1
|
Kenny TC, Scharenberg S, Abu-Remaileh M, Birsoy K. Cellular and organismal function of choline metabolism. Nat Metab 2025:10.1038/s42255-024-01203-8. [PMID: 39779890 DOI: 10.1038/s42255-024-01203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation. Consistent with its pleiotropic role in cellular physiology, choline metabolism contributes to numerous developmental and physiological processes in the brain, liver, kidney, lung and immune system, and both choline deficiency and excess are implicated in human disease. Mutations in the genes encoding choline metabolism proteins lead to inborn errors of metabolism, which manifest in diverse clinical pathologies. While the identities of many enzymes involved in choline metabolism were identified decades ago, only recently has the field begun to understand the diverse mechanisms by which choline availability is regulated and fuelled via metabolite transport/recycling and nutrient acquisition. This review provides a comprehensive overview of choline metabolism, emphasizing emerging concepts and their implications for human health and disease.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Samantha Scharenberg
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University, Stanford, CA, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Tamura T, Hamachi I. Selective Labeling of Phosphatidylcholine to Track Their Translocation Between Organelles in Living Cells. Methods Mol Biol 2025; 2888:1-11. [PMID: 39699720 DOI: 10.1007/978-1-0716-4318-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Phosphatidylcholine (PC) is a major phospholipid that forms biological membranes in eukaryotes. PC is mainly synthesized in the endoplasmic reticulum (ER) and Golgi apparatus and then transported to other organelle membranes via multiple mechanisms. Such interorganelle lipid transport is thought to play an important role in the maintenance of cell morphology, organelle functions, and homeostasis, though the details of this process have not yet been well investigated. This chapter describes a technology for the selective labeling and fluorescence imaging of PC in target organelles. This approach involves the metabolic incorporation of azidocholine, followed by a spatially restricted bioorthogonal click reaction that enables the visualization and quantitative analysis of interorganelle PC transport in live cells using confocal microscopy.
Collapse
Affiliation(s)
- Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo, Japan.
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo, Japan.
| |
Collapse
|
3
|
Wang K, Xu H, Zou R, Zeng G, Yuan Y, Zhu X, Zhao X, Li J, Zhang L. PCYT1A deficiency disturbs fatty acid metabolism and induces ferroptosis in the mouse retina. BMC Biol 2024; 22:134. [PMID: 38858683 PMCID: PMC11165903 DOI: 10.1186/s12915-024-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Inherited retinal dystrophies (IRDs) are a group of debilitating visual disorders characterized by the progressive degeneration of photoreceptors, which ultimately lead to blindness. Among the causes of this condition, mutations in the PCYT1A gene, which encodes the rate-limiting enzyme responsible for phosphatidylcholine (PC) de novo synthesis via the Kennedy pathway, have been identified. However, the precise mechanisms underlying the association between PCYT1A mutations and IRDs remain unclear. To address this knowledge gap, we focused on elucidating the functions of PCYT1A in the retina. RESULTS We found that PCYT1A is highly expressed in Müller glial (MG) cells in the inner nuclear layer (INL) of the retina. Subsequently, we generated a retina-specific knockout mouse model in which the Pcyt1a gene was targeted (Pcyt1a-RKO or RKO mice) to investigate the molecular mechanisms underlying IRDs caused by PCYT1A mutations. Our findings revealed that the deletion of Pcyt1a resulted in retinal degenerative phenotypes, including reduced scotopic electroretinogram (ERG) responses and progressive degeneration of photoreceptor cells, accompanied by loss of cells in the INL. Furthermore, through proteomic and bioinformatic analyses, we identified dysregulated retinal fatty acid metabolism and activation of the ferroptosis signalling pathway in RKO mice. Importantly, we found that PCYT1A deficiency did not lead to an overall reduction in PC synthesis within the retina. Instead, this deficiency appeared to disrupt free fatty acid metabolism and ultimately trigger ferroptosis. CONCLUSIONS This study reveals a novel mechanism by which mutations in PCYT1A contribute to the development of IRDs, shedding light on the interplay between fatty acid metabolism and retinal degenerative diseases, and provides new insights into the treatment of IRDs.
Collapse
Affiliation(s)
- Kaifang Wang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Huijuan Xu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Rong Zou
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Guangqun Zeng
- The People's Hospital of Pengzhou, Chengdu, 611930, Sichuan, China
| | - Ye Yuan
- Medical Center Hospital of Qionglai City, Chengdu, 611530, Sichuan, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Xiaohui Zhao
- The People's Hospital of Pengzhou, Chengdu, 611930, Sichuan, China.
| | - Jie Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
4
|
Tsuchiya M, Tachibana N, Nagao K, Tamura T, Hamachi I. Organelle-selective click labeling coupled with flow cytometry allows pooled CRISPR screening of genes involved in phosphatidylcholine metabolism. Cell Metab 2023:S1550-4131(23)00050-5. [PMID: 36917984 DOI: 10.1016/j.cmet.2023.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
Cellular lipid synthesis and transport are governed by intricate protein networks. Although genetic screening should contribute to deciphering the regulatory networks of lipid metabolism, technical challenges remain-especially for high-throughput readouts of lipid phenotypes. Here, we coupled organelle-selective click labeling of phosphatidylcholine (PC) with flow cytometry-based CRISPR screening technologies to convert organellar PC phenotypes into a simple fluorescence readout for genome-wide screening. This technique, named O-ClickFC, was successfully applied in genome-scale CRISPR-knockout screens to identify previously reported genes associated with PC synthesis (PCYT1A, ACACA), vesicular membrane trafficking (SEC23B, RAB5C), and non-vesicular transport (PITPNB, STARD7). Moreover, we revealed previously uncharacterized roles of FLVCR1 as a choline uptake facilitator, CHEK1 as a post-translational regulator of the PC-synthetic pathway, and CDC50A as responsible for the translocation of PC to the outside of the plasma membrane bilayer. These findings demonstrate the versatility of O-ClickFC as an unprecedented platform for genetic dissection of cellular lipid metabolism.
Collapse
Affiliation(s)
- Masaki Tsuchiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; PRESTO (Precursory Research for Embryonic Science and Technology), JST, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| | - Nobuhiko Tachibana
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; PRESTO (Precursory Research for Embryonic Science and Technology), JST, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| | - Kohjiro Nagao
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; ERATO (Exploratory Research for Advanced Technology), JST, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan.
| |
Collapse
|
5
|
Albokhari D, Bailey CR, Hwang F, Weiss CR, Forsberg J, Sobreira N. Venous malformation may be a feature of EXT1-related hereditary multiple exostoses: A report of two unrelated probands. Am J Med Genet A 2023; 191:1570-1575. [PMID: 36869625 DOI: 10.1002/ajmg.a.63158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 03/05/2023]
Abstract
Hereditary multiple exostoses (HME), also known as hereditary multiple osteochondroma (HMO), is an autosomal dominant disorder caused by pathogenic variants in exostosin-1 or -2 (EXT1 or EXT2). It is characterized by the formation of multiple benign growing osteochondromas (exostoses) that most commonly affect the long bones; however, it may also occur throughout the body. Although many of these lesions are clinically asymptomatic, some can lead to chronic pain and skeletal deformities and interfere with adjacent neurovascular structures. Here, we report two unrelated probands that presented with a clinical and molecular diagnosis of HME with venous malformation, a clinical feature not previously reported in individuals with HME.
Collapse
Affiliation(s)
- Daniah Albokhari
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Taibah University, College of Medicine, Madinah, Saudi Arabia
| | - Christopher R Bailey
- Division of Interventional Radiology, The Russell H. Morgan Department of Radiology and Radiologic Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Francis Hwang
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Clifford R Weiss
- Division of Interventional Radiology, The Russell H. Morgan Department of Radiology and Radiologic Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan Forsberg
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Ludwig-Peisker O, Ansel E, Schweizer D, Jagannathan V, Loechel R, Leeb T. PCYT1A Missense Variant in Vizslas with Disproportionate Dwarfism. Genes (Basel) 2022; 13:genes13122354. [PMID: 36553621 PMCID: PMC9777673 DOI: 10.3390/genes13122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Disproportionate dwarfism phenotypes represent a heterogeneous subset of skeletal dysplasias and have been described in many species including humans and dogs. In this study, we investigated Vizsla dogs that were affected by disproportionate dwarfism that we propose to designate as skeletal dysplasia 3 (SD3). The most striking skeletal changes comprised a marked shortening and deformation of the humerus and femur. An extended pedigree with six affected dogs suggested autosomal recessive inheritance. Combined linkage and homozygosity mapping localized a potential genetic defect to a ~4 Mb interval on chromosome 33. We sequenced the genome of an affected dog, and comparison with 926 control genomes revealed a single, private protein-changing variant in the critical interval, PCYT1A:XM_038583131.1:c.673T>C, predicted to cause an exchange of a highly conserved amino acid, XP_038439059.1:p.(Y225H). We observed perfect co-segregation of the genotypes with the phenotype in the studied family. When genotyping additional Vizslas, we encountered a single dog with disproportionate dwarfism that did not carry the mutant PCYT1A allele, which we hypothesize was due to heterogeneity. In the remaining 130 dogs, we observed perfect genotype-phenotype association, and none of the unaffected dogs were homozygous for the mutant PCYT1A allele. PCYT1A loss-of-function variants cause spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD) in humans. The skeletal changes in Vizslas were comparable to human patients. So far, no ocular phenotype has been recognized in dwarf Vizslas. We propose the PCYT1A missense variant as a candidate causative variant for SD3. Our data facilitate genetic testing of Vizslas to prevent the unintentional breeding of further affected puppies.
