stratified according to the age at disease onset or to the presence/absence of gastrointestinal (GI) or renal manifestations. Similar results were disclosed when IL33 and IL1RL1 haplotypes were compared between IgAV patients and controls and between IgAV patients stratified according to the clinical characteristics mentioned above. Our results suggest that the IL33-IL1RL1 signalling pathway does not contribute to the genetic network underlying IgAV.
Collapse
Affiliation(s)
- Diana Prieto-Peña
- Research Group On Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Division of Rheumatology, Hospital Universitario Marqués de Valdecilla, Avenida Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - Sara Remuzgo-Martínez
- Research Group On Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Division of Rheumatology, Hospital Universitario Marqués de Valdecilla, Avenida Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - Fernanda Genre
- Research Group On Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Division of Rheumatology, Hospital Universitario Marqués de Valdecilla, Avenida Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - Verónica Pulito-Cueto
- Research Group On Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Division of Rheumatology, Hospital Universitario Marqués de Valdecilla, Avenida Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - Belén Atienza-Mateo
- Research Group On Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Division of Rheumatology, Hospital Universitario Marqués de Valdecilla, Avenida Cardenal Herrera Oria s/n, 39011, Santander, Spain.,López Albo´ Post-Residency Programme, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Javier Llorca
- Epidemiology and Computational Biology Department, School of Medicine, Universidad de Cantabria, and CIBER Epidemiología y Salud Pública (CIBERESP), Santander, Spain
| | | | | | - Ana Marquez
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, PTS Granada, Granada, Spain.,Systemic Autoimmune Disease Unit, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Leticia Lera-Gómez
- Research Group On Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Division of Rheumatology, Hospital Universitario Marqués de Valdecilla, Avenida Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - María Teresa Leonardo
- Division of Paediatrics, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Ana Peñalba
- Division of Paediatrics, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Javier Narváez
- Division of Rheumatology, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Luis Martín-Penagos
- Division of Nephrology, Hospital Universitario Marqués de Valdecilla, IDIVAL-REDINREN, Santander, Spain
| | - Emilio Rodrigo
- Division of Nephrology, Hospital Universitario Marqués de Valdecilla, IDIVAL-REDINREN, Santander, Spain
| | | | - Luis Caminal-Montero
- Division of Rheumatology, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Paz Collado
- Division of Rheumatology, Hospital Universitario Severo Ochoa, Madrid, Spain
| | | | - Diego de Argila
- Department of Dermatology, Hospital Universitario de La Princesa, Madrid, Spain
| | - Esteban Rubio
- Department of Rheumatology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Manuel León Luque
- Department of Rheumatology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | | | | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Javier Martín
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, PTS Granada, Granada, Spain
| | - Santos Castañeda
- Department of Rheumatology, Hospital Universitario de La Princesa, IIS-Princesa, Madrid, Spain
| | - Ricardo Blanco
- Research Group On Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Division of Rheumatology, Hospital Universitario Marqués de Valdecilla, Avenida Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - Miguel A González-Gay
- Research Group On Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Division of Rheumatology, Hospital Universitario Marqués de Valdecilla, Avenida Cardenal Herrera Oria s/n, 39011, Santander, Spain.,School of Medicine, Universidad de Cantabria, Santander, Spain.,Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raquel López-Mejías
- Research Group On Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Division of Rheumatology, Hospital Universitario Marqués de Valdecilla, Avenida Cardenal Herrera Oria s/n, 39011, Santander, Spain.
| |
Collapse
|
10
|
Iwaszko M, Wielińska J, Świerkot J, Kolossa K, Sokolik R, Bugaj B, Chaszczewska-Markowska M, Jeka S, Bogunia-Kubik K. IL-33 Gene Polymorphisms as Potential Biomarkers of Disease Susceptibility and Response to TNF Inhibitors in Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis Patients. Front Immunol 2021; 12:631603. [PMID: 34177886 PMCID: PMC8226138 DOI: 10.3389/fimmu.2021.631603] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Objective Rheumatoid arthritis (RA), ankylosing spondylitis (AS), and psoriatic arthritis (PsA) belong to inflammatory rheumatic diseases, the group of conditions of unknown etiology. However, a strong genetic component in their pathogenesis has been well established. A dysregulation of cytokine networks plays an important role in the development of inflammatory arthritis. Interleukin 33 (IL-33) is a recently identified member of the IL-1 family. To date, the significance of IL-33 in inflammatory arthritis has been poorly studied. This research aimed to investigate the potential of IL-33 gene polymorphisms to serve as biomarkers for disease susceptibility and TNF inhibitor response in RA, AS, and PsA patients. Materials and Methods In total, 735 patients diagnosed with RA, AS, and PsA and 229 healthy individuals were enrolled in the study. Genotyping for three single nucleotide polymorphisms (SNPs) within the IL-33 gene, namely, rs16924159 (A/G), rs10975519 (T/C), and rs7044343 (C/T), was performed using polymerase chain reaction amplification employing LightSNiP assays. Results In the present study, the IL-33 rs10975519 CC genotype was associated with a decreased risk of developing RA in females, while the IL-33 rs16924159 polymorphism was associated with the efficacy of anti-TNF therapy and clinical parameters for RA and AS patients. The IL-33 rs16924159 AA genotype correlated with higher disease activity and worse clinical outcomes in RA patients treated with TNF inhibitors, and AS patients carrying the IL-33 rs16924159 AA genotype had higher disease activity and a worse response to anti-TNF therapy. That indicates a deleterious role of the IL-33 rs16924159 AA genotype in the context of RA, as well as AS. Conclusions The obtained results suggest that IL-33 gene polymorphisms might be potential candidate biomarkers of disease susceptibility and anti-TNF treatment response in patients with inflammatory rheumatic diseases.
Collapse
Affiliation(s)
- Milena Iwaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joanna Wielińska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jerzy Świerkot
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Katarzyna Kolossa
- Department of Rheumatology and Connective Tissue Diseases, Jan Biziel University Hospital No. 2, Bydgoszcz, Poland
| | - Renata Sokolik
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Bartosz Bugaj
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Monika Chaszczewska-Markowska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Sławomir Jeka
- Department of Rheumatology and Connective Tissue Diseases, Jan Biziel University Hospital No. 2, Bydgoszcz, Poland.,Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
11
|
Pei M, Liu X, Yang P, Zhao C, Gao F, Qu Y, Liang A, Xiao J, Zhang M. Genetic Association of Interleukin 33/ST2 Polymorphisms With Behcet's Uveitis. Front Immunol 2021; 12:589639. [PMID: 33859633 PMCID: PMC8043080 DOI: 10.3389/fimmu.2021.589639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL)33, a member of the IL1 superfamily, functions as a nuclear factor and mediates biological effects by interacting with the ST2 receptor. Recent studies have described IL33 as an emerging pro-inflammatory cytokine in the immune system, and IL33/ST2 gene polymorphisms have been implicated in the pathogenesis of various immune diseases. However, the underlying mechanisms of IL33/ST2 in Behcet's disease (BD) remain to be defined. Here, we investigated the association between IL33/ST2 gene polymorphisms and BD in 585 BD uveitis (BDU) patients and 834 healthy controls using Agena MassARRAY iPLEX platform. We found that rs3821204 was associated with the development of BDU. Moreover, the frequency of rs2210463 G allele was lower in patients with genital involvement. Association analysis revealed a much greater genetic difference between complete-type and incomplete-type BD groups, including three SNPs (rs7044343, rs1048274, and rs2210463). Our findings suggest that IL33/ST2 gene polymorphisms are involved in the pathogenesis of BDU. Different genetic backgrounds may exist in complete-type and incomplete-type BD patients.
Collapse
Affiliation(s)
- Minghang Pei
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinshu Liu
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Chan Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Gao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Qu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anyi Liang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyan Xiao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meifen Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Li S, Wang Z, Liu X, Li Y, Shi C, Wu J, Sun S, Li Y, Li S, Xu Y, Song B. Association of Common Variants in the IL-33/ST2 Axis with Ischemic Stroke. Curr Neurovasc Res 2020; 16:494-501. [PMID: 31660817 DOI: 10.2174/1567202616666191029112334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Recent studies have reported that the levels of serum interleukin-33 (IL- 33) and its receptor, suppression of tumorigenicity 2 (ST2), are potential biomarkers for susceptibility of cardiovascular diseases. However, the genetic association of the IL-33/ST2 axis with cardiovascular diseases remains controversial. OBJECTIVE We aimed to investigate the association between common variants in the IL-33/ST2 axis and ischemic stroke in the Han Chinese population. METHODS We consecutively enrolled 1166 patients with ischemic stroke and 1079 age- and gender- matched controls. Eight single nucleotide polymorphisms (SNPs) within IL-33/ST2 axis were genotyped using the improved Multiple Ligase Detection Reaction platform. We analyzed the association between the tested SNPs and ischemic stroke at both the genotype and haplotype levels. RESULTS Binary logistic regression analysis indicated that rs10435816 (additive model: odds ratio [OR]=0.72, 95% confidence interval [CI], 0.54-0.95; recessive model: OR=0.72, 95%CI, 0.56- 0.94) was associated with a decreased risk of ischemic stroke after adjustment of confounding factors. Subgroup analysis indicated that rs10435816 (additive model: OR=0.61, 95%CI, 0.41-0.89; recessive model: OR=0.56, 95%CI, 0.40-0.80), rs7025417 (additive model: OR=0.57, 95%CI, 0.39-0.83), rs11792633 (additive model: OR=0.66, 95%CI, 0.46-0.95; recessive model: OR=0.67, 95%CI, 0.49-0.93), and rs7044343 (additive model: OR=0.69, 95%CI, 0.48-0.97; recessive model: OR=0.67, 95%CI, 0.49-0.91) were associated with a decreased risk of large-artery atherosclerosis stroke after adjustment of confounding factors. CONCLUSION Our findings suggested an association between common variants in the IL-33/ST2 axis and a decreased risk of ischemic stroke in the Han Chinese population.
