1
|
Berkebile G, Chatelin J, Renaud M, Scheyer N. Recurrent primary hyperparathyroidism: A well-hidden genetic predisposition. ANNALES D'ENDOCRINOLOGIE 2024; 85:628-629. [PMID: 39307235 DOI: 10.1016/j.ando.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Gabriel Berkebile
- Department of Endocrinology, Diabetology, and Nutrition (EDN), University Hospital of Nancy, Université de Lorraine, CHRU of Nancy, 54000 Nancy, France.
| | - Jérome Chatelin
- Department of Endocrinology, Diabetology, and Nutrition (EDN), University Hospital of Nancy, Université de Lorraine, CHRU of Nancy, 54000 Nancy, France
| | - Mathilde Renaud
- Inserm-U1256 NGERE, Department of Clinical Genetic, Department of Neurology, Université de Lorraine, CHRU of Nancy, Nancy, France
| | - Nicolas Scheyer
- Department of Endocrinology, Diabetology, and Nutrition (EDN), University Hospital of Nancy, Université de Lorraine, CHRU of Nancy, 54000 Nancy, France
| |
Collapse
|
2
|
Verdelli C, Carrara S, Maggiore R, Dalino Ciaramella P, Corbetta S. Heterogeneous Transcriptional Landscapes in Human Sporadic Parathyroid Gland Tumors. Int J Mol Sci 2024; 25:10782. [PMID: 39409111 PMCID: PMC11476768 DOI: 10.3390/ijms251910782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The expression of several key molecules is altered in parathyroid tumors due to gene mutations, the loss of heterozygosity, and aberrant gene promoter methylation. A set of genes involved in parathyroid tumorigenesis has been investigated in sporadic parathyroid adenomas (PAds). Thirty-two fresh PAd tissue samples surgically removed from patients with primary hyperparathyroidism (PHPT) were collected and profiled for gene, microRNA, and lncRNA expression (n = 27). Based on a gene set including MEN1, CDC73, GCM2, CASR, VDR, CCND1, and CDKN1B, the transcriptomic profiles were analyzed using a cluster analysis. The expression levels of CDC73 and CDKN1B were the main drivers for clusterization. The samples were separated into two main clusters, C1 and C2, with the latter including two subgroups of five PAds (C2A) and nineteen PAds (C2B), both differing from C1 in terms of their lower expression of CDC73 and CDKN1B. The C2A PAd profile was also associated with the loss of TP73, an increased expression of HAR1B, HOXA-AS2, and HOXA-AS3 lncRNAs, and a trend towards more severe PHPT compared to C1 and C2B PAds. C2B PAds were characterized by a general downregulated gene expression. Moreover, CCND1 levels were also reduced as well as the expression of the lncRNAs NEAT1 and VLDLR-AS1. Of note, the deregulated lncRNAs are predicted to interact with the histones H3K4 and H3K27. Patients harboring C2B PAds had lower ionized and total serum calcium levels, lower PTH levels, and smaller tumor sizes than patients harboring C2A PAds. In conclusion, PAds display heterogeneous transcriptomic profiles which may contribute to the modulation of clinical and biochemical features. The general downregulated gene expression, characterizing a subgroup of PAds, suggests the tumor cells behave as quiescent resting cells, while the severity of PHPT may be associated with the loss of p73 and the lncRNA-mediated deregulation of histones.
Collapse
Affiliation(s)
- Chiara Verdelli
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20157 Milan, Italy;
| | - Silvia Carrara
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy;
| | | | | | - Sabrina Corbetta
- Bone Metabolism Diseases and Diabetes Unit, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| |
Collapse
|
3
|
Cetani F, Dinoi E, Pierotti L, Pardi E. Familial states of primary hyperparathyroidism: an update. J Endocrinol Invest 2024; 47:2157-2176. [PMID: 38635114 DOI: 10.1007/s40618-024-02366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Familial primary hyperparathyroidism (PHPT) includes syndromic and non-syndromic disorders. The former are characterized by the occurrence of PHPT in association with extra-parathyroid manifestations and includes multiple endocrine neoplasia (MEN) types 1, 2, and 4 syndromes, and hyperparathyroidism-jaw tumor (HPT-JT). The latter consists of familial hypocalciuric hypercalcemia (FHH) types 1, 2 and 3, neonatal severe primary hyperparathyroidism (NSHPT), and familial isolated primary hyperparathyroidism (FIHP). The familial forms of PHPT show different levels of PHPT penetrance, developing earlier and with multiglandular involvement compared to sporadic counterpart. All these diseases exhibit Mendelian inheritance patterns, and for most of them, the genes responsible have been identified. DNA testing for predisposing mutations is helpful in index cases or in individuals with a high suspicion of the disease. Early recognition of hereditary disorders of PHPT is of great importance for the best clinical and surgical approach. Genetic testing is useful in routine clinical practice because it will also involve appropriate screening for extra-parathyroidal manifestations related to the syndrome as well as the identification of asymptomatic carriers of the mutation. PURPOSE The aim of the review is to discuss the current knowledge on the clinical and genetic profile of these disorders along with the importance of genetic testing in clinical practice.
Collapse
Affiliation(s)
- F Cetani
- Endocrine Unit 2, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - E Dinoi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Pierotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - E Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Höppner J, Jüppner H. Rare genetic disorders that impair parathyroid hormone synthesis, secretion, or bioactivity provide insights into the diagnostic utility of different parathyroid hormone assays. Curr Opin Nephrol Hypertens 2024; 33:375-382. [PMID: 38701324 DOI: 10.1097/mnh.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
PURPOSE OF REVIEW Parathyroid hormone (PTH) is the major peptide hormone regulator of blood calcium homeostasis. Abnormal PTH levels can be observed in patients with various congenital and acquired disorders, including chronic kidney disease (CKD). This review will focus on rare human diseases caused by PTH mutations that have provided insights into the regulation of PTH synthesis and secretion as well as the diagnostic utility of different PTH assays. RECENT FINDINGS Over the past years, numerous diseases affecting calcium and phosphate homeostasis have been defined at the molecular level that are responsible for reduced or increased serum PTH levels. The underlying genetic mutations impair parathyroid gland development, involve the PTH gene itself, or alter function of the calcium-sensing receptor (CaSR) or its downstream signaling partners that contribute to regulation of PTH synthesis or secretion. Mutations in the pre sequence of the mature PTH peptide can, for instance, impair hormone synthesis or intracellular processing, while amino acid substitutions affecting the secreted PTH(1-84) impair PTH receptor (PTH1R) activation, or cause defective cleavage of the pro-sequence and thus secretion of a pro- PTH with much reduced biological activity. Mutations affecting the secreted hormone can alter detection by different PTH assays, thus requiring detailed knowledge of the utilized diagnostic test. SUMMARY Rare diseases affecting PTH synthesis and secretion have offered helpful insights into parathyroid biology and the diagnostic utility of commonly used PTH assays, which may have implications for the interpretation of PTH measurements in more common disorders such as CKD.