Collapse
Affiliation(s)
- Odette Ludwig-Peisker
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Emily Ansel
- BluePearl Pet Hospital, Raleigh, NC 27616, USA
| | - Daniela Schweizer
- Division of Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | | | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-684-23-26
| |
Collapse
|
7
|
Poll SR, Martin R, Wohler E, Partan ES, Walek E, Salman S, Groepper D, Kratz L, Cernach M, Jesus-Garcia R, Haldeman-Englert C, Choi YJ, Morris CD, Cohen B, Hoover-Fong J, Valle D, Semenza GL, Sobreira NLM. Disruption of the HIF-1 pathway in individuals with Ollier disease and Maffucci syndrome. PLoS Genet 2022; 18:e1010504. [PMID: 36480544 PMCID: PMC9767349 DOI: 10.1371/journal.pgen.1010504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/20/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
Ollier disease (OD) and Maffucci Syndrome (MS) are rare disorders characterized by multiple enchondromas, commonly causing bone deformities, limb length discrepancies, and pathological fractures. MS is distinguished from OD by the development of vascular anomalies. Both disorders are cancer predisposition syndromes with malignancies developing in ~50% of the individuals with OD or MS. Somatic gain-of-function variants in IDH1 and IDH2 have been described in the enchondromas, vascular anomalies and chondrosarcomas of approximately 80% of the individuals with OD and MS. To date, however, no investigation of germline causative variants for these diseases has been comprehensively performed. To search for germline causative variants, we performed whole exome sequencing or whole genome sequencing of blood or saliva DNA in 94 unrelated probands (68 trios). We found that 7 had rare germline missense variants in HIF1A, 6 had rare germline missense variants in VHL, and 3 had IDH1 variants including 2 with mosaic IDH1-p.Arg132His variant. A burden analysis using 94 probands assigned as cases and 2,054 unrelated individuals presenting no OD- or MS-related features as controls, found that variants in HIF1A, VHL, and IDH1 were all significantly enriched in cases compared to controls. To further investigate the role of HIF-1 pathway in the pathogenesis of OD and MS, we performed RNA sequencing of fibroblasts from 4 probands with OD or MS at normoxia and at hypoxia. When cultured in hypoxic conditions, both proband and control cells showed altered expression of a subset of HIF-1 regulated genes. However, the set of differentially expressed genes in proband fibroblasts included a significantly reduced number of HIF-1 regulated genes compared to controls. Our findings suggest that germline or early post-zygotic variants identified in HIF1A, VHL, and IDH1 in probands with OD and MS underlie the development of the phenotypic abnormalities in a subset of individuals with OD and MS, but extensive functional studies are needed to further confirm it.
Collapse
Affiliation(s)
- Sarah R. Poll
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Renan Martin
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth S. Partan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth Walek
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shaima Salman
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Daniel Groepper
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Lisa Kratz
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mirlene Cernach
- Universidade Metropolitana de Santos, Santos, São Paulo, Brazil
| | - Reynaldo Jesus-Garcia
- Department of Orthopedics-Oncology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Chad Haldeman-Englert
- Mission Fullerton Genetics Center, Asheville, North Carolina, United States of America
| | - Yoon Jae Choi
- Department of Neurology, University of California, Irvine, California, United States of America
| | - Carol D. Morris
- Department of Orthopedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Bernard Cohen
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, Untied States of America
| | - Julie Hoover-Fong
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gregg L. Semenza
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nara L. M. Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
8
|
Yu T, Zhou Z, Liu S, Li C, Zhang ZW, Zhang Y, Jin W, Liu K, Mao S, Zhu L, Xie L, Wang G, Liang Y. The role of phosphatidylcholine 34:1 in the occurrence, development and treatment of ulcerative colitis. Acta Pharm Sin B 2022; 13:1231-1245. [PMID: 36970218 PMCID: PMC10031229 DOI: 10.1016/j.apsb.2022.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lipid homeostasis is considered to be related to intestinal metabolic balance, while its role in the pathogenesis and treatment of ulcerative colitis (UC) remains largely unexplored. The present study aimed to identify the target lipids related to the occurrence, development and treatment of UC by comparing the lipidomics of UC patients, mice and colonic organoids with the corresponding healthy controls. Here, multi-dimensional lipidomics based on LC-QTOF/MS, LC-MS/MS and iMScope systems were constructed and used to decipher the alteration of lipidomic profiles. The results indicated that UC patients and mice were often accompanied by dysregulation of lipid homeostasis, in which triglycerides and phosphatidylcholines were significantly reduced. Notably, phosphatidylcholine 34:1 (PC34:1) was characterized by high abundance and closely correlation with UC disease. Our results also revealed that down-regulation of PC synthase PCYT1α and Pemt caused by UC modeling was the main factor leading to the reduction of PC34:1, and exogenous PC34:1 could greatly enhance the fumarate level via inhibiting the transformation of glutamate to N-acetylglutamate, thus exerting an anti-UC effect. Collectively, our study not only supplies common technologies and strategies for exploring lipid metabolism in mammals, but also provides opportunities for the discovery of therapeutic agents and biomarkers of UC.
Collapse
Affiliation(s)
- Tengjie Yu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Zhou
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shijia Liu
- Affliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Changjian Li
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Wei Zhang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, China
| | - Yong Zhang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, China
| | - Wei Jin
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Keanqi Liu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shuying Mao
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Zhu
- Affliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271060.
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271060.
| |
Collapse
|
9
|
Klöckner C, Fernández-Murray JP, Tavasoli M, Sticht H, Stoltenburg-Didinger G, Scholle LM, Bakhtiari S, Kruer MC, Darvish H, Firouzabadi SG, Pagnozzi A, Shukla A, Girisha KM, Narayanan DL, Kaur P, Maroofian R, Zaki MS, Noureldeen MM, Merkenschlager A, Gburek-Augustat J, Cali E, Banu S, Nahar K, Efthymiou S, Houlden H, Jamra RA, Williams J, McMaster CR, Platzer K. Bi-allelic variants in CHKA cause a neurodevelopmental disorder with epilepsy and microcephaly. Brain 2022; 145:1916-1923. [PMID: 35202461 PMCID: PMC9630884 DOI: 10.1093/brain/awac074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/15/2021] [Accepted: 02/06/2022] [Indexed: 11/14/2022] Open
Abstract
The Kennedy pathways catalyse the de novo synthesis of phosphatidylcholine and phosphatidylethanolamine, the most abundant components of eukaryotic cell membranes. In recent years, these pathways have moved into clinical focus because four of ten genes involved have been associated with a range of autosomal recessive rare diseases such as a neurodevelopmental disorder with muscular dystrophy (CHKB), bone abnormalities and cone-rod dystrophy (PCYT1A) and spastic paraplegia (PCYT2, SELENOI). We identified six individuals from five families with bi-allelic variants in CHKA presenting with severe global developmental delay, epilepsy, movement disorders and microcephaly. Using structural molecular modelling and functional testing of the variants in a cell-based Saccharomyces cerevisiae model, we determined that these variants reduce the enzymatic activity of CHKA and confer a significant impairment of the first enzymatic step of the Kennedy pathway. In summary, we present CHKA as a novel autosomal recessive gene for a neurodevelopmental disorder with epilepsy and microcephaly.
Collapse
Affiliation(s)
- Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | | | - Mahtab Tavasoli
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3N 0A1, Canada
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | | | | | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, Arizona 85004, USA
- Departments of Child Health, Neurology, Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, Arizona 85004, USA
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, Arizona 85004, USA
- Departments of Child Health, Neurology, Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, Arizona 85004, USA
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Alex Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, QLD 4029, Australia
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Mahmoud M Noureldeen
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Andreas Merkenschlager
- Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Janina Gburek-Augustat
- Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Elisa Cali
- Department of Pediatric Neurology, Dr. M.R. Khan Shishu (Children) Hospital and ICH, Mirpur, Dhaka, Bangladesh
| | - Selina Banu
- Department of Pediatric Neurology, Dr. M.R. Khan Shishu (Children) Hospital and ICH, Mirpur, Dhaka, Bangladesh
| | - Kamrun Nahar
- Department of Pediatric Neurology, Dr. M.R. Khan Shishu (Children) Hospital and ICH, Mirpur, Dhaka, Bangladesh
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Jason Williams
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3N 0A1, Canada
| | | | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Jéru I. Genetics of lipodystrophy syndromes. Presse Med 2021; 50:104074. [PMID: 34562561 DOI: 10.1016/j.lpm.2021.104074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Lipodystrophic syndromes (LS) constitute a clinically and genetically heterogeneous group of diseases characterized by a loss of adipose tissue. These syndromes are usually associated with metabolic complications, which are determinant for morbidity and mortality. The classical forms of LS include partial, generalized, and progeroid lipodystrophies. They are usually due to defects in proteins playing a key role in adipogenesis and adipocyte functions. More recently, systemic disorders combining lipodystrophy and multiple organ dysfunction have been described, including autoinflammatory syndromes, mitochondrial disorders, as well as other complex entities. To date, more than thirty genes have been implicated in the monogenic forms of LS, but the majority of them remain genetically-unexplained. The associated pathophysiological mechanisms also remain to be clarified in many instances. Next generation sequencing-based approaches allow simultaneous testing of multiple genes and have become crucial to speed up the identification of new disease-causing genes. The challenge for geneticists is now the interpretation of the amount of available genetic data, generated especially by exome and whole-genome sequencing. International recommendations on the interpretation and classification of variants have been set up and are regularly reassessed. Very close collaboration between geneticists, clinicians, and researchers will be necessary to make rapid progress in understanding the molecular and cellular basis of these diseases, and to promote personalized medicine.
Collapse
Affiliation(s)
- Isabelle Jéru
- Laboratoire commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris 75012, France.
| |
Collapse
|
11
|
De Winter J, Beijer D, De Ridder W, Synofzik M, Zuchner SL, Van Damme P, Spileers W, Baets J. PCYT2 mutations disrupting etherlipid biosynthesis: phenotypes converging on the CDP-ethanolamine pathway. Brain 2021; 144:e17. [PMID: 33230519 DOI: 10.1093/brain/awaa389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jonathan De Winter
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerpen, Belgium
| | - Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, UAntwerpen, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium
| | - Willem De Ridder
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerpen, Belgium.,Translational Neurosciences, Faculty of Medicine and Health Sciences, UAntwerpen, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Stephan L Zuchner
- Dr. John T Macdonald Foundation Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| | - Werner Spileers
- University Hospitals Leuven, Department of Ophthalmology, Leuven, Belgium
| | - Jonathan Baets
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerpen, Belgium.,Translational Neurosciences, Faculty of Medicine and Health Sciences, UAntwerpen, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
12
|
Tavasoli M, Lahire S, Reid T, Brodovsky M, McMaster CR. Genetic diseases of the Kennedy pathways for membrane synthesis. J Biol Chem 2020; 295:17877-17886. [PMID: 33454021 PMCID: PMC7762932 DOI: 10.1074/jbc.rev120.013529] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/20/2020] [Indexed: 11/06/2022] Open
Abstract
The two branches of the Kennedy pathways (CDP-choline and CDP-ethanolamine) are the predominant pathways responsible for the synthesis of the most abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine, respectively, in mammalian membranes. Recently, hereditary diseases associated with single gene mutations in the Kennedy pathways have been identified. Interestingly, genetic diseases within the same pathway vary greatly, ranging from muscular dystrophy to spastic paraplegia to a childhood blinding disorder to bone deformations. Indeed, different point mutations in the same gene (PCYT1; CCTα) result in at least three distinct diseases. In this review, we will summarize and review the genetic diseases associated with mutations in genes of the Kennedy pathway for phospholipid synthesis. These single-gene disorders provide insight, indeed direct genotype-phenotype relationships, into the biological functions of specific enzymes of the Kennedy pathway. We discuss potential mechanisms of how mutations within the same pathway can cause disparate disease.