Collapse
Affiliation(s)
- Shuo Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhijie Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinjing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuanzhe Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jun Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shilei Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yusheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shaohua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
13
|
Li L, Liu Y, Li X, Qiu C. Insights into the genetic basis of HMGB1 in atrial fibrillation in a Chinese Han population. Cardiovasc Diagn Ther 2020; 10:388-395. [PMID: 32695619 DOI: 10.21037/cdt.2019.12.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Atrial fibrillation (AF) is the most common cardiac arrhythmia. High mobility group box 1 (HMGB1) has been demonstrated to be involved in AF, but the genetic relationship between them is not clear yet. Here, we investigated the genetic association between functional variants in HMGB1 and AF in a Chinese Han population. Methods Two common variants (the promoter one rs1045411T/C and the 3'UTR one rs1412125C/T) in HMGB1 were selected and genotyped in 576 AF patients and 869 control subjects. Traditional risk factors, such as age, gender, the history of smoking, hypertension and diabetes mellitus, were adjusted as covariates using a logistic regression analysis (SPSS, v.21.0). The haplotypic analysis was performed using SPSS (v.21.0, Inc., Chicago, IL, USA). Results Under the allelic association analysis, neither rs1045411T/C nor rs1412125C/T was associated with AF with all P values >0.05; under the genotypic association analysis, the 3'UTR variant rs1045411T showed a marginally significant association with AF under the recessive model (Padj=0.056, OR =0.42; 95% CI: 0.17-1.02). When divided the studied population by gender, we still found no significant association results between the selected variants and AF with P values more than 0.05; however, when divided the population into subgroups by the age onset of AF, we found that the 3'UTR variant rs1045411T was significantly associated with AF in the late-onset subgroup (Padj=0.009, OR =11.1; 95% CI: 1.82-50.0). Conclusions The 3'UTR variant rs1045411T/C of HMGB1 might influence the risk of late-onset AF in the Chinese Han population, which provides an important target factor for the prevention and treatment study of AF.
Collapse
Affiliation(s)
- Li Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Department of Emergency Internal Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, China
| | - Yang Liu
- Department of Emergency Internal Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, China
| | - Xinxin Li
- Department of Emergency Internal Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, China
| | - Chunguang Qiu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
14
|
Li W, Li Y, Jin J. The essential function of IL-33 in metabolic regulation. Acta Biochim Biophys Sin (Shanghai) 2020; 52:768-775. [PMID: 32445465 DOI: 10.1093/abbs/gmaa045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Interleukin-33 (IL-33) is produced by various types of cells under physical or pathological conditions. As a multifunctional partner in health and disease, current evidence reveals that IL-33 also participates in several metabolic processes. IL-33 has been proven to contribute to regulating the activity of ST2+ group 2 innate lymphoid cells and regulatory T cells in adipose, which leads to the shift of insulin sensitivity and glucose clearance in glucose metabolism, thermogenesis, and adipocyte beiging in adipose metabolism. In this review, we briefly summarize the biological characteristics of Il-33 and discuss its regulatory function in glucose and adipose metabolism. By clarifying the underlying mechanism of IL-33, we highlight the crosstalk between immune response and metabolic processes mediated by IL-33.
Collapse
Affiliation(s)
- Wenping Li
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yiyuan Li
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Zheng H, Zeng Z, Wen H, Wang P, Huang C, Huang P, Chen Q, Gong D, Qiu X. Application of Genome-Wide Association Studies in Coronary Artery Disease. Curr Pharm Des 2020; 25:4274-4286. [PMID: 31692429 DOI: 10.2174/1381612825666191105125148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/30/2019] [Indexed: 01/10/2023]
Abstract
Coronary artery disease (CAD) is a complex disease caused by the combination of environmental and genetic factors. It is one of the leading causes of death and disability in the world. Much research has been focussed on CAD genetic mechanism. In recent years, genome-wide association study (GWAS) has developed rapidly around the world. Medical researchers around the world have successfully discovered a series of CAD genetic susceptibility genes or susceptible loci using medical research strategies, leading CAD research toward a new stage. This paper briefly summarizes the important progress made by GWAS for CAD in the world in recent years, and then analyzes the challenges faced by GWAS at this stage and the development trend of future research, to promote the transformation of genetic research results into clinical practice and provide guidance for further exploration of the genetic mechanism of CAD.
Collapse
Affiliation(s)
- Huilei Zheng
- Department of Medical Examination & Health Management, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Zhiyu Zeng
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Elderly Cardiology Ward, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Wen
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Elderly Comprehensive Ward, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Peng Wang
- Department of Medical Examination & Health Management, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chunxia Huang
- Department of Medical Examination & Health Management, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ping Huang
- Department of Medical Examination & Health Management, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingyun Chen
- Department of Medical Examination & Health Management, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Danping Gong
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Elderly Cardiology Ward, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoling Qiu
- Department of Population Health Science, Duke University School of Medicine, Durham, North Carolina, NC27708, United States.,Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| |
Collapse
|
16
|
Luo C, Pook E, Wang F, Archacki SR, Tang B, Zhang W, Hu JS, Yang J, Leineweber K, Bechem M, Huang W, Song Y, Cheung SH, Laux V, Ke T, Ren X, Tu X, Chen Q, Wang QK, Xu C. ADTRP regulates TFPI expression via transcription factor POU1F1 involved in coronary artery disease. Gene 2020; 753:144805. [PMID: 32445923 DOI: 10.1016/j.gene.2020.144805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Genomic variants in both ADTRP and TFPI genes are associated with risk of coronary artery disease (CAD). ADTRP regulates TFPI expression and endothelial cell functions involved in the initiation of atherosclerotic CAD. ADTRP also specifies primitive myelopoiesis and definitive hematopoiesis by upregulating TFPI expression. However, the underlying molecular mechanism is unknown. Here we show that transcription factor POU1F1 is the key by which ADTRP regulates TFPI expression. Luciferase reporter assays, chromatin-immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA) in combination with analysis of large and small deletions of the TFPI promoter/regulatory region were used to identify the molecular mechanism by which ADTRP regulates TFPI expression. Genetic association was assessed using case-control association analysis and phenome-wide association analysis (PhenGWA). ADTRP regulates TFPI expression at the transcription level in a dose-dependent manner. The ADTRP-response element was localized to a 50 bp region between -806 bp and -756 bp upstream of TFPI transcription start site, which contains a binding site for POU1F1. Deletion of POU1F1-binding site or knockdown of POU1F1 expression abolished ADTRP-mediated transcription of TFPI. ChIP and EMSA demonstrated that POU1F1 binds to the ADTRP response element. Genetic analysis identified significant association between POU1F1 variants and risk of CAD. PhenGWA identified other phenotypic traits associated with the ADTRP-POU1F1-TFPI axis such as lymphocyte count (ADTRP), waist circumference (TFPI), and standing height (POU1F1). These data identify POU1F1 as a transcription factor that regulates TFPI transcription in response to ADTRP, and link POU1F1 variants to risk of CAD for the first time.
Collapse
Affiliation(s)
- Chunyan Luo
- The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | - Fan Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Stephen R Archacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Bo Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Weiyi Zhang
- Bayer Healthcare Co Ltd, Innovation Center China, Beijing, PR China
| | - Jing-Shan Hu
- Bayer Healthcare Co Ltd, Innovation Center China, Beijing, PR China
| | - Jian Yang
- The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
| | | | | | - Weifeng Huang
- The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yinhong Song
- The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Shing-Hu Cheung
- Bayer Healthcare Co Ltd, Innovation Center China, Beijing, PR China
| | - Volker Laux
- BayerAG, Drug Discovery, 42096 Wuppertal, Germany
| | - Tie Ke
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44195, USA.
| | - Qing Kenneth Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44195, USA.
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
17
|
Li Y, Cho H, Wang F, Canela-Xandri O, Luo C, Rawlik K, Archacki S, Xu C, Tenesa A, Chen Q, Wang QK. Statistical and Functional Studies Identify Epistasis of Cardiovascular Risk Genomic Variants From Genome-Wide Association Studies. J Am Heart Assoc 2020; 9:e014146. [PMID: 32237974 PMCID: PMC7428625 DOI: 10.1161/jaha.119.014146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Epistasis describes how gene‐gene interactions affect phenotypes, and could have a profound impact on human diseases such as coronary artery disease (CAD). The goal of this study was to identify gene‐gene interactions in CAD using an easily generalizable multi‐stage approach. Methods and Results Our forward genetic approach consists of multiple steps that combine statistical and functional approaches, and analyze information from global gene expression profiling, functional interactions, and genetic interactions to robustly identify gene‐gene interactions. Global gene expression profiling shows that knockdown of ANRIL (DQ485454) at 9p21.3 GWAS (genome‐wide association studies) CAD locus upregulates TMEM100 and TMEM106B. Functional studies indicate that the increased monocyte adhesion to endothelial cells and transendothelial migration of monocytes, 2 critical processes in the initiation of CAD, by ANRIL knockdown are reversed by knockdown of TMEM106B, but not of TMEM100. Furthermore, the decreased monocyte adhesion to endothelial cells and transendothelial migration of monocytes induced by ANRIL overexpression was reversed by overexpressing TMEM106B. TMEM106B expression was upregulated by >2‐fold in CAD coronary arteries. A significant association was found between variants in TMEM106B (but not in TMEM100) and CAD (P=1.9×10−8). Significant gene‐gene interaction was detected between ANRIL variant rs2383207 and TMEM106B variant rs3807865 (P=0.009). A similar approach also identifies significant interaction between rs6903956 in ADTRP and rs17465637 in MIA3 (P=0.005). Conclusions We demonstrate 2 pairs of epistatic interactions between GWAS loci for CAD and offer important insights into the genetic architecture and molecular mechanisms for the pathogenesis of CAD. Our strategy has broad applicability to the identification of epistasis in other human diseases.
