1
|
Zhou B, Feng C, Sun S, Chen X, Zhuansun D, Wang D, Yu X, Meng X, Xiao J, Wu L, Wang J, Wang J, Chen K, Li Z, You J, Mao H, Yang S, Zhang J, Jiao C, Li Z, Yu D, Wu X, Zhu T, Yang J, Xiang L, Liu J, Chai T, Shen J, Mao CX, Hu J, Hao X, Xiong B, Zheng S, Liu Z, Feng J. Identification of signaling pathways that specify a subset of migrating enteric neural crest cells at the wavefront in mouse embryos. Dev Cell 2024; 59:1689-1706.e8. [PMID: 38636517 DOI: 10.1016/j.devcel.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
During enteric nervous system (ENS) development, pioneering wavefront enteric neural crest cells (ENCCs) initiate gut colonization. However, the molecular mechanisms guiding their specification and niche interaction are not fully understood. We used single-cell RNA sequencing and spatial transcriptomics to map the spatiotemporal dynamics and molecular landscape of wavefront ENCCs in mouse embryos. Our analysis shows a progressive decline in wavefront ENCC potency during migration and identifies transcription factors governing their specification and differentiation. We further delineate key signaling pathways (ephrin-Eph, Wnt-Frizzled, and Sema3a-Nrp1) utilized by wavefront ENCCs to interact with their surrounding cells. Disruptions in these pathways are observed in human Hirschsprung's disease gut tissue, linking them to ENS malformations. Additionally, we observed region-specific and cell-type-specific transcriptional changes in surrounding gut tissues upon wavefront ENCC arrival, suggesting their role in shaping the gut microenvironment. This work offers a roadmap of ENS development, with implications for understanding ENS disorders.
Collapse
Affiliation(s)
- Bingyan Zhou
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Chenzhao Feng
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Song Sun
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Ministry of Health, Shanghai 201102, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Didi Zhuansun
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Di Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Zejian Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jingyi You
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Handan Mao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Shimin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jiaxin Zhang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Chunlei Jiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Zhi Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Donghai Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xiaojuan Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Tianqi Zhu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Lei Xiang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jiazhe Liu
- BGI-Shenzhen, Shenzhen, Guangdong 518081, China
| | | | - Juan Shen
- BGI-Shenzhen, Shenzhen, Guangdong 518081, China
| | - Chuan-Xi Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Juncheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shan Zheng
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Ministry of Health, Shanghai 201102, China
| | - Zhihua Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Kuil LE, Chauhan RK, de Graaf BM, Cheng WW, Kakiailatu NJM, Lasabuda R, Verhaeghe C, Windster JD, Schriemer D, Azmani Z, Brooks AS, Edie S, Reeves RH, Eggen BJL, Shepherd IT, Burns AJ, Hofstra RMW, Melotte V, Brosens E, Alves MM. ATP5PO levels regulate enteric nervous system development in zebrafish, linking Hirschsprung disease to Down Syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166991. [PMID: 38128843 DOI: 10.1016/j.bbadis.2023.166991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Hirschsprung disease (HSCR) is a complex genetic disorder characterized by the absence of enteric nervous system (ENS) in the distal region of the intestine. Down Syndrome (DS) patients have a >50-fold higher risk of developing HSCR than the general population, suggesting that overexpression of human chromosome 21 (Hsa21) genes contribute to HSCR etiology. However, identification of responsible genes remains challenging. Here, we describe a genetic screening of potential candidate genes located on Hsa21, using the zebrafish. Candidate genes were located in the DS-HSCR susceptibility region, expressed in the human intestine, were known potential biomarkers for DS prenatal diagnosis, and were present in the zebrafish genome. With this approach, four genes were selected: RCAN1, ITSN1, ATP5PO and SUMO3. However, only overexpression of ATP5PO, coding for a component of the mitochondrial ATPase, led to significant reduction of ENS cells. Paradoxically, in vitro studies showed that overexpression of ATP5PO led to a reduction of ATP5PO protein levels. Impaired neuronal differentiation and reduced mitochondrial ATP production, were also detected in vitro, after overexpression of ATP5PO in a neuroblastoma cell line. Finally, epistasis was observed between ATP5PO and ret, the most important HSCR gene. Taken together, our results identify ATP5PO as the gene responsible for the increased risk of HSCR in DS patients in particular if RET variants are also present, and show that a balanced expression of ATP5PO is required for normal ENS development.
Collapse
Affiliation(s)
- L E Kuil
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - R K Chauhan
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - B M de Graaf
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - W W Cheng
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - N J M Kakiailatu
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - R Lasabuda
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - C Verhaeghe
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - J D Windster
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center Rotterdam, Sophia's Children's Hospital, Rotterdam, the Netherlands
| | - D Schriemer
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Z Azmani
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - A S Brooks
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - S Edie
- Johns Hopkins University School of Medicine, Department of Physiology and McKusick-Nathans Department of Genetic Medicine, Baltimore, MD, United States of America
| | - R H Reeves
- Johns Hopkins University School of Medicine, Department of Physiology and McKusick-Nathans Department of Genetic Medicine, Baltimore, MD, United States of America
| | - B J L Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - I T Shepherd
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - A J Burns
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands; Birth Defects Research Centre, UCL Institute of Child Health, London, United Kingdom; Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals, Cambridge, MA, United States of America
| | - R M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - V Melotte
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Pathology, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - E Brosens
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - M M Alves
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center Rotterdam, Sophia's Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Uribe RA. Genetic regulation of enteric nervous system development in zebrafish. Biochem Soc Trans 2024; 52:177-190. [PMID: 38174765 PMCID: PMC10903509 DOI: 10.1042/bst20230343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The enteric nervous system (ENS) is a complex series of interconnected neurons and glia that reside within and along the entire length of the gastrointestinal tract. ENS functions are vital to gut homeostasis and digestion, including local control of peristalsis, water balance, and intestinal cell barrier function. How the ENS develops during embryological development is a topic of great concern, as defects in ENS development can result in various diseases, the most common being Hirschsprung disease, in which variable regions of the infant gut lack ENS, with the distal colon most affected. Deciphering how the ENS forms from its progenitor cells, enteric neural crest cells, is an active area of research across various animal models. The vertebrate animal model, zebrafish, has been increasingly leveraged to understand early ENS formation, and over the past 20 years has contributed to our knowledge of the genetic regulation that underlies enteric development. In this review, I summarize our knowledge regarding the genetic regulation of zebrafish enteric neuronal development, and based on the most current literature, present a gene regulatory network inferred to underlie its construction. I also provide perspectives on areas for future zebrafish ENS research.
Collapse
Affiliation(s)
- Rosa A. Uribe
- Biosciences Department, Rice University, Houston, TX 77005, U.S.A
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, TX 77005, U.S.A
| |
Collapse
|
4
|
Wang H, Huo R, He K, Cheng L, Zhang S, Yu M, Zhao W, Li H, Xue J. Perineural invasion in colorectal cancer: mechanisms of action and clinical relevance. Cell Oncol (Dordr) 2024; 47:1-17. [PMID: 37610689 PMCID: PMC10899381 DOI: 10.1007/s13402-023-00857-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND In recent years, the significance of the nervous system in the tumor microenvironment has gained increasing attention. The bidirectional communication between nerves and cancer cells plays a critical role in tumor initiation and progression. Perineural invasion (PNI) occurs when tumor cells invade the nerve sheath and/or encircle more than 33% of the nerve circumference. PNI is a common feature in various malignancies and is associated with tumor invasion, metastasis, cancer-related pain, and unfavorable clinical outcomes. The colon and rectum are highly innervated organs, and accumulating studies support PNI as a histopathologic feature of colorectal cancer (CRC). Therefore, it is essential to investigate the role of nerves in CRC and comprehend the mechanisms of PNI to impede tumor progression and improve patient survival. CONCLUSION This review elucidates the clinical significance of PNI, summarizes the underlying cellular and molecular mechanisms, introduces various experimental models suitable for studying PNI, and discusses the therapeutic potential of targeting this phenomenon. By delving into the intricate interactions between nerves and tumor cells, we hope this review can provide valuable insights for the future development of CRC treatments.
Collapse
Affiliation(s)
- Hao Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Ruixue Huo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Kexin He
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Li Cheng
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, P.R. China
| | - Wei Zhao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
| | - Hui Li
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
| |
Collapse
|
5
|
Qin D, Yang W, Zhu X, Tang C, Yuan L, Xu L, Tian S, Huang R, Zhang D, Xiao S. LINC01579-204 involved in the development of Hirschsprung's disease maybe by regulating the expression of miR-203a-3p and NEFL. Clin Res Hepatol Gastroenterol 2023; 47:102240. [PMID: 37923059 DOI: 10.1016/j.clinre.2023.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Hirschsprung's disease (HD) is a rare congenital digestive tract malformation in children. Roles of long non-coding RNAs (lncRNAs) are highlighted in various human diseases. However, knowledge on lncRNAs in HD is still limited. METHODS The profile of lncRNAs in 8 pairs of normal and stenosed intestinal tissue of HD patients were obtained using microarray analysis. Base on bioinformatics analysis, the level of selected LINC01579-204, NEFL and miR-203a-3p was detected by qRT-PCR in 36 pairs of normal and stenosed intestinal tissue of HD patients. Then the predictive accuracy of LINC01579-204, miR-203a-3p and NEFL level to evaluate the progression of HD patients was analyzed with receiver operating characteristic curve (ROC). RESULTS A total of 90 differentially expressed lncRNAs were detected in normal and stenosed intestinal tissue of HD patients (|fold change| ≥ 1.5, p < 0.05). The level of LINC01579-204 and NEFL decreased and miR-203a-3p increased significantly in 36 pairs of stenosed intestinal tissue of HD patients compared to the control. A notable positive correlation was identified between LINC01579-204 and NEFL (r = 0.9681, p < 0.0001). Areas under the ROC curve of the LINC01579-204, miR-203a-3p and NEFL signature were 0.715, 0.777 and 0.829, respectively. CONCLUSIONS LINC01579-204, miR-203a-3p, and NEFL are predicted to play important roles in the progression of HD. LINC01579-204, miR-203a-3p and NEFL had a significant overall predictive ability to identify progression of HD patients. The novel experimental and bioinformatic results achieved in this study may provide new insights into the molecular of HD.
Collapse
Affiliation(s)
- Dingjiang Qin
- Department of Neonatal Surgery, Guangzhou Medical University, China
| | - Wenyi Yang
- Department of reproductive health and infertility, Guangdong Women and Children Hospital, China
| | - Xiaochun Zhu
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, China
| | - Chunfang Tang
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, China
| | - Like Yuan
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, China
| | - Lu Xu
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, China
| | - Song Tian
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, China
| | - Rong Huang
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, China
| | - Dongyun Zhang
- Department of Neonatal Surgery, Guangzhou Medical University, China
| | - Shangjie Xiao
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, China.
| |
Collapse
|
6
|
Chatterjee S, Fries LE, Yaacov O, Hu N, Berk-Rauch HE, Chakravarti A. RET enhancer haplotype-dependent remodeling of the human fetal gut development program. PLoS Genet 2023; 19:e1011030. [PMID: 37948459 PMCID: PMC10664930 DOI: 10.1371/journal.pgen.1011030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 11/22/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Hirschsprung disease (HSCR) is associated with deficiency of the receptor tyrosine kinase RET, resulting in loss of cells of the enteric nervous system (ENS) during fetal gut development. The major contribution to HSCR risk is from common sequence variants in RET enhancers with additional risk from rare coding variants in many genes. Here, we demonstrate that these RET enhancer variants specifically alter the human fetal gut development program through significant decreases in gene expression of RET, members of the RET-EDNRB gene regulatory network (GRN), other HSCR genes, with an altered transcriptome of 2,382 differentially expressed genes across diverse neuronal and mesenchymal functions. A parsimonious hypothesis for these results is that beyond RET's direct effect on its GRN, it also has a major role in enteric neural crest-derived cell (ENCDC) precursor proliferation, its deficiency reducing ENCDCs with relative expansion of non-ENCDC cells. Thus, genes reducing RET proliferative activity can potentially cause HSCR. One such class is the 23 RET-dependent transcription factors enriched in early gut development. We show that their knockdown in human neuroblastoma SK-N-SH cells reduces RET and/or EDNRB gene expression, expanding the RET-EDNRB GRN. The human embryos we studied had major remodeling of the gut transcriptome but were unlikely to have had HSCR: thus, genetic or epigenetic changes in addition to those in RET are required for aganglionosis.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, United States of America
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States of America
| | - Lauren E. Fries
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, United States of America
| | - Or Yaacov
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, United States of America
| | - Nan Hu
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, United States of America
| | - Hanna E. Berk-Rauch
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, United States of America
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, United States of America
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States of America
| |
Collapse
|
7
|
Yang W, Chen SC, Wang TE, Tsai PS, Chen JC, Chen PL. L1cam alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Gene 2023; 881:147643. [PMID: 37453721 DOI: 10.1016/j.gene.2023.147643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital disorder of functional bowel obstruction due to the absence of enteric ganglia in distal bowel. Different L1cam variants were reportedly associated with L1cam syndrome and HSCR, whose phenotypes lacked predictable relevance to their genotypes. Using next-generation sequencing (NGS), we found an L1CAM de novo frameshift mutation in a female with mild hydrocephalus and skip-type HSCR. A nearly identical L1cam variant was introduced into FVB/NJ mice via the CRISPR-EZ method. A silent mutation was created via ssODN to gain an artificial Ncol restriction enzyme site for easier genotyping. Six L1cam protein-coding alternative transcripts were quantitatively measured. Immunofluorescence staining with polyclonal and monoclonal L1cam antibodies was used to characterize L1cam isoform proteins in enteric ganglia. Fifteen mice, seven males and eight females, generated via CRISPR-EZ, were confirmed to carry the L1cam frameshift variant, resulting in a premature stop codon. There was no prominent hydrocephalus nor HSCR-like presentation in these mice, but male infertility was noticed after observation for three generations in a total of 176 mice. Full-length L1cam transcripts were detected at a very low level in the intestinal tissues and almost none in the brain of these mice. Alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Immunofluorescence confirmed no fulllength L1cam protein in enteric ganglia. These shorter L1cam isoform proteins might play a role in protecting L1cam knockdown mice from HSCR.