Collapse
Affiliation(s)
| | - Harald Jüppner
- Endocrine Unit
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Zhang K, Zhang T, Lv QY, Han Y, Cai T, Gu FM, Gu ZX, Zhao JY, Liang JY, Gao M, Gao YF, Hu R, Cui D, Li B, Liu K. U-shaped association between serum calcium and in-hospital mortality in diabetes patients with congestive heart failure: a cohort study. Sci Rep 2024; 14:13412. [PMID: 38862553 PMCID: PMC11167038 DOI: 10.1038/s41598-024-63603-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Previous studies have reported that the significant association between serum calcium and mortality substantially in patients, especially among those with intensive care unit (ICU). And In diabetes mellitus, congestive heart failure (CHF) is a significant comorbidity. We aim to evaluate the association between serum calcium levels and in-hospital mortality among patients with diabetes and congestive heart failure. The participants in this study were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. To scrutinize potential associations between serum calcium levels and in-hospital mortality, a comprehensive analysis encompassing multivariate logistic regression, cubic spline function model, threshold effect analysis, and subgroup analysis was performed. This retrospective cohort study encompassed 7063 patients, among whom the in-hospital mortality stood at 12.2%. In the multivariate logistic regression, adjusted odds ratios (ORs) were contrasted with the reference category Q6 (8.8-9.1 mg/dL) for serum calcium levels and in-hospital mortality. The adjusted ORs for Q1 (≤ 7.7 mg/dL), Q2 (7.7-8 mg/dL), and Q7 (≥ 9.1 mg/dL) were 1.69 (95% CI 1.17-2.44, p = 0.005), 1.62 (95% CI 1.11-2.36, p = 0.013), and 1.57 (95% CI 1.1-2.24, p = 0.012) respectively. The dose-response analysis uncovered a U-shaped relationship between serum calcium levels and in-hospital mortality in diabetic patients with heart failure. Subgroup analyses confirmed result stability notwithstanding the influence of diverse factors. Our investigation revealed a U-shaped correlation between serum calcium levels and in-hospital mortality in diabetes patients with congestive heart failure, pinpointing a significant inflection point at 9.05 mg/dL.
Collapse
Affiliation(s)
- Kai Zhang
- Cardiovascular Surgery Department of Jilin University Second Hospital, No. 218, Ziqiang Street, Changchun, Jilin Province, China.
| | - Tianqi Zhang
- Cardiovascular Surgery Department of Jilin University Second Hospital, No. 218, Ziqiang Street, Changchun, Jilin Province, China
| | - Qian Yu Lv
- Cardiovascular Surgery Department of Jilin University Second Hospital, No. 218, Ziqiang Street, Changchun, Jilin Province, China
| | - Yu Han
- Department of Ophthalmology, First Hospital of Jilin University, Changchun, China
| | - Tianyi Cai
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Fang Ming Gu
- Cardiovascular Surgery Department of Jilin University Second Hospital, No. 218, Ziqiang Street, Changchun, Jilin Province, China
| | - Zhao Xuan Gu
- Cardiovascular Surgery Department of Jilin University Second Hospital, No. 218, Ziqiang Street, Changchun, Jilin Province, China
| | - Jia Yu Zhao
- Cardiovascular Surgery Department of Jilin University Second Hospital, No. 218, Ziqiang Street, Changchun, Jilin Province, China
| | - Jia Ying Liang
- Cardiovascular Surgery Department of Jilin University Second Hospital, No. 218, Ziqiang Street, Changchun, Jilin Province, China
| | - Min Gao
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ya Fang Gao
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Rui Hu
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Dan Cui
- Cardiovascular Surgery Department of Jilin University Second Hospital, No. 218, Ziqiang Street, Changchun, Jilin Province, China
| | - Bo Li
- Cardiovascular Surgery Department of Jilin University Second Hospital, No. 218, Ziqiang Street, Changchun, Jilin Province, China
| | - Kexiang Liu
- Cardiovascular Surgery Department of Jilin University Second Hospital, No. 218, Ziqiang Street, Changchun, Jilin Province, China.
| |
Collapse
|
6
|
He(何璇) XA, Berenson A, Bernard M, Weber C, Cook LE, Visel A, Fuxman Bass JI, Fisher S. Identification of conserved skeletal enhancers associated with craniosynostosis risk genes. Hum Mol Genet 2024; 33:837-849. [PMID: 37883470 PMCID: PMC11070136 DOI: 10.1093/hmg/ddad182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Craniosynostosis, defined by premature fusion of one or multiple cranial sutures, is a common congenital defect affecting more than 1/2000 infants and results in restricted brain expansion. Single gene mutations account for 15%-20% of cases, largely as part of a syndrome, but the majority are nonsyndromic with complex underlying genetics. We hypothesized that the two noncoding genomic regions identified by a GWAS for craniosynostosis contain distal regulatory elements for the risk genes BMPER and BMP2. To identify such regulatory elements, we surveyed conserved noncoding sequences from both risk loci for enhancer activity in transgenic Danio rerio. We identified enhancers from both regions that direct expression to skeletal tissues, consistent with the endogenous expression of bmper and bmp2. For each locus, we also found a skeletal enhancer that also contains a sequence variant associated with craniosynostosis risk. We examined the activity of each enhancer during craniofacial development and found that the BMPER-associated enhancer is active in the restricted region of cartilage closely associated with frontal bone initiation. The same enhancer is active in mouse skeletal tissues, demonstrating evolutionarily conserved activity. Using enhanced yeast one-hybrid assays, we identified transcription factors that bind each enhancer and observed differential binding between alleles, implicating multiple signaling pathways. Our findings help unveil the genetic mechanism of the two craniosynostosis risk loci. More broadly, our combined in vivo approach is applicable to many complex genetic diseases to build a link between association studies and specific genetic mechanisms.