Collapse
Affiliation(s)
- Yabo Li
- College of Life Sciences Lanzhou University Lanzhou Gansu Province P. R. China.,Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of Case Western Reserve University Cleveland OH
| | - Hyosuk Cho
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of Case Western Reserve University Cleveland OH.,Department of Genetics and Genome Sciences Case Western Reserve University School of Medicine Cleveland OH
| | - Fan Wang
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of Case Western Reserve University Cleveland OH
| | - Oriol Canela-Xandri
- MRC Human Genetics Unit at the MRC IGMM Western General Hospital University of Edinburgh United Kingdom.,The Roslin Institute Royal (Dick) School of Veterinary Studies The University of Edinburgh, Easter Bush Campus Midlothian Edinburgh Scotland
| | - Chunyan Luo
- Key Laboratory of Molecular Biophysics College of Life Science and Technology Huazhong University of Science and Technology Wuhan Hubei China
| | - Konrad Rawlik
- The Roslin Institute Royal (Dick) School of Veterinary Studies The University of Edinburgh, Easter Bush Campus Midlothian Edinburgh Scotland
| | - Stephen Archacki
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of Case Western Reserve University Cleveland OH
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics College of Life Science and Technology Huazhong University of Science and Technology Wuhan Hubei China
| | - Albert Tenesa
- MRC Human Genetics Unit at the MRC IGMM Western General Hospital University of Edinburgh United Kingdom.,The Roslin Institute Royal (Dick) School of Veterinary Studies The University of Edinburgh, Easter Bush Campus Midlothian Edinburgh Scotland
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of Case Western Reserve University Cleveland OH
| | - Qing Kenneth Wang
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of Case Western Reserve University Cleveland OH.,Department of Genetics and Genome Sciences Case Western Reserve University School of Medicine Cleveland OH
| |
Collapse
|
18
|
Pavel AB, Zhou L, Diaz A, Ungar B, Dan J, He H, Estrada YD, Xu H, Fernandes M, Renert-Yuval Y, Krueger JG, Guttman-Yassky E. The proteomic skin profile of moderate-to-severe atopic dermatitis patients shows an inflammatory signature. J Am Acad Dermatol 2020; 82:690-699. [DOI: 10.1016/j.jaad.2019.10.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
|
19
|
Carrasco Pro S, Dafonte Imedio A, Santoso CS, Gan KA, Sewell JA, Martinez M, Sereda R, Mehta S, Fuxman Bass JI. Global landscape of mouse and human cytokine transcriptional regulation. Nucleic Acids Res 2019; 46:9321-9337. [PMID: 30184180 PMCID: PMC6182173 DOI: 10.1093/nar/gky787] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/21/2018] [Indexed: 12/24/2022] Open
Abstract
Cytokines are cell-to-cell signaling proteins that play a central role in immune development, pathogen responses, and diseases. Cytokines are highly regulated at the transcriptional level by combinations of transcription factors (TFs) that recruit cofactors and the transcriptional machinery. Here, we mined through three decades of studies to generate a comprehensive database, CytReg, reporting 843 and 647 interactions between TFs and cytokine genes, in human and mouse respectively. By integrating CytReg with other functional datasets, we determined general principles governing the transcriptional regulation of cytokine genes. In particular, we show a correlation between TF connectivity and immune phenotype and disease, we discuss the balance between tissue-specific and pathogen-activated TFs regulating each cytokine gene, and cooperativity and plasticity in cytokine regulation. We also illustrate the use of our database as a blueprint to predict TF-disease associations and identify potential TF-cytokine regulatory axes in autoimmune diseases. Finally, we discuss research biases in cytokine regulation studies, and use CytReg to predict novel interactions based on co-expression and motif analyses which we further validated experimentally. Overall, this resource provides a framework for the rational design of future cytokine gene regulation studies.
Collapse
Affiliation(s)
- Sebastian Carrasco Pro
- Department of Biology, Boston University, Boston, MA 02215, USA.,Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | | | | | - Kok Ann Gan
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | | - Rebecca Sereda
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Shivani Mehta
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Juan Ignacio Fuxman Bass
- Department of Biology, Boston University, Boston, MA 02215, USA.,Bioinformatics Program, Boston University, Boston, MA 02215, USA
| |
Collapse
|
20
|
Li ZH, Han BW, Zhang XF. A functional polymorphism in the promoter region of IL-33 is associated with the reduced risk of colorectal cancer. Biomark Med 2019; 13:567-575. [PMID: 31140826 DOI: 10.2217/bmm-2018-0249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: We aimed to investigate IL-33 polymorphisms with risk of colorectal cancer (CRC). Materials & methods: IL-33 rs7025417 and rs1332290 were genotyped using a quantitative allelic Taqman assay. The expression of IL-33 mRNA was determined by real-time PCR and promoter activity was assayed using the Dual-Luciferase Reporter Assay. Results: The IL-33 rs7025417 CC genotype and C allele may decrease CRC risk. The IL-33 rs1332290 AC carriers had an increased risk of developing clinical Stage III-IV CRC. Lower levels of IL-33 mRNA were present in individuals with the rs7025417 CC genotype. Moreover, the rs7025417 C allele suppressed promoter activity of IL-33. Conclusion: These data suggest that the rs7025417 CC genotype may downregulate IL-33 mRNA and subsequently reduce the risk of CRC.
Collapse
Affiliation(s)
- Zhao-Hui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.,Department of Gastrointestinal Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471003, PR China
| | - Bao-Wei Han
- Department of Gastrointestinal Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471003, PR China
| | - Xie-Fu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| |
Collapse
|
21
|
Altara R, Ghali R, Mallat Z, Cataliotti A, Booz GW, Zouein FA. Conflicting vascular and metabolic impact of the IL-33/sST2 axis. Cardiovasc Res 2018; 114:1578-1594. [PMID: 29982301 DOI: 10.1093/cvr/cvy166] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/28/2018] [Indexed: 02/15/2024] Open
Abstract
Interleukin 33 (IL-33), which is expressed by several immune cell types, endothelial and epithelial cells, and fibroblasts, is a cytokine of the IL-1 family that acts both intra- and extracellularly to either enhance or resolve the inflammatory response. Intracellular IL-33 acts in the nucleus as a regulator of transcription. Once released from cells by mechanical stress, inflammatory cytokines, or necrosis, extracellular IL-33 is proteolytically processed to act in an autocrine/paracrine manner as an 'alarmin' on neighbouring or various immune cells expressing the ST2 receptor. Thus, IL-33 may serve an important role in tissue preservation and repair in response to injury; however, the actions of IL-33 are dampened by a soluble form of ST2 (sST2) that acts as a decoy receptor and is produced by endothelial and certain immune cells. Accumulating evidence supports the conclusion that sST2 is a biomarker of vascular health with diagnostic and/or prognostic value in various cardiovascular diseases, including coronary artery disease, myocardial infarction, atherosclerosis, giant-cell arteritis, acute aortic dissection, and ischaemic stroke, as well as obesity and diabetes. Although sST2 levels are positively associated with cardiovascular disease severity, the assumption that IL-33 is always beneficial is naïve. It is increasingly appreciated that the pathophysiological importance of IL-33 is highly dependent on cellular and temporal expression. Although IL-33 is atheroprotective and may prevent obesity and type 2 diabetes by regulating lipid metabolism, IL-33 appears to drive endothelial inflammation. Here, we review the current knowledge of the IL-33/ST2/sST2 signalling network and discuss its pathophysiological and translational implications in cardiovascular diseases.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Building 7, 4th floor, Kirkeveien 166, Oslo, Norway
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Rana Ghali
- Department of Pharmacology and Toxicology, American University of Beirut & Medical Center, Faculty of Medicine, Riad El-Solh, Beirut-Lebanon
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
- Institut National de la Sante et de la Recherche Medicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Paris, France
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Building 7, 4th floor, Kirkeveien 166, Oslo, Norway
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut & Medical Center, Faculty of Medicine, Riad El-Solh, Beirut-Lebanon
| |
Collapse
|
22
|
Nie SF, Zha LF, Fan Q, Liao YH, Zhang HS, Chen QW, Wang F, Tang TT, Xia N, Xu CQ, Zhang JY, Lu YZ, Zeng ZP, Jiao J, Li YY, Xie T, Zhang WJ, Wang D, Wang CC, Fa JJ, Xiong HB, Ye J, Yang Q, Wang PY, Tian SH, Lv QL, Li QX, Qian J, Li B, Wu G, Wu YX, Yang Y, Yang XP, Hu Y, Wang QK, Cheng X, Tu X. Genetic Regulation of the Thymic Stromal Lymphopoietin (TSLP)/TSLP Receptor (TSLPR) Gene Expression and Influence of Epistatic Interactions Between IL-33 and the TSLP/TSLPR Axis on Risk of Coronary Artery Disease. Front Immunol 2018; 9:1775. [PMID: 30123216 PMCID: PMC6085432 DOI: 10.3389/fimmu.2018.01775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
The thymic stromal lymphopoietin (TSLP)/TSLP receptor (TSLPR) axis is involved in multiple inflammatory immune diseases, including coronary artery disease (CAD). To explore the causal relationship between this axis and CAD, we performed a three-stage case-control association analysis with 3,628 CAD cases and 3,776 controls using common variants in the genes TSLP, interleukin 7 receptor (IL7R), and TSLPR. Three common variants in the TSLP/TSLPR axis were significantly associated with CAD in a Chinese Han population [rs3806933T in TSLP, Padj = 4.35 × 10-5, odds ratio (OR) = 1.18; rs6897932T in IL7R, Padj = 1.13 × 10-7, OR = 1.31; g.19646A>GA in TSLPR, Padj = 2.04 × 10-6, OR = 1.20]. Reporter gene analysis demonstrated that rs3806933 and rs6897932 could influence TSLP and IL7R expression, respectively. Furthermore, the "T" allele of rs3806933 might increase plasma TSLP levels (R2 = 0.175, P < 0.01). In a stepwise procedure, the risk for CAD increased by nearly fivefold compared with the maximum effect of any single variant (Padj = 6.99 × 10-4, OR = 4.85). In addition, the epistatic interaction between TSLP and IL33 produced a nearly threefold increase in the risk of CAD in the combined model of rs3806933TT-rs7025417TT (Padj = 3.67 × 10-4, OR = 2.98). Our study illustrates that the TSLP/TSLPR axis might be involved in the pathogenesis of CAD through upregulation of mRNA or protein expression of the referenced genes and might have additive effects on the CAD risk when combined with IL-33 signaling.