Collapse
Affiliation(s)
- Wendy Yang
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Chieh Chen
- Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Tse-En Wang
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Jeng-Chang Chen
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan.
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taiwan; Departments of Medical Genetics, National Taiwan University Hospital, Taiwan; Departments of Internal Medicine, National Taiwan University Hospital, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Yang Q, Wang F, Wang Z, Guo J, Chang T, Dalielihan B, Yang G, Lei C, Dang R. mRNA sequencing provides new insights into the pathogenesis of Hirschsprung's disease in mice. Pediatr Surg Int 2023; 39:268. [PMID: 37676292 DOI: 10.1007/s00383-023-05544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE The aim of this study is to use RNA sequencing and RT-qPCR to identify the main susceptibility genes linked to the occurrence and development of Hirschsprung disease in the colonic tissues of EDNRBm1yzcm and wild mice. METHODS RNA was extracted from colon tissues of 3 mutant homozygous mice and 3 wild mice. RNA degradation, contamination concentration, and integrity were then measured. The extracted RNA was then sequenced using the Illumina platform. The obtained sequence data are filtered to ensure data quality and compared to the reference genome for further analysis. DESeq2 was used for gene expression analysis of the raw data. In addition, graphene oxide enrichment analysis and RT-qPCR validation were also performed. RESULTS This study identified 8354 differentially expressed genes in EDNRBm1yzcm and wild mouse colon tissues by RNA sequencing, including 4346 upregulated genes and 4005 downregulated genes. Correspondingly, the results of RT-qPCR analysis showed good correlation with the transcriptome data. In addition, GO and KEGG enrichment results suggested that there were 8103 terms and 320 pathways in all DEGs. When P < 0.05, 1081 GO terms and 320 KEGG pathways reached a significant level. Finally, through the existing studies and the enrichment results of differentially expressed genes, it was determined that axon guidance and the focal adhesion pathway may be closely related to the occurrence of HSCR. CONCLUSIONS This study analyzed and identified the differential genes in colonic tissues between EDNRBm1yzcm mice and wild mice, which provided new insight for further mining the potential pathogenic genes of Hirschsprung's disease.
Collapse
Affiliation(s)
- Qiwen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Zhaofei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Jiajun Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Tingjin Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Baligen Dalielihan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Ge Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China.
| |
Collapse
|
9
|
Yang Y, Xia L, Yang W, Wang Z, Meng W, Zhang M, Ma Q, Gou J, Wang J, Shu Y, Wu X. Transcriptome profiling of intact bowel wall reveals that PDE1A and SEMA3D are possible markers with roles in enteric smooth muscle apoptosis, proliferative disorders, and dysautonomia in Crohn's disease. Front Genet 2023; 14:1194882. [PMID: 37727374 PMCID: PMC10505932 DOI: 10.3389/fgene.2023.1194882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a complex and multifactorial inflammatory condition, comprising Crohn's disease (CD) and ulcerative colitis (UC). While numerous studies have explored the immune response in IBD through transcriptional profiling of the enteric mucosa, the subtle distinctions in the pathogenesis of Crohn's disease and ulcerative colitis remain insufficiently understood. Methods: The intact bowel wall specimens from IBD surgical patients were divided based on their inflammatory status into inflamed Crohn's disease (iCD), inflamed ulcerative colitis (iUC) and non-inflamed (niBD) groups for RNA sequencing. Differential mRNA GO (Gene Ontology), and KEGG (Kyoto Encyclopedia of Genes and Genomes), and GSEA (Gene Set Enrichment Analysis) bioinformatic analyses were performed with a focus on the enteric autonomic nervous system (ANS) and smooth muscle cell (SMC). The transcriptome results were validated by quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). Results: A total of 2099 differentially expressed genes were identified from the comparison between iCD and iUC. Regulation of SMC apoptosis and proliferation were significantly enriched in iCD, but not in iUC. The involved gene PDE1A in iCD was 4-fold and 1.5-fold upregulated at qPCR and IHC compared to that in iUC. Moreover, only iCD was significantly associated with the gene sets of ANS abnormality. The involved gene SEMA3D in iCD was upregulated 8- and 5-fold at qPCR and IHC levels compared to iUC. Conclusion: These findings suggest that PDE1A and SEMA3D may serve as potential markers implicated in enteric smooth muscle apoptosis, proliferative disorders, and dysautonomia specifically in Crohn's disease.
Collapse
Affiliation(s)
- Yun Yang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Chengdu Shangjin Nanfu Hospital, Sichuan University, Chengdu, China
| | - Lin Xia
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenming Yang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjian Meng
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mingming Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Chengdu Shangjin Nanfu Hospital, Sichuan University, Chengdu, China
| | - Qin Ma
- Department of General Surgery, West China Chengdu Shangjin Nanfu Hospital, Sichuan University, Chengdu, China
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junhe Gou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Junjian Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Shu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Wu
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal and Pelvic Floor Center, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Tomizawa S, Takano S, Eto R, Takayashiki T, Kuboki S, Ohtsuka M. Semaphorin 3 C enhances putative cancer stemness and accelerates peritoneal dissemination in pancreatic cancer. Cancer Cell Int 2023; 23:155. [PMID: 37537633 PMCID: PMC10401755 DOI: 10.1186/s12935-023-03008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
PURPOSE Semaphorins, axon guidance cues in neuronal network formation, have been implicated in cancer progression. We previously identified semaphorin 3 C (SEMA3C) as a secreted protein overexpressed in pancreatic ductal adenocarcinoma (PDAC). We, therefore, hypothesized that SEMA3C supports PDAC progression. In this study, we aimed to investigate the clinical features of SEMA3C, especially its association with chemo-resistance and peritoneal dissemination. METHODS In resected PDAC tissues, we assessed the relationship between SEMA3C expression and clinicopathological features by immunohistochemistry. In vitro studies, we have shown invasion assay, pancreatosphere formation assay, colony formation assay, cytotoxicity assay, and activation of SEMA3C downstream targets (c-Met, Akt, mTOR). In vivo, we performed a preclinical trial to confirm the efficacy of SEMA3C shRNA knockdown and Gemcitabine and nab-Paclitaxel (GnP) in an orthotopic transplantation mouse model and in peritoneal dissemination mouse model. RESULTS In resected PDAC tissues, SEMA3C expression correlated with invasion and peritoneal dissemination after surgery. SEMA3C promoted cell invasion, self-renewal, and colony formation in vitro. We further demonstrated that SEMA3C knockdown increased Gem-induced cytotoxicity by suppressing the activation of the Akt/mTOR pathway via the c-Met receptor. Combination therapy with SEMA3C knockdown and GnP reduced tumor growth and peritoneal dissemination. CONCLUSIONS SEMA3C enhances peritoneal dissemination by regulating putative cancer stemness and Gem resistance and activates phosphorylation of the Akt/mTOR pathway via c-Met. Our findings provide a new avenue for therapeutic strategies in regulating peritoneal dissemination during PDAC progression.
Collapse
Affiliation(s)
- Satoshi Tomizawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8677, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8677, Japan.
| | - Ryotaro Eto
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8677, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8677, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8677, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8677, Japan
| |
Collapse
|
11
|
Chi S, Li S, Cao G, Guo J, Han Y, Zhou Y, Zhang X, Li Y, Luo Z, Li X, Rong L, Zhang M, Li L, Tang S. The interplay of common genetic variants NRG1 rs2439302 and RET rs2435357 increases the risk of developing Hirschsprung's disease. Front Cell Dev Biol 2023; 11:1184799. [PMID: 37484916 PMCID: PMC10361661 DOI: 10.3389/fcell.2023.1184799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: As a congenital and genetically related disease, many single nucleotide polymorphisms (SNPs) have been reported to be associated with the risk of HSCR. Our previous research showed that SNP rs2439302 (NRG1) interacted with rs2435357 (RET) to increase the risk of HSCR development. However, the underlying molecular mechanism is still not well understood. Methods: SNP rs2439302 (NRG1) and rs2435357 (RET) were genotyped in 470 HSCR cases. The expression of NRG1 and RET was investigated in the colon of HSCR patients. Knockdown of the NRG1 and RET homologs was performed in zebrafish to investigate their synergistic effect on ENS development. The effect of SNP rs2439302 and rs2435357 polymorphism on neuron proliferation, migration, and differentiation were investigated in SHSY-5Y cells and IPSCs. Results: Significant downregulation of NRG1 and RET expression was noticed in the aganglionic segment of HSCR patients and SHSY-5Y cells with rs2439302 GG/rs2435357 TT genotype. NRG1 and RET double mutants caused the most severe reduction in enteric neuron numbers than NRG1 single mutant or RET single mutant in the hindgut of zebrafish. SHSY-5Y cells and IPSCs with rs2439302 GG/rs2435357 TT genotype exhibited a decreased proliferative, migration, and differentiative capacity. CTCF showed a considerably higher binding ability to SNP rs2439302 CC than GG. NRG1 reduction caused a further decrease in SOX10 expression via the PI3K/Akt pathway, which regulates RET expression by directly binding to rs2435357. Discussion: SNP rs2439302 (NRG1) GG increases the risk of developing HSCR by affecting the binding of transcription factor CTCF and interacting with rs2435357 (RET) to regulate RET expression via the PI3K/Akt/SOX10 pathway.
Collapse
Affiliation(s)
- Shuiqing Chi
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoqing Cao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialing Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhou
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhibin Luo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyang Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liying Rong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengxin Zhang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linglu Li
- China Zebrafish Resource Center, National Aquatic Biological Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shaotao Tang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Li Z, Lui KNC, Lau ST, Lai FPL, Li P, Chung PHY, Wong KKY, Tam PKH, Garica-Barcelo MM, Hui CC, Sham PC, Ngan ESW. Transcriptomics of Hirschsprung disease patient-derived enteric neural crest cells reveals a role for oxidative phosphorylation. Nat Commun 2023; 14:2157. [PMID: 37061531 PMCID: PMC10105741 DOI: 10.1038/s41467-023-37928-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/01/2023] [Indexed: 04/17/2023] Open
Abstract
Hirschsprung disease is characterized by the absence of enteric neurons caused by the defects of enteric neural crest cells, leading to intestinal obstruction. Here, using induced pluripotent stem cell-based models of Hirschsprung and single-cell transcriptomic analysis, we identify a gene set of 118 genes commonly dysregulated in all patient enteric neural crest cells, and suggest HDAC1 may be a key regulator of these genes. Furthermore, upregulation of RNA splicing mediators and enhanced alternative splicing events are associated with severe form of Hirschsprung. In particular, the higher inclusion rate of exon 9 in PTBP1 and the perturbed expression of a PTBP1-target, PKM, are significantly enriched in these patient cells, and associated with the defective oxidative phosphorylation and impaired neurogenesis. Hedgehog-induced oxidative phosphorylation significantly enhances the survival and differentiation capacity of patient cells. In sum, we define various factors associated with Hirschsprung pathogenesis and demonstrate the implications of oxidative phosphorylation in enteric neural crest development and HSCR pathogenesis.