Collapse
Affiliation(s)
- Xuan Anita He(何璇)
- Department of Pharmacology, Physiology & Biophysics, Boston University, 700 Albany St, W607, Boston, MA 02118, United States
- Graduate Program in Biomolecular Medicine, Boston University, 72 East Concord St, Boston, MA 02118, United States
| | - Anna Berenson
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
| | - Michelle Bernard
- Department of Pharmacology, Physiology & Biophysics, Boston University, 700 Albany St, W607, Boston, MA 02118, United States
- College of Arts and Sciences, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
| | - Chris Weber
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Laura E Cook
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, United States
- School of Natural Sciences, 5200 Lake Road, University of California Merced, Merced, CA 95343, United States
| | - Juan I Fuxman Bass
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
| | - Shannon Fisher
- Department of Pharmacology, Physiology & Biophysics, Boston University, 700 Albany St, W607, Boston, MA 02118, United States
| |
Collapse
|
7
|
Walker E, Hayes W, Bockenhauer D. Inherited non-FGF23-mediated phosphaturic disorders: A kidney-centric review. Best Pract Res Clin Endocrinol Metab 2024; 38:101843. [PMID: 38042745 DOI: 10.1016/j.beem.2023.101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Phosphate is freely filtered by the glomerulus and reabsorbed exclusively in the proximal tubule by two key transporters, NaPiIIA and NaPiIIC, encoded by SLC34A1 and SLC34A3, respectively. Regulation of these transporters occurs primarily through the hormone FGF23 and, to a lesser degree, PTH. Consequently, inherited non-FGF23 mediated phosphaturic disorders are due to generalised proximal tubular dysfunction, loss-of-function variants in SLC34A1 or SLC34A3 or excess PTH signalling. The corresponding disorders are Renal Fanconi Syndrome, Infantile Hypercalcaemia type 2, Hereditary Hypophosphataemic Rickets with Hypercalciuria and Familial Hyperparathyroidism. Several inherited forms of Fanconi renotubular syndrome (FRTS) have also been described with the underlying genes encoding for GATM, EHHADH, HNF4A and NDUFAF6. Here, we will review their pathophysiology, clinical manifestations and the implications for treatment from a kidney-centric perspective, focussing on those disorders caused by dysfunction of renal phosphate transporters. Moreover, we will highlight specific genetic aspects, as the availability of large population genetic databases has raised doubts about some of the originally proposed gene-disease associations concerning phosphate transporters or their associated proteins.
Collapse
Affiliation(s)
- Emma Walker
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Wesley Hayes
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Detlef Bockenhauer
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Department of Renal Medicine, University College London, London, UK.
| |
Collapse
|
8
|
English KA, Lines KE, Thakker RV. Genetics of hereditary forms of primary hyperparathyroidism. Hormones (Athens) 2024; 23:3-14. [PMID: 38038882 PMCID: PMC10847196 DOI: 10.1007/s42000-023-00508-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Primary hyperparathyroidism (PHPT), a relatively common disorder characterized by hypercalcemia with raised or inappropriately normal serum parathyroid hormone (PTH) concentrations, may occur as part of a hereditary syndromic disorder or as a non-syndromic disease. The associated syndromic disorders include multiple endocrine neoplasia types 1-5 (MEN1-5) and hyperparathyroidism with jaw tumor (HPT-JT) syndromes, and the non-syndromic forms include familial hypocalciuric hypercalcemia types 1-3 (FHH1-3), familial isolated hyperparathyroidism (FIHP), and neonatal severe hyperparathyroidism (NS-HPT). Such hereditary forms may occur in > 10% of patients with PHPT, and their recognition is important for implementation of gene-specific screening protocols and investigations for other associated tumors. Syndromic PHPT tends to be multifocal and multiglandular with most patients requiring parathyroidectomy with the aim of limiting end-organ damage associated with hypercalcemia, particularly osteoporosis, nephrolithiasis, and renal failure. Some patients with non-syndromic PHPT may have mutations of the MEN1 gene or the calcium-sensing receptor (CASR), whose loss of function mutations usually cause FHH1, a disorder associated with mild hypercalcemia and may follow a benign clinical course. Measurement of the urinary calcium-to-creatinine ratio clearance (UCCR) may help to distinguish patients with FHH from those with PHPT, as the majority of FHH patients have low urinary calcium excretion (UCCR < 0.01). Once genetic testing confirms a hereditary cause of PHPT, further genetic testing can be offered to the patients' relatives and subsequent screening can be carried out in these affected family members, which prevents inappropriate testing in normal individuals.
Collapse
Affiliation(s)
- Katherine A English
- OCDEM, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, OX3 7LJ, UK
| | - Kate E Lines
- OCDEM, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, OX3 7LJ, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, OX3 7LE, UK
| | - Rajesh V Thakker
- OCDEM, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, OX3 7LJ, UK.
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, OX3 7LE, UK.
| |
Collapse
|
9
|
Včelák J, Šerková Z, Zajíčková K. Molecular Genetic Aspects of Sporadic Multiglandular Primary Hyperparathyroidism. Physiol Res 2023; 72:S357-S363. [PMID: 38116772 PMCID: PMC10830163 DOI: 10.33549/physiolres.935253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Multiglandular primary hyperparathyroidism (MGD) represents a rare form of primary hyperparathyroidism (PHPT). MGD is associated with hereditary PHPT, but the sporadic MGD is more common and affects a similar patient profile as single gland parathyroid disease (SGD). The distinction between SGD and MGD is of great clinical importance, especially for the strategy of parathyroidectomy. Based on the limited knowledge available, MGD is likely to be a genetically heterogeneous disease resulting from the interaction of germline and somatic DNA mutations together with epigenetic alterations. Furthermore, these events may combine and occur independently in parathyroid tumors within the same individual with MGD. Gene expression profiling has shown that SGD and MGD may represent distinct entities in parathyroid tumorigenesis. We are waiting for studies to analyze exactly which genes are different in SGD and MGD in order to identify potential biomarkers that can distinguish between the two forms of the disease.
Collapse
Affiliation(s)
- J Včelák
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | |
Collapse
|
10
|
Szalat A, Shpitzen S, Pollack R, Mazeh H, Durst R, Meiner V. GCM2 p.Tyr394Ser variant in Ashkenazi Israeli patients with suspected familial isolated hyperparathyroidism. Front Endocrinol (Lausanne) 2023; 14:1254156. [PMID: 38130397 PMCID: PMC10733520 DOI: 10.3389/fendo.2023.1254156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Context A germline mutation can be identified in up to 10% of patients with primary hyperparathyroidism (PHPT). In 2017, a high frequency of the GCM2 [(NM_ 004752.4) c.1181A> C; p.Tyr394Ser; rs142287570] variant was reported in PHPT Ashkenazi Jews (AJ). Objective To evaluate the presence of the GCM2 p.Tyr394Ser variant in Israeli patients addressed for genetic evaluation to characterize their phenotype and clinical management. Method Patients with PHPT who underwent addressed for genetic screening for suspected familial hypocalciuric hypercalcemia (FHH), a family history of isolated hyperparathyroidism (FIHP), or failed parathyroidectomy with persistent PHPT were recruited. Those with normal initial selected gene sequencing or hyperparathyroid genetic panel completed the GCM2 p.Tyr394Ser variant sequencing. The prevalence of this variant was evaluated using our local genomic database. Results A total of 42 single individuals from unrelated kindreds were evaluated. A disease-causing mutation was found in 11 (26.1%) patients: 10 were diagnosed with FHH (eight CASR and two AP2S1 mutations), and one patient had a CKN2B mutation. In 28 of the remaining patients, the GCM2 p.Tyr394Ser variant was positive in three (10.7%), and all were AJ. Within AJ (15/28, 53.5%), the rate of the p.Tyr394Ser variant was 3/15 (20%), and of those, two had a history of familial isolated hyperparathyroidism. Multi-glandular parathyroid adenoma/hyperplasia was also observed in two of these patients. No clinical or laboratory findings could discriminate patients with the GCM2 p.Tyr394Ser variant from those with FHH. Cinacalcet normalized the calcium levels in one patient. The prevalence of the GCM2 p.Tyr394Ser variant in 15,407 tests in our local genomic database was 0.98%. Conclusion In contrast to previous observations, the GCM2 p.Tyr394Ser variant-associated phenotype may be mild in AJ with FIHP, sometimes mimicking FHH. Because surgery may be curative, surgeons should be aware of the possibility of multiple gland diseases in these patients. The clinical spectrum and clinical utility of screening for this variant warrant further investigation.