Collapse
Affiliation(s)
- Shao-Fang Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Feng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Innovation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Fan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Hua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Song Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian-Wen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wang
- Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Ting-Ting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Qi Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao-Yue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Zhi Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Peng Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Jiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Yuan Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Juan Zhang
- Department of Geriatrics, the Central Hospital of Wuhan, Tongji Medica College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Chu-Chu Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Fa
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Bo Xiong
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Ye
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Yun Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-Hua Tian
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu-Lun Lv
- Section of Molecule Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Qing-Xian Li
- Jining Medical College Affiliated Hospital, Jining, China
| | - Jin Qian
- Suizhou Central Hospital, Suizhou, China
| | - Bin Li
- Xiangyang Central Hospital, Xiangyang, China
| | - Gang Wu
- Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Yan Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Wang JL, Liu J, Xie KG, Lan CG, Lu L, Tang YJ. Association between functional polymorphisms in IL-33/ST2 pathway and risk of osteosarcoma. J Cell Mol Med 2018; 22:3808-3815. [PMID: 29797504 PMCID: PMC6050508 DOI: 10.1111/jcmm.13653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/30/2018] [Indexed: 12/21/2022] Open
Abstract
Interleukin (IL)-33/ST2 pathway plays crucial roles in tumour growth and metastasis. The aim of this study was to investigate the association of two functional polymorphisms (IL-33 rs7025417 and ST2 rs3821204) with osteosarcoma (OS) risk. The rs7025417 and rs3821204 were genotyped by Taqman assay. IL-33mRNA and protein levels were measured by real-time PCR or enzyme-linked immunosorbent assay. The luciferase activity was measured by a dual luciferase reporter gene assay. The allele-specific transcription factor binding for rs7025417 was examined by ChIP-seq. The IL-33 rs7025417 CC genotype was significantly associated with a decreased risk of OS (CC vs TT: OR = 0.59, 95% CI, 0.41-0.85; recessive model: OR = 0.68, 95% CI, 0.49-0.94; C vs T: OR = 0.76, 95% CI, 0.63-0.91). Combined analysis showed that the IL-33 rs7025417CT/CC-ST2 rs3821204CG/CC and the IL-33 rs7025417CT/CC-ST2 rs3821204GG genotypes also had a decreased risk of OS. IL-33mRNA and protein levels in OS patients were significantly higher than controls. Patients with the rs7025417 CC genotype exhibited lower levels of IL-33 (P = .03). The rs7025417 C allele presented a lower transcriptional activity by disrupting the binding site to c-Myb (P < .01). Moreover, the rs3821204 G/C influences the transcriptional activity and ST2mRNA expression by altering the binding site of miR-202-3p. These findings suggest that the rs7025417 and rs3821204 may have a combined effect to protect against the development of OS by decreasing the expression levels of IL-33 or ST2.
Collapse
Affiliation(s)
- Jun-Li Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Jia Liu
- Department of Orthopedic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Ke-Gong Xie
- Department of Orthopedic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chang-Gong Lan
- Department of Orthopedic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Lu Lu
- Department of Orthopedic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Yu-Jin Tang
- Department of Orthopedic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
24
|
Aimo A, Migliorini P, Vergaro G, Franzini M, Passino C, Maisel A, Emdin M. The IL-33/ST2 pathway, inflammation and atherosclerosis: Trigger and target? Int J Cardiol 2018; 267:188-192. [PMID: 29793758 DOI: 10.1016/j.ijcard.2018.05.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/19/2018] [Accepted: 05/17/2018] [Indexed: 12/29/2022]
Abstract
The "inflammatory hypothesis" of atherosclerosis postulates that inflammatory cell signalling drives the formation, growth and ultimately the instability of atherosclerotic plaques, setting up the substrate for the thrombotic response that causes myocardial damage or infarction. The recent Canakinumab Antiinflammatory Thrombosis Outcome Study (CANTOS) trial has been hailed as the first demonstration, ex iuvantibus, of the inflammatory hypothesis. Indeed, interleukin (IL)-1β inhibition was found to reduce cardiovascular events in patients with previous myocardial infarction and raised high-sensitivity C-reactive protein, despite no effects on the lipid profile. These results prompt a dissection of inflammatory mechanisms of atherosclerosis in order to search for specific biomarkers with prognostic value and/or therapeutic targets. Under this respect, the IL-33/suppression of tumorigenesis 2 (ST2) pathway deserves consideration. Indeed, its elements are particularly expressed in the endothelium of arterial vessels, and the interaction between IL-33 and the ST2 receptor blunts the immune response characteristic of atherosclerosis. By contrast, soluble ST2 (sST2) acts as a decoy receptor for IL-33, thus blocking its protective effects. Despite a solid theoretical framework, no definite demonstration of an involvement of the IL-33/ST2 pathway in atherosclerosis has been provided. Therefore, further studies are warranted to verify if elements of the IL-33/ST2 pathway may be proposed as markers of plaque burden and predictors of future cardiovascular events, and to explore the potential clinical benefit of enhanced IL-33/ST2 signalling in atherosclerosis.
Collapse
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, University of Pisa, Italy.
| | - Paola Migliorini
- Allergy and Immunology Division, University of Pisa, Pisa, Italy
| | - Giuseppe Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alan Maisel
- University of California, San Diego, CA, USA
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
25
|
IL-13 may be involved in the development of CAD via different mechanisms under different conditions in a Chinese Han population. Sci Rep 2018; 8:6182. [PMID: 29670225 PMCID: PMC5906444 DOI: 10.1038/s41598-018-24592-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/05/2018] [Indexed: 01/23/2023] Open
Abstract
Interleukin-13 (IL-13) has important functions in atherosclerosis, but its role in coronary artery disease (CAD) is unclear. Here, we studied the genetic role of IL-13 in CAD in a Chinese Han population using tag SNPs covering the whole IL13 gene (i.e., rs1881457, rs2069744 and rs20541) and a two-stage cohort containing 1863 CAD cases and 1841 controls. Traditional risk factors for CAD, such as age, BMI, and other factors, were used as covariates in logistic regression analysis. In the total population, we found that two haplotypes of IL13 (ATG and ATA, ordered rs1881457C-rs2069744T-rs20541A) significantly contributed to the risk of CAD with adjusted p values less than 0.05 (padj = 0.019 and padj = 0.042, respectively). In subgroup population analyses, the variant rs1881457C was found to significantly contribute to a nearly two fold increase in the risk of CAD in men (padj = 0.023, OR = 1.91, 95% CI: 1.09-3.33). The variant rs1881457C also significantly contributed to a nearly twofold risk of late-onset CAD (padj = 0.024, OR = 1.93, 95% CI: 1.09-3.42). In conclusion, IL13 might be involved in CAD via different mechanisms under different conditions in the Chinese Han population.
Collapse
|
26
|
Wei ZH, Li YY, Huang SQ, Tan ZQ. Genetic variants in IL-33/ST2 pathway with the susceptibility to hepatocellular carcinoma in a Chinese population. Cytokine 2018; 118:124-129. [PMID: 29656959 DOI: 10.1016/j.cyto.2018.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022]
Abstract
Interleukin (IL)-33/ST2 pathway plays a pivotal role in tumorigenesis through influencing cancer stemness, tumor growth, metastasis, angiogenesis, and accumulation of regulatory T cells in tumor microenvironments. The aim of this study was to investigate the association of IL-33 rs7025417 and ST2 rs3821204 with the risk of hepatocellular carcinoma (HCC). Genotyping of IL-33 rs7025417 and ST2 rs3821204 was carried out using a Taqman assay. IL-33 and ST2 mRNA was examined using real-time PCR and plasma IL-33 and sST2 levels were measured using enzyme-linked immunosorbent assay. The ST2 rs3821204 CC genotype was associated with a significantly increased risk of HCC (CC vs. GG: adjusted OR = 2.29, 95% CI, 1.39-3.78; dominant model: adjusted OR = 1.58, 95% CI, 1.12-2.23; recessive model: adjusted OR = 1.88, 95% CI, 1.21-2.93; C vs. G: adjusted OR = 1.53, 95% CI, 1.20-1.95). Gene-environment interaction analysis showed that the risk effect of rs3821204 CG/CC genotypes was more evident in smokers (adjusted OR = 1.70, 95% CI, 1.13-2.55) and drinkers (adjusted OR = 1.57, 95% CI, 1.04-2.37). The increased risk was also observed in combined analysis. Moreover, HCC patients with ST2 rs3821204 CC genotype had higher levels of mRNA and protein expression (P < 0.05). These findings suggest that ST2 rs3821204 CC genotype may contribute to hepatocarcinogenesis by enhancing ST2 production at the transcriptional and translational level.
Collapse
Affiliation(s)
- Zhong-Heng Wei
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| | - Yue-Yong Li
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Shi-Qing Huang
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Zhong-Qiu Tan
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| |
Collapse
|
27
|
Wu YS, Zhu B, Luo AL, Yang L, Yang C. The Role of Cardiokines in Heart Diseases: Beneficial or Detrimental? BIOMED RESEARCH INTERNATIONAL 2018; 2018:8207058. [PMID: 29744364 PMCID: PMC5878913 DOI: 10.1155/2018/8207058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality, imposing a major disease burden worldwide. Therefore, there is an urgent need to identify new therapeutic targets. Recently, the concept that the heart acts as a secretory organ has attracted increasing attention. Proteins secreted by the heart are called cardiokines, and they play a critical physiological role in maintaining heart homeostasis or responding to myocardial damage and thereby influence the development of heart diseases. Given the critical role of cardiokines in heart disease, they might represent a promising therapeutic target. This review will focus on several cardiokines and discuss their roles in the pathogenesis of heart diseases and as potential therapeutics.
Collapse
Affiliation(s)
- Ye-Shun Wu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ai-Lin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
28
|
IL-33/IL-31 Axis: A Potential Inflammatory Pathway. Mediators Inflamm 2018; 2018:3858032. [PMID: 29713240 PMCID: PMC5866851 DOI: 10.1155/2018/3858032] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 01/18/2023] Open
Abstract
Cytokines play an important role in the regulation of the immune system (adaptive and innate). Given their importance in proinflammatory processes, cytokines have been used for understanding the pathogenesis and as biomarkers in many diseases. IL-31 and IL-33 are still considered novel cytokines. IL-31 controls signalling and regulates a huge amount of biological functions: it induces proinflammatory cytokines, regulates cell proliferation, and is involved also in tissue remodelling. On the other hand, IL-33 has been identified as an “alarmin” released from the epithelial cells and from different human tissues and organs after a damage following, that is, an inflammatory process. The aim of this literature review is to strengthen the hypothesis about an IL-31/IL-33 axis by evaluating the most recent studies linking these two cytokines. Literature data showed that, in many cases, IL-31 and IL-33 are linked to each other and that their expression is correlated with disease severity. The presence of one interleukin might stimulate the induction of the other, amplifying inflammation and the consequent detrimental processes. In a near future, influencing their balance could be helpful in modulating the first responses of the immune system in order to prevent the development of many inflammation-related diseases.