Collapse
Affiliation(s)
- Zhixin Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kathy Nga-Chu Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sin-Ting Lau
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Frank Pui-Ling Lai
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Patrick Ho-Yu Chung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kenneth Kak-Yuen Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Paul Kwong-Hing Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Elly Sau-Wai Ngan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
13
|
Xu Z, Yan Y, Gu B, Cai W, Wang Y. Up-Regulation of microRNA-424 Causes an Imbalance in AKT Phosphorylation and Impairs Enteric Neural Crest Cell Migration in Hirschsprung Disease. Int J Mol Sci 2023; 24:ijms24076700. [PMID: 37047673 PMCID: PMC10094892 DOI: 10.3390/ijms24076700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Insights into the role of microRNAs (miRNAs) in disease pathogenesis have made them attractive therapeutic targets, and numerous miRNAs have been functionally linked to Hirschsprung disease (HSCR), a life-threatening genetic disorder due to defective migration, proliferation, and colonization of enteric neural crest cells (ENCCs) in the gut. Recent studies have demonstrated that miR-424 strongly inhibits migration in a variety of cell types and its potential target RICTOR is essential for neural crest cell development. We therefore sought to interrogate how miR-424 and RICTOR contribute to the pathogenesis of HSCR. We utilized HSCR cases and human neural cells to evaluate the miR-424-mediated regulation of RICTOR and the downstream AKT phosphorylation. We further developed an ex vivo model to assess the effects of miR-424 on ENCC migration and proliferation. Then, single-cell atlases of gene expression in both human and mouse fetal intestines were used to determine the characteristics of RICTOR and AKT expression in the developing gut. Our findings demonstrate that miR-424 levels are markedly increased in the colonic tissues of patients with HSCR and that it regulates human neural cell migration by directly targeting RICTOR. Up-regulation of miR-424 leads to decreased AKT phosphorylation levels in a RICTOR-dependent manner, and this, in turn, impairs ENCC proliferation and migration in the developing gut. Interestingly, we further identified prominent RICTOR and AKT expressions in the enteric neurons and other types of enteric neural cells in human and mouse fetal intestines. Our present study reveals the role of the miR-424/RICTOR axis in HSCR pathogenesis and indicates that miR-424 is a promising candidate for the development of targeted therapies against HSCR.
Collapse
Affiliation(s)
- Ze Xu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Yingnan Yan
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Beilin Gu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Yang Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
| |
Collapse
|
14
|
Abstract
Hirschsprung's disease (HSCR) is a classical model of enteric neuropathy, occurring in approximately 2-2.8 in 10,000 newborns. It is the commonest form of congenital bowel obstruction and is characterized by the absence of enteric ganglia in distal colon. Recent advances in genome-wide association analysis (GWAS) and next generation sequencing (NGS) studies have led to the discovery of a number of new HSCR candidate genes, thereby providing new insights into the genetic architecture and molecular mechanisms of the disease. Altogether, these findings indicated that genetic heterogeneity, variable penetrance and expressivity, and genetic interaction are the pervasive characteristics of HSCR genetics. In this review, we will provide an update on the genetic landscape of HSCR and discuss how the common and rare variants may act together to modulate the phenotypic manifestation. Translating the genetic findings to genetic risk prediction and to optimize clinical outcomes are undoubtedly the ultimate goals for genetic studies on HSCR. From this perspective, we will further discuss the major obstacles in the clinical translation of these latest genetic findings. Lastly, new measures to address these clinical challenges are suggested to advance precision medicine and to develop novel alternative therapies.
Collapse
Affiliation(s)
- Clara Sze-Man Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .,Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institute Collaboration in Regenerative Medicine, Hong Kong SAR, China. .,Division of Paediatric Surgery, Department of Surgery, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China.
| | - Anwarul Karim
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanxin Zhong
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Patrick Ho-Yu Chung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Paul Kwong-Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .,Faculty of Medicine, Macau University of Science and Technology, Macao, China.
| |
Collapse
|
15
|
Whole genome sequencing reveals epistasis effects within RET for Hirschsprung disease. Sci Rep 2022; 12:20423. [PMID: 36443333 PMCID: PMC9705416 DOI: 10.1038/s41598-022-24077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Common variants in RET and NRG1 have been associated with Hirschsprung disease (HSCR), a congenital disorder characterised by incomplete innervation of distal gut, in East Asian (EA) populations. However, the allelic effects so far identified do not fully explain its heritability, suggesting the presence of epistasis, where effect of one genetic variant differs depending on other (modifier) variants. Few instances of epistasis have been documented in complex diseases due to modelling complexity and data challenges. We proposed four epistasis models to comprehensively capture epistasis for HSCR between and within RET and NRG1 loci using whole genome sequencing (WGS) data in EA samples. 65 variants within the Topologically Associating Domain (TAD) of RET demonstrated significant epistasis with the lead enhancer variant (RET+3; rs2435357). These epistatic variants formed two linkage disequilibrium (LD) clusters represented by rs2506026 and rs2506028 that differed in minor allele frequency and the best-supported epistatic model. Intriguingly, rs2506028 is in high LD with one cis-regulatory variant (rs2506030) highlighted previously, suggesting that detected epistasis might be mediated through synergistic effects on transcription regulation of RET. Our findings demonstrated the advantages of WGS data for detecting epistasis, and support the presence of interactive effects of regulatory variants in RET for HSCR.
Collapse
|
16
|
Zhou L, Wang B, Xie H, Du C, Tang J, Tang W. Intrauterine exposure to oxidative stress induces caspase-1-dependent enteric nerve cell pyroptosis. Pediatr Surg Int 2022; 38:1555-1567. [PMID: 35995981 DOI: 10.1007/s00383-022-05199-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE This study determined whether oxidative stress causes the developmental abnormalities of the enteric nervous system during the embryonic period. METHODS Using the test results of tissue specimens of children with Hirschsprung disease (HSCR), we established a pregnant rat model of oxidative stress and a cellular oxidative stress model to conduct related molecular, cellular, and histopathological experiments for exploration and validation. RESULTS The results of the quantitative real-time polymerase chain reaction assay indicated overexpression of pyroptosis markers (NLRP3, ASC, and caspase-1) in HSCR lesions and newborn pups in the oxidative stress group (treated with D-galactose). The expression of cathepsin D was significantly decreased in intestinal tissues of newborn pups in the oxidative stress group compared to the control group. Reactive oxygen species scavengers (N-acetyl-cysteine, NAC), the caspase-1 inhibitor (VX-765), and the NLRP3 siRNA could reverse the release of LDH, decrease the number of propidium iodide stained cells, and reduce the percentage of TUNEL/caspase-3 double-positive cells in the H2O2-treated group. CONCLUSION Oxidative stress can induce the death of enteric nerve cells by activating caspase-1-dependent pyroptosis through NLRP3 inflammasomes, which may contribute to abnormal enteric nervous system development.
Collapse
Affiliation(s)
- Lingling Zhou
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of General Surgery, Children's Hospital of Wujiang District, Suzhou, People's Republic of China
| | - Bingyu Wang
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of Pediatric Surgery, Huai'an First People's Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hua Xie
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunxia Du
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jie Tang
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Weibing Tang
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
17
|
Xiao J, Meng X, Chen K, Wang J, Wu L, Chen Y, Yu X, Feng J, Li Z. Down-Regulation of Double C2 Domain Alpha Promotes the Formation of Hyperplastic Nerve Fibers in Aganglionic Segments of Hirschsprung’s Disease. Int J Mol Sci 2022; 23:ijms231810204. [PMID: 36142117 PMCID: PMC9499397 DOI: 10.3390/ijms231810204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Hirschsprung’s disease (HSCR) is a common developmental anomaly of the gastrointestinal tract in children. The most significant characteristics of aganglionic segments in HSCR are hyperplastic extrinsic nerve fibers and the absence of endogenous ganglion plexus. Double C2 domain alpha (DOC2A) is mainly located in the nucleus and is involved in Ca2+-dependent neurotransmitter release. The loss function of DOC2A influences postsynaptic protein synthesis, dendrite morphology, postsynaptic receptor density and synaptic plasticity. It is still unknown why hyperplastic extrinsic nerve fibers grow into aganglionic segments in HSCR. We detected the expression of DOC2A in HSCR aganglionic segment colons and established three DOC2A-knockdown models in the Neuro-2a cell line, neural spheres and zebrafish separately. First, we detected the protein and mRNA expression of DOC2A and found that DOC2A was negatively correlated with AChE+ grades. Second, in the Neuro-2a cell lines, we found that the amount of neurite outgrowth and mean area per cell were significantly increased, which suggested that the inhibition of DOC2A promotes nerve fiber formation and the neuron’s polarity. In the neural spheres, we found that the DOC2A knockdown was manifested by a more obvious connection of nerve fibers in neural spheres. Then, we knocked down Doc2a in zebrafish and found that the down-regulation of Doc2a accelerates the formation of hyperplastic nerve fibers in aganglionic segments in zebrafish. Finally, we detected the expression of MUNC13-2 (UNC13B), which was obviously up-regulated in Grade3/4 (lower DOC2A expression) compared with Grade1/2 (higher DOC2A expression) in the circular muscle layer and longitudinal muscle layer. The expression of UNC13B was up-regulated with the knocking down of DOC2A, and there were protein interactions between DOC2A and UNC13B. The down-regulation of DOC2A may be an important factor leading to hyperplastic nerve fibers in aganglionic segments of HSCR. UNC13B seems to be a downstream molecule to DOC2A, which may participate in the spasm of aganglionic segments of HSCR patient colons.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Yingjian Chen
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
- Correspondence: (J.F.); (Z.L.)
| | - Zhi Li
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
- Correspondence: (J.F.); (Z.L.)
| |
Collapse
|
18
|
Wang N, Xi J, Lan C, Wu Y, Zhu Y, Zuo X, Zhang Y. Association between IKBKAP polymorphisms and Hirschsprung's disease susceptibility in Chinese children. Transl Pediatr 2022; 11:789-796. [PMID: 35800263 PMCID: PMC9253937 DOI: 10.21037/tp-21-550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is a rare congenital disease in which enteric nervous system (ENS) in the distal intestine is absent. HSCR is a disease involving genetic factors and environmental factors. Despite a series of genes have been revealed to contribute to HSCR, many HSCR associated genes were yet not identified. Previous studies had identified that a potential susceptibility gene of HSCR was an inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex-associated protein (IKBKAP). The study aimed to explore the association of genetic variants in IKBKAP and HSCR susceptibility in southern Chinese children. METHODS Single nucleotide polymorphism (SNPs) were genotyped by the Mass ARRAY iPLEX Gold system (Sequenom, San Diego, CA, USA) on all samples, which included 1,470 HSCR children (cases) and 1,473 healthy children (controls). The associations between SNPs and HSCR or clinical subtypes were assessed by comparing their allele frequencies in corresponding case and control samples. Different genetic models, including additive, recessive, and dominant models, were tested using PLINK 1.9 software. RESULTS Further subgroup analysis revealed rs2275630 as a total colonic aganglionosis (TCA)-specific susceptibility locus. The present study is the first to indicate that IKBKAP rs2275630 were associated with HSCR susceptibility, especially in TCA patients. CONCLUSIONS We conclude that IKBKAP rs2275630 is a susceptibility gene of HSCR.