Collapse
Affiliation(s)
- Auryan Szalat
- Endocrinology and Metabolism Service, Department of Internal Medicine, Osteoporosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shoshana Shpitzen
- Center for Research, Prevention and Treatment of Atherosclerosis, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rena Pollack
- Endocrinology and Metabolism Service, Department of Internal Medicine, Osteoporosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Haggi Mazeh
- Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Durst
- Center for Research, Prevention and Treatment of Atherosclerosis, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
11
|
Xia C, Kumar D, You B, Streck DL, Osborne L, Dermody J, Jiang JG, Pletcher BA. Wolf-Hirschhorn Syndrome with Hyperparathyroidism: A Case Report and a Narrative Review of the Literature. J Pediatr Genet 2023; 12:312-317. [PMID: 38162156 PMCID: PMC10756731 DOI: 10.1055/s-0041-1729751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion condition. The WHS core phenotype includes developmental delays, intellectual disabilities, seizures, and distinctive facial features. Various other comorbidities have also been reported, such as hearing loss, heart defects, as well as eye problems and kidney problems. In this report, we present a case of WHS accompanied by hyperparathyroidism and hypercalcemia, which has not been previously reported. A girl was born at 37 weeks of gestation by vaginal delivery. She was small for the gestational age (2,045 g) and admitted to neonatal intensive care unit. She had typical WHS facial features and was found to have bilateral small kidneys associated with transient metabolic acidosis and renal insufficiency. She had right-sided sensorineural hearing loss, a small atrial septal defect, and colpocephaly and hypoplasia of corpus callosum. She had a single seizure which was well controlled with an oral antiepileptic medication. Cytogenetic studies demonstrated a large terminal chromosome 4p deletion (21.4 Mb) and 4p duplication (2.1 Mb) adjacent to the deletion. A unique finding in this patient is her consistently elevated levels of parathyroid hormone and serum calcium, suggesting hyperparathyroidism. We present this rare case along with a review of the literature and hope to draw an attention to a potential relationship between WHS and hyperparathyroidism.
Collapse
Affiliation(s)
- Changqing Xia
- Institute of Medical Genetics and Genomics, Rutgers New Jersey Medical School, Newark, New Jersey, United States
| | - Dibyendu Kumar
- Institute of Medical Genetics and Genomics, Rutgers New Jersey Medical School, Newark, New Jersey, United States
| | - Bei You
- Institute of Medical Genetics and Genomics, Rutgers New Jersey Medical School, Newark, New Jersey, United States
| | - Deanna L. Streck
- Institute of Medical Genetics and Genomics, Rutgers New Jersey Medical School, Newark, New Jersey, United States
| | - Lisa Osborne
- Institute of Medical Genetics and Genomics, Rutgers New Jersey Medical School, Newark, New Jersey, United States
| | - James Dermody
- Institute of Medical Genetics and Genomics, Rutgers New Jersey Medical School, Newark, New Jersey, United States
| | - Jie-Gen Jiang
- Institute of Medical Genetics and Genomics, Rutgers New Jersey Medical School, Newark, New Jersey, United States
| | - Beth A. Pletcher
- Department of Pediatrics, Rutgers New Jersey Medical School, Newark, New Jersey, United States
| |
Collapse
|
12
|
Parekh VI, Brinster LR, Guan B, Simonds WF, Weinstein LS, Agarwal SK. A Knock-In Mouse Model of the Gcm2 Variant p.Y392S Develops Normal Parathyroid Glands. J Endocr Soc 2023; 7:bvad126. [PMID: 37885910 PMCID: PMC10599131 DOI: 10.1210/jendso/bvad126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 10/28/2023] Open
Abstract
Context The glial cells missing 2 (GCM2) gene functions as a transcription factor that is essential for parathyroid gland development, and variants in this gene have been associated with 2 parathyroid diseases: isolated hypoparathyroidism in patients with homozygous germline inactivating variants and primary hyperparathyroidism in patients with heterozygous germline activating variants. A recurrent germline activating missense variant of GCM2, p.Y394S, has been reported in patients with familial primary hyperparathyroidism. Objective To determine whether the GCM2 p.Y394S missense variant causes overactive and enlarged parathyroid glands in a mouse model. Methods CRISPR/Cas9 gene editing technology was used to generate a mouse model with the germline heterozygous Gcm2 variant p.Y392S that corresponds to the human GCM2 p.Y394S variant. Wild-type (Gcm2+/+) and germline heterozygous (Gcm2+/Y392S) mice were evaluated for serum biochemistry and parathyroid gland morphology. Results Gcm2 +/Y392S mice did not show any change compared to Gcm2+/+ mice in serum calcium and parathyroid hormone levels, parathyroid gland histology, cell proliferation, or parathyroid gland size. Conclusion The mouse model of the p.Y392S variant of Gcm2 shows that this variant is tolerated in mice, as it does not increase parathyroid gland cell proliferation and circulating calcium or PTH levels. Further investigation of Gcm2+/Y392S mice to study the effect of this variant of Gcm2 on early events in parathyroid gland development will be of interest.
Collapse
Affiliation(s)
- Vaishali I Parekh
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren R Brinster
- Office of Research Services, Division of Veterinary Resources, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bin Guan
- Opthalmic Genomics Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Mazarico-Altisent I, Capel I, Baena N, Bella-Cueto MR, Barcons S, Guirao X, Pareja R, Muntean A, Arsentales V, Caixàs A, Rigla M. Genetic testing for familial hyperparathyroidism: clinical-genetic profile in a Mediterranean cohort. Front Endocrinol (Lausanne) 2023; 14:1244361. [PMID: 37810884 PMCID: PMC10558207 DOI: 10.3389/fendo.2023.1244361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background Approximately 10% of primary hyperparathyroidism cases are hereditary, due to germline mutations in certain genes. Although clinically relevant, a systematized genetic diagnosis is missing due to a lack of firm evidence regarding individuals to test and which genes to evaluate. Methods A customized gene panel (AIP, AP2S1, CASR, CDC73, CDKN1A, CDKN1B, CDKN2B, CDKN2C, GCM2, GNA11, MEN1, PTH, RET, and TRPV6) was performed in 40 patients from the Mediterranean area with suspected familial hyperparathyroidism (≤45 years of age, family history, high-risk histology, associated tumour, multiglandular disease, or recurrent hyperparathyroidism). We aimed to determine the prevalence of germline variants in these patients, to clinically characterize the probands and their relatives, and to compare disease severity in carriers versus those with a negative genetic test. Results Germline variants were observed in 9/40 patients (22.5%): 2 previously unknown pathogenic/likely pathogenic variants of CDKN1B (related to MEN4), 1 novel variant of uncertain significance of CDKN2C, 4 variants of CASR (3 pathogenic/likely pathogenic variants and 1 variant of uncertain significance), and 2 novel variants of uncertain significance of TRPV6. Familial segregation studies allowed diagnosis and early treatment of PHPT in first-degree relatives of probands. Conclusion The observed prevalence of germline variants in the Mediterranean cohort under study was remarkable and slightly higher than that seen in other populations. Genetic screening for suspected familial hyperparathyroidism allows the early diagnosis and treatment of PHPT and other related comorbidities. We recommend genetic testing for patients with primary hyperparathyroidism who present with high-risk features.