Collapse
|
29
|
Xiong X, Naji DH, Wang B, Zhao Y, Wang J, Wang D, Zhang Y, Li S, Chen S, Huang Y, Yang Q, Wang X, Yin D, Tu X, Chen Q, Ma X, Xu C, Wang QK. Significant Association between OPG/TNFRSF11B Variant and Common Complex Ischemic Stroke. J Stroke Cerebrovasc Dis 2018; 27:1683-1691. [PMID: 29501268 DOI: 10.1016/j.jstrokecerebrovasdis.2018.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/02/2018] [Accepted: 01/28/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The serum level of osteoprotegerin (encoded by OPG or TNFRSF11B) was previously shown to be increased in patients with ischemic stroke. A single nucleotide polymorphism rs3134069 in the TNFRSF11B gene was previously associated with ischemic stroke in a population of diabetic patients in Italy. It remains to be determined whether rs3134069 is associated with ischemic stroke in the general population or populations without diabetes. MATERIALS AND METHODS We genotyped rs3134069 and performed a case-control association study to test whether rs3134069 is associated with ischemic stroke in 2 independent Chinese Han populations, including a China-Central population with 1629 cases and 1504 controls and a China-Northern population with 1206 cases and 720 controls. RESULTS rs3134069 showed significant association with ischemic stroke in the China-Central population (P = 9.24 × 10-3, odds ratio [OR] = 1.50). The association was replicated in the independent China-Northern population (P = 2.45 × 10-4, OR = 1.53). The association became more significant in the combined population (P = 7.09 × 10-6, OR = 1.41). The associations remained significant in the male population, female population, and population without type 2 diabetes. Our expression quantitative trait loci analysis found that the minor allele C of rs3134069 was significantly associated with a decreasedexpression level of TNFRSF11B (P = .002). CONCLUSIONS This study demonstrates that rs3134069 in TNFRSF11B increases risk of ischemic stroke by decreasing TNFRSF11B expression.
Collapse
Affiliation(s)
- Xin Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Duraid Hamied Naji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Binbin Wang
- National Research Institute for Family Planning, Beijing, China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Junhan Wang
- Department of Clinical Laboratory of University Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Huang
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, Ohio; Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, Ohio; Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
30
|
Wang P, Qin W, Wang P, Huang Y, Liu Y, Zhang R, Li S, Yang Q, Wang X, Chen F, Liu J, Yang B, Cheng X, Liao Y, Wu Y, Ke T, Tu X, Ren X, Yang Y, Xia Y, Luo X, Liu M, Li H, Liu J, Xiao Y, Chen Q, Xu C, Wang QK. Genomic Variants in NEURL, GJA1 and CUX2 Significantly Increase Genetic Susceptibility to Atrial Fibrillation. Sci Rep 2018; 8:3297. [PMID: 29459676 PMCID: PMC5818533 DOI: 10.1038/s41598-018-21611-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia. In 2014, two new meta-GWAS identified 5 AF loci, including the NEURL locus, GJA1 locus, CAND2 locus, and TBX5 locus in the European ancestry populations and the NEURL locus and CUX2 locus in a Japanese population. The TBX5 locus for AF was reported by us in 2013 in the Chinese population. Here we assessed the association between AF and SNPs in the NEURL, GJA1, CAND2 and CUX2 loci in the Chinese Han population. We carried out a large case-control association study with 1,164 AF patients and 1,460 controls. Significant allelic and genotypic associations were identified between NEURL variant rs6584555 and GJA1 variant rs13216675 and AF. Significant genotypic association was found between CUX2 SNP rs6490029 and AF. No association was found between CAND2 variant rs4642101 and AF, which may be due to an insufficient power of the sample size for rs4642101. Together with our previous findings, seven of fifteen AF loci (<50%) identified by GWAS in the European ancestry populations conferred susceptibility to AF in the Chinese population, and explained approximately 14.5% of AF heritability. On the other hand, two AF loci identified in the Japanese population were both replicated in the Chinese population.
Collapse
Affiliation(s)
- Pengxia Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Weixi Qin
- School of Life Science and Engineering, Graduate School, Lanzhou University of Technology, Lanzhou, P.R. China
| | - Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yufeng Huang
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ying Liu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qin Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Feifei Chen
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Jingqiu Liu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Bo Yang
- Department of Cardiology, People's Hospital, Wuhan University, Wuhan, P.R. China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yanxia Wu
- Department of Cardiology, the First Affiliated Hospital of Wuhan City, Wuhan, P.R. China
| | - Tie Ke
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yanzong Yang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Xiaoping Luo
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - He Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jingyu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yi Xiao
- College of Physics, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China.
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China.
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
31
|
Association of COL4A1 (rs605143, rs565470) and CD14 (rs2569190) genes polymorphism with coronary artery disease. Mol Cell Biochem 2018; 445:117-122. [PMID: 29299748 DOI: 10.1007/s11010-017-3257-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide and it is basically caused by atherosclerosis. The atherosclerotic process includes complex events and each one involves a specific biological pathway and different genes. According to World Health Organization report, Cardiovascular diseases will be the largest cause of death and disability by 2020, with an estimated 2.6 million Indians predicted to die due to CAD predominantly with myocardial infarction. Genetic factors are estimated to contribute 30-60% of the CAD risk. The aim of this study is to investigate the association of COL4A1 and CD14 genes polymorphism with CAD. This study included 345 subjects, 185 CAD cases and 160 healthy controls. Single-nucleotide polymorphisms were evaluated by polymerase chain reaction and restriction fragment length polymorphism. Alleles and genotype frequencies between cases and controls were compared using χ2 and Student's t tests. Odds ratios and 95% confidence intervals were calculated by logistic regression to assess the relative association between disease and genotypes. In this study, CD14 (rs2569190), CC (P = 0.008) genotypes, and C allele (P = 0.007) were found to be a positive risk factor, while TT genotype (P = 0.045) and T allele (P = 0.007) as negative risk factor for CAD. Significant differences were not observed in COL4A1 (rs605143 and rs565470) gene polymorphism with CAD. It seems that CD14 gene polymorphism might be associated with the risk of CAD, whereas COL4A1 gene polymorphism was not found to confer any risk of CAD.
Collapse
|
32
|
Lack of association between the APLNR variant rs9943582 with ischemic stroke in the Chinese Han GeneID population. Oncotarget 2017; 8:107678-107684. [PMID: 29296197 PMCID: PMC5746099 DOI: 10.18632/oncotarget.22588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/04/2017] [Indexed: 11/25/2022] Open
Abstract
Stroke is one of the most common causes of death worldwide. Genetic risk factors have been found to play important roles in the pathology of ischemic stroke. In a previous genome-wide association study, a functional variant (rs9943582, –154G/A) in the 5’ flanking region of the apelin receptor gene (APLNR) was shown to be significantly associated with stroke in the Japanese population. However, the association required validation in other ethnicities. To validate the genetic relationship between APLNR and ischemic stroke in the Chinese Han population, we genotyped rs9943582 in a case–control population containing 1,158 ischemic stroke patients and 1,265 common controls enrolled from the GeneID database, and performed a genetic association study. We detected no allelic or genotypic associations between rs9943582 and ischemic stroke in the Chinese Han GeneID population, although the study population provided sufficient statistical power. This finding indicates that the association between the APLNR variant and ischemic stroke or atherosclerosis may need further validation.
Collapse
|
33
|
Naji DH, Tan C, Han F, Zhao Y, Wang J, Wang D, Fa J, Li S, Chen S, Chen Q, Xu C, Wang QK. Significant genetic association of a functional TFPI variant with circulating fibrinogen levels and coronary artery disease. Mol Genet Genomics 2017; 293:119-128. [PMID: 28894953 DOI: 10.1007/s00438-017-1365-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023]
Abstract
The tissue factor pathway inhibitor (TFPI) gene encodes a protease inhibitor with a critical role in regulation of blood coagulation. Some genomic variants in TFPI were previously associated with plasma TFPI levels, however, it remains to be further determined whether TFPI variants are associated with other coagulation factors. In this study, we carried out a large population-based study with 2313 study subjects for blood coagulation data, including fibrinogen levels, prothrombin time (PT), activated partial thromboplastin time (APTT), and thrombin time (TT). We identified significant association of TFPI variant rs10931292 (a functional promoter variant with reduced transactivation) with increased plasma fibrinogen levels (P = 0.017 under a recessive model), but not with PT, APTT or TT (P > 0.05). Using a large case-control association study population with 4479 CAD patients and 3628 controls, we identified significant association between rs10931292 and CAD under a recessive model (OR 1.23, P = 0.005). For the first time, we show that a TFPI variant is significantly associated with fibrinogen levels and risk of CAD. Our finding contributes significantly to the elucidation of the genetic basis and biological pathways responsible for fibrinogen levels and development of CAD.
Collapse
Affiliation(s)
- Duraid Hamid Naji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chengcheng Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fabin Han
- The Institute for Translational Medicine, The Second Affiliated Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Junhan Wang
- University Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jingjing Fa
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine/CCLCM, Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China. .,Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine/CCLCM, Case Western Reserve University, Cleveland, OH, 44195, USA. .,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
34
|
Wu F, Li L, Wen Q, Yang J, Chen Z, Wu P, He M, Zhang X, Wu T, Cheng L. A functional variant in ST2 gene is associated with risk of hypertension via interfering MiR-202-3p. J Cell Mol Med 2017; 21:1292-1299. [PMID: 28121058 PMCID: PMC5487927 DOI: 10.1111/jcmm.13058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/09/2016] [Indexed: 02/05/2023] Open
Abstract
Recent studies have suggested that interleukin 1 receptor-like 1 (ST2) plays a critical role in pathogenesis of several cardiovascular disease conditions. In this study, we examined association of 13 single nucleotide polymorphisms (SNPs) of ST2 gene with essential hypertension (EH) risk in 1151 patients with EH and 1135 controls. Our study showed that variants rs11685424, rs12999364 and rs3821204 are highly associated with an increase in risk of EH, while rs6543116 is associated with a decrease risk of EH. Notably, in silico analyses suggested the G>C change of rs3821204, which located within the 3'UTR of soluble ST2 mRNA, disrupted a putative binding site for miR202-3p. Functional analyses suggested that miR-202-3p significantly decreased soluble ST2-G mRNA stability and inhibited its endogenous expression. Furthermore, we found increased plasma-soluble ST2 (sST2) level was highly associated with CC genotype of rs3821204 in vivo. Taken together, our findings provide the first evidence that genetic variants in ST2 gene are associated with EH risk and variant rs3821204 may influence the development of EH by controlling sST2 expression.