Collapse
Affiliation(s)
- Mahtab Tavasoli
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarah Lahire
- University of Reims Champagne-Ardenne, Reims, France
| | - Taryn Reid
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maren Brodovsky
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
13
|
Defective minor spliceosomes induce SMA-associated phenotypes through sensitive intron-containing neural genes in Drosophila. Nat Commun 2020; 11:5608. [PMID: 33154379 PMCID: PMC7644725 DOI: 10.1038/s41467-020-19451-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 10/13/2020] [Indexed: 01/31/2023] Open
Abstract
The minor spliceosome is evolutionarily conserved in higher eukaryotes, but its biological significance remains poorly understood. Here, by precise CRISPR/Cas9-mediated disruption of the U12 and U6atac snRNAs, we report that a defective minor spliceosome is responsible for spinal muscular atrophy (SMA) associated phenotypes in Drosophila. Using a newly developed bioinformatic approach, we identified a large set of minor spliceosome-sensitive splicing events and demonstrate that three sensitive intron-containing neural genes, Pcyt2, Zmynd10, and Fas3, directly contribute to disease development as evidenced by the ability of their cDNAs to rescue the SMA-associated phenotypes in muscle development, neuromuscular junctions, and locomotion. Interestingly, many splice sites in sensitive introns are recognizable by both minor and major spliceosomes, suggesting a new mechanism of splicing regulation through competition between minor and major spliceosomes. These findings reveal a vital contribution of the minor spliceosome to SMA and to regulated splicing in animals.
Collapse
|
14
|
Cornell RB. Membrane Lipids Assist Catalysis by CTP: Phosphocholine Cytidylyltransferase. J Mol Biol 2020; 432:5023-5042. [PMID: 32234309 DOI: 10.1016/j.jmb.2020.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
While most of the articles in this issue review the workings of integral membrane enzymes, in this review, we describe the catalytic mechanism of an enzyme that contains a soluble catalytic domain but appears to catalyze its reaction on the membrane surface, anchored and assisted by a separate regulatory amphipathic helical domain and inter-domain linker. Membrane partitioning of CTP: phosphocholine cytidylyltransferase (CCT), a key regulatory enzyme of phosphatidylcholine metabolism, is regulated chiefly by changes in membrane phospholipid composition, and boosts the enzyme's catalytic efficiency >200-fold. Catalytic enhancement by membrane binding involves the displacement of an auto-inhibitory helix from the active site entrance-way and promotion of a new conformational ensemble for the inter-domain, allosteric linker that has an active role in the catalytic cycle. We describe the evidence for close contact between membrane lipid, a compact allosteric linker, and the CCT active site, and discuss potential ways that this interaction enhances catalysis.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A-1S6.
| |
Collapse
|
15
|
Andrejeva G, Gowan S, Lin G, Wong Te Fong ACLF, Shamsaei E, Parkes HG, Mui J, Raynaud FI, Asad Y, Vizcay-Barrena G, Nikitorowicz-Buniak J, Valenti M, Howell L, Fleck RA, Martin LA, Kirkin V, Leach MO, Chung YL. De novo phosphatidylcholine synthesis is required for autophagosome membrane formation and maintenance during autophagy. Autophagy 2020; 16:1044-1060. [PMID: 31517566 PMCID: PMC7469489 DOI: 10.1080/15548627.2019.1659608] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023] Open
Abstract
Macroautophagy/autophagy can enable cancer cells to withstand cellular stress and maintain bioenergetic homeostasis by sequestering cellular components into newly formed double-membrane vesicles destined for lysosomal degradation, potentially affecting the efficacy of anti-cancer treatments. Using 13C-labeled choline and 13C-magnetic resonance spectroscopy and western blotting, we show increased de novo choline phospholipid (ChoPL) production and activation of PCYT1A (phosphate cytidylyltransferase 1, choline, alpha), the rate-limiting enzyme of phosphatidylcholine (PtdCho) synthesis, during autophagy. We also discovered that the loss of PCYT1A activity results in compromised autophagosome formation and maintenance in autophagic cells. Direct tracing of ChoPLs with fluorescence and immunogold labeling imaging revealed the incorporation of newly synthesized ChoPLs into autophagosomal membranes, endoplasmic reticulum (ER) and mitochondria during anticancer drug-induced autophagy. Significant increase in the colocalization of fluorescence signals from the newly synthesized ChoPLs and mCherry-MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) was also found on autophagosomes accumulating in cells treated with autophagy-modulating compounds. Interestingly, cells undergoing active autophagy had an altered ChoPL profile, with longer and more unsaturated fatty acid/alcohol chains detected. Our data suggest that de novo synthesis may be required to increase autophagosomal ChoPL content and alter its composition, together with replacing phospholipids consumed from other organelles during autophagosome formation and turnover. This addiction to de novo ChoPL synthesis and the critical role of PCYT1A may lead to development of agents targeting autophagy-induced drug resistance. In addition, fluorescence imaging of choline phospholipids could provide a useful way to visualize autophagosomes in cells and tissues. ABBREVIATIONS AKT: AKT serine/threonine kinase; BAX: BCL2 associated X, apoptosis regulator; BECN1: beclin 1; ChoPL: choline phospholipid; CHKA: choline kinase alpha; CHPT1: choline phosphotransferase 1; CTCF: corrected total cell fluorescence; CTP: cytidine-5'-triphosphate; DCA: dichloroacetate; DMEM: dulbeccos modified Eagles medium; DMSO: dimethyl sulfoxide; EDTA: ethylenediaminetetraacetic acid; ER: endoplasmic reticulum; GDPD5: glycerophosphodiester phosphodiesterase domain containing 5; GFP: green fluorescent protein; GPC: glycerophosphorylcholine; HBSS: hanks balances salt solution; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LPCAT1: lysophosphatidylcholine acyltransferase 1; LysoPtdCho: lysophosphatidylcholine; MRS: magnetic resonance spectroscopy; MTORC1: mechanistic target of rapamycin kinase complex 1; PCho: phosphocholine; PCYT: choline phosphate cytidylyltransferase; PLA2: phospholipase A2; PLB: phospholipase B; PLC: phospholipase C; PLD: phospholipase D; PCYT1A: phosphate cytidylyltransferase 1, choline, alpha; PI3K: phosphoinositide-3-kinase; pMAFs: pancreatic mouse adult fibroblasts; PNPLA6: patatin like phospholipase domain containing 6; Pro-Cho: propargylcholine; Pro-ChoPLs: propargylcholine phospholipids; PtdCho: phosphatidylcholine; PtdEth: phosphatidylethanolamine; PtdIns3P: phosphatidylinositol-3-phosphate; RPS6: ribosomal protein S6; SCD: stearoyl-CoA desaturase; SEM: standard error of the mean; SM: sphingomyelin; SMPD1/SMase: sphingomyelin phosphodiesterase 1, acid lysosomal; SGMS: sphingomyelin synthase; WT: wild-type.
Collapse
Affiliation(s)
- Gabriela Andrejeva
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research London and Royal Marsden Hospital, London, UK
| | - Sharon Gowan
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research London, London, UK
| | - Gigin Lin
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research London and Royal Marsden Hospital, London, UK
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Anne-Christine LF Wong Te Fong
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research London and Royal Marsden Hospital, London, UK
| | - Elham Shamsaei
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research London and Royal Marsden Hospital, London, UK
| | - Harry G. Parkes
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research London and Royal Marsden Hospital, London, UK
| | - James Mui
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research London, London, UK
| | - Florence I. Raynaud
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research London, London, UK
| | - Yasmin Asad
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research London, London, UK
| | | | | | - Melanie Valenti
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research London, London, UK
| | - Louise Howell
- Molecular Pathology, The Institute of Cancer Research London, London, UK
| | - Roland A. Fleck
- Centre for Ultrastructural Imaging, King’s College London, London, UK
| | - Lesley-Ann Martin
- Breast Cancer Research, The Institute of Cancer Research London, London, UK
| | - Vladimir Kirkin
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research London, London, UK
| | - Martin O. Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research London and Royal Marsden Hospital, London, UK
| | - Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research London and Royal Marsden Hospital, London, UK
| |
Collapse
|
16
|
Bagias C, Xiarchou A, Bargiota A, Tigas S. Familial Partial Lipodystrophy (FPLD): Recent Insights. Diabetes Metab Syndr Obes 2020; 13:1531-1544. [PMID: 32440182 PMCID: PMC7224169 DOI: 10.2147/dmso.s206053] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Lipodystrophies are a heterogeneous group of congenital or acquired disorders, characterized by partial or generalized loss of adipose tissue. Familial partial lipodystrophy (FPLD) presents with genetic and phenotypic variability with insulin resistance, hypertriglyceridemia and hepatic steatosis being the cardinal metabolic features. The severity of the metabolic derangements is in proportion with the degree of lipoatrophy. The underpinning pathogenetic mechanism is the limited capacity of adipose tissue to store lipids leading to lipotoxicity, low-grade inflammation, altered adipokine secretion and ectopic fat tissue accumulation. Advances in molecular genetics have led to the discovery of new genes and improved our knowledge of the regulation of adipose tissue biology. Diagnosis relies predominantly on clinical findings, such as abnormal fat tissue topography and signs of insulin resistance and is confirmed by genetic analysis. In addition to anthropometry and conventional imaging, new techniques such as color-coded imaging of fat depots allow more accurate assessment of the regional fat distribution and differentiation of lipodystrophic syndromes from common metabolic syndrome phenotype. The treatment of patients with lipodystrophy has proven to be challenging. The use of a human leptin analogue, metreleptin, has recently been approved in the management of FPLD with evidence suggesting improved metabolic profile, satiety, reproductive function and self-perception. Preliminary data on the use of glucagon-like peptide 1 receptor agonists (GLP1 Ras) and sodium-glucose co-transporter 2 (SGLT2) inhibitors in cases of FPLD have shown promising results with reduction in total insulin requirements and improvement in glycemic control. Finally, investigational trials for new therapeutic agents in the management of FPLD are underway.