Collapse
Affiliation(s)
- Ning Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiaojiao Xi
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chaoting Lan
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuxin Wu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yun Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Zuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Mueller JL, Goldstein AM. The science of Hirschsprung disease: What we know and where we are headed. Semin Pediatr Surg 2022; 31:151157. [PMID: 35690468 DOI: 10.1016/j.sempedsurg.2022.151157] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The enteric nervous system (ENS) is a rich network of neurons and glial cells that comprise the gastrointestinal tract's intrinsic nervous system and are responsible for controlling numerous complex functions, including digestion, transit, secretion, barrier function, and maintenance of a healthy microbiome. Development of a functional ENS relies on the coordinated interaction between enteric neural crest-derived cells and their environment as the neural crest-derived cells migrate rostrocaudally along the embryonic gut mesenchyme. Congenital or acquired disruption of ENS development leads to various neurointestinal diseases. Hirschsprung disease is a congenital neurocristopathy, a disease of the neural crest. It is characterized by a variable length of distal colonic aganglionosis due to a failure in enteric neural crest-derived cell proliferation, migration, differentiation, and/or survival. In this review, we will review the science of Hirschsprung disease, targeting an audience of pediatric surgeons. We will discuss the basic biology of normal ENS development, as well as what goes awry in ENS development in Hirschsprung disease. We will review animal models that have been integral to studying this disease, as well as current hot topics and future research, including genetic risk profiling, stem cell therapy, non-invasive diagnostic techniques, single-cell sequencing techniques, and genotype-phenotype correlation.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Massachusetts General Hospital for Children, Harvard Medical School, 55 Fruit St., WRN 1151, Boston, MA 02114, United States
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Massachusetts General Hospital for Children, Harvard Medical School, 55 Fruit St., WRN 1151, Boston, MA 02114, United States.
| |
Collapse
|
20
|
Mu J, Zhang Y, Liao G, Li X, Luo Y, Huang Z, Luo C, Wu K. Association of rs2435357 and rs2506030 polymorphisms in RET with susceptibility to hirschsprung disease: A systematic review and meta-analysis. Front Pediatr 2022; 10:1030933. [PMID: 36324815 PMCID: PMC9618721 DOI: 10.3389/fped.2022.1030933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There are numerous published studies on the association between RET polymorphisms and susceptibility to Hirschsprung disease (HSCR). However, some of the results are inconsistent and the studies were conducted with small sample sizes. Therefore, we performed a meta-analysis to clarify the relationship. METHODS Relevant data were retrieved from PubMed, Web of Science, Cochrane Library, EMBASE, CNKI, and Google Scholar according to PRISMA guidelines. Odds ratios (OR) were calculated to assess susceptibility to HSCR. Meanwhile, heterogeneity and publication bias were also calculated by R software package (version 4.2.1). The protocol was published in PROSPERO (CRD42022348940). RESULTS A total of 12 studies were included in the meta-analysis and comprised 12 studies on the RET polymorphism rs2435357 (1,939 subjects and 3,613 controls) and 7 studies on the RET polymorphism rs2506030 (1,849 patients with HSCR and 3,054 controls). The analysis revealed that rs2435357 [A vs. G: odds ratio (OR) = 3.842, 95% confidence interval (CI) 2.829-5.220; AA vs. GG: OR = 2.597, 95% CI 1.499-4.501; AA + AG vs. GG: OR = 6.789, 95% CI 3.0711-14.9973; AA vs. AG + GG: OR = 8.156, 95%CI 5.429-12.253] and rs2506030 (A vs. G: OR = 0.519, 95% CI 0.469-0.573; AA vs. GG: OR = 0.543, 95% CI 0.474-0.623; AA + AG vs. GG: OR = 0.410, 95% CI 0.360-0.468; AA vs. AG + GG: OR = 0.361, 95%CI 0.292-0.447) were significantly associated with susceptibility to HSCR. CONCLUSIONS The polymorphisms rs2435357 and rs2506030 in the RET may be related to susceptibility to HSCR, of which rs2435357 (T > C) is the causal locus and rs2506030 (A > G) is the protective locus. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier:CRD42022348940.
Collapse
Affiliation(s)
- Jianhua Mu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxi Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Guoying Liao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinxin Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yinyan Luo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaorong Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Caiyun Luo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Wu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Chatterjee S, Karasaki KM, Fries LE, Kapoor A, Chakravarti A. A multi-enhancer RET regulatory code is disrupted in Hirschsprung disease. Genome Res 2021; 31:2199-2208. [PMID: 34782358 PMCID: PMC8647834 DOI: 10.1101/gr.275667.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/05/2021] [Indexed: 01/25/2023]
Abstract
The major genetic risk factors for Hirschsprung disease (HSCR) are three common polymorphisms within cis-regulatory elements (CREs) of the receptor tyrosine kinase gene RET, which reduce its expression during enteric nervous system (ENS) development. These risk variants attenuate binding of the transcription factors RARB, GATA2, and SOX10 to their cognate CREs, reduce RET gene expression, and dysregulate other ENS and HSCR genes in the RET-EDNRB gene regulatory network (GRN). Here, we use siRNA, ChIP, and CRISPR-Cas9 deletion analyses in the SK-N-SH cell line to ask how many additional HSCR-associated risk variants reside in RET CREs that affect its gene expression. We identify 22 HSCR-associated variants in candidate RET CREs, of which seven have differential allele-specific in vitro enhancer activity, and four of these seven affect RET gene expression; of these, two enhancers are bound by the transcription factor PAX3. We also show that deleting multiple variant-containing enhancers leads to synergistic effects on RET gene expression. These, coupled with our prior results, show that common sequence variants in at least 10 RET enhancers affect HSCR risk, seven with experimental evidence of affecting RET gene expression, extending the known RET-EDNRB GRN to reveal an extensive regulatory code modulating disease risk at a single gene.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Kameko M Karasaki
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Lauren E Fries
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Ashish Kapoor
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York 10016, USA
| |
Collapse
|
22
|
Kapoor A, Nandakumar P, Auer DR, Sosa MX, Ross H, Bollinger J, Yan J, Berrios C, Chakravarti A. Multiple, independent, common variants at RET, SEMA3 and NRG1 gut enhancers specify Hirschsprung disease risk in European ancestry subjects. J Pediatr Surg 2021; 56:2286-2294. [PMID: 34006365 PMCID: PMC8526751 DOI: 10.1016/j.jpedsurg.2021.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Hirschsprung disease (HSCR) is a developmental disorder of the enteric nervous system (ENS) characterized by congenital aganglionosis arising from coding variants in ENS genes causing partial or total loss-of-function. Low-penetrance, common, noncoding variants at RET, SEMA3 and NRG1 loci are also associated with HSCR, with small-to-moderate loss of gene expression mediated through sequence variants in cis-regulatory elements (CRE) as another causal mechanism. Since these latter variants are common, many individuals carry multiple risk variants. However, the extent and combinatorial effects of all putative CRE variants within and across these loci on HSCR is unknown. METHODS Using 583 HSCR subjects, one of the largest samples of European ancestry studied, and genotyping 56 tag variants, we evaluated association of all common variants overlapping putative gut CREs and fine-mapped causal variants at RET, SEMA3 and NRG1. RESULTS We demonstrate that 28 and 8 tag variants, several of which are genetically independent, overlap putative-enhancers at the RET and SEMA3 loci, respectively, as well as two fine-mapped tag variants at the NRG1 locus, are significantly associated with HSCR. Importantly, disease risk increases with increasing numbers of risk alleles from multiple variants within and across these loci, varying >25-fold across individuals. CONCLUSION This increasing allele number-dependent risk, we hypothesize, arises from HSCR-relevant ENS cells sensing the reduced gene expression at multiple ENS genes since their developmental effects are integrated through gene regulatory networks.
Collapse
Affiliation(s)
- Ashish Kapoor
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Priyanka Nandakumar
- McKusick-Nathans Institute of Genetic Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dallas R. Auer
- McKusick-Nathans Institute of Genetic Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Maria X. Sosa
- McKusick-Nathans Institute of Genetic Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Holly Ross
- McKusick-Nathans Institute of Genetic Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juli Bollinger
- McKusick-Nathans Institute of Genetic Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jia Yan
- McKusick-Nathans Institute of Genetic Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Courtney Berrios
- McKusick-Nathans Institute of Genetic Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
23
|
Roles of Enteric Neural Stem Cell Niche and Enteric Nervous System Development in Hirschsprung Disease. Int J Mol Sci 2021; 22:ijms22189659. [PMID: 34575824 PMCID: PMC8465795 DOI: 10.3390/ijms22189659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
The development of the enteric nervous system (ENS) is highly modulated by the synchronized interaction between the enteric neural crest cells (ENCCs) and the neural stem cell niche comprising the gut microenvironment. Genetic defects dysregulating the cellular behaviour(s) of the ENCCs result in incomplete innervation and hence ENS dysfunction. Hirschsprung disease (HSCR) is a rare complex neurocristopathy in which the enteric neural crest-derived cells fail to colonize the distal colon. In addition to ENS defects, increasing evidence suggests that HSCR patients may have intrinsic defects in the niche impairing the extracellular matrix (ECM)-cell interaction and/or dysregulating the cellular niche factors necessary for controlling stem cell behaviour. The niche defects in patients may compromise the regenerative capacity of the stem cell-based therapy and advocate for drug- and niche-based therapies as complementary therapeutic strategies to alleviate/enhance niche-cell interaction. Here, we provide a summary of the current understandings of the role of the enteric neural stem cell niche in modulating the development of the ENS and in the pathogenesis of HSCR. Deciphering the contribution of the niche to HSCR may provide important implications to the development of regenerative medicine for HSCR.
Collapse
|
24
|
Chakravarti A. Magnitude of Mendelian versus complex inheritance of rare disorders. Am J Med Genet A 2021; 185:3287-3293. [PMID: 34418293 DOI: 10.1002/ajmg.a.62463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022]
Abstract
In medical genetics, the vast majority of patients with a currently known genetic basis harbor a rare deleterious allele explaining its Mendelian inheritance. Increasingly, for these phenotypes, we recognize exceptions to Mendelian expectations from non-penetrance of clinical disease to significant inter-individual variation in clinical manifestations, likely reflecting the actions of additional modifier genes. Despite recent progress, we still remain ignorant about the molecular basis for many rare disorders presumed to be Mendelian. The molecular evidence increasingly suggests a role for multiple genes in some of these cases, but for how many? In this article, I discuss why equating a phenotype as Mendelian or complex may be short-sighted or even erroneous. As we learn more about the functions of the human genome with its genes in networks, we should view the phenotype of an individual patient as arising from his or her total genomic deleterious burden in a set of functionally inter-related genes affecting that phenotype. This can sometimes arise from deleterious allele(s) at a single gene (Mendelian inheritance) creating a specific biochemical deficiency (or excess) but could just as frequently arise from the cumulative effects of multiple disease alleles (complex inheritance) leading to the same biochemical deficiency (or excess).
Collapse
Affiliation(s)
- Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
25
|
Kuil LE, MacKenzie KC, Tang CS, Windster JD, Le TL, Karim A, de Graaf BM, van der Helm R, van Bever Y, Sloots CEJ, Meeussen C, Tibboel D, de Klein A, Wijnen RMH, Amiel J, Lyonnet S, Garcia-Barcelo MM, Tam PKH, Alves MM, Brooks AS, Hofstra RMW, Brosens E. Size matters: Large copy number losses in Hirschsprung disease patients reveal genes involved in enteric nervous system development. PLoS Genet 2021; 17:e1009698. [PMID: 34358225 PMCID: PMC8372947 DOI: 10.1371/journal.pgen.1009698] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 08/18/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Hirschsprung disease (HSCR) is a complex genetic disease characterized by absence of ganglia in the intestine. HSCR etiology can be explained by a unique combination of genetic alterations: rare coding variants, predisposing haplotypes and Copy Number Variation (CNV). Approximately 18% of patients have additional anatomical malformations or neurological symptoms (HSCR-AAM). Pinpointing the responsible culprits within a CNV is challenging as often many genes are affected. Therefore, we selected candidate genes based on gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics. Next, we used a zebrafish model to investigate whether loss of these genes affects enteric neuron development in vivo. This study included three groups of patients, two groups without coding variants in disease associated genes: HSCR-AAM and HSCR patients without associated anomalies (HSCR-isolated). The third group consisted of all HSCR patients in which a confirmed pathogenic rare coding variant was identified. We compared these patient groups to unaffected controls. Predisposing haplotypes were determined, confirming that every HSCR subgroup had increased contributions of predisposing haplotypes, but their contribution was highest in isolated HSCR patients without RET coding variants. CNV profiling proved that specifically HSCR-AAM patients had larger Copy Number (CN) losses. Gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics were used to determine plausible candidate genes located within CN losses. Validation in zebrafish using CRISPR/Cas9 targeting confirmed the contribution of UFD1L, TBX2, SLC8A1, and MAPK8 to ENS development. In addition, we revealed epistasis between reduced Ret and Gnl1 expression and between reduced Ret and Tubb5 expression in vivo. Rare large CN losses—often de novo—contribute to HSCR in HSCR-AAM patients. We proved the involvement of six genes in enteric nervous system development and Hirschsprung disease. Hirschsprung disease is a congenital disorder characterized by the absence of intestinal neurons in the distal part of the intestine. It is a complex genetic disorder in which multiple variations in our genome combined, result in disease. One of these variations are Copy Number Variations (CNVs): large segments of our genome that are duplicated or deleted. Patients often have Hirschsprung disease without other symptoms. However, a proportion of patients has additional associated anatomical malformations and neurological symptoms. We found that CNVs, present in patients with associated anomalies, are more often larger compared to unaffected controls or Hirschsprung patients without other symptoms. Furthermore, Copy Number (CN) losses are enriched for constrained coding regions (CCR; genes usually not impacted by genomic alterations in unaffected controls) of which the expression is higher in the developing intestinal neurons compared to the intestine. We modelled loss of these candidate genes in zebrafish by disrupting the zebrafish orthologues by genome editing. For several genes this resulted in changes in intestinal neuron development, reminiscent of HSCR observed in patients. The results presented here highlight the importance of Copy Number profiling, zebrafish validation and evaluating all CCR expressed in developing intestinal neurons during diagnostic evaluation.