Collapse
Affiliation(s)
- Fangqin Wu
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Lu Li
- Second Affiliated HospitalShantou University Medical CollegeShantouChina
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Qiang Wen
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jinhua Yang
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhuyue Chen
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Peng Wu
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Meian He
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaomin Zhang
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Tangchun Wu
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Longxian Cheng
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
35
|
Yin D, Naji DH, Xia Y, Li S, Bai Y, Jiang G, Zhao Y, Wang X, Huang Y, Chen S, Fa J, Tan C, Zhou M, Zhou Y, Wang L, Liu Y, Chen F, Liu J, Chen Q, Tu X, Xu C, Wang QK. Genomic Variant in IL-37 Confers A Significant Risk of Coronary Artery Disease. Sci Rep 2017; 7:42175. [PMID: 28181534 PMCID: PMC5299598 DOI: 10.1038/srep42175] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022] Open
Abstract
The interleukin 1 family plays an important role in the immune and inflammatory responses. Coronary artery disease (CAD) is a chronic inflammatory disease. However, the genetic association between IL-37, the seventh member of the IL-1 family, and CAD is unknown. Here we show that a single nucleotide polymorphism in the IL-37 gene (rs3811047) confers a significant risk of CAD. We have performed an association analysis between rs3811047 and CAD in two independent populations with 2,501 patients and 3,116 controls from China. Quantitative RT-PCR analysis has been performed to determine if the IL-37 expression level is influenced by rs3811047. We show that the minor allele A of rs3811047 is significantly associated with CAD in two independent populations under a recessive model (Padj = 5.51 × 10-3/OR = 1.56 in the GeneID Northernern population and Padj = 1.23 × 10-3/OR = 1.45 in the GeneID Central population). The association became more significant in the combined population (Padj = 9.70 × 10-6/OR = 1.47). Moreover, the association remains significant in a CAD case control population matched for age and sex. Allele A of rs3811047 shows significant association with a decreased mRNA expression level of IL-37 (n = 168, P = 3.78 × 10-4). These data suggest that IL37 is a new susceptibility gene for CAD, which provides a potential target for the prevention and treatment of CAD.
Collapse
Affiliation(s)
- Dan Yin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China.,BGI-Wuhan, Wuhan 430075, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Duraid Hamied Naji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yunlong Xia
- Cardiovascualr Hospital, the First Affiliated Hospital of Dalian Medical University, Dalian, Wuhan, P. R. China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ying Bai
- Center of Prenatal Diagnosis, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Hunan, P. R. China
| | - Guiqing Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yufeng Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Jingjing Fa
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chengcheng Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Mengchen Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yingchao Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Longfei Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ying Liu
- Cardiovascualr Hospital, the First Affiliated Hospital of Dalian Medical University, Dalian, Wuhan, P. R. China
| | - Feifei Chen
- Cardiovascualr Hospital, the First Affiliated Hospital of Dalian Medical University, Dalian, Wuhan, P. R. China
| | - Jingqiu Liu
- Cardiovascualr Hospital, the First Affiliated Hospital of Dalian Medical University, Dalian, Wuhan, P. R. China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China.,Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
36
|
The rs7044343 Polymorphism of the Interleukin 33 Gene Is Associated with Decreased Risk of Developing Premature Coronary Artery Disease and Central Obesity, and Could Be Involved in Regulating the Production of IL-33. PLoS One 2017; 12:e0168828. [PMID: 28045954 PMCID: PMC5207498 DOI: 10.1371/journal.pone.0168828] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 12/07/2016] [Indexed: 01/14/2023] Open
Abstract
AIM The effect of interleukin 33 (IL-33) in the inflammatory process generates significant interest in the potential significance of IL-33 as a biomarker for coronary artery disease (CAD). Here, our objective was to analyze whether IL-33 gene polymorphisms are associated with premature CAD in a case-control association study. METHODS Four IL-33 polymorphisms (rs7848215, rs16924144, rs16924159 and rs7044343) were genotyped by 5' exonuclease TaqMan assays in 1095 patients with premature CAD and 1118 controls. RESULTS The rs7044343 T allele was significantly associated with a diminished risk of premature CAD (OR = 0.81, 95% CI: 0.69-0.97, Pdom = 0.020; OR = 0.85, 95% CI: 0.75-0.96, Padd = 0.019) and central obesity (OR = 0.74, 95% CI: 0.58-0.93, Pdom = 0.0007), respectively. When patients were divided into groups with and without type 2 diabetes mellitus (T2DM), the rs7044343 T allele was associated with a reduced risk of premature CAD in patients without (OR = 0.85, 95% CI: 0.73-0.99, Padd = 0.038) and with T2DM (OR = 0.61, 95% CI: 0.38-0.97, Pdom = 0.039; OR = 0.69, 95% CI: 0.49-0.97, Padd = 0.035). In order to establish the functional effect of the rs7044343 polymorphism, the production of IL-33 was determined in monocytes of selected individuals. Monocytes from individuals with rs7044343 CC genotype produced higher levels of IL-33 than monocytes from individuals with other genotypes. CONCLUSION The results suggest that the IL-33 rs7044343 T allele could be a susceptibility marker for premature CAD and central obesity. The rs7044343 polymorphism could be involved in regulating the production of IL-33.
Collapse
|
37
|
Cardiovascular risk assessment in patients with rheumatoid arthritis: The relevance of clinical, genetic and serological markers. Autoimmun Rev 2016; 15:1013-1030. [DOI: 10.1016/j.autrev.2016.07.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 12/11/2022]
|
38
|
Marzullo A, Ambrosi F, Inchingolo M, Manca F, Devito F, Angiletta D, Zito A, Scicchitano P, Ciccone MM. ST2L Transmembrane Receptor Expression: An Immunochemical Study on Endarterectomy Samples. PLoS One 2016; 11:e0156315. [PMID: 27223112 PMCID: PMC4880330 DOI: 10.1371/journal.pone.0156315] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/12/2016] [Indexed: 12/12/2022] Open
Abstract
Background ST2 (suppression of tumorigenity) has been described as a receptor for the interleukin-33, a member of the IL-1 family of cytokines. It is associated to coronary artery disease, all-causes mortality and cardiovascular mortality. Aims The present study was designed to assess the immunohistochemical expression of the ST2 receptor (ST2L/Il-1R) in atherosclerotic plaques of formalin fixed paraffin-embedded internal carotid arteries of patients with and without cerebro-vascular symptoms. Methods and Results The study involved 41 cases (23 asymptomatic and 18 symptomatic). All the clinical and morphological parameters examined were uniformly distributed between the two groups, with a mild predominance of degree of calcification in asymptomatic cases (p = 0.01). ST2L expression was found to be more evident as a membrane pattern in macrophages when observing carotid atherosclerotic plaques of symptomatic patients, rather than in asymptomatic patients’ plaques (77.7% vs 39.1%; p = 0.015), and its expression was particularly remarkable in VI type plaque (AHA). Significantly, ST2L was marked by the endothelium of neoangiogenetic vessels on the shoulder region of the plaque, but not (apart from a few cases) in the endothelium covering the residual lumen of the vessel. Conclusions The ST2L immunohistochemical expression was for the first time investigated in a large number of human carotid atherosclerotic plaques, as for its pattern of distribution in the different plaque cell populations. Furthermore, ST2L was particularly remarkable on macrophages, as a membrane pattern, of symptomatic patients’ plaque. Considering our data, we hypothesize that ST2L/IL33 axis could drive the mechanism of plaque development and eventually rupture.
Collapse
Affiliation(s)
- Andrea Marzullo
- Pathology Section, Department of Emergency and Organ Transplantation (DETO), Medical School, University of Bari, Bari, Italy
| | - Francesca Ambrosi
- Pathology Section, Department of Emergency and Organ Transplantation (DETO), Medical School, University of Bari, Bari, Italy
| | - Mirjam Inchingolo
- Vascular Surgery Section, Medical School, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| | - Fabio Manca
- Department of Science of Educational, Psychology and Communication-University of Bari, Bari, Italy
| | - Fiorella Devito
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| | - Domenico Angiletta
- Vascular Surgery Section, Medical School, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| | - Annapaola Zito
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| | - Pietro Scicchitano
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| | - Marco Matteo Ciccone
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
- * E-mail:
| |
Collapse
|
39
|
Analysis of the genetic association between IL27 variants and coronary artery disease in a Chinese Han population. Sci Rep 2016; 6:25782. [PMID: 27174010 PMCID: PMC4865940 DOI: 10.1038/srep25782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/22/2016] [Indexed: 01/03/2023] Open
Abstract
Interleukin-27 (IL-27) is an important cytokine in inflammatory diseases, including coronary artery disease (CAD). To explore the precise role of IL-27 in CAD, we investigated the genetic association between IL27 and CAD in the GeneID Chinese Han population. A two-stage case control association analysis was performed for 3075 CAD cases and 2802 controls. Logistic regression analysis was used to adjust the traditional risk factors for CAD. Results showed that a promoter variant, rs153109, tended to be marginally associated with CAD in the discovery population (Padj = 0.028, OR = 1.27, 95%CI: 1.03–1.58). However, this association was not replicated in the validation stage (Padj = 0.559, OR = 1.04, 95%CI: 0.90–1.21). In addition, when we classified the combined population into two subgroups according to the age at disease onset or disease state, we again obtained no significant associations. Finally, we estimated the severity of coronary stenosis using the Gensini Scoring system and determined that the rs153109 genotypes were still not associated with the Gensini scores of the CAD patients. In conclusion, our study failed to find an association between common variants in the functional region of IL27 and CAD in a Chinese Han population, which indicated that IL-27 might only be an inflammatory marker during the development of CAD.