Collapse
Affiliation(s)
- Christos Bagias
- Department of Endocrinology, University of Ioannina, Ioannina, Greece
| | - Angeliki Xiarchou
- Department of Endocrinology, University of Ioannina, Ioannina, Greece
| | | | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, Ioannina, Greece
- Correspondence: Stelios Tigas Department of Endocrinology, University of Ioannina, Ioannina45110, GreeceTel +30 2651007800 Email
| |
Collapse
|
17
|
Knowles DG, Lee J, Taneva SG, Cornell RB. Remodeling of the interdomain allosteric linker upon membrane binding of CCTα pulls its active site close to the membrane surface. J Biol Chem 2019; 294:15531-15543. [PMID: 31488548 DOI: 10.1074/jbc.ra119.009850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/18/2019] [Indexed: 01/10/2023] Open
Abstract
The rate-limiting step in the biosynthesis of the major membrane phospholipid, phosphatidylcholine, is catalyzed by CTP:phosphocholine cytidylyltransferase (CCT), which is regulated by reversible membrane binding of a long amphipathic helix (domain M). The M domain communicates with the catalytic domain via a conserved ∼20-residue linker, essential for lipid activation of CCT. Previous analysis of this region (denoted as the αEC/J) using MD simulations, cross-linking, mutagenesis, and solvent accessibility suggested that membrane binding of domain M promotes remodeling of the αEC/J into a more compact structure that is required for enzyme activation. Here, using tryptophan fluorescence quenching, we show that the allosteric linker lies superficially on the membrane surface. Analyses with truncated CCTs show that the αEC/J can interact with lipids independently of the M domain. We observed strong FRET between engineered tryptophans in the αEC/J and vesicles containing dansyl-phosphatidylethanolamine that depended on the native J sequence. These data are incompatible with the extended conformation of the αE helix observed in the previously determined crystal structure of inactive CCT but support a bent αE helix conformation stabilized by J segment interactions. Our results suggest that the membrane-adsorbed, folded allosteric linker may partially cover the active site cleft and pull it close to the membrane surface, where cytidyl transfer can occur efficiently in a relatively anhydrous environment.
Collapse
Affiliation(s)
- Daniel G Knowles
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jaeyong Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Svetla G Taneva
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Rosemary B Cornell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada .,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
18
|
Taneva SG, Lee J, Knowles DG, Tishyadhigama C, Chen H, Cornell RB. Interdomain communication in the phosphatidylcholine regulatory enzyme, CCTα, relies on a modular αE helix. J Biol Chem 2019; 294:15517-15530. [PMID: 31488547 DOI: 10.1074/jbc.ra119.009849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/18/2019] [Indexed: 12/14/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCT), the rate-limiting enzyme in phosphatidylcholine (PC) synthesis, is an amphitropic enzyme that regulates PC homeostasis. Recent work has suggested that CCTα activation by binding to a PC-deficient membrane involves conformational transitions in a helix pair (αE) that, along with a short linker of unknown structure (J segment), bridges the catalytic domains of the CCTα dimer to the membrane-binding (M) domains. In the soluble, inactive form, the αE helices are constrained into unbroken helices by contacts with two auto-inhibitory (AI) helices from domain M. In the active, membrane-bound form, the AI helices are displaced and engage the membrane. Molecular dynamics simulations have suggested that AI displacement is associated with hinge-like bending in the middle of the αE, positioning its C terminus closer to the active site. Here, we show that CCTα activation by membrane binding is sensitive to mutations in the αE and J segments, especially within or proximal to the αE hinge. Substituting Tyr-213 within this hinge with smaller uncharged amino acids that could destabilize interactions between the αE helices increased both constitutive and lipid-dependent activities, supporting a link between αE helix bending and stimulation of CCT activity. The solvent accessibilities of Tyr-213 and Tyr-216 suggested that these tyrosines move to new partially buried environments upon membrane binding of CCT, consistent with a folded αE/J structure. These data suggest that signal transduction through the modular αE helix pair relies on shifts in its conformational ensemble that are controlled by the AI helices and their displacement upon membrane binding.
Collapse
Affiliation(s)
- Svetla G Taneva
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jaeyong Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Daniel G Knowles
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Chanajai Tishyadhigama
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hongwen Chen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Rosemary B Cornell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada .,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
19
|
Petkevicius K, Virtue S, Bidault G, Jenkins B, Çubuk C, Morgantini C, Aouadi M, Dopazo J, Serlie MJ, Koulman A, Vidal-Puig A. Accelerated phosphatidylcholine turnover in macrophages promotes adipose tissue inflammation in obesity. eLife 2019; 8:e47990. [PMID: 31418690 PMCID: PMC6748830 DOI: 10.7554/elife.47990] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
White adipose tissue (WAT) inflammation contributes to the development of insulin resistance in obesity. While the role of adipose tissue macrophage (ATM) pro-inflammatory signalling in the development of insulin resistance has been established, it is less clear how WAT inflammation is initiated. Here, we show that ATMs isolated from obese mice and humans exhibit markers of increased rate of de novo phosphatidylcholine (PC) biosynthesis. Macrophage-specific knockout of phosphocholine cytidylyltransferase A (CCTα), the rate-limiting enzyme of de novo PC biosynthesis pathway, alleviated obesity-induced WAT inflammation and insulin resistance. Mechanistically, CCTα-deficient macrophages showed reduced ER stress and inflammation in response to palmitate. Surprisingly, this was not due to lower exogenous palmitate incorporation into cellular PCs. Instead, CCTα-null macrophages had lower membrane PC turnover, leading to elevated membrane polyunsaturated fatty acid levels that negated the pro-inflammatory effects of palmitate. Our results reveal a causal link between obesity-associated increase in de novo PC synthesis, accelerated PC turnover and pro-inflammatory activation of ATMs.
Collapse
Affiliation(s)
- Kasparas Petkevicius
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRCCambridgeUnited Kingdom
| | - Sam Virtue
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRCCambridgeUnited Kingdom
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRCCambridgeUnited Kingdom
| | - Benjamin Jenkins
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRCCambridgeUnited Kingdom
| | - Cankut Çubuk
- Clinical Bioinformatics AreaFundación Progreso y Salud, CDCA, Hospital Virgen del RocioSevillaSpain
- Functional Genomics NodeINB-ELIXIR-es, FPS, Hospital Virgen del RocioSevillaSpain
- Bioinformatics in Rare Diseases (BiER)Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del RocioSevillaSpain
| | - Cecilia Morgantini
- Department of Medicine, Integrated Cardio Metabolic CentreKarolinska InstitutetHuddingeSweden
| | - Myriam Aouadi
- Department of Medicine, Integrated Cardio Metabolic CentreKarolinska InstitutetHuddingeSweden
| | - Joaquin Dopazo
- Clinical Bioinformatics AreaFundación Progreso y Salud, CDCA, Hospital Virgen del RocioSevillaSpain
- Functional Genomics NodeINB-ELIXIR-es, FPS, Hospital Virgen del RocioSevillaSpain
- Bioinformatics in Rare Diseases (BiER)Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del RocioSevillaSpain
| | - Mireille J Serlie
- Department of Endocrinology and MetabolismAmsterdam University Medical CenterAmsterdamNetherlands
| | - Albert Koulman
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRCCambridgeUnited Kingdom
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRCCambridgeUnited Kingdom
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
| |
Collapse
|
20
|
Abstract
Lipodystrophies are the result of a range of inherited and acquired causes, but all are characterized by perturbations in white adipose tissue function and, in many instances, its mass or distribution. Though patients are often nonobese, they typically manifest a severe form of the metabolic syndrome, highlighting the importance of white fat in the "safe" storage of surplus energy. Understanding the molecular pathophysiology of congenital lipodystrophies has yielded useful insights into the biology of adipocytes and informed therapeutic strategies. More recently, genome-wide association studies focused on insulin resistance have linked common variants to genes implicated in adipose biology and suggested that subtle forms of lipodystrophy contribute to cardiometabolic disease risk at a population level. These observations underpin the use of aligned treatment strategies in insulin-resistant obese and lipodystrophic patients, the major goal being to alleviate the energetic burden on adipose tissue.
Collapse
|
21
|
The Liberfarb syndrome, a multisystem disorder affecting eye, ear, bone, and brain development, is caused by a founder pathogenic variant in thePISD gene. Genet Med 2019; 21:2734-2743. [PMID: 31263216 PMCID: PMC6892740 DOI: 10.1038/s41436-019-0595-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/17/2019] [Indexed: 01/24/2023] Open
Abstract
Purpose We observed four individuals in two unrelated but consanguineous
families from Portugal and Brazil affected by early-onset retinal degeneration,
sensorineural hearing loss, microcephaly, intellectual disability, and skeletal
dysplasia with scoliosis and short stature. The phenotype precisely matched that
of an individual of Azorean descent published in 1986 by Liberfarb and
coworkers. Methods Patients underwent specialized clinical examinations (including
ophthalmological, audiological, orthopedic, radiological, and developmental
assessment). Exome and targeted sequencing was performed on selected
individuals. Minigene constructs were assessed by quantitative polymerase chain
reaction (qPCR) and Sanger sequencing. Results Affected individuals shared a 3.36-Mb region of autozygosity on
chromosome 22q12.2, including a 10-bp deletion
(NM_014338.3:c.904-12_904-3delCTATCACCAC), immediately upstream of the last exon
of the PISD (phosphatidylserine
decarboxylase) gene. Sequencing of PISD from
paraffin-embedded tissue from the 1986 case revealed the identical homozygous
variant. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. Conclusion We have identified the genetic etiology of the Liberfarb syndrome,
affecting brain, eye, ear, bone, and connective tissue. Our work documents the
migration of a rare Portuguese founder variant to two continents and highlights
the link between phospholipid metabolism and bone formation, sensory defects,
and cerebral development, while raising the possibility of therapeutic
phospholipid replacement.