Collapse
Affiliation(s)
- Laura E. Kuil
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Katherine C. MacKenzie
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Clara S. Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Centre, The University of Hong Kong–Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China
| | - Jonathan D. Windster
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thuy Linh Le
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | - Anwarul Karim
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bianca M. de Graaf
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert van der Helm
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cornelius E. J. Sloots
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Conny Meeussen
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - René M. H. Wijnen
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeanne Amiel
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | - Stanislas Lyonnet
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | | | - Paul K. H. Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Centre, The University of Hong Kong–Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China
| | - Maria M. Alves
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert M. W. Hofstra
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
26
|
Karim A, Tang CSM, Tam PKH. The Emerging Genetic Landscape of Hirschsprung Disease and Its Potential Clinical Applications. Front Pediatr 2021; 9:638093. [PMID: 34422713 PMCID: PMC8374333 DOI: 10.3389/fped.2021.638093] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/02/2021] [Indexed: 12/25/2022] Open
Abstract
Hirschsprung disease (HSCR) is the leading cause of neonatal functional intestinal obstruction. It is a rare congenital disease with an incidence of one in 3,500-5,000 live births. HSCR is characterized by the absence of enteric ganglia in the distal colon, plausibly due to genetic defects perturbing the normal migration, proliferation, differentiation, and/or survival of the enteric neural crest cells as well as impaired interaction with the enteric progenitor cell niche. Early linkage analyses in Mendelian and syndromic forms of HSCR uncovered variants with large effects in major HSCR genes including RET, EDNRB, and their interacting partners in the same biological pathways. With the advances in genome-wide genotyping and next-generation sequencing technologies, there has been a remarkable progress in understanding of the genetic basis of HSCR in the past few years, with common and rare variants with small to moderate effects being uncovered. The discovery of new HSCR genes such as neuregulin and BACE2 as well as the deeper understanding of the roles and mechanisms of known HSCR genes provided solid evidence that many HSCR cases are in the form of complex polygenic/oligogenic disorder where rare variants act in the sensitized background of HSCR-associated common variants. This review summarizes the roadmap of genetic discoveries of HSCR from the earlier family-based linkage analyses to the recent population-based genome-wide analyses coupled with functional genomics, and how these discoveries facilitated our understanding of the genetic architecture of this complex disease and provide the foundation of clinical translation for precision and stratified medicine.
Collapse
Affiliation(s)
- Anwarul Karim
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Clara Sze-Man Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Center, The University of Hong Kong—Karolinska Institute Collaboration in Regenerative Medicine, Hong Kong, China
| | - Paul Kwong-Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Center, The University of Hong Kong—Karolinska Institute Collaboration in Regenerative Medicine, Hong Kong, China
| |
Collapse
|
27
|
Diposarosa R, Bustam N, Sahiratmadja E, Susanto P, Sribudiani Y. Literature review: enteric nervous system development, genetic and epigenetic regulation in the etiology of Hirschsprung's disease. Heliyon 2021; 7:e07308. [PMID: 34195419 PMCID: PMC8237298 DOI: 10.1016/j.heliyon.2021.e07308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/16/2021] [Accepted: 06/10/2021] [Indexed: 01/13/2023] Open
Abstract
Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system (ENS) derived from neural crest cells (NCCs), which affects their migration, proliferation, differentiation, or preservation in the digestive tract, resulting in aganglionosis in the distal intestine. The regulation of both NCCs and the surrounding environment involves various genes, signaling pathways, transcription factors, and morphogens. Therefore, changes in gene expression during the development of the ENS may contribute to the pathogenesis of HSCR. This review discusses several mechanisms involved in the development of ENS, confirming that deviant genetic and epigenetic patterns, such as DNA methylation, histone modification, and microRNA (miRNA) regulation, can contribute to the development of neurocristopathy. Specifically, the epigenetic regulation of miRNA expression and its relationship to cellular interactions and gene activation through various major pathways in Hirschsprung's disease will be discussed.
Collapse
Affiliation(s)
- R. Diposarosa
- Department of Surgery, Division of Pediatric Surgery, Dr. Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - N.A. Bustam
- Department of Surgery, Division of Pediatric Surgery, Dr. Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Edhyana Sahiratmadja
- Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - P.S. Susanto
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Y. Sribudiani
- Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
28
|
Lu YJ, Yu WW, Cui MM, Yu XX, Song HL, Bai MR, Wu WJ, Gu BL, Wang J, Cai W, Chu X. Association Analysis of Variants of DSCAM and BACE2 With Hirschsprung Disease Susceptibility in Han Chinese and Functional Evaluation in Zebrafish. Front Cell Dev Biol 2021; 9:641152. [PMID: 34136475 PMCID: PMC8201997 DOI: 10.3389/fcell.2021.641152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
Hirschsprung disease (HSCR) has a higher incidence in children with Down syndrome (DS), which makes trisomy 21 a predisposing factor to HSCR. DSCAM and BACE2 are close together on the HSCR-associated critical region of chromosome 21. Common variants of DSCAM and rare variants of BACE2 were implicated to be associated with sporadic HSCR. However, the submucosal neuron defect of DS mouse model could not be rescued by normalization of Dscam. We aimed to explore the contribution of DSCAM and BACE2 to the development of the enteric nervous system (ENS) and HSCR susceptibility. We genotyped 133 tag single-nucleotide polymorphisms (SNPs) in DSCAM and BACE2 gene region in 420 HSCR patients and 1,665 controls of Han Chinese. Expression of DSCAM and BACE2 homologs was investigated in the developing gut of zebrafish. Overexpression and knockdown of the homologs were performed in zebrafish to investigate their roles in the development of ENS. Two DSCAM SNPs, rs430255 (PAddtive = 0.0052, OR = 1.36, 95% CI: 1.10–1.68) and rs2837756 (PAddtive = 0.0091, OR = 1.23, 95% CI: 1.05–1.43), showed suggestive association with HSCR risk. Common variants in BACE2 were not associated with HSCR risk. We observed dscama, dscamb, and bace2 expression in the developing gut of zebrafish. Knockdown of dscama, dscamb, and bace2 caused a reduction of enteric neurons in the hindgut of zebrafish. Overexpression of DSCAM and bace2 had no effects on neuron number in the hindgut of zebrafish. Our results suggested that common variation of DSCAM contributed to HSCR risk in Han Chinese. The dysfunction of both dscams and bace2 caused defects in enteric neuron, indicating that DSCAM and BACE2 might play functional roles in the occurrence of HSCR. These novel findings might shed new light on the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Yan-Jiao Lu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wen-Wen Yu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Meng-Meng Cui
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xian-Xian Yu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Huan-Lei Song
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Mei-Rong Bai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wen-Jie Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Bei-Lin Gu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Jun Wang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xun Chu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| |
Collapse
|
29
|
Gunadi, Ryantono F, Sethi R, Marcellus, Kalim AS, Imelda P, Melati D, Simanjaya S, Widitjiarso W, Pitaka RT, Arfian N, Iskandar K, Makhmudi A, Lai PS. Effect of semaphorin 3C gene variants in multifactorial Hirschsprung disease. J Int Med Res 2021; 49:300060520987789. [PMID: 33557656 PMCID: PMC7876767 DOI: 10.1177/0300060520987789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Cluster genes, specifically the class 3 semaphorins (SEMA3) including SEMA3C, have been associated with the development of Hirschsprung disease (HSCR) in Caucasian populations. We aimed to screen for rare and common variants in SEMA3C in Indonesian patients with HSCR. METHODS In this prospective clinical study, we analyzed SEMA3C gene variants in 55 patients with HSCR through DNA sequencing and bioinformatics analyses. RESULTS Two variants in SEMA3C were found: p.Val337Met (rs1527482) and p.Val579 = (rs2272351). The rare variant rs1527482 (A) was significantly overrepresented in our HSCR patients (9.1%) compared with South Asian controls in the 1000 Genomes (4.7%) and Exome Aggregation Consortium (ExAC; 3.5%) databases. Our analysis using bioinformatics tools predicted this variant to be evolutionarily conserved and damaging to SEMA3C protein function. Although the frequency of the other variant, rs2272351 (G), also differed significantly in Indonesian patients with HSCR (27.3%) from that in South Asian controls in 1000 Genomes (6.2%) and ExAC (4.6%), it is a synonymous variant and not likely to affect protein function. CONCLUSIONS This is the first comprehensive report of SEMA3C screening in patients of Asian ancestry with HSCR and identifies rs1527482 as a possible disease risk allele in this population.
Collapse
Affiliation(s)
- Gunadi
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Fiko Ryantono
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Raman Sethi
- Department of Pediatrics, National University of Singapore, Singapore and The Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore
| | - Marcellus
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Alvin Santoso Kalim
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Priscillia Imelda
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Devy Melati
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Susan Simanjaya
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - William Widitjiarso
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Ririd Tri Pitaka
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Nur Arfian
- Department of Anatomy/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kristy Iskandar
- Department of Child Health/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/UGM Academic Hospital, Yogyakarta, Indonesia
| | - Akhmad Makhmudi
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Poh San Lai
- Department of Pediatrics, National University of Singapore, Singapore and The Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore
| |
Collapse
|
30
|
Holland AM, Bon-Frauches AC, Keszthelyi D, Melotte V, Boesmans W. The enteric nervous system in gastrointestinal disease etiology. Cell Mol Life Sci 2021; 78:4713-4733. [PMID: 33770200 PMCID: PMC8195951 DOI: 10.1007/s00018-021-03812-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
A highly conserved but convoluted network of neurons and glial cells, the enteric nervous system (ENS), is positioned along the wall of the gut to coordinate digestive processes and gastrointestinal homeostasis. Because ENS components are in charge of the autonomous regulation of gut function, it is inevitable that their dysfunction is central to the pathophysiology and symptom generation of gastrointestinal disease. While for neurodevelopmental disorders such as Hirschsprung, ENS pathogenesis appears to be clear-cut, the role for impaired ENS activity in the etiology of other gastrointestinal disorders is less established and is often deemed secondary to other insults like intestinal inflammation. However, mounting experimental evidence in recent years indicates that gastrointestinal homeostasis hinges on multifaceted connections between the ENS, and other cellular networks such as the intestinal epithelium, the immune system, and the intestinal microbiome. Derangement of these interactions could underlie gastrointestinal disease onset and elicit variable degrees of abnormal gut function, pinpointing, perhaps unexpectedly, the ENS as a diligent participant in idiopathic but also in inflammatory and cancerous diseases of the gut. In this review, we discuss the latest evidence on the role of the ENS in the pathogenesis of enteric neuropathies, disorders of gut-brain interaction, inflammatory bowel diseases, and colorectal cancer.
Collapse
Affiliation(s)
- Amy Marie Holland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Ana Carina Bon-Frauches
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel Keszthelyi
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Werend Boesmans
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
31
|
The OSMR Gene Is Involved in Hirschsprung Associated Enterocolitis Susceptibility through an Altered Downstream Signaling. Int J Mol Sci 2021; 22:ijms22083831. [PMID: 33917126 PMCID: PMC8067804 DOI: 10.3390/ijms22083831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/14/2022] Open
Abstract
Hirschsprung (HSCR) Associated Enterocolitis (HAEC) is a common life-threatening complication in HSCR. HAEC is suggested to be due to a loss of gut homeostasis caused by impairment of immune system, barrier defense, and microbiome, likely related to genetic causes. No gene has been claimed to contribute to HAEC occurrence, yet. Genetic investigation of HAEC by Whole-Exome Sequencing (WES) on 24 HSCR patients affected (HAEC) or not affected (HSCR-only) by enterocolitis and replication of results on a larger panel of patients allowed the identification of the HAEC susceptibility variant p.H187Q in the Oncostatin-M receptor (OSMR) gene (14.6% in HAEC and 5.1% in HSCR-only, p = 0.0024). Proteomic analysis on the lymphoblastoid cell lines from one HAEC patient homozygote for this variant and one HAEC patient not carrying the variant revealed two well distinct clusters of proteins significantly up or downregulated upon OSM stimulation. A marked enrichment in immune response pathways (q < 0.0001) was shown in the HAEC H187 cell line, while proteins upregulated in the HAEC Q187 lymphoblasts sustained pathways likely involved in pathogen infection and inflammation. In conclusion, OSMR p.H187Q is an HAEC susceptibility variant and perturbates the downstream signaling cascade necessary for the gut immune response and homeostasis maintenance.