Collapse
|
40
|
V A, Nayar PG, Murugesan R, Mary B, P D, Ahmed SSSJ. CardioGenBase: A Literature Based Multi-Omics Database for Major Cardiovascular Diseases. PLoS One 2015; 10:e0143188. [PMID: 26624015 PMCID: PMC4666633 DOI: 10.1371/journal.pone.0143188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/01/2015] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases (CVDs) account for high morbidity and mortality worldwide. Both, genetic and epigenetic factors are involved in the enumeration of various cardiovascular diseases. In recent years, a vast amount of multi-omics data are accumulated in the field of cardiovascular research, yet the understanding of key mechanistic aspects of CVDs remain uncovered. Hence, a comprehensive online resource tool is required to comprehend previous research findings and to draw novel methodology for understanding disease pathophysiology. Here, we have developed a literature-based database, CardioGenBase, collecting gene-disease association from Pubmed and MEDLINE. The database covers major cardiovascular diseases such as cerebrovascular disease, coronary artery disease (CAD), hypertensive heart disease, inflammatory heart disease, ischemic heart disease and rheumatic heart disease. It contains ~1,500 cardiovascular disease genes from ~2,4000 research articles. For each gene, literature evidence, ontology, pathways, single nucleotide polymorphism, protein-protein interaction network, normal gene expression, protein expressions in various body fluids and tissues are provided. In addition, tools like gene-disease association finder and gene expression finder are made available for the users with figures, tables, maps and venn diagram to fit their needs. To our knowledge, CardioGenBase is the only database to provide gene-disease association for above mentioned major cardiovascular diseases in a single portal. CardioGenBase is a vital online resource to support genome-wide analysis, genetic, epigenetic and pharmacological studies.
Collapse
Affiliation(s)
- Alexandar V
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603 103, Tamil Nadu, India
| | - Pradeep G. Nayar
- Department of Cardiology, Chettinad Super Specialty Hospital, Chettinad Academy of Research and Education, Kelambakkam 603 103, Tamil Nadu, India
| | - R. Murugesan
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603 103, Tamil Nadu, India
| | - Beaulah Mary
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603 103, Tamil Nadu, India
| | - Darshana P
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603 103, Tamil Nadu, India
| | - Shiek S. S. J. Ahmed
- Department of Computational Biology, Drug discovery Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, 603 103, Tamil Nadu, India
| |
Collapse
|
41
|
López-Mejías R, Genre F, Remuzgo-Martínez S, Robustillo-Villarino M, García-Bermúdez M, Llorca J, Corrales A, González-Juanatey C, Ubilla B, Miranda-Filloy JA, Mijares V, Pina T, Blanco R, Alegre-Sancho JJ, Ramírez Huaranga MA, Mínguez Sánchez MD, Tejera Segura B, Ferraz-Amaro I, Vicente E, Carmona FD, Castañeda S, Martín J, González-Gay MA. Protective Role of the Interleukin 33 rs3939286 Gene Polymorphism in the Development of Subclinical Atherosclerosis in Rheumatoid Arthritis Patients. PLoS One 2015; 10:e0143153. [PMID: 26571131 PMCID: PMC4646618 DOI: 10.1371/journal.pone.0143153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/30/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To determine whether the interleukin-33 (IL-33)-interleukin-1 receptor like 1 (IL-1RL1) signaling pathway is implicated in the risk of subclinical atherosclerosis in patients with rheumatoid arthritis (RA). METHODS A total of 576 Spanish RA patients from Northern Spain were genotyped for 6 well-known IL33-IL1RL1 polymorphisms (IL33 rs3939286, IL33 rs7025417, IL33 rs7044343, IL1RL1 rs2058660, IL1RL1 rs2310173 and IL1RL1 rs13015714) by TaqMan genotyping assay. The presence of subclinical atherosclerosis was determined by the assessment of carotid intima-media thickness (cIMT) by carotid ultrasound (US). RESULTS RA patients carrying the TT genotype of the IL33 rs3939286 polymorphism had lower cIMT values than those homozygous for the CC genotype (mean ± standard deviation (SD): 0.71 ± 0.14 mm versus 0.76 ± 0.16 mm, respectively) while patients carrying the CT genotype had intermediate cIMT values (mean ± SD: 0.73 ± 0.17 mm). Moreover, RA patients carrying the mutant allele T of the IL33 rs3939286 polymorphism exhibited significantly lower cIMT values than those carrying the wild allele C (mean ± SD: 0.72 ± 0.16 mm versus 0.75 ± 0.18 mm respectively; p = 0.04). The association of both genotype and allele frequencies of IL33 rs3939286 and cIMT levels remained statistically significant after adjustment for sex, age at the time of US study, follow-up and center (p = 0.006 and p = 0.0023, respectively), evidencing that the potential effect conferred by IL33 rs3939286 may be independent of confounder factors. No association with other IL33-IL1RL1 genetic variants was observed. CONCLUSIONS In conclusion, our results may suggest a potential protective effect of the IL33 rs3939286 allele T in the risk of subclinical atherosclerosis in patients with RA.
Collapse
Affiliation(s)
- Raquel López-Mejías
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, Santander, Spain
| | - Fernanda Genre
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, Santander, Spain
| | - Sara Remuzgo-Martínez
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, Santander, Spain
| | | | | | - Javier Llorca
- Department of Epidemiology and Computational Biology, School of Medicine, University of Cantabria, and CIBER Epidemiología y Salud Pública (CIBERESP), IDIVAL, Santander, Spain
| | - Alfonso Corrales
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, Santander, Spain
| | | | - Begoña Ubilla
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, Santander, Spain
| | | | - Verónica Mijares
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, Santander, Spain
| | - Trinitario Pina
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, Santander, Spain
| | - Ricardo Blanco
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, Santander, Spain
| | | | | | | | | | - Iván Ferraz-Amaro
- Rheumatology Department, Hospital Universitario de Canarias, Tenerife, Spain
| | - Esther Vicente
- Rheumatology Department, Hospital Universitario la Princesa, IIS-Princesa, Madrid, Spain
| | - F. David Carmona
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain
| | - Santos Castañeda
- Rheumatology Department, Hospital Universitario la Princesa, IIS-Princesa, Madrid, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain
| | - Miguel A. González-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, Santander, Spain
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Health Research Institute of Santiago de Compostela (IDIS), Division of Rheumatology, Clinical University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
42
|
Qing Re Liang Xue Decoction Alleviates Hypercoagulability in Kawasaki Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:864597. [PMID: 26557152 PMCID: PMC4628669 DOI: 10.1155/2015/864597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/07/2015] [Accepted: 03/14/2015] [Indexed: 12/24/2022]
Abstract
Objective. Kawasaki disease (KD) is a multisystemic autoimmune vasculitis. Intravenous immunoglobulin (IVIG) is the first-line treatment for KD. It is unclear whether traditional Chinese medicine (TCM) has an effect on KD. We aimed to observe the clinical efficacy of TCM on acute KD via serum interleukin-33 (IL-33) and tumor necrosis factor alpha (TNF-α) measurements. Methods. Thirty-one KD patients were treated with Qing Re Liang Xue decoction and Western medicine (integrative medicine treatment group), while 28 KD patients were treated with Western medicine only (Western medicine treatment group). Thirty patients were included in a febrile group and 28 healthy children were included in the control group. Clinical characteristics and laboratory findings were gathered and compared. Serum IL-33 and TNF-α levels were measured by multiplex Luminex assay. Results. The platelet count in the integrative medicine treatment group was significantly lower than that in the Western medicine treatment group. The integrative medicine group had a shorter fever duration and lower IL-33 and TNF-α levels than those in the Western medicine group, but there were no significant differences between the two KD groups after treatment. Conclusion. Qing Re Liang Xue decoction improved the hypercoagulable state of KD patients. Potential myocardial protective effects require further research.
Collapse
|
43
|
Huang Y, Wang C, Yao Y, Zuo X, Chen S, Xu C, Zhang H, Lu Q, Chang L, Wang F, Wang P, Zhang R, Hu Z, Song Q, Yang X, Li C, Li S, Zhao Y, Yang Q, Yin D, Wang X, Si W, Li X, Xiong X, Wang D, Huang Y, Luo C, Li J, Wang J, Chen J, Wang L, Wang L, Han M, Ye J, Chen F, Liu J, Liu Y, Wu G, Yang B, Cheng X, Liao Y, Wu Y, Ke T, Chen Q, Tu X, Elston R, Rao S, Yang Y, Xia Y, Wang QK. Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation. PLoS Genet 2015; 11:e1005393. [PMID: 26267381 PMCID: PMC4534423 DOI: 10.1371/journal.pgen.1005393] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/25/2015] [Indexed: 01/08/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia at the clinic. Recent GWAS identified several variants associated with AF, but they account for <10% of heritability. Gene-gene interaction is assumed to account for a significant portion of missing heritability. Among GWAS loci for AF, only three were replicated in the Chinese Han population, including SNP rs2106261 (G/A substitution) in ZFHX3, rs2200733 (C/T substitution) near PITX2c, and rs3807989 (A/G substitution) in CAV1. Thus, we analyzed the interaction among these three AF loci. We demonstrated significant interaction between rs2106261 and rs2200733 in three independent populations and combined population with 2,020 cases/5,315 controls. Compared to non-risk genotype GGCC, two-locus risk genotype AATT showed the highest odds ratio in three independent populations and the combined population (OR=5.36 (95% CI 3.87-7.43), P=8.00×10-24). The OR of 5.36 for AATT was significantly higher than the combined OR of 3.31 for both GGTT and AACC, suggesting a synergistic interaction between rs2106261 and rs2200733. Relative excess risk due to interaction (RERI) analysis also revealed significant interaction between rs2106261 and rs2200733 when exposed two copies of risk alleles (RERI=2.87, P<1.00×10-4) or exposed to one additional copy of risk allele (RERI=1.29, P<1.00×10-4). The INTERSNP program identified significant genotypic interaction between rs2106261 and rs2200733 under an additive by additive model (OR=0.85, 95% CI: 0.74-0.97, P=0.02). Mechanistically, PITX2c negatively regulates expression of miR-1, which negatively regulates expression of ZFHX3, resulting in a positive regulation of ZFHX3 by PITX2c; ZFHX3 positively regulates expression of PITX2C, resulting in a cyclic loop of cross-regulation between ZFHX3 and PITX2c. Both ZFHX3 and PITX2c regulate expression of NPPA, TBX5 and NKX2.5. These results suggest that cyclic cross-regulation of gene expression is a molecular basis for gene-gene interactions involved in genetics of complex disease traits.