Collapse
|
22
|
Pekkinen M, Terhal PA, Botto LD, Henning P, Mäkitie RE, Roschger P, Jain A, Kol M, Kjellberg MA, Paschalis EP, van Gassen K, Murray M, Bayrak-Toydemir P, Magnusson MK, Jans J, Kausar M, Carey JC, Somerharju P, Lerner UH, Olkkonen VM, Klaushofer K, Holthuis JC, Mäkitie O. Osteoporosis and skeletal dysplasia caused by pathogenic variants in SGMS2. JCI Insight 2019; 4:126180. [PMID: 30779713 PMCID: PMC6483641 DOI: 10.1172/jci.insight.126180] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Mechanisms leading to osteoporosis are incompletely understood. Genetic disorders with skeletal fragility provide insight into metabolic pathways contributing to bone strength. We evaluated 6 families with rare skeletal phenotypes and osteoporosis by next-generation sequencing. In all the families, we identified a heterozygous variant in SGMS2, a gene prominently expressed in cortical bone and encoding the plasma membrane–resident sphingomyelin synthase SMS2. Four unrelated families shared the same nonsense variant, c.148C>T (p.Arg50*), whereas the other families had a missense variant, c.185T>G (p.Ile62Ser) or c.191T>G (p.Met64Arg). Subjects with p.Arg50* presented with childhood-onset osteoporosis with or without cranial sclerosis. Patients with p.Ile62Ser or p.Met64Arg had a more severe presentation, with neonatal fractures, severe short stature, and spondylometaphyseal dysplasia. Several subjects had experienced peripheral facial nerve palsy or other neurological manifestations. Bone biopsies showed markedly altered bone material characteristics, including defective bone mineralization. Osteoclast formation and function in vitro was normal. While the p.Arg50* mutation yielded a catalytically inactive enzyme, p.Ile62Ser and p.Met64Arg each enhanced the rate of de novo sphingomyelin production by blocking export of a functional enzyme from the endoplasmic reticulum. SGMS2 pathogenic variants underlie a spectrum of skeletal conditions, ranging from isolated osteoporosis to complex skeletal dysplasia, suggesting a critical role for plasma membrane–bound sphingomyelin metabolism in skeletal homeostasis. The identification of 6 families with childhood-onset osteoporosis with mutations in SGMS2 suggests a critical role for plasma membrane–bound sphingomyelin metabolism in skeletal homeostasis.
Collapse
Affiliation(s)
- Minna Pekkinen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland, and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Petra Henning
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland, and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Amrita Jain
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Matthijs Kol
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Matti A Kjellberg
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Koen van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mary Murray
- Division of Pediatric Endocrinology & Diabetes, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Pinar Bayrak-Toydemir
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA, and ARUP Laboratories, Salt Lake City, Utah, USA
| | - Maria K Magnusson
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Judith Jans
- Laboratory of Metabolic Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mehran Kausar
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland, and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - John C Carey
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Pentti Somerharju
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ulf H Lerner
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki,Finland
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Joost Cm Holthuis
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Biochemistry and Biophysics Division, Bijvoet Center and Institute of Biomembranes, Utrecht University, Utrecht, Netherlands
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland, and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
Wortmann SB, Mayr JA. Choline-related-inherited metabolic diseases-A mini review. J Inherit Metab Dis 2019; 42:237-242. [PMID: 30681159 PMCID: PMC7814885 DOI: 10.1002/jimd.12011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/08/2018] [Indexed: 12/19/2022]
Abstract
In humans, the important water soluble, vitamin-like nutrient choline, is taken up with the diet or recycled in the liver. Deficiencies of choline have only been reported in experimental situations or total parenteral nutrition. Currently, no recommended dietary allowances are published; only an adequate daily intake is defined. Choline is involved in three main physiological processes: structural integrity and lipid-derived signaling for cell membranes, cholinergic neurotransmission, and methylation. Choline is gaining increasing public attention due to studies reporting a relation of low choline levels to subclinical organ dysfunction (nonalcoholic fatty liver or muscle damage), stunting, and neural tube defects. Furthermore, positive effects on memory and a lowering of cardiovascular risks and inflammatory markers have been proposed. On the other hand, dietary choline has been associated with increased atherosclerosis in mice. This mini review will provide a summary of the biochemical pathways, in which choline is involved and their respective inborn errors of metabolism (caused by mutations in SLC5A7, CHAT, SLC44A1, CHKB, PCYT1A, CEPT1, CAD; DHODH, UMPS, FMO3, DMGDH, and GNMT). The broad phenotypic spectrum ranging from malodor, intellectual disability, to epilepsy, anemia, or congenital myasthenic syndrome is presented, highlighting the central role of choline within human metabolism.
Collapse
Affiliation(s)
- Saskia B. Wortmann
- University Childrens HospitalParacelsus Medical University (PMU) SalzburgSalzburgAustria
- Institute of Human GeneticsTechnische Universität MünchenMunichGermany
- Institute of Human Genetics, Helmholtz Zentrum MünchenMunichGermany
| | - Johannes A. Mayr
- University Childrens HospitalParacelsus Medical University (PMU) SalzburgSalzburgAustria
| |
Collapse
|
24
|
Cornell RB, Taneva SG, Dennis MK, Tse R, Dhillon RK, Lee J. Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability. J Biol Chem 2018; 294:1490-1501. [PMID: 30559292 DOI: 10.1074/jbc.ra118.006457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/05/2018] [Indexed: 11/06/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD), and isolated retinal dystrophy. Previous analyses showed that for some disease-linked PCYT1A variants steady state levels of CCTα and PC synthesis were reduced in patient fibroblasts, but other variants impaired PC synthesis with little effect on CCT levels. To explore the impact on CCT stability and function we expressed WT and mutant CCTs in COS-1 cells, which have very low endogenous CCT. Over-expression of two missense variants in the catalytic domain (V142M and P150A) generated aggregated enzymes that could not be refolded after solubilization by denaturation. Other mutations in the catalytic core that generated CCTs with reduced solubility could be purified. Five variants destabilized the catalytic domain-fold as assessed by lower transition temperatures for unfolding, and three of these manifested defects in substrate Km values. A mutation (R223S) in a signal-transducing linker between the catalytic and membrane-binding domains also impaired enzyme kinetics. E280del, a single amino acid deletion in the autoinhibitory helix increased the constitutive (lipid-independent) enzyme activity ∼4-fold. This helix also participates in membrane binding, and surprisingly E280del enhanced the enzyme's response to anionic lipid vesicles ∼4-fold. These in vitro analyses on purified mutant CCTs will complement future measurements of their impact on PC synthesis in cultured cells and in tissues with a stringent requirement for CCTα.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada; Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada.
| | - Svetla G Taneva
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Melissa K Dennis
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Ronnie Tse
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Randeep K Dhillon
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Jaeyong Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| |
Collapse
|
25
|
Mochel F. Lipids and synaptic functions. J Inherit Metab Dis 2018; 41:1117-1122. [PMID: 29869164 DOI: 10.1007/s10545-018-0204-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 10/14/2022]
Abstract
Synaptic functions have long been thought to be driven by proteins, especially the SNARE complex, contrasting with a relatively passive role for lipids constituting cell membranes. It is now clear that not only lipids, i.e. glycerophospholipids, sphingolipids and sterols, play a determinant role in the dynamics of synaptic membranes but they also actively contribute to the endocytosis and exocytosis of synaptic vesicles in conjunction with synaptic proteins. On the other hand, a growing number of inborn errors of metabolism affecting the nervous system have been related to defects in the synthesis and remodelling of fatty acids, phospholipids and sphingolipids. Alterations of the metabolism of these lipids would be expected to affect the dynamics of synaptic membranes and synaptic vesicles. Still, only few examples are currently documented. It remains to be determined to which extent the pathophysiology of disorders of complex lipids biosynthesis and remodelling share common pathogenic mechanisms with the more traditional synaptopathies.
Collapse
Affiliation(s)
- Fanny Mochel
- Sorbonne Université, UPMC-Paris 6, UMR S 1127 and Inserm U 1127, and CNRS UMR 7225, and ICM, F-75013, Paris, France.
- Sorbonne Université, GRC no. 13, Neurométabolisme, Paris, France.
- Department of Genetics and Reference Centre for Adult Neurometabolic Diseases, AP-HP, La Pitié-Salpêtriere University Hospital, Paris, France.
| |
Collapse
|
26
|
Haider A, Wei YC, Lim K, Barbosa AD, Liu CH, Weber U, Mlodzik M, Oras K, Collier S, Hussain MM, Dong L, Patel S, Alvarez-Guaita A, Saudek V, Jenkins BJ, Koulman A, Dymond MK, Hardie RC, Siniossoglou S, Savage DB. PCYT1A Regulates Phosphatidylcholine Homeostasis from the Inner Nuclear Membrane in Response to Membrane Stored Curvature Elastic Stress. Dev Cell 2018; 45:481-495.e8. [PMID: 29754800 PMCID: PMC5971203 DOI: 10.1016/j.devcel.2018.04.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/27/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
Abstract
Cell and organelle membranes consist of a complex mixture of phospholipids (PLs) that determine their size, shape, and function. Phosphatidylcholine (PC) is the most abundant phospholipid in eukaryotic membranes, yet how cells sense and regulate its levels in vivo remains unclear. Here we show that PCYT1A, the rate-limiting enzyme of PC synthesis, is intranuclear and re-locates to the nuclear membrane in response to the need for membrane PL synthesis in yeast, fly, and mammalian cells. By aligning imaging with lipidomic analysis and data-driven modeling, we demonstrate that yeast PCYT1A membrane association correlates with membrane stored curvature elastic stress estimates. Furthermore, this process occurs inside the nucleus, although nuclear localization signal mutants can compensate for the loss of endogenous PCYT1A in yeast and in fly photoreceptors. These data suggest an ancient mechanism by which nucleoplasmic PCYT1A senses surface PL packing defects on the inner nuclear membrane to control PC homeostasis.
Collapse
Affiliation(s)
- Afreen Haider
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Yu-Chen Wei
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Antonio D Barbosa
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Che-Hsiung Liu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ursula Weber
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Kadri Oras
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Simon Collier
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - M Mahmood Hussain
- Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Liang Dong
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Satish Patel
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Anna Alvarez-Guaita
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Vladimir Saudek
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Benjamin J Jenkins
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Albert Koulman
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Marcus K Dymond
- Division of Chemistry, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Roger C Hardie
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Symeon Siniossoglou
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK.
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
27
|
Ramezanpour M, Lee J, Taneva SG, Tieleman DP, Cornell RB. An auto-inhibitory helix in CTP:phosphocholine cytidylyltransferase hijacks the catalytic residue and constrains a pliable, domain-bridging helix pair. J Biol Chem 2018. [PMID: 29519816 DOI: 10.1074/jbc.ra118.002053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of CTP:phosphocholine cytidylyltransferase (CCT), a key enzyme in phosphatidylcholine synthesis, is regulated by reversible interactions of a lipid-inducible amphipathic helix (domain M) with membrane phospholipids. When dissociated from membranes, a portion of the M domain functions as an auto-inhibitory (AI) element to suppress catalysis. The AI helix from each subunit binds to a pair of α helices (αE) that extend from the base of the catalytic dimer to create a four-helix bundle. The bound AI helices make intimate contact with loop L2, housing a key catalytic residue, Lys122 The impacts of the AI helix on active-site dynamics and positioning of Lys122 are unknown. Extensive MD simulations with and without the AI helix revealed that backbone carbonyl oxygens at the point of contact between the AI helix and loop L2 can entrap the Lys122 side chain, effectively competing with the substrate, CTP. In silico, removal of the AI helices dramatically increased αE dynamics at a predicted break in the middle of these helices, enabling them to splay apart and forge new contacts with loop L2. In vitro cross-linking confirmed the reorganization of the αE element upon membrane binding of the AI helix. Moreover, when αE bending was prevented by disulfide engineering, CCT activation by membrane binding was thwarted. These findings suggest a novel two-part auto-inhibitory mechanism for CCT involving capture of Lys122 and restraint of the pliable αE helices. We propose that membrane binding enables bending of the αE helices, bringing the active site closer to the membrane surface.