Collapse
|
32
|
Wang J, Xiao J, Meng X, Chu X, Zhuansun DD, Xiong B, Feng J. NOX5 is expressed aberrantly but not a critical pathogenetic gene in Hirschsprung disease. BMC Pediatr 2021; 21:153. [PMID: 33784990 PMCID: PMC8008622 DOI: 10.1186/s12887-021-02611-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/11/2021] [Indexed: 01/11/2023] Open
Abstract
Background Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of intramural ganglion cells in the distal gastrointestinal tract (GI), which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. Recent studies have suggested NADPH oxidase 5 (NOX5) as a candidate risk gene for HSCR. In this study, we examined the function of NOX5 to verify its role in the development of the enteric nervous system (ENS). Methods HSCR tissue specimens (n = 10) were collected at the time of pull-through surgery and control specimens (n = 10) were obtained at the time of colostomy closure in patients. The NOX5 expression in aganglionic and ganglionic segments of HSCR colon and normal colon were analyzed by immunohistochemistry (IHC), western blot and real-time quantitative PCR (qPCR). The gene expression levels and spatiotemporal expression spectrum of NOX5 in different development stages of zebrafish embryo were determined using qPCR and in-situ hybridization (ISH). The enteric nervous system in NOX5 Morpholino (MO) knockdown and wild type (WT) zebrafish embryo was analyzed by whole-mount immunofluorescence (IF). Intestinal transit assay was performed to analyze the gastrointestinal motility in NOX5 knockdown and control larvae. Results NOX5 is strongly expressed in the ganglion cells in the proximal segment of HSCR colons and all segments of normal colons. Moreover, the expression of NOX5 is markedly decreased in the aganglionic segment of HSCR colon compared to the ganglionic segment. In zebrafish, NOX5 mRNA level is the highest in the one cell stage embryos and it is decreased overtime with the development of the embryos. Interestingly, the expression of NOX5 appears to be enriched in the nervous system. However, the number of neurons in the GI tract and the GI motility were not affected upon NOX5 knockdown. Conclusions Our study shows that NOX5 markedly decreased in the aganglionic segment of HSCR but didn’t involve in the ENS development of zebrafish. It implies that absence of intestinal ganglion cells may lead to down-regulation of NOX5. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02611-5.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong road, Baofeng street, Qiaokou district, Wuhan, 430030, China
| | - Di Di Zhuansun
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong road, Baofeng street, Qiaokou district, Wuhan, 430030, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
33
|
Yu XX, Chu X, Wu WJ, Wei ZL, Song HL, Bai MR, Lu YJ, Gu BL, Gong YM, Cai W. Common variation of the NSD1 gene is associated with susceptibility to Hirschsprung's disease in Chinese Han population. Pediatr Res 2021; 89:694-700. [PMID: 32380506 DOI: 10.1038/s41390-020-0933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is the most common congenital cause of intestinal obstruction in children. Sotos syndrome (SoS) is an overgrowth disorder with constipation and sometimes accompanied by HSCR. NSD1 gene mutation is the main cause of SoS. We aimed to investigate association of NSD1 common single nucleotide polymorphisms (SNPs) with HSCR susceptibility in Chinese Han population. METHOD We genotyped 15 SNPs encompassing NSD1 gene region in 420 HSCR patients and 1665 controls on Fludigm EP1 platform. Association analysis was performed between cases and controls. RESULT Rs244709 was the most associated SNP with HSCR susceptibility of the sample set (PAllelic = 9.69 × 10-5, OR = 1.37, 95% CI: 1.17-1.61). Gender stratification analysis revealed that NSD1 SNPs were associated with HSCR in males, but not in females. The nonsynonymous coding SNP rs28932178 in NSD1 exon 5 represented the most significant signal in males (PAllelic = 6.43 × 10-5, OR = 1.42, 95% CI: 1.20-1.69). The associated SNPs were expression quantitative trait loci (eQTLs) of nearby genes in multiple tissues. NSD1 expression levels were higher in aganglionic colon tissues than ganglionic tissues (P = 3.00 × 10-6). CONCLUSION NSD1 variation conferred risk to HSCR in males, indicating SoS and HSCR may share common genetic factors. IMPACT This is the first study to reveal that NSD1 variation conferred risk to Hirschsprung's disease susceptibility in males of Chinese Han population, indicating Sotos syndrome and Hirschsprung's disease may share some common genetic background. This study indicates more attention should be paid to the symptom of constipation in patients with Sotos syndrome. Our results raise questions about the role of NSD1 in the development of enteric nervous system and the pathogenesis of Hirschsprung's disease.
Collapse
Affiliation(s)
- Xian-Xian Yu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xun Chu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China. .,Shanghai Institute of Pediatric Research, Shanghai, China.
| | - Wen-Jie Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Zhi-Liang Wei
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Huan-Lei Song
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Mei-Rong Bai
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yan-Jiao Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Bei-Lin Gu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yi-Ming Gong
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China. .,Shanghai Institute of Pediatric Research, Shanghai, China.
| |
Collapse
|
34
|
Kuil LE, Chauhan RK, Cheng WW, Hofstra RMW, Alves MM. Zebrafish: A Model Organism for Studying Enteric Nervous System Development and Disease. Front Cell Dev Biol 2021; 8:629073. [PMID: 33553169 PMCID: PMC7859111 DOI: 10.3389/fcell.2020.629073] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
The Enteric Nervous System (ENS) is a large network of enteric neurons and glia that regulates various processes in the gastrointestinal tract including motility, local blood flow, mucosal transport and secretion. The ENS is derived from stem cells coming from the neural crest that migrate into and along the primitive gut. Defects in ENS establishment cause enteric neuropathies, including Hirschsprung disease (HSCR), which is characterized by an absence of enteric neural crest cells in the distal part of the colon. In this review, we discuss the use of zebrafish as a model organism to study the development of the ENS. The accessibility of the rapidly developing gut in zebrafish embryos and larvae, enables in vivo visualization of ENS development, peristalsis and gut transit. These properties make the zebrafish a highly suitable model to bring new insights into ENS development, as well as in HSCR pathogenesis. Zebrafish have already proven fruitful in studying ENS functionality and in the validation of novel HSCR risk genes. With the rapid advancements in gene editing techniques and their unique properties, research using zebrafish as a disease model, will further increase our understanding on the genetics underlying HSCR, as well as possible treatment options for this disease.
Collapse
Affiliation(s)
- Laura E. Kuil
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Rajendra K. Chauhan
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - William W. Cheng
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Robert M. W. Hofstra
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
- Stem Cells and Regenerative Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Maria M. Alves
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
35
|
Abstract
Neural circuits in the hypothalamus play a key role in the regulation of human energy homeostasis. A critical circuit involves leptin-responsive neurons in the hypothalamic arcuate nucleus (the infundibular nucleus in humans) expressing the appetite-suppressing neuropeptide proopiomelanocortin (POMC) and the appetite-stimulating Agouti-related peptide. In the fed state, the POMC-derived melanocortin peptide α-melanocyte-stimulating hormone stimulates melanocortin-4 receptors (MC4Rs) expressed on second-order neurons in the paraventricular nucleus of the hypothalamus (PVN). Agonism of MC4R leads to reduced food intake and increased energy expenditure. Disruption of this hypothalamic circuit by inherited mutations in the genes encoding leptin, the leptin receptor, POMC, and MC4R can lead to severe obesity in humans. The characterization of these and closely related genetic obesity syndromes has informed our understanding of the neural pathways by which leptin regulates energy balance, neuroendocrine function, and the autonomic nervous system. A broader understanding of these neural and molecular mechanisms has paved the way for effective mechanism-based therapies for patients whose severe obesity is driven by disruption of these pathways.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
36
|
Zhang Q, Wu L, Bai B, Li D, Xiao P, Li Q, Zhang Z, Wang H, Li L, Jiang Q. Quantitative Proteomics Reveals Association of Neuron Projection Development Genes ARF4, KIF5B, and RAB8A With Hirschsprung Disease. Mol Cell Proteomics 2020; 20:100007. [PMID: 33561610 PMCID: PMC7950107 DOI: 10.1074/mcp.ra120.002325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 01/06/2023] Open
Abstract
Hirschsprung disease (HSCR) is a heterogeneous group of neurocristopathy characterized by the absence of the enteric ganglia along a variable length of the intestine. Genetic defects play a major role in the pathogenesis of HSCR, whereas family studies of pathogenic variants in all the known genes (loci) only demonstrate incomplete penetrance and variable expressivity for unknown reasons. Here, we applied large-scale, quantitative proteomics of human colon tissues from 21 patients using isobaric tags for relative and absolute quantification. method followed by bioinformatics analysis. Selected findings were confirmed by parallel reaction monitoring verification. At last, the interesting differentially expressed proteins were confirmed by Western blot. A total of 5341 proteins in human colon tissues were identified. Among them, 664 proteins with >1.2-fold difference were identified in six groups: groups A1 and A2 pooled protein from the ganglionic and aganglionic colon of male, long-segment HSCR patients (n = 7); groups B1 and B2 pooled protein from the ganglionic and aganglionic colon of male, short-segment HSCR patients (n = 7); and groups C1 and C2 pooled protein from the ganglionic and aganglionic colon of female, short-segment HSCR patients (n = 7). Based on these analyses, 49 proteins from five pathways were selected for parallel reaction monitoring verification, including ribosome, endocytosis, spliceosome, oxidative phosphorylation, and cell adhesion. The downregulation of three neuron projection development genes ARF4, KIF5B, and RAB8A in the aganglionic part of the colon was verified in 15 paired colon samples using Western blot. The findings of this study will shed new light on the pathogenesis of HSCR and facilitate the development of therapeutic targets. Large-scale, quantitative proteomics of human colon tissues from Hirschsprung disease patients. Parallel reaction monitoring, Western blotting, and immunohistochemical staining for validation. Four pathways related to differentially expressed proteins: ribosome, endocytosis, spliceosome, and axon guidance. Downregulation of ARF4, KIF5B, and RAB8A in the aganglionic (stenotic) colon segment.
Collapse
Affiliation(s)
- Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Lihua Wu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Dan Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ping Xiao
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Hui Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
37
|
Zheng Y, Liu Y, Wang M, He Q, Xie X, Lu L, Zhong W. Association between miR-492 rs2289030 G>C and susceptibility to Hirschsprung disease in southern Chinese children. J Int Med Res 2020; 48:300060520961680. [PMID: 33103535 PMCID: PMC7604986 DOI: 10.1177/0300060520961680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Hirschsprung disease (HSCR) originates from disruption of normal neural crest cell migration, differentiation, and proliferation during the fifth to eighth weeks of gestation. This results in the absence of intestinal ganglion cells in the distal intestinal tract. However, genetic variations affecting embryonic development of intestinal ganglion cells are unclear. Therefore, this study aimed to investigated the potential value of miR-492 rs2289030 G>C as a marker of susceptibility to HSCR. METHODS In this case-control study in southern Chinese children, we collected samples from 1473 controls and 1470 patients with HSCR. TaqMan genotyping of miR-492 rs2289030 G>C was performed by real-time fluorescent quantitative polymerase chain reaction. RESULTS Multivariate logistic regression analysis showed that there was no significant association between the presence of the miR-492 rs2289030 G>C polymorphism and susceptibility to HSCR by evaluating the values of pooled odds ratios and 95% confidence intervals. Similarly, among different HSCR subtypes, rs2289030 G>C was also not associated with HSCR in hierarchical analysis. CONCLUSIONS Our results suggest that the miR-492 rs2289030 G>C polymorphism is not associated with susceptibility to HSCR in southern Chinese children. These results need to be further confirmed by investigating a more diverse ethnic population of patients with HSCR.