Collapse
Affiliation(s)
- Isabel Mazarico-Altisent
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d’Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain
| | - Ismael Capel
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d’Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain
| | - Neus Baena
- Genetic Department, Parc Taulí University Hospital, Institut d’Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain
| | - Maria Rosa Bella-Cueto
- Pathology Department, Parc Taulí University Hospital, Institut d’Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain
| | - Santi Barcons
- Surgery Department, Parc Taulí University Hospital, Institut d’Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain
| | - Xavier Guirao
- Surgery Department, Parc Taulí University Hospital, Institut d’Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain
| | - Rocío Pareja
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d’Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain
| | - Andreea Muntean
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d’Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain
| | - Valeria Arsentales
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d’Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain
| | - Assumpta Caixàs
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d’Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain
| | - Mercedes Rigla
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d’Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain
| |
Collapse
|
14
|
Jha S, Welch J, Tora R, Lack J, Warner A, del Rivero J, Sadowski SM, Nilubol N, Schmidt LS, Linehan WM, Weinstein LS, Simonds WF, Agarwal SK. Germline- and Somatic-Inactivating FLCN Variants in Parathyroid Cancer and Atypical Parathyroid Tumors. J Clin Endocrinol Metab 2023; 108:2686-2698. [PMID: 36935552 PMCID: PMC10505536 DOI: 10.1210/clinem/dgad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 03/21/2023]
Abstract
CONTEXT Parathyroid cancer (PC) is a rare endocrine neoplasm with high mortality. While surgery is the treatment for patients with the disease, recurrence rates are high, and patients usually succumb to severe hypercalcemia. There is no effective systemic therapy for the disease. OBJECTIVE To investigate for novel genes causing parathyroid cancer. METHODS We analyzed the germline DNA of 17 patients with "sporadic" PC and 3 with atypical parathyroid tumors (APTs) who did not have germline CDC73 or MEN1 pathogenic variants. Sequencing of available tumor tissue from 14 patients with PC and 2 with APT was also performed (including 2 patients with no available germline DNA). In addition, sporadic parathyroid adenomas from 74 patients were analyzed for FLCN variants. RESULTS We identified germline FLCN variants in 3 unrelated patients with PC. The 2 frameshift variants have been described in patients with Birt-Hogg-Dubé (BHD) syndrome, while the pathogenicity of the missense variant c.124G > C (p.G42R) has not been definitively established. Functional analysis of the missense variant showed a potential effect on posttranslational modification. All 3 patients with germline FLCN variants were noted to have renal cysts and 2 had lung cysts, features associated with BHD syndrome. Somatic FLCN variants were identified in tumors from 2 (1 APT) of 16 patients with PC/APT and in none of the 74 sporadic parathyroid adenomas. No second hits in FLCN were noted on sequencing; however, loss of heterozygosity at the locus was demonstrated in 2 of 3 patients with the identified germline FLCN variant. CONCLUSION The finding of FLCN variants associated with PC may provide the foundation for the development of therapy for this malignancy.
Collapse
Affiliation(s)
- Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Welch
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rana Tora
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, National Institute for Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Andrew Warner
- Frederick National Laboratory, National Institutes of Health, Bethesda, MD 21701, USA
| | - Jaydira del Rivero
- Developmental Therapeutics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samira M Sadowski
- Endocrine Surgery Section, Surgical Oncology Program, Bethesda, MD 20892, USA
| | - Naris Nilubol
- Endocrine Surgery Section, Surgical Oncology Program, Bethesda, MD 20892, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Frederick National Laboratory for Cancer Research, Basic Science Program, Frederick, MD 21701, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev 2023; 44:779-818. [PMID: 36961765 PMCID: PMC10502601 DOI: 10.1210/endrev/bnad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Recent data suggest an increase in the overall incidence of parathyroid disorders, with primary hyperparathyroidism (PHPT) being the most prevalent parathyroid disorder. PHPT is associated with morbidities (fractures, kidney stones, chronic kidney disease) and increased risk of death. The symptoms of PHPT can be nonspecific, potentially delaying the diagnosis. Approximately 15% of patients with PHPT have an underlying heritable form of PHPT that may be associated with extraparathyroidal manifestations, requiring active surveillance for these manifestations as seen in multiple endocrine neoplasia type 1 and 2A. Genetic testing for heritable forms should be offered to patients with multiglandular disease, recurrent PHPT, young onset PHPT (age ≤40 years), and those with a family history of parathyroid tumors. However, the underlying genetic cause for the majority of patients with heritable forms of PHPT remains unknown. Distinction between sporadic and heritable forms of PHPT is useful in surgical planning for parathyroidectomy and has implications for the family. The genes currently known to be associated with heritable forms of PHPT account for approximately half of sporadic parathyroid tumors. But the genetic cause in approximately half of the sporadic parathyroid tumors remains unknown. Furthermore, there is no systemic therapy for parathyroid carcinoma, a rare but potentially fatal cause of PHPT. Improved understanding of the molecular characteristics of parathyroid tumors will allow us to identify biomarkers for diagnosis and novel targets for therapy.