Collapse
Affiliation(s)
- Mohsen Ramezanpour
- From the Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 and
| | - Jaeyong Lee
- the Departments of Molecular Biology and Biochemistry and
| | | | - D Peter Tieleman
- From the Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 and
| | - Rosemary B Cornell
- the Departments of Molecular Biology and Biochemistry and .,Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
28
|
Ben-Salem S, Robbins SM, Sobreira NLM, Lyon A, Al-Shamsi AM, Islam BK, Akawi NA, John A, Thachillath P, Hamed SA, Valle D, Ali BR, Al-Gazali L. Defect in phosphoinositide signalling through a homozygous variant in PLCB3 causes a new form of spondylometaphyseal dysplasia with corneal dystrophy. J Med Genet 2018; 55:122-130. [PMID: 29122926 PMCID: PMC8215682 DOI: 10.1136/jmedgenet-2017-104827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bone dysplasias are a large group of disorders affecting the growth and structure of the skeletal system. METHODS In the present study, we report the clinical and molecular delineation of a new form of syndromic autosomal recessive spondylometaphyseal dysplasia (SMD) in two Emirati first cousins. They displayed postnatal growth deficiency causing profound limb shortening with proximal and distal segments involvement, narrow chest, radiological abnormalities involving the spine, pelvis and metaphyses, corneal clouding and intellectual disability. Whole genome homozygosity mapping localised the genetic cause to 11q12.1-q13.1, a region spanning 19.32 Mb with ~490 genes. Using whole exome sequencing, we identified four novel homozygous variants within the shared block of homozygosity. Pathogenic variants in genes involved in phospholipid metabolism, such as PLCB4 and PCYT1A, are known to cause bone dysplasia with or without eye anomalies, which led us to select PLCB3 as a strong candidate. This gene encodes phospholipase C β 3, an enzyme that converts phosphatidylinositol 4,5 bisphosphate (PIP2) to inositol 1,4,5 triphosphate (IP3) and diacylglycerol. RESULTS The identified variant (c.2632G>T) substitutes a serine for a highly conserved alanine within the Ha2' element of the proximal C-terminal domain. This disrupts binding of the Ha2' element to the catalytic core and destabilises PLCB3. Here we show that this hypomorphic variant leads to elevated levels of PIP2 in patient fibroblasts, causing disorganisation of the F-actin cytoskeleton. CONCLUSIONS Our results connect a homozygous loss of function variant in PLCB3 with a new SMD associated with corneal dystrophy and developmental delay (SMDCD).
Collapse
Affiliation(s)
- Salma Ben-Salem
- Department of Pathology, College of Medicine and Heath Sciences, University Al-Ain, Al Ain, AbuDhabi, United Arab Emirates
| | - Sarah M Robbins
- Human genetics and Molecular Biology, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nara LM Sobreira
- Human genetics and Molecular Biology, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angeline Lyon
- Chemistry and Biological Sciences, West Lafayette, USA
| | - Aisha M Al-Shamsi
- Department of Paediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Barira K Islam
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nadia A Akawi
- Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, Oxfordshire, UK
| | - Anne John
- Department of Pathology, College of Medicine and Heath Sciences, University Al-Ain, Al Ain, AbuDhabi, United Arab Emirates
| | - Pramathan Thachillath
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sania Al Hamed
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - David Valle
- Human genetics and Molecular Biology, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Heath Sciences, University Al-Ain, Al Ain, AbuDhabi, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
29
|
McMaster CR. From yeast to humans - roles of the Kennedy pathway for phosphatidylcholine synthesis. FEBS Lett 2017; 592:1256-1272. [PMID: 29178478 DOI: 10.1002/1873-3468.12919] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
The major phospholipid present in most eukaryotic membranes is phosphatidylcholine (PC), comprising ~ 50% of phospholipid content. PC metabolic pathways are highly conserved from yeast to humans. The main pathway for the synthesis of PC is the Kennedy (CDP-choline) pathway. In this pathway, choline is converted to phosphocholine by choline kinase, phosphocholine is metabolized to CDP-choline by the rate-determining enzyme for this pathway, CTP:phosphocholine cytidylyltransferase, and cholinephosphotransferase condenses CDP-choline with diacylglycerol to produce PC. This Review discusses how PC synthesis via the Kennedy pathway is regulated, its role in cellular and biological processes, as well as diseases known to be associated with defects in PC synthesis. Finally, we present the first model for the making of a membrane via PC synthesis.
Collapse
|
30
|
Di Iorio V, Karali M, Brunetti-Pierri R, Filippelli M, Di Fruscio G, Pizzo M, Mutarelli M, Nigro V, Testa F, Banfi S, Simonelli F. Clinical and Genetic Evaluation of a Cohort of Pediatric Patients with Severe Inherited Retinal Dystrophies. Genes (Basel) 2017; 8:genes8100280. [PMID: 29053603 PMCID: PMC5664130 DOI: 10.3390/genes8100280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/02/2017] [Accepted: 10/13/2017] [Indexed: 12/30/2022] Open
Abstract
We performed a clinical and genetic characterization of a pediatric cohort of patients with inherited retinal dystrophy (IRD) to identify the most suitable cases for gene therapy. The cohort comprised 43 patients, aged between 2 and 18 years, with severe isolated IRD at the time of presentation. The ophthalmological characterization also included assessment of the photoreceptor layer integrity in the macular region (ellipsoid zone (EZ) band). In parallel, we carried out a targeted, next-generation sequencing (NGS)-based analysis using a panel that covers over 150 genes with either an established or a candidate role in IRD pathogenesis. Based on the ophthalmological assessment, the cohort was composed of 24 Leber congenital amaurosis, 14 early onset retinitis pigmentosa, and 5 achromatopsia patients. We identified causative mutations in 58.1% of the cases. We also found novel genotype-phenotype correlations in patients harboring mutations in the CEP290 and CNGB3 genes. The EZ band was detectable in 40% of the analyzed cases, also in patients with genotypes usually associated with severe clinical manifestations. This study provides the first detailed clinical-genetic assessment of severe IRDs with infantile onset and lays the foundation of a standardized protocol for the selection of patients that are more likely to benefit from gene replacement therapeutic approaches.
Collapse
Affiliation(s)
- Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania Luigi Vanvitelli, via Pansini 5, Naples 80131, Italy.
| | - Marianthi Karali
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania Luigi Vanvitelli, via Luigi De Crecchio 7, Naples 80138, Italy.
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, Pozzuoli 80078, Italy.
| | - Raffaella Brunetti-Pierri
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania Luigi Vanvitelli, via Pansini 5, Naples 80131, Italy.
| | - Mariaelena Filippelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania Luigi Vanvitelli, via Pansini 5, Naples 80131, Italy.
| | - Giuseppina Di Fruscio
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania Luigi Vanvitelli, via Luigi De Crecchio 7, Naples 80138, Italy.
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, Pozzuoli 80078, Italy.
| | - Margherita Mutarelli
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, Pozzuoli 80078, Italy.
| | - Vincenzo Nigro
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania Luigi Vanvitelli, via Luigi De Crecchio 7, Naples 80138, Italy.
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, Pozzuoli 80078, Italy.
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania Luigi Vanvitelli, via Pansini 5, Naples 80131, Italy.
| | - Sandro Banfi
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania Luigi Vanvitelli, via Luigi De Crecchio 7, Naples 80138, Italy.
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, Pozzuoli 80078, Italy.
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania Luigi Vanvitelli, via Pansini 5, Naples 80131, Italy.
| |
Collapse
|
31
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
32
|
Mutations in the PCYT1A gene are responsible for isolated forms of retinal dystrophy. Eur J Hum Genet 2017; 25:651-655. [PMID: 28272537 DOI: 10.1038/ejhg.2017.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 11/08/2022] Open
Abstract
Mutations in the PCYT1A gene have been recently linked to two different phenotypes: one characterized by spondylometaphyseal dysplasia and cone-rod dystrophy (SMD-CRD) and the other by congenital lipodystrophy, severe fatty liver disease, and reduced HDL cholesterol without any retinal or skeletal involvement. Here, we identified, by next generation sequencing, sequence variants affecting function in the PCYT1A gene in three young patients with isolated retinal dystrophy from two different Italian families. A thorough clinical evaluation of the patients, with whole skeleton X-ray, metabolic assessment and liver ultrasound failed to reveal signs of skeletal dysplasia, metabolic and hepatic alterations. This is the first report showing that the PCYT1A gene can be responsible for isolated forms of retinal dystrophy, particularly without any skeletal involvement, thus further expanding the phenotypic spectrum induced by mutations in this gene.