Collapse
Affiliation(s)
| | | | | | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| | - Xiaoli Xie
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| | - Lifeng Lu
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
38
|
Gonzales J, Le Berre-Scoul C, Dariel A, Bréhéret P, Neunlist M, Boudin H. Semaphorin 3A controls enteric neuron connectivity and is inversely associated with synapsin 1 expression in Hirschsprung disease. Sci Rep 2020; 10:15119. [PMID: 32934297 PMCID: PMC7492427 DOI: 10.1038/s41598-020-71865-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
Most of the gut functions are controlled by the enteric nervous system (ENS), a complex network of enteric neurons located throughout the wall of the gastrointestinal tract. The formation of ENS connectivity during the perinatal period critically underlies the establishment of gastrointestinal motility, but the factors involved in this maturation process remain poorly characterized. Here, we examined the role of Semaphorin 3A (Sema3A) on ENS maturation and its potential implication in Hirschsprung disease (HSCR), a developmental disorder of the ENS with impaired colonic motility. We found that Sema3A and its receptor Neuropilin 1 (NRP1) are expressed in the rat gut during the early postnatal period. At the cellular level, NRP1 is expressed by enteric neurons, where it is particularly enriched at growth areas of developing axons. Treatment of primary ENS cultures and gut explants with Sema3A restricts axon elongation and synapse formation. Comparison of the ganglionic colon of HSCR patients to the colon of patients with anorectal malformation shows reduced expression of the synaptic molecule synapsin 1 in HSCR, which is inversely correlated with Sema3A expression. Our study identifies Sema3A as a critical regulator of ENS connectivity and provides a link between altered ENS connectivity and HSCR.
Collapse
Affiliation(s)
- Jacques Gonzales
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Catherine Le Berre-Scoul
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Anne Dariel
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France.,Pediatric Surgery Department, Hôpital Timone-Enfants, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Paul Bréhéret
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Michel Neunlist
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Hélène Boudin
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France.
| |
Collapse
|
39
|
Niu WB, Bai MR, Song HL, Lu YJ, Wu WJ, Gong YM, Yu XX, Wei ZL, Yu WW, Gu BL, Cai W, Chu X. Association of Variants in PLD1, 3p24.1, and 10q11.21 Regions With Hirschsprung's Disease in Han Chinese Population. Front Genet 2020; 11:738. [PMID: 32765588 PMCID: PMC7381268 DOI: 10.3389/fgene.2020.00738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/19/2020] [Indexed: 01/31/2023] Open
Abstract
Background and Aims: Hirschsprung's disease (HSCR) is a rare genetically heterogeneous congenital disorder. A recent study based on whole genome sequencing demonstrated that common variants at four novel loci, which contained two intronic variants on CASQ2 and PLD1, and intergenic variants located between SLC4A7 and EOMES at 3p24.1, and between LINC01518 and LOC283028 at 10q11.21, were associated with HSCR susceptibility. To validate these associations with HSCR susceptibility, we performed a case-control study in a Han Chinese sample set. Methods: We selected four previously identified single nucleotide polymorphisms (SNPs) for replication, along with tag SNPs to cover the four associated regions. In total, 61 SNPs were genotyped in 420 HSCR patients and 1,665 healthy controls from the Han Chinese population. Results: None of the 14 tag SNPs in the CASQ2 gene region, including the previously associated rs9428225, showed an association with HSCR. Among the 24 tag SNPs from the SLC4A7-EOMES region at 3p24.1, rs2642925 [odds ratio (OR) = 1.41, 95% confidence interval (95% CI) = 1.10-1.79; P Additive = 0.007] and the previously associated SNP rs9851320 showed a suggestive association (OR = 1.22, 95% CI = 1.01-1.47; P Additive = 0.042). A non-synonymous SNP, rs2287579, in PLD1 showed a suggestive association with HSCR susceptibility (OR = 1.71, 95% CI = 1.18-2.46; P Additive = 0.004). Additionally, the previously associated PLD1 SNP rs12632766 showed a suggestive significance (OR = 1.20, 95% CI = 1.01-1.42, P Additive = 0.038). In the LINC01518-LOC283028 region at 10q11.21, three SNPs meet the study-wide significance threshold. Rs17153309 was the most associated SNP (OR = 1.60, 95% CI = 1.34-1.90; P Additive = 1.13 × 10-7). The previously associated SNP rs1414027 also showed significant association (OR = 1.43, 95% CI = 1.20-1.70, P Additive = 3.92 × 10-5). Two associated SNPs at 10q11.21 (rs1414027 and rs624804) were expression quantitative trait loci in digestive tract tissues from GTEx databases. Conclusions: Our results confirmed that variants of the LINC01518-LOC283028 region were associated with HSCR in the Han Chinese population. Additionally, the susceptibility of SNPs in the LINC01518-LOC283028 region were associated with the expression levels of nearby genes. These results provide new insight into the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Wei-Bo Niu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Mei-Rong Bai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Huan-Lei Song
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yan-Jiao Lu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wen-Jie Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yi-Ming Gong
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xian-Xian Yu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Zhi-Liang Wei
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wen-Wen Yu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Bei-Lin Gu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xun Chu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| |
Collapse
|
40
|
Wang Y, Jiang Q, Chakravarti A, Cai H, Xu Z, Wu W, Gu B, Li L, Cai W. MicroRNA-4516-mediated regulation of MAPK10 relies on 3' UTR cis-acting variants and contributes to the altered risk of Hirschsprung disease. J Med Genet 2020; 57:634-642. [PMID: 32066630 DOI: 10.1136/jmedgenet-2019-106615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a life-threatening congenital disorder in which the enteric nervous system is completely missing from the distal gut. Recent studies have shown that miR-4516 markedly inhibits cell migration, and as one of its potential targets, MAPK10 functions as a modifier for developing HSCR. We thus aimed to evaluate the role of miR-4516 and MAPK10 in HSCR and how they contribute to the pathogenesis of HSCR. METHODS We examined 13 genetic variants using the MassArray system in a case-control study (n=1015). We further investigated miR-4516-mediated regulation of MAPK10 in HSCR cases and human neural cells, the effects of cis-acting elements in MAPK10 on miR-4516-mediated modulation and cell migration process. RESULTS Three positive 3' UTR variants in MAPK10 were associated with altered HSCR susceptibility. We also showed that miR-4516 directly regulates MAPK10 expression, and this regulatory mechanism is significantly affected by the 3' UTR cis-acting elements of MAPK10. In addition, knock-down of MAPK10 rescued the effect of miR-4516 on the migration of human neural cells. CONCLUSION Our findings indicate a key role of miR-4516 and its direct target MAPK10 in HSCR risk, and highlight the general importance of cis- and posttranscriptional modulation for HSCR pathogenesis.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China .,Department of Pediatric Gastroenterology, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, New York, USA
| | - Hao Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Gastroenterology, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ze Xu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Gastroenterology, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wenjie Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Gastroenterology, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Beilin Gu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China .,Department of Pediatric Gastroenterology, Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
41
|
Gunadi, Kalim AS, Budi NYP, Hafiq HM, Maharani A, Febrianti M, Ryantono F, Yulianda D, Iskandar K, Veltman JA. Aberrant Expressions and Variant Screening of SEMA3D in Indonesian Hirschsprung Patients. Front Pediatr 2020; 8:60. [PMID: 32219083 PMCID: PMC7078240 DOI: 10.3389/fped.2020.00060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/07/2020] [Indexed: 12/28/2022] Open
Abstract
Background: The semaphorin 3D (SEMA3D) gene has been implicated in the pathogenesis of Hirschsprung disease (HSCR), a complex genetic disorder characterized by the loss of ganglion cells in varying lengths of gastrointestinal tract. We wished to investigate the role of SEMA3D variants, both rare and common variants, as well as its mRNA expression in Indonesian HSCR patients. Methods: Sanger sequencing was performed in 54 HSCR patients to find a pathogenic variant in SEMA3D. Next, we determined SEMA3D expression in 18 HSCR patients and 13 anorectal malformation colons as controls by quantitative real-time polymerase chain reaction (qPCR). Results: No rare variant was found in the SEMA3D gene, except one common variant in exon 17, p.Lys701Gln (rs7800072). The risk allele (C) frequency at rs7800072 among HSCR patients (23%) was similar to those reported for the 1,000 Genomes (27%) and ExAC (28%) East Asian ancestry controls (p = 0.49 and 0.41, respectively). A significant difference in SEMA3D expression was observed between groups (p = 0.04). Furthermore, qPCR revealed that SEMA3D expression was strongly up-regulated (5.5-fold) in the ganglionic colon of HSCR patients compared to control colon (ΔCT 10.8 ± 2.1 vs. 13.3 ± 3.9; p = 0.025). Conclusions: We report the first study of aberrant SEMA3D expressions in HSCR patients and suggest further understanding into the contribution of aberrant SEMA3D expression in the development of HSCR. In addition, this study is the first comprehensive analysis of SEMA3D variants in the Asian ancestry.
Collapse
Affiliation(s)
- Gunadi
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Alvin Santoso Kalim
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Nova Yuli Prasetyo Budi
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Hamzah Muhammad Hafiq
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Annisa Maharani
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Maharani Febrianti
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Fiko Ryantono
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Dicky Yulianda
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kristy Iskandar
- Department of Child Health/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/UGM Academic Hospital, Yogyakarta, Indonesia
| | - Joris A Veltman
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
42
|
Chatterjee S, Nandakumar P, Auer DR, Gabriel SB, Chakravarti A. Gene- and tissue-level interactions in normal gastrointestinal development and Hirschsprung disease. Proc Natl Acad Sci U S A 2019; 116:26697-26708. [PMID: 31818953 PMCID: PMC6936708 DOI: 10.1073/pnas.1908756116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of the gut from endodermal tissue to an organ with multiple distinct structures and functions occurs over a prolonged time during embryonic days E10.5-E14.5 in the mouse. During this process, one major event is innervation of the gut by enteric neural crest cells (ENCCs) to establish the enteric nervous system (ENS). To understand the molecular processes underpinning gut and ENS development, we generated RNA-sequencing profiles from wild-type mouse guts at E10.5, E12.5, and E14.5 from both sexes. We also generated these profiles from homozygous Ret null embryos, a model for Hirschsprung disease (HSCR), in which the ENS is absent. These data reveal 4 major features: 1) between E10.5 and E14.5 the developmental genetic programs change from expression of major transcription factors and its modifiers to genes controlling tissue (epithelium, muscle, endothelium) specialization; 2) the major effect of Ret is not only on ENCC differentiation to enteric neurons but also on the enteric mesenchyme and epithelium; 3) a muscle genetic program exerts significant effects on ENS development; and 4) sex differences in gut development profiles are minor. The genetic programs identified, and their changes across development, suggest that both cell autonomous and nonautonomous factors, and interactions between the different developing gut tissues, are important for normal ENS development and its disorders.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016
| | - Priyanka Nandakumar
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Dallas R. Auer
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016
| | - Stacey B. Gabriel
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
43
|
Lantieri F, Gimelli S, Viaggi C, Stathaki E, Malacarne M, Santamaria G, Grossi A, Mosconi M, Sloan-Béna F, Prato AP, Coviello D, Ceccherini I. Copy number variations in candidate genomic regions confirm genetic heterogeneity and parental bias in Hirschsprung disease. Orphanet J Rare Dis 2019; 14:270. [PMID: 31767031 PMCID: PMC6878652 DOI: 10.1186/s13023-019-1205-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 09/13/2019] [Indexed: 11/26/2022] Open
Abstract
Background Hirschsprung Disease (HSCR) is a congenital defect of the intestinal innervations characterized by complex inheritance. Many susceptibility genes including RET, the major HSCR gene, and several linked regions and associated loci have been shown to contribute to disease pathogenesis. Nonetheless, a proportion of patients still remains unexplained. Copy Number Variations (CNVs) have already been involved in HSCR, and for this reason we performed Comparative Genomic Hybridization (CGH), using a custom array with high density probes. Results A total of 20 HSCR candidate regions/genes was tested in 55 sporadic patients and four patients with already known chromosomal aberrations. Among 83 calls, 12 variants were experimentally validated, three of which involving the HSCR crucial genes SEMA3A/3D, NRG1, and PHOX2B. Conversely RET involvement in HSCR does not seem to rely on the presence of CNVs while, interestingly, several gains and losses did co-occur with another RET defect, thus confirming that more than one predisposing event is necessary for HSCR to develop. New loci were also shown to be involved, such as ALDH1A2, already found to play a major role in the enteric nervous system. Finally, all the inherited CNVs were of maternal origin. Conclusions Our results confirm a wide genetic heterogeneity in HSCR occurrence and support a role of candidate genes in expression regulation and cell signaling, thus contributing to depict further the molecular complexity of the genomic regions involved in the Enteric Nervous System development. The observed maternal transmission bias for HSCR associated CNVs supports the hypothesis that in females these variants might be more tolerated, requiring additional alterations to develop HSCR disease.