Collapse
Affiliation(s)
- Yufeng Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chuchu Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiulun Lu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Le Chang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Pengxia Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenkun Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qixue Song
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaowei Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxia Si
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuchun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Longfei Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Ye
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Feifei Chen
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingqiu Liu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Gang Wu
- Department of Cardiology, People’s Hospital, Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Cardiology, People’s Hospital, Wuhan University, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yanxia Wu
- Department of Cardiology, the First Affiliated Hospital of Wuhan City, Wuhan, China
| | - Tie Ke
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Robert Elston
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Shaoqi Rao
- Institute of Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health, Guangdong Medical College, Dongguan, China
| | - Yanzong Yang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qing K. Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
44
|
Wang P, Xu C, Wang C, Wu Y, Wang D, Chen S, Zhao Y, Wang X, Li S, Yang Q, Zeng Q, Tu X, Liao Y, Wang QK, Cheng X. Association of SNP Rs9943582 in APLNR with Left Ventricle Systolic Dysfunction in Patients with Coronary Artery Disease in a Chinese Han GeneID Population. PLoS One 2015; 10:e0125926. [PMID: 25993436 PMCID: PMC4438007 DOI: 10.1371/journal.pone.0125926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/26/2015] [Indexed: 01/20/2023] Open
Abstract
Heart failure affects 1–2% of the adult population worldwide and coronary artery disease (CAD) is the underlying etiology of heart failure in 70% of the patients. The pathway of apelin and its apelin receptor (APJ) was implicated in the pathogenesis of heart failure in animal models, but a similar role in humans is unknown. We studied a functional variant, rs9943582 (-154G/A), at the 5’-untranslated region, that was associated with decreased expression of the APJ receptor gene (APLNR) in a population consisting of 1,751 CAD cases and 1,022 controls. Variant rs9943582 was not associated with CAD, but among CAD patients, it showed significant association with left ventricular systolic dysfunction (431 CAD patients with left ventricular systolic dysfunction (LV ejection fraction or LVEF< 40%) versus 1,046 CAD patients without LV systolic dysfunction (LVEF>50%) (P-adj = 6.71×10-5, OR = 1.43, 95% CI, 1.20–1.70). Moreover, rs9943582 also showed significant association with quantitative echocardiographic parameters, including left ventricular end-diastolic diameter (effect size: increased 1.67±0.43 mm per risk allele A, P = 1.15×10-4), left atrial size (effect size: increased 2.12±0.61 mm per risk allele A, P = 9.56×10-4) and LVEF (effect size: decreased 2.59±0.32 percent per risk allele A, P = 7.50×10-15). Our findings demonstrate that allele A of rs9943582 was significantly associated with left ventricular systolic dysfunction, left ventricular end-diastolic diameter, the left atrial diameter and LVEF in the CAD population, which suggests an important role of the apelin/APJ system in the pathology of heart failure associated with ischemic heart disease.
Collapse
Affiliation(s)
- Pengyun Wang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chuchu Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yanxia Wu
- The First Hospital of Wuhan City, Wuhan, P. R. China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qin Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qiutang Zeng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yuhua Liao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China; Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, and Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, United States of America
| | - Xiang Cheng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
45
|
Shen J, Shang Q, Wong CK, Li EK, Wang S, Li RJ, Lee KL, Leung YY, Ying KY, Yim CW, Kun EW, Leung MH, Li M, Li TK, Zhu TY, Yu SL, Kuan WP, Yu CM, Tam LS. IL-33 and soluble ST2 levels as novel predictors for remission and progression of carotid plaque in early rheumatoid arthritis: A prospective study. Semin Arthritis Rheum 2015; 45:18-27. [PMID: 25798875 DOI: 10.1016/j.semarthrit.2015.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/26/2014] [Accepted: 02/16/2015] [Indexed: 01/23/2023]
Abstract
OBJECTIVES To study the association between the baseline IL-33 and soluble ST2 (sST2) levels with disease remission and progression of carotid atherosclerosis in early rheumatoid arthritis (ERA) patients. METHODS A total of 98 ERA patients were enrolled. Disease activity and the presence of carotid plaque were evaluated at baseline and 12 months later. Plasma IL-33 and sST2 levels were determined using enzyme-linked immunosorbent assay kits. RESULTS Baseline IL-33 and sST2 levels were associated with inflammatory markers and cardiovascular (CV) risk factors. Overall, 44(45%), 18(18%), and 21(21%) patients achieved remission based on 28-joint disease activity score (DAS28), Boolean, and simplified disease activity score (SDAI) criteria at 12 months, respectively. Patients with detectable IL-33 at baseline were less likely to achieve DAS28 (P = 0.010) and SDAI remission (P = 0.021), while a lower baseline sST2 level was able to predict DAS28, Boolean, and SDAI remission (P = 0.005, 0.001, and <0.001, respectively). Using multivariate analysis, a lower baseline sST2 level independently predict Boolean (OR = 0.789; P = 0.005) and SDAI remission (0.812; P = 0.008). Regarding carotid atherosclerosis, 9/98(9.2%) patients had plaque progression at 12 months. Baseline IL-33 was detectable in 8/9(89%) and 42/83(51%) of patients with and without plaque progression respectively (P = 0.029). Baseline detectable IL-33 was an independent predictor for plaque progression after adjusting for traditional CV risk factors (P = 0.017). CONCLUSIONS Lower baseline sST2 levels independently predict disease remission and baseline detectable IL-33 independently predicts carotid plaque progression in ERA patients. This study suggests that inflammation induced by the IL-33/ST2 axis may play a significant role in the development of cardiovascular disease in RA.
Collapse
Affiliation(s)
- Jiayun Shen
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Shang
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Edmund K Li
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shang Wang
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Rui-Jie Li
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Lai Lee
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Ying-Ying Leung
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Republic of Singapore
| | - King-Yee Ying
- Department of Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Cheuk-Wan Yim
- Department of Medicine, Tseung Kwan O Hospital, Hong Kong, China
| | - Emily W Kun
- Department of Medicine and Geriatrics, Taipo Hospital, Hong Kong, China
| | - Moon-Ho Leung
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, China
| | - Martin Li
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Tena K Li
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Tracy Y Zhu
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shui-Lian Yu
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Woon-Pang Kuan
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheuk-Man Yu
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lai-Shan Tam
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
46
|
Yang JH, Wu FQ, Wen Q, Zhang WC, Wang YE, Xiong X, Su YW, Cheng LX. Association of IL33/ST2 signal pathway gene polymorphisms with myocardial infarction in a Chinese Han population. ACTA ACUST UNITED AC 2015; 35:16-20. [DOI: 10.1007/s11596-015-1382-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/27/2014] [Indexed: 11/29/2022]
|
47
|
Márquez A, Solans R, Hernández-Rodríguez J, Cid MC, Castañeda S, Ramentol M, Rodriguez-Rodriguez L, Narváez J, Blanco R, Ortego-Centeno N, Palm Ø, Diamantopoulos AP, Braun N, Moosig F, Witte T, Beretta L, Lunardi C, Cimmino MA, Vaglio A, Salvarani C, González-Gay MA, Martín J. A candidate gene approach identifies an IL33 genetic variant as a novel genetic risk factor for GCA. PLoS One 2014; 9:e113476. [PMID: 25409453 PMCID: PMC4237421 DOI: 10.1371/journal.pone.0113476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/24/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction Increased expression of IL-33 and its receptor ST2, encoded by the IL1RL1 gene, has been detected in the inflamed arteries of giant cell arteritis (GCA) patients. The aim of the present study was to investigate for the first time the potential influence of the IL33 and IL1RL1 loci on GCA predisposition. Methods A total of 1,363 biopsy-proven GCA patients and 3,908 healthy controls from four European cohorts (Spain, Italy, Germany and Norway) were combined in a meta-analysis. Six genetic variants: rs3939286, rs7025417 and rs7044343, within the IL33 gene, and rs2058660, rs2310173 and rs13015714, within the IL1RL1 gene, previously associated with immune-related diseases, were genotyped using predesigned TaqMan assays. Results A consistent association between the rs7025417 polymorphism and GCA was evident in the overall meta-analysis, under both allele (PMH = 0.041, OR = 0.88, CI 95% 0.78–0.99) and recessive (PMH = 3.40E-03, OR = 0.53, CI 95% 0.35–0.80) models. No statistically significant differences between allele or genotype frequencies for the other IL33 and IL1RL1 genetic variants were detected in this pooled analysis. Conclusions Our results clearly evidenced the implication of the IL33 rs7025417 polymorphism in the genetic network underlying GCA.
Collapse
Affiliation(s)
- Ana Márquez
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
- Systemic Autoimmune Diseases Unit, Hospital Clínico San Cecilio, Granada, Spain
- * E-mail:
| | - Roser Solans
- Department of Internal Medicine, Hospital Vall d'Hebron, Barcelona, Spain
| | - José Hernández-Rodríguez
- Vasculitis Research Unit, Department of Autoimmune and Systemic Diseases, Hospital Clinic, University of Barcelona, Centre de Recerca Biomèdica Cellex (IDIBAPS), Barcelona, Spain
| | - Maria C. Cid
- Vasculitis Research Unit, Department of Autoimmune and Systemic Diseases, Hospital Clinic, University of Barcelona, Centre de Recerca Biomèdica Cellex (IDIBAPS), Barcelona, Spain
| | - Santos Castañeda
- Department of Rheumatology, Hospital de la Princesa, IIS-Princesa, Madrid, Spain
| | - Marc Ramentol
- Department of Internal Medicine, Hospital Vall d'Hebron, Barcelona, Spain
| | | | - Javier Narváez
- Department of Rheumatology, Hospital Universitario de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ricardo Blanco
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, IFIMAV, Santander, Spain
| | | | | | - Øyvind Palm
- Department of Rheumatology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Niko Braun
- Department of Internal Medicine, Division of Nephrology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Frank Moosig
- Department of Clinical Immunology and Rheumatology, University of Luebeck, Bad Bramstedt, Germany
| | | | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Claudio Lunardi
- Department of Medicine, Università degli Studi di Verona, Verona, Italy
| | - Marco A. Cimmino
- Department of Internal Medicine, Academic Unit of Clinical Rheumatology, University of Genova, Genova, Italy
| | - Augusto Vaglio
- Department of Clinical Medicine, Nephrology and Health Sciences, University Hospital of Parma, Parma, Italy
| | - Carlo Salvarani
- Unità Operativa di Reumatologia, Azienda Ospedaliera ASMN, Istituto di Ricovero e Cura a Carattere Scientifico, Reggio Emilia, Italy
| | - Miguel A. González-Gay
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, IFIMAV, Santander, Spain
| | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| |
Collapse
|