Collapse
|
33
|
Machol K, Jain M, Almannai M, Orand T, Lu JT, Tran A, Chen Y, Schlesinger A, Gibbs R, Bonafe L, Campos-Xavier AB, Unger S, Superti-Furga A, Lee BH, Campeau PM, Burrage LC. Corner fracture type spondylometaphyseal dysplasia: Overlap with type II collagenopathies. Am J Med Genet A 2016; 173:733-739. [PMID: 27888646 DOI: 10.1002/ajmg.a.38059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/27/2016] [Indexed: 01/04/2023]
Abstract
Spondylometaphyseal dysplasia (SMD) corner fracture type (also known as SMD "Sutcliffe" type, MIM 184255) is a rare skeletal dysplasia that presents with mild to moderate short stature, developmental coxa vara, mild platyspondyly, corner fracture-like lesions, and metaphyseal abnormalities with sparing of the epiphyses. The molecular basis for this disorder has yet to be clarified. We describe two patients with SMD corner fracture type and heterozygous pathogenic variants in COL2A1. These two cases together with a third case of SMD corner fracture type with a heterozygous COL2A1 pathogenic variant previously described suggest that this disorder overlaps with type II collagenopathies. The finding of one of the pathogenic variants in a previously reported case of spondyloepimetaphyseal dysplasia (SEMD) Strudwick type and the significant clinical similarity suggest an overlap between SMD corner fracture and SEMD Strudwick types. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Keren Machol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Mahim Jain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Mohammed Almannai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Thibault Orand
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - James T Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Alyssa Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Alan Schlesinger
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas
| | - Richard Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Luisa Bonafe
- Centre for Molecular Diseases and Department of Pediatrics, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Ana Belinda Campos-Xavier
- Centre for Molecular Diseases and Department of Pediatrics, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Sheila Unger
- Service of Medical Genetics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Andrea Superti-Furga
- Service of Medical Genetics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Philippe M Campeau
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
34
|
Sobreira N, Schiettecatte F, Boehm C, Valle D, Hamosh A. New tools for Mendelian disease gene identification: PhenoDB variant analysis module; and GeneMatcher, a web-based tool for linking investigators with an interest in the same gene. Hum Mutat 2015; 36:425-31. [PMID: 25684268 DOI: 10.1002/humu.22769] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/09/2015] [Indexed: 01/10/2023]
Abstract
Identifying the causative variant from among the thousands identified by whole-exome sequencing or whole-genome sequencing is a formidable challenge. To make this process as efficient and flexible as possible, we have developed a Variant Analysis Module coupled to our previously described Web-based phenotype intake tool, PhenoDB (http://researchphenodb.net and http://phenodb.org). When a small number of candidate-causative variants have been identified in a study of a particular patient or family, a second, more difficult challenge becomes proof of causality for any given variant. One approach to this problem is to find other cases with a similar phenotype and mutations in the same candidate gene. Alternatively, it may be possible to develop biological evidence for causality, an approach that is assisted by making connections to basic scientists studying the gene of interest, often in the setting of a model organism. Both of these strategies benefit from an open access, online site where individual clinicians and investigators could post genes of interest. To this end, we developed GeneMatcher (http://genematcher.org), a freely accessible Website that enables connections between clinicians and researchers across the world who share an interest in the same gene(s).
Collapse
Affiliation(s)
- Nara Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | | | | | | | | |
Collapse
|
35
|
Expanding the clinical, allelic, and locus heterogeneity of retinal dystrophies. Genet Med 2015; 18:554-62. [PMID: 26355662 DOI: 10.1038/gim.2015.127] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/04/2015] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Retinal dystrophies (RD) are heterogeneous hereditary disorders of the retina that are usually progressive in nature. The aim of this study was to clinically and molecularly characterize a large cohort of RD patients. METHODS We have developed a next-generation sequencing assay that allows known RD genes to be sequenced simultaneously. We also performed mapping studies and exome sequencing on familial and on syndromic RD patients who tested negative on the panel. RESULTS Our panel identified the likely causal mutation in >60% of the 292 RD families tested. Mapping studies on all 162 familial RD patients who tested negative on the panel identified two novel disease loci on Chr2:25,550,180-28,794,007 and Chr16:59,225,000-72,511,000. Whole-exome sequencing revealed the likely candidate as AGBL5 and CDH16, respectively. We also performed exome sequencing on negative syndromic RD cases and identified a novel homozygous truncating mutation in GNS in a family with the novel combination of mucopolysaccharidosis and RD. Moreover, we identified a homozygous truncating mutation in DNAJC17 in a family with an apparently novel syndrome of retinitis pigmentosa and hypogammaglobulinemia. CONCLUSION Our study expands the clinical and allelic spectrum of known RD genes, and reveals AGBL5, CDH16, and DNAJC17 as novel disease candidates.Genet Med 18 6, 554-562.
Collapse
|
36
|
Au PYB, You J, Caluseriu O, Schwartzentruber J, Majewski J, Bernier FP, Ferguson M, Valle D, Parboosingh JS, Sobreira N, Innes AM, Kline AD. GeneMatcher aids in the identification of a new malformation syndrome with intellectual disability, unique facial dysmorphisms, and skeletal and connective tissue abnormalities caused by de novo variants in HNRNPK. Hum Mutat 2015; 36:1009-1014. [PMID: 26173930 DOI: 10.1002/humu.22837] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/29/2015] [Indexed: 12/16/2022]
Abstract
We report a new syndrome due to loss-of-function variants in the heterogeneous nuclear ribonucleoprotein K gene (HNRNPK). We describe two probands: one with a de novo frameshift (NM_002140.3: c.953+1dup), and the other with a de novo splice donor site variant (NM_002140.3: c.257G>A). Both probands have intellectual disability, a shared unique craniofacial phenotype, and connective tissue and skeletal abnormalities. The identification of this syndrome was made possible by a new online tool, GeneMatcher, which facilitates connections between clinicians and researchers based on shared interest in candidate genes. This report demonstrates that new Web-based approaches can be effective in helping investigators solve exome sequencing projects, and also highlights the newer paradigm of "reverse phenotyping," where characterization of syndromic features follows the identification of genetic variants.
Collapse
Affiliation(s)
- P Y Billie Au
- Department of Medical Genetics, University of Calgary, Cumming School of Medicine, Alberta, Canada
| | - Jing You
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy Schwartzentruber
- Department of Human Genetics, McGill and Genome Quebec Innovation Center, McGill University, Quebec, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill and Genome Quebec Innovation Center, McGill University, Quebec, Canada
| | - Francois P Bernier
- Department of Medical Genetics, University of Calgary, Cumming School of Medicine, Alberta, Canada.,Alberta Children's Hospital, Research Institute for Child and Maternal Health, University of Calgary, Alberta, Canada
| | - Marcia Ferguson
- Harvey Institute for Human Genetics, Department of Pediatrics, Greater Baltimore Medical Center, Baltimore, MD
| | | | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Center for Inherited Disease Research, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jillian S Parboosingh
- Department of Medical Genetics, University of Calgary, Cumming School of Medicine, Alberta, Canada.,Alberta Children's Hospital, Research Institute for Child and Maternal Health, University of Calgary, Alberta, Canada
| | - Nara Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - A Micheil Innes
- Department of Medical Genetics, University of Calgary, Cumming School of Medicine, Alberta, Canada.,Alberta Children's Hospital, Research Institute for Child and Maternal Health, University of Calgary, Alberta, Canada
| | - Antonie D Kline
- Harvey Institute for Human Genetics, Department of Pediatrics, Greater Baltimore Medical Center, Baltimore, MD
| |
Collapse
|
37
|
Cornell RB, Ridgway ND. CTP:phosphocholine cytidylyltransferase: Function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Prog Lipid Res 2015; 59:147-71. [PMID: 26165797 DOI: 10.1016/j.plipres.2015.07.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes a rate-limiting and regulated step in the CDP-choline pathway for the synthesis of phosphatidylcholine (PC) and PC-derived lipids. Control of CCT activity is multi-layered, and includes direct regulation by reversible membrane binding involving a built-in lipid compositional sensor. Thus CCT contributes to phospholipid compositional homeostasis. CCT also modifies the curvature of its target membrane. Knowledge of CCT structure and regulation of its catalytic function are relatively advanced compared to many lipid metabolic enzymes, and are reviewed in detail. Recently the genetic origins of two human developmental and lipogenesis disorders have been traced to mutations in the gene for CCTα.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Department of Molecular Biology and Biochemistry and the Department of Chemistry, Simon Fraser University, Burnaby, B.C. V5A-1S6, Canada.
| | - Neale D Ridgway
- Departments of Pediatrics, and Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia B3H-4H7, Canada
| |
Collapse
|
38
|
Marfany G, Gonzàlez-Duarte R. Clinical applications of high-throughput genetic diagnosis in inherited retinal dystrophies: Present challenges and future directions. World J Med Genet 2015; 5:14-22. [DOI: 10.5496/wjmg.v5.i2.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/30/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
The advent of next generation sequencing (NGS) techniques has greatly simplified the molecular diagnosis and gene identification in very rare and highly heterogeneous Mendelian disorders. Over the last two years, these approaches, especially whole exome sequencing (WES), alone or combined with homozygosity mapping and linkage analysis, have proved to be successful in the identification of more than 25 new causative retinal dystrophy genes. NGS-approaches have also identified a wealth of new mutations in previously reported genes and have provided more comprehensive information concerning the landscape of genotype-phenotype correlations and the genetic complexity/diversity of human control populations. Although whole genome sequencing is far more informative than WES, the functional meaning of the genetic variants identified by the latter can be more easily interpreted, and final diagnosis of inherited retinal dystrophies is extremely successful, reaching 80%, particularly for recessive cases. Even considering the present limitations of WES, the reductions in costs and time, the continual technical improvements, the implementation of refined bioinformatic tools and the unbiased comprehensive genetic information it provides, make WES a very promising diagnostic tool for routine clinical and genetic diagnosis in the future.
Collapse
|
39
|
Haines JD, Vidaurre OG, Zhang F, Riffo-Campos ÁL, Castillo J, Casanova B, Casaccia P, Lopez-Rodas G. Multiple sclerosis patient-derived CSF induces transcriptional changes in proliferating oligodendrocyte progenitors. Mult Scler 2015; 21:1655-69. [PMID: 25948622 DOI: 10.1177/1352458515573094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/25/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) is in contact with brain parenchyma and ventricles, and its composition might influence the cellular physiology of oligodendrocyte progenitor cells (OPCs) thereby contributing to multiple sclerosis (MS) disease pathogenesis. OBJECTIVE To identify the transcriptional changes that distinguish the transcriptional response induced in proliferating rat OPCs upon exposure to CSF from primary progressive multiple sclerosis (PPMS) or relapsing remitting multiple sclerosis (RRMS) patients and other neurological controls. METHODS We performed gene microarray analysis of OPCs exposed to CSF from neurological controls, or definitive RRMS or PPMS disease course. Results were confirmed by quantitative reverse transcriptase polymerase chain reaction, immunocytochemistry and western blot of cultured cells, and validated in human brain specimens. RESULTS We identified common and unique oligodendrocyte genes for each treatment group. Exposure to CSF from PPMS uniquely induced branching of cultured progenitors and related transcriptional changes, including upregulation (P<0.05) of the adhesion molecule GALECTIN-3/Lgals3, which was also detected at the protein level in brain specimens from PPMS patients. This pattern of gene expression was distinct from the transcriptional programme of oligodendrocyte differentiation during development. CONCLUSIONS Despite evidence of morphological differentiation induced by exposure to CSF of PPMS patients, the overall transcriptional response elicited in cultured OPCs was consistent with the activation of an aberrant transcriptional programme.