Collapse
Affiliation(s)
- Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| |
Collapse
|
16
|
Marini F, Giusti F, Palmini G, Aurilia C, Donati S, Brandi ML. Parathyroid carcinoma: molecular therapeutic targets. Endocrine 2023; 81:409-418. [PMID: 37160841 DOI: 10.1007/s12020-023-03376-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023]
Abstract
Parathyroid carcinoma (PC) is an extremely rare malignant tumor of the parathyroid glands, accounting for less than 1% of primary hyperparathyroidism, commonly characterized by severe and unmanageable hypercalcemia, aggressive behavior, high metastatic potential, and poor prognosis. PC manifests prevalently as a sporadic tumor and only occasionally it is part of congenital syndromic and non-syndromic endocrine diseases. Molecular pathogenesis of this form of parathyroid tumor is not fully elucidated and it appears to be caused by multiple genetic and epigenetic drivers, differing among affected patients and not yet clearly stated in distinguishing PC from the benign parathyroid adenoma (PA). Congenital forms of PC have been prevalently associated with germline heterozygous loss-of-function mutations of the CDC73 tumor suppressor gene, both in the context of the hyperparathyroidism jaw-tumor syndrome (HPT-JT) and of the isolated familial hyperparathyroidism (FIPH). Currently, surgical en bloc resection of affected gland(s) and other involved structures is the elective therapy for both primary and recurrent PC. However, it usually results ineffective for advance and metastatic disease, and a high percentage of post-operative recurrence is reported. Targeted medical therapies for surgically untreatable PC, based on the molecular profile of PC samples, are, therefore, needed. The characterization of genetic and epigenetic alterations and deregulated pathways in PC samples will be of fundamental importance to tailor treatment for each patient. Here, we reviewed main findings on molecular pathogenetic aspects of PC, and the current state of the art of therapies.
Collapse
Affiliation(s)
- Francesca Marini
- Fondazione FIRMO Onlus (Fondazione Italiana per la Ricerca sulle Malattie dell'Osso), Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Donatello Bone Clinic, Villa Donatello Hospital, Sesto Fiorentino, FI, Italy
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Fondazione FIRMO Onlus (Fondazione Italiana per la Ricerca sulle Malattie dell'Osso), Florence, Italy.
- Donatello Bone Clinic, Villa Donatello Hospital, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
17
|
Song A, Yang Y, Jiang Y, Nie M, Jiang Y, Li M, Xia W, Xing X, Wang O. Genetic and clinical screening for hereditary primary hyperparathyroidism in a large Chinese cohort: a single-center study. J Bone Miner Res 2023; 38:1322-1333. [PMID: 37449924 DOI: 10.1002/jbmr.4883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Primary hyperparathyroidism (PHPT) includes sporadic PHPT and hereditary PHPT. However, until now, there have been no exact data on the proportion and composition of hereditary PHPT in the Chinese PHPT population. This study aimed to clarify the proportion and composition of hereditary PHPT in patients at a large academic center in Beijing, China, and to analyze genotype-phenotype characteristics. A total of 394 newly diagnosed Han PHPT patients who consented to genetic screening were enrolled. Targeted next-generation sequencing (T-NGS) (including for MEN1, RET, CDKN1B, CaSR, HRPT2/CDC73, GNA11, AP2S1, GCM2), combined with MEN1-multiplex ligation-dependent probe amplification (MLPA) and CDC73-MLPA, was used for genetic screening. Diagnosis of hereditary PHPT was based on clinical manifestations, family history, and genetic screening. Thirty-seven pathogenic (P)/likely pathogenic (LP) variants were detected in 41 patients via T-NGS, and three patients carried long-range deletions of MEN1 or CDC73 detected by MLPA, with a variant detection rate of 11.2% (44/394). In total, 30 patients were clinically diagnosed with MEN1. Combined with genetic and clinical screening, the rate of hereditary PHPT in this study was 18.8% (74/394). For purposes of comparison, the rate of unequivocal nonhereditary PHPT was 66.5% (262/394); 14.7% (58/394) did not exhibit the clinical features of hereditary PHPT but carried variants of uncertain clinical significance and so could not be clearly categorized. Both the age at hospital visit (43.6 ± 14.0 versus 53.7 ± 14.9 years) and age at onset (35.4 ± 13.8 versus 50.6 ± 14.8 years) in the hereditary group (n = 74) were significantly lower than those in the nonhereditary group (n = 262). Higher levels of ionized calcium and serum β-CTX were observed in the hereditary group; proportions of parathyroid hyperplasia and multigland involvement were also higher. In addition to multigland disease and positive family history, it is recommended that patients with an age of onset less than 38 should be screened for hereditary forms. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- An Song
- Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Yang
- Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Jiang
- Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Nie
- Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Jiang
- Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Li
- Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Weibo Xia
- Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoping Xing
- Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ou Wang
- Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Tolkin L, Klein V, Frankel M, Altarescu G, Beeri R, Munter G. Variant Tyr 394Ser in the GCM2 Gene Is Rare in a Cohort of Ashkenazi Jews With Primary Hyperparathyroidism. J Endocr Soc 2023; 7:bvad086. [PMID: 37362385 PMCID: PMC10289514 DOI: 10.1210/jendso/bvad086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 06/28/2023] Open
Abstract
Context Various genes have been associated with familial and sporadic primary hyperparathyroidism (PHPT), including activating mutations of the glial cells missing transcription factor 2 (GCM2) gene. Objective The aim of this study was to assess the prevalence of the GCM2 p.Tyr394Ser variant in the Jerusalem Ashkenazi Jewish (AJ) population with PHPT, and to conclude whether routine genetic testing is justified. Methods The blood of 40 self-reported AJ patients with PHPT and 200 AJ controls was tested for the GCM2 p.Tyr394Ser variant. Demographic and medical information was extracted from the patients' charts and evaluated accordingly. Results Two (5%) PHPT patients and 3 (1.5%) controls were heterozygotes for the tested variant. Our patients were mostly (87.5%) sporadic cases. One of the heterozygote patients had familial PHPT; the other had 2 parathyroid adenomas, and the levels of his blood and urinary calcium were extremely high. Conclusion Our results suggest that in AJ patients with sporadic, single-gland PHPT, the likelihood of the tested variant is low and genetic testing should be limited to those with familial PHPT or multiglandular disease.
Collapse
Affiliation(s)
- Lior Tolkin
- Correspondence: Lior Tolkin, MD, Department of Internal Medicine Endocrine Unit, Shaare Zedek Medical Center Jerusalem affiliated with the Faculty of Medicine, Hebrew University, 12 Shmuel Bait St, PO Box 3235, Jerusalem 3235, Israel.