Collapse
Affiliation(s)
- Francesca Lantieri
- Dipartimento di Scienze della Salute, sezione di Biostatistica, Universita' degli Studi di Genova, 16132, Genoa, Italy
| | - Stefania Gimelli
- Department of Medical Genetic and Laboratories, University Hospitals of Geneva, Geneva, Switzerland
| | - Chiara Viaggi
- S.C. Laboratorio Genetica Umana, Ospedali Galliera, Genoa, Italy
| | - Elissavet Stathaki
- Department of Medical Genetic and Laboratories, University Hospitals of Geneva, Geneva, Switzerland
| | - Michela Malacarne
- S.C. Laboratorio Genetica Umana, Ospedali Galliera, Genoa, Italy.,Present address: U.O.C. Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, 16148, Italy
| | - Giuseppe Santamaria
- U.O.C. Genetica Medica, IRCCS, Istituto Giannina Gaslini, 16148, Genoa, Italy
| | - Alice Grossi
- U.O.C. Genetica Medica, IRCCS, Istituto Giannina Gaslini, 16148, Genoa, Italy
| | - Manuela Mosconi
- UOC Chirurgia Pediatrica, Istituto Giannina Gaslini, 16148, Genoa, Italy
| | - Frédérique Sloan-Béna
- Department of Medical Genetic and Laboratories, University Hospitals of Geneva, Geneva, Switzerland
| | - Alessio Pini Prato
- UOC Chirurgia Pediatrica, Istituto Giannina Gaslini, 16148, Genoa, Italy.,Present address: Children Hospital, AON SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Domenico Coviello
- S.C. Laboratorio Genetica Umana, Ospedali Galliera, Genoa, Italy.,Present address: U.O.C. Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, 16148, Italy
| | - Isabella Ceccherini
- U.O.C. Genetica Medica, IRCCS, Istituto Giannina Gaslini, 16148, Genoa, Italy.
| |
Collapse
|
44
|
Yang W, Chen SC, Lai JY, Ming YC, Chen JC, Chen PL. Distinctive genetic variation of long-segment Hirschsprung's disease in Taiwan. Neurogastroenterol Motil 2019; 31:e13665. [PMID: 31240788 DOI: 10.1111/nmo.13665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is a congenital disorder with the absence of myenteric and submucosal ganglion cells within distal gut. Due to multigenic inheritance and interactions, we employed next-generation sequencing (NGS) to investigate genetic backgrounds of long-segment HSCR (L-HSCR) in Taiwan. METHODS Genomic DNA extracted from peripheral blood of L-HSCR patients was subjected to capture-based NGS, based on a 31-gene panel. The variants with allele frequency <0.05 and predicted by computational methods as deleterious were further validated by Sanger sequencing in patients and their family as well to tell de novo from inherited variants. RESULTS Between 2015/04 and 2018/05, this study enrolled 23 L-HSCR patients, including 15 (65.2%) sporadic cases and 8 (34.8%) familial patients in 4 different families. Six sporadic and seven familial cases showed possible harmful variants across eight different genes, accounting for an overall detection rate of 56.5%. These variants mainly resided in SEMA3C, followed by RET, NRG1, and NTRK1. Three sporadic and 2 familial cases exhibited strong pathogenic variants as a deletional frameshift or stop codon in RET, L1CAM or NRG1. In a HSCR family, the father passed on a pathogenic RET frameshift to two daughters; however, only one developed HSCR. CONCLUSION Using NGS, we disclosed deleterious mutations such as a frameshift or stop codon in either familial or sporadic patients. Our cases with isolated L-HSCR or even total colonic aganglionosis appeared to exhibit complex patterns of inheritance and incomplete penetrance even in families with the same genetic variants, reflecting the possible effects of environmental factors and genetic modifiers.
Collapse
Affiliation(s)
- Wendy Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Szu-Chieh Chen
- Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Jin-Yao Lai
- Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Ching Ming
- Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Jeng-Chang Chen
- Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan.,Departments of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Departments of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
45
|
Jiang Q, Wang Y, Li Q, Zhang Z, Xiao P, Wang H, Liu N, Wu J, Zhang F, Chakravarti A, Cai W, Li L. Sequence characterization of RET in 117 Chinese Hirschsprung disease families identifies a large burden of de novo and parental mosaic mutations. Orphanet J Rare Dis 2019; 14:237. [PMID: 31666091 PMCID: PMC6822467 DOI: 10.1186/s13023-019-1194-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/04/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hirschsprung disease (HSCR) is an inherited congenital disorder characterized by the absence of enteric ganglia in the distal part of the gut. RET is the major causative gene and contains > 80% of all known disease-causing mutations. RESULTS To determine the incidence of RET pathogenic variants, be they Mendelian inherited, mosaic in parents or true de novo variants (DNVs) in 117 Chinese families, we used high-coverage NGS and droplet digital polymerase chain reaction (ddPCR) to identify 15 (12.8%) unique RET coding variants (7 are novel); one was inherited from a heterozygous unaffected mother, 11 were DNVs (73.3%), and 3 full heterozygotes were inherited from parental mosaicism (2 paternal, 1 maternal): two clinically unaffected parents were identified by NGS and confirmed by ddPCR, with mutant allele frequency (13-27%) that was the highest in hair, lowest in urine and similar in blood and saliva. An extremely low-level paternal mosaicism (0.03%) was detected by ddPCR in blood. Six positive-controls were examined to compare the mosaicism detection limit and sensitivity of NGS, amplicon-based deep sequencing and ddPCR. CONCLUSION Our findings expand the clinical and molecular spectrum of RET variants in HSCR and reveal a high frequency of RET DNVs in the Chinese population.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yang Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, No. 1665 Kongjiang Rd., Yangpu District, Shanghai, 200092, China
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China
| | - Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China
| | - Ping Xiao
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, 100020, China
| | - Hui Wang
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Na Liu
- MyGenostics Inc, Beijing, 101318, China
| | - Jian Wu
- MyGenostics Inc, Beijing, 101318, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200011, China
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY, 10016, USA
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, No. 1665 Kongjiang Rd., Yangpu District, Shanghai, 200092, China.
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
46
|
Wang XJ, Camilleri M. Chronic Megacolon Presenting in Adolescents or Adults: Clinical Manifestations, Diagnosis, and Genetic Associations. Dig Dis Sci 2019; 64:2750-2756. [PMID: 30953226 PMCID: PMC6744965 DOI: 10.1007/s10620-019-05605-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Chronic megacolon is rarely encountered in clinical practice beyond infancy or early childhood. Most cases are sporadic, and some are familial megacolon and present during adolescence or adulthood. There is a need for diagnostic criteria and identifying genetic variants reported in non-Hirschsprung's megacolon. METHODS PubMed search was conducted using specific key words. RESULTS This article reviews the clinical manifestations, current diagnostic criteria, and intraluminal measurements of colonic compliance to confirm the diagnosis when the radiological imaging is not conclusive. Normal ranges of colonic compliance at 20, 30, and 44 mmHg distension are provided. The diverse genetic associations with chronic acquired megacolon beyond childhood are reviewed, including the potential association of SEMA3F gene in a family with megacolon. CONCLUSIONS Measuring colonic compliance could be standardized and simplified by measuring volume at 20, 30, and 44 mmHg distension to identify megacolon when radiology is inconclusive. Diverse genetic associations with chronic acquired megacolon beyond childhood have been identified.
Collapse
Affiliation(s)
- Xiao Jing Wang
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton Bldg., Rm. 8-110, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton Bldg., Rm. 8-110, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
47
|
Chatterjee S, Chakravarti A. A gene regulatory network explains RET-EDNRB epistasis in Hirschsprung disease. Hum Mol Genet 2019; 28:3137-3147. [PMID: 31313802 PMCID: PMC7275776 DOI: 10.1093/hmg/ddz149] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/22/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Disruptions in gene regulatory networks (GRNs), driven by multiple deleterious variants, potentially underlie complex traits and diseases. Hirschsprung disease (HSCR), a multifactorial disorder of enteric nervous system (ENS) development, is associated with at least 24 genes and seven chromosomal loci, with RET and EDNRB as its major genes. We previously demonstrated that RET transcription in the ENS is controlled by an extensive GRN involving the transcription factors (TFs) RARB, GATA2 and SOX10 and other HSCR genes. We now demonstrate, using human and mouse cellular and animal models, that EDNRB is transcriptionally regulated in the ENS by GATA2, SOX10 and NKX2.5 TFs. Significantly, RET and EDNRB expression is regulated by their shared use of GATA2 and SOX10, and in turn, these TFs are controlled by EDNRB and RET in a dose-dependent manner. This study expands the ENS development GRN to include both RET and EDNRB, uncovers the mechanistic basis for RET-EDNRB epistasis and emphasizes how functionally different genes associated with a complex disorder can be united through a common GRN.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY, USA
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
48
|
Luzón‐Toro B, Villalba‐Benito L, Torroglosa A, Fernández RM, Antiñolo G, Borrego S. What is new about the genetic background of Hirschsprung disease? Clin Genet 2019; 97:114-124. [DOI: 10.1111/cge.13615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Berta Luzón‐Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Leticia Villalba‐Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Raquel M. Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| |
Collapse
|
49
|
Tilghman JM, Ling AY, Turner TN, Sosa MX, Krumm N, Chatterjee S, Kapoor A, Coe BP, Nguyen KDH, Gupta N, Gabriel S, Eichler EE, Berrios C, Chakravarti A. Molecular Genetic Anatomy and Risk Profile of Hirschsprung's Disease. N Engl J Med 2019; 380:1421-1432. [PMID: 30970187 PMCID: PMC6596298 DOI: 10.1056/nejmoa1706594] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Hirschsprung's disease, or congenital aganglionosis, is a developmental disorder of the enteric nervous system and is the most common cause of intestinal obstruction in neonates and infants. The disease has more than 80% heritability, including significant associations with rare and common sequence variants in genes related to the enteric nervous system, as well as with monogenic and chromosomal syndromes. METHODS We genotyped and exome-sequenced samples from 190 patients with Hirschsprung's disease to quantify the genetic burden in patients with this condition. DNA sequence variants, large copy-number variants, and karyotype variants in probands were considered to be pathogenic when they were significantly associated with Hirschsprung's disease or another neurodevelopmental disorder. Novel genes were confirmed by functional studies in the mouse and human embryonic gut and in zebrafish embryos. RESULTS The presence of five or more variants in four noncoding elements defined a widespread risk of Hirschsprung's disease (48.4% of patients and 17.1% of controls; odds ratio, 4.54; 95% confidence interval [CI], 3.19 to 6.46). Rare coding variants in 24 genes that play roles in enteric neural-crest cell fate, 7 of which were novel, were also common (34.7% of patients and 5.0% of controls) and conferred a much greater risk than noncoding variants (odds ratio, 10.02; 95% CI, 6.45 to 15.58). Large copy-number variants, which were present in fewer patients (11.4%, as compared with 0.2% of controls), conferred the highest risk (odds ratio, 63.07; 95% CI, 36.75 to 108.25). At least one identifiable genetic risk factor was found in 72.1% of the patients, and at least 48.4% of patients had a structural or regulatory deficiency in the gene encoding receptor tyrosine kinase (RET). For individual patients, the estimated risk of Hirschsprung's disease ranged from 5.33 cases per 100,000 live births (approximately 1 per 18,800) to 8.38 per 1000 live births (approximately 1 per 120). CONCLUSIONS Among the patients in our study, Hirschsprung's disease arose from common noncoding variants, rare coding variants, and copy-number variants affecting genes involved in enteric neural-crest cell fate that exacerbate the widespread genetic susceptibility associated with RET. For individual patients, the genotype-specific odds ratios varied by a factor of approximately 67, which provides a basis for risk stratification and genetic counseling. (Funded by the National Institutes of Health.).
Collapse
Affiliation(s)
- Joseph M Tilghman
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Albee Y Ling
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Tychele N Turner
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Maria X Sosa
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Niklas Krumm
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Sumantra Chatterjee
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Ashish Kapoor
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Bradley P Coe
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Khanh-Dung H Nguyen
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Namrata Gupta
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Stacey Gabriel
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Evan E Eichler
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Courtney Berrios
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Aravinda Chakravarti
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| |
Collapse
|
50
|
Virtanen VB, Salo PP, Cao J, Löf-Granström A, Milani L, Metspalu A, Rintala RJ, Saarenpää-Heikkilä O, Paunio T, Wester T, Nordenskjöld A, Perola M, Pakarinen MP. Noncoding RET variants explain the strong association with Hirschsprung disease in patients without rare coding sequence variant. Eur J Med Genet 2019; 62:229-234. [DOI: 10.1016/j.ejmg.2018.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/06/2018] [Accepted: 07/17/2018] [Indexed: 02/04/2023]
|