Collapse
Affiliation(s)
- Jeffery D Haines
- Department of Neuroscience, Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Oscar G Vidaurre
- Department of Neuroscience, Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Fan Zhang
- Department of Neuroscience, Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ángela L Riffo-Campos
- Department of Biochemistry and Molecular Biology, University of Valencia, and Institute of Health Research INCLIVA, Valencia, Spain
| | - Josefa Castillo
- Department of Biochemistry and Molecular Biology, University of Valencia, and Institute of Health Research INCLIVA, Valencia, Spain
| | | | - Patrizia Casaccia
- Department of Neuroscience, Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gerardo Lopez-Rodas
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
40
|
Abstract
Skeletal dysplasias result from disruptions in normal skeletal growth and development and are a major contributor to severe short stature. They occur in approximately 1/5,000 births, and some are lethal. Since the most recent publication of the Nosology and Classification of Genetic Skeletal Disorders, genetic causes of 56 skeletal disorders have been uncovered. This remarkable rate of discovery is largely due to the expanded use of high-throughput genomic technologies. In this review, we discuss these recent discoveries and our understanding of the molecular mechanisms behind these skeletal dysplasia phenotypes. We also cover potential therapies, unusual genetic mechanisms, and novel skeletal syndromes both with and without known genetic causes. The acceleration of skeletal dysplasia genetics is truly spectacular, and these advances hold great promise for diagnostics, risk prediction, and therapeutic design.
Collapse
|
41
|
Gripp KW, Robbins KM, Sobreira NL, Witmer PD, Bird LM, Avela K, Makitie O, Alves D, Hogue JS, Zackai EH, Doheny KF, Stabley DL, Sol-Church K. Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome. Am J Med Genet A 2015; 167A:271-81. [PMID: 25394726 PMCID: PMC5589071 DOI: 10.1002/ajmg.a.36863] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/15/2014] [Indexed: 12/30/2022]
Abstract
Lateral meningocele syndrome (LMS, OMIM%130720), also known as Lehman syndrome, is a very rare skeletal disorder with facial anomalies, hypotonia and meningocele-related neurologic dysfunction. The characteristic lateral meningoceles represent the severe end of the dural ectasia spectrum and are typically most severe in the lower spine. Facial features of LMS include hypertelorism and telecanthus, high arched eyebrows, ptosis, midfacial hypoplasia, micrognathia, high and narrow palate, low-set ears and a hypotonic appearance. Hyperextensibility, hernias and scoliosis reflect a connective tissue abnormality, and aortic dilation, a high-pitched nasal voice, wormian bones and osteolysis may be present. Lateral meningocele syndrome has phenotypic overlap with Hajdu-Cheney syndrome. We performed exome resequencing in five unrelated individuals with LMS and identified heterozygous truncating NOTCH3 mutations. In an additional unrelated individual Sanger sequencing revealed a deleterious variant in the same exon 33. In total, five novel de novo NOTCH3 mutations were identified in six unrelated patients. One had a 26 bp deletion (c.6461_6486del, p.G2154fsTer78), two carried the same single base pair insertion (c.6692_93insC, p.P2231fsTer11), and three individuals had a nonsense point mutation at c.6247A > T (pK2083*), c.6663C > G (p.Y2221*) or c.6732C > A, (p.Y2244*). All mutations cluster into the last coding exon, resulting in premature termination of the protein and truncation of the negative regulatory proline-glutamate-serine-threonine rich PEST domain. Our results suggest that mutant mRNA products escape nonsense mediated decay. The truncated NOTCH3 may cause gain-of-function through decreased clearance of the active intracellular product, resembling NOTCH2 mutations in the clinically related Hajdu-Cheney syndrome and contrasting the NOTCH3 missense mutations causing CADASIL.
Collapse
Affiliation(s)
- Karen W. Gripp
- Division of Medical Genetics, A.I. duPont Hospital for Children, Wilmington, Delaware, and Sidney Kimmel Medical School at T. Jefferson University, Philadelphia, Pennsylvania
| | - Katherine M. Robbins
- Department of Biomedical Research, A.I. duPont Hospital for Children, Wilmington, Delaware
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Nara L. Sobreira
- Johns Hopkins University School of Medicine, Institute of Genetic Medicine, Baltimore, Maryland
| | - P. Dane Witmer
- Center for Inherited Disease Research, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lynne M. Bird
- University of California San Diego and Rady Children's Hospital, San Diego, California
| | - Kristiina Avela
- Department of Clinical Genetics, Helsinki University Central Hospital, Helsinki, Finland
| | - Outi Makitie
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Daniela Alves
- Neurogenetics Unit, Department of Medical Genetics, Centro Hospitalar de São João, Porto, Portugal
| | | | - Elaine H. Zackai
- Division of Human Genetics and Molecular Biology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kimberly F. Doheny
- Center for Inherited Disease Research, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Deborah L. Stabley
- Department of Biomedical Research, A.I. duPont Hospital for Children, Wilmington, Delaware
| | - Katia Sol-Church
- Department of Biomedical Research, A.I. duPont Hospital for Children, Wilmington, Delaware
| |
Collapse
|
42
|
Lamari F, Mochel F, Saudubray JM. An overview of inborn errors of complex lipid biosynthesis and remodelling. J Inherit Metab Dis 2015; 38:3-18. [PMID: 25238787 DOI: 10.1007/s10545-014-9764-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 01/10/2023]
Abstract
In a review published in 2012, we delineated 14 inborn errors of metabolism (IEM) related to defects in biosynthesis of complex lipids, particularly phospholipids and sphingolipids (Lamari et al 2013). Given the numerous roles played by these molecules in membrane integrity, cell structure and function, this group of diseases is rapidly expanding as predicted. Almost 40 new diseases related to genetic defects in enzymes involved in the biosynthesis and remodelling of phospholipids, sphingolipids and complex fatty acids are now reported. While the clinical phenotype associated with these defects is currently difficult to outline, with only a few patients identified to date, it appears that all organs and systems may be affected - central and peripheral nervous system, eye, muscle, skin, bone, liver, immune system, etc. This chapter presents an introductive overview of this new group of IEM. More broadly, this special issue provides an update on other IEM involving complex lipids, namely dolichol and isoprenoids, glycolipids and congenital disorders of glycosylation, very long chain fatty acids and plasmalogens. Likewise, more than 100 IEM may actually lead to primary or secondary defects of complex lipids synthesis and remodelling. Because of the implication of several cellular compartments, this new group of disorders affecting the synthesis and remodelling of complex molecules challenges our current classification of IEM still largely based on cellular organelles--i.e. mitochondrial, lysosomal, peroxisomal disorders. While most of these new disorders have been identified by next generation sequencing, we wish to emphasize the promising role of lipidomics in deciphering their pathophysiology and identifying therapeutic targets.
Collapse
Affiliation(s)
- Foudil Lamari
- Bioclinic and Genetic Unit of Neurometabolic Diseases, Pitié-Salpêtrière Hospital, (APHP), Paris, 75013, France
| | | | | |
Collapse
|
43
|
Wortmann SB, Espeel M, Almeida L, Reimer A, Bosboom D, Roels F, de Brouwer APM, Wevers RA. Inborn errors of metabolism in the biosynthesis and remodelling of phospholipids. J Inherit Metab Dis 2015; 38:99-110. [PMID: 25178427 DOI: 10.1007/s10545-014-9759-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/24/2022]
Abstract
Since the proposal to define a separate subgroup of inborn errors of metabolism involved in the biosynthesis and remodelling of phospholipids, sphingolipids and long chain fatty acids in 2013, this group is rapidly expanding. This review focuses on the disorders involved in the biosynthesis of phospholipids. Phospholipids are involved in uncountable cellular processes, e.g. as structural components of membranes, by taking part in vesicle and mitochondrial fusion and fission or signal transduction. Here we provide an overview on both pathophysiology and the extremely heterogeneous clinical presentations of the disorders reported so far (Sengers syndrome (due to mutations in AGK), MEGDEL syndrome (or SERAC defect, SERAC1), Barth syndrome (or TAZ defect, TAZ), congenital muscular dystrophy due to CHKB deficiency (CHKB). Boucher-Neuhäuser/Gordon Holmes syndrome (PNPLA6), PHARC syndrome (ABHD12), hereditary spastic paraplegia type 28, 54 and 56 (HSP28, DDHD1; HSP54, DDHD2; HSP56, CYP2U1), Lenz Majewski syndrome (PTDSS1), spondylometaphyseal dysplasia with cone-rod dystrophy (PCYT1A), atypical haemolytic-uremic syndrome due to DGKE deficiency (DGKE).
Collapse
Affiliation(s)
- Saskia B Wortmann
- Nijmegen Centre for Mitochondrial Disorders (NCMD) at the Amalia Children's Hospital, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Payne F, Lim K, Girousse A, Brown RJ, Kory N, Robbins A, Xue Y, Sleigh A, Cochran E, Adams C, Dev Borman A, Russel-Jones D, Gorden P, Semple RK, Saudek V, O'Rahilly S, Walther TC, Barroso I, Savage DB. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. Proc Natl Acad Sci U S A 2014; 111:8901-6. [PMID: 24889630 PMCID: PMC4066527 DOI: 10.1073/pnas.1408523111] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Phosphatidylcholine (PC) is the major glycerophospholipid in eukaryotic cells and is an essential component in all cellular membranes. The biochemistry of de novo PC synthesis by the Kennedy pathway is well established, but less is known about the physiological functions of PC. We identified two unrelated patients with defects in the Kennedy pathway due to biallellic loss-of-function mutations in phosphate cytidylyltransferase 1 alpha (PCYT1A), the rate-limiting enzyme in this pathway. The mutations lead to a marked reduction in PCYT1A expression and PC synthesis. The phenotypic consequences include some features, such as severe fatty liver and low HDL cholesterol levels, that are predicted by the results of previously reported liver-specific deletion of murine Pcyt1a. Both patients also had lipodystrophy, severe insulin resistance, and diabetes, providing evidence for an additional and essential role for PCYT1A-generated PC in the normal function of white adipose tissue and insulin action.
Collapse
Affiliation(s)
- Felicity Payne
- Metabolic Disease Group, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Koini Lim
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Amandine Girousse
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Rebecca J Brown
- Diabetes Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nora Kory
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06520
| | - Ann Robbins
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Yali Xue
- Metabolic Disease Group, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Alison Sleigh
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Elaine Cochran
- Diabetes Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Claire Adams
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Arundhati Dev Borman
- Moorfields Eye Hospital National Health Service Trust, London EC1V 2PD, United Kingdom; and
| | - David Russel-Jones
- Centre for Endocrinology, Diabetes and Research, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom
| | - Phillip Gorden
- Diabetes Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Robert K Semple
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Vladimir Saudek
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Stephen O'Rahilly
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom;
| | - Tobias C Walther
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06520
| | - Inês Barroso
- Metabolic Disease Group, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom;University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom;
| | - David B Savage
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom;
| |
Collapse
|