| | - Vanessa Klein
- Department of Internal Medicine Endocrine Unit, Shaare Zedek Medical Center Jerusalem affiliated with the Faculty of Medicine, Hebrew University, Jerusalem 3235, Israel
| | - Meir Frankel
- Department of Internal Medicine Endocrine Unit, Shaare Zedek Medical Center Jerusalem affiliated with the Faculty of Medicine, Hebrew University, Jerusalem 3235, Israel
| | - Gheona Altarescu
- Genetic Department, Shaare Zedek Medical Center Jerusalem affiliated with the Faculty of Medicine, Hebrew University, Jerusalem 3235, Israel
| | - Rachel Beeri
- Genetic Department, Shaare Zedek Medical Center Jerusalem affiliated with the Faculty of Medicine, Hebrew University, Jerusalem 3235, Israel
| | - Gabriel Munter
- Department of Internal Medicine Endocrine Unit, Shaare Zedek Medical Center Jerusalem affiliated with the Faculty of Medicine, Hebrew University, Jerusalem 3235, Israel
| |
Collapse
|
19
|
Abstract
Hyperparathyroidism is a common endocrine disorder characterized by elevated levels of parathyroid hormone and hypercalcemia and is divided into 3 types: primary, secondary, and tertiary. Distinction between these types is accomplished by correlation of clinical, radiologic, and laboratory findings with pathologic features. Primary hyperparathyroidism occurs sporadically in 85% of cases with the remaining cases associated with multiple familial syndromes. The pathologic manifestations of primary hyperparathyroidism include parathyroid adenoma, parathyroid hyperplasia, and parathyroid carcinoma. Recent advances in the understanding of the pathogenesis of parathyroid disease has helped to refine the diagnosis and classification of parathyroid lesions. The identification of multiple clonal proliferations in traditional multiglandular parathyroid hyperplasia has led to the adoption by the World Health Organization (WHO) of the alternate term of primary hyperparathyroidism-related multiglandular parathyroid disease. Additional nomenclature changes include the adoption of the term atypical parathyroid tumor in lieu of atypical parathyroid adenoma to reflect the uncertain malignant potential of these neoplasms. Clinical and morphologic features characteristic of familial disease have been described that can help the practicing pathologist identify underlying familial disease and provide appropriate management. Use of ancillary immunohistochemistry and molecular studies can be helpful in classifying parathyroid neoplasms. Parafibromin has proven useful as a diagnostic and prognostic marker in atypical parathyroid tumors and parathyroid carcinomas. This review provides an update on the diagnosis and classification of parathyroid lesions considering the recent advances in the understanding of the molecular and clinical features of parathyroid disease and highlights the use of ancillary studies (immunohistochemical, and molecular) to refine the diagnosis of parathyroid lesions.
Collapse
|
20
|
Soto-Pedre E, Newey PJ, Srinivasan S, Siddiqui MK, Palmer CNA, Leese GP. Identification of 4 New Loci Associated With Primary Hyperparathyroidism (PHPT) and a Polygenic Risk Score for PHPT. J Clin Endocrinol Metab 2022; 107:3302-3308. [PMID: 36102151 PMCID: PMC9693767 DOI: 10.1210/clinem/dgac527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 12/30/2022]
Abstract
CONTEXT A hypothesis-free genetic association analysis has not been reported for patients with primary hyperparathyroidism (PHPT). OBJECTIVE We aimed to investigate genetic associations with PHPT using both genome-wide association study (GWAS) and candidate gene approaches. METHODS A cross-sectional study was conducted among patients of European White ethnicity recruited in Tayside (Scotland, UK). Electronic medical records were used to identify PHPT cases and controls, and linked to genetic biobank data. Genetic associations were performed by logistic regression models and odds ratios (ORs). The combined effect of the genotypes was researched by genetic risk score (GRS) analysis. RESULTS We identified 15 622 individuals for the GWAS that yielded 34 top single-nucleotide variations (formerly single-nucleotide polymorphisms), and LPAR3-rs147672681 reached genome-wide statistical significance (P = 1.2e-08). Using a more restricted PHPT definition, 8722 individuals with data on the GWAS-identified loci were found. Age- and sex-adjusted ORs for the effect alleles of SOX9-rs11656269, SLITRK5-rs185436526, and BCDIN3D-AS1-rs2045094 showed statistically significant increased risks (P < 1.5e-03). GRS analysis of 5482 individuals showed an OR of 2.51 (P = 1.6e-04), 3.78 (P = 4.0e-08), and 7.71 (P = 5.3e-17) for the second, third, and fourth quartiles, respectively, compared to the first, and there was a statistically significant linear trend across quartiles (P < 1.0e-04). Results were similar when stratifying by sex. CONCLUSION Using genetic loci discovered in a GWAS of PHPT carried out in a Scottish population, this study suggests new evidence for the involvement of genetic variants at SOX9, SLITRK5, LPAR3, and BCDIN3D-AS1. It also suggests that male and female carriers of greater numbers of PHPT-risk alleles both have a statistically significant increased risk of PHPT.
Collapse
Affiliation(s)
- Enrique Soto-Pedre
- Correspondence: Enrique Soto-Pedre, MBBS, MSc, MPH, Division of Population Health & Genomics, School of Medicine, Level 5, Mailbox 12, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| | - Paul J Newey
- Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
- Department of Endocrinology and Diabetes, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Sundararajan Srinivasan
- Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Moneeza K Siddiqui
- Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Colin N A Palmer
- Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
- Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | |
Collapse
|
21
|
Minisola S, Arnold A, Belaya Z, Brandi ML, Clarke BL, Hannan FM, Hofbauer LC, Insogna KL, Lacroix A, Liberman U, Palermo A, Pepe J, Rizzoli R, Wermers R, Thakker RV. Epidemiology, Pathophysiology, and Genetics of Primary Hyperparathyroidism. J Bone Miner Res 2022; 37:2315-2329. [PMID: 36245271 PMCID: PMC10092691 DOI: 10.1002/jbmr.4665] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
In this narrative review, we present data gathered over four decades (1980-2020) on the epidemiology, pathophysiology and genetics of primary hyperparathyroidism (PHPT). PHPT is typically a disease of postmenopausal women, but its prevalence and incidence vary globally and depend on a number of factors, the most important being the availability to measure serum calcium and parathyroid hormone levels for screening. In the Western world, the change in presentation to asymptomatic PHPT is likely to occur, over time also, in Eastern regions. The selection of the population to be screened will, of course, affect the epidemiological data (ie, general practice as opposed to tertiary center). Parathyroid hormone has a pivotal role in regulating calcium homeostasis; small changes in extracellular Ca++ concentrations are detected by parathyroid cells, which express calcium-sensing receptors (CaSRs). Clonally dysregulated overgrowth of one or more parathyroid glands together with reduced expression of CaSRs is the most important pathophysiologic basis of PHPT. The spectrum of skeletal disease reflects different degrees of dysregulated bone remodeling. Intestinal calcium hyperabsorption together with increased bone resorption lead to increased filtered load of calcium that, in addition to other metabolic factors, predispose to the appearance of calcium-containing kidney stones. A genetic basis of PHPT can be identified in about 10% of all cases. These may occur as a part of multiple endocrine neoplasia syndromes (MEN1-MEN4), or the hyperparathyroidism jaw-tumor syndrome, or it may be caused by nonsyndromic isolated endocrinopathy, such as familial isolated PHPT and neonatal severe hyperparathyroidism. DNA testing may have value in: confirming the clinical diagnosis in a proband; eg, by distinguishing PHPT from familial hypocalciuric hypercalcemia (FHH). Mutation-specific carrier testing can be performed on a proband's relatives and identify where the proband is a mutation carrier, ruling out phenocopies that may confound the diagnosis; and potentially prevention via prenatal/preimplantation diagnosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiologic and Cardiovascular Sciences, 'Sapienza', Rome University, Rome, Italy
| | - Andrew Arnold
- Center for Molecular Oncology and Division of Endocrinology & Metabolism, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Zhanna Belaya
- Department of Neuroendocrinology and Bone Disease, The National Medical Research Centre for Endocrinology, Moscow, Russia
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| | - Bart L Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Fadil M Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford, UK.,Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Karl L Insogna
- Yale Bone Center Yale School of Medicine, Yale University, New Haven, CT, USA
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
| | - Uri Liberman
- Department of Physiology and Pharmacology, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Andrea Palermo
- Unit of Metabolic Bone and Thyroid Disorders, Fondazione Policlinico Universitario Campus Bio-Medico and Unit of Endocrinology and Diabetes, Campus Bio-Medico University, Rome, Italy
| | - Jessica Pepe
- Department of Clinical, Internal, Anaesthesiologic and Cardiovascular Sciences, 'Sapienza', Rome University, Rome, Italy
| | - René Rizzoli
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Robert Wermers
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition and Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford, UK.,Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
22
|
Newey PJ, Hannan FM, Wilson A, Thakker RV. Genetics of monogenic disorders of calcium and bone metabolism. Clin Endocrinol (Oxf) 2022; 97:483-501. [PMID: 34935164 PMCID: PMC7614875 DOI: 10.1111/cen.14644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/24/2021] [Accepted: 11/07/2021] [Indexed: 12/19/2022]
Abstract
Disorders of calcium homeostasis are the most frequent metabolic bone and mineral disease encountered by endocrinologists. These disorders usually manifest as primary hyperparathyroidism (PHPT) or hypoparathyroidism (HP), which have a monogenic aetiology in 5%-10% of cases, and may occur as an isolated endocrinopathy, or as part of a complex syndrome. The recognition and diagnosis of these disorders is important to facilitate the most appropriate management of the patient, with regard to both the calcium-related phenotype and any associated clinical features, and also to allow the identification of other family members who may be at risk of disease. Genetic testing forms an important tool in the investigation of PHPT and HP patients and is usually reserved for those deemed to be an increased risk of a monogenic disorder. However, identifying those suitable for testing requires a thorough clinical evaluation of the patient, as well as an understanding of the diversity of relevant phenotypes and their genetic basis. This review aims to provide an overview of the genetic basis of monogenic metabolic bone and mineral disorders, primarily focusing on those associated with abnormal calcium homeostasis, and aims to provide a practical guide to the implementation of genetic testing in the clinic.
Collapse
Affiliation(s)
- Paul J Newey
- Division of Molecular and Clinical Medicine, Ninewells Hospital & Medical School, University of Dundee, Scotland, UK
| | - Fadil M Hannan
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Abbie Wilson
- Division of Molecular and Clinical Medicine, Ninewells Hospital & Medical School, University of Dundee, Scotland, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Cunha C, Pinheiro SL, Donato S, Tavares Bello C, Simões H, Nunes Silva T, Prazeres S, Doutel D, Cavaco BM, Leite V. Parathyroid carcinoma: Single centre experience. Clin Endocrinol (Oxf) 2022; 97:250-257. [PMID: 35120263 DOI: 10.1111/cen.14684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Parathyroid Carcinoma is a rare malignant neoplasm, accounting for less than 1% of primary hyperparathyroidism cases. Parathyroid carcinomas are characterized by markedly elevated levels of PTH, severe hypercalcemia and established target organ damage. The authors report the experience of a single centre regarding the management and outcome of patients with parathyroid carcinomas and revise relevant literature. DESIGN Retrospective review of all patients with parathyroid carcinoma evaluated at a tertiary oncologic centre from 1991 until 2021. RESULTS Seventeen patients were identified (10 males), with a mean age at diagnosis of 53 ± 16 years and a median follow-up of 16.5 years. Most patients presented with hypercalcemia (n = 15), with a mean serum calcium concentration of 13.5 mg/dl (9.6-16.5) and mean PTH of 1173 pg/ml (276-2500). Hyperparathyroidism-mediated organ damage was observed in most patients (n = 16), with predominant renal (n = 12) and skeletal (n = 9) complications. En bloc surgical resection was performed in nine patients. Three patients underwent adjuvant radiotherapy. Recurrence was observed in 8 cases (47.1%) after a median of 24 months following surgery and no independent predictors of recurrence were identified. The overall survival and disease specific survival at 5-year was 88% and 94%, respectively. CDC73 mutations were present in 38.5% of analysed patients and one patient was diagnosed with MEN1. CONCLUSION Parathyroid carcinoma is associated with a significant rate of recurrence and limited effective treatment beyond initial complete surgical resection. Therefore, preoperatively high index of suspicion is paramount to optimize patient care. This is, to our knowledge, the largest Portuguese cohort published so far.
Collapse
Affiliation(s)
- Clara Cunha
- Department of Endocrinology, Hospital de Egas Moniz, Lisboa, Portugal
| | - Sara Lomelino Pinheiro
- Department of Endocrinology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Sara Donato
- Department of Endocrinology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Helder Simões
- Department of Endocrinology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Tiago Nunes Silva
- Department of Endocrinology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
- Molecular Pathobiology Research Unit (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Susana Prazeres
- Laboratory of Endocrinology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Delfim Doutel
- Department of Pathology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Branca M Cavaco
- Molecular Pathobiology Research Unit (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Valeriano Leite
- Department of Endocrinology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
- Molecular Pathobiology Research Unit (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| |
Collapse
|
24
|
Afreen S, Weinstein LS, Simonds WF, Jha S. Case of Recurrent Primary Hyperparathyroidism, Congenital Granular Cell Tumor and Aggressive Colorectal Cancer. J Endocr Soc 2022; 6:bvac096. [DOI: 10.1210/jendso/bvac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
We present the case of a 53-year-old African-American male with recurrent primary hyperparathyroidism (PHPT), multi-focal benign granular cell tumor (GCT) and metastatic colon adenocarcinoma. PHPT was diagnosed on routine blood testing [ionized calcium 1.66 (1.12-1.32) mmol/L, PTH 110pg/mL, Vitamin D-25-OH-D: 18ng/mL, PTHrP: undetectable]. Medical history was notable for two reoccurrences of PHPT with persistent disease after most recent parathyroidectomy. Lymph node (LN) dissection during this last surgery showed a 2-mm focus of poorly differentiated adenocarcinoma in 1/5 LNs. Additionally, patient had a history of multi-focal GCTs diagnosed at age two. On exam, there were no Lisch nodules, axillary, or inguinal freckling, neurofibromas or café-au-lait macules but a prominent abdominal wall nodule was noted. En bloc resection of a tumor in the tracheoesophageal groove, identified by sestamibi scan and excision of 4.5-cm abdominal wall nodule showed both masses having histology consistent with GCT. Serum calcium and PTH did not decrease indicating another unsuccessful surgery. Genetic testing was negative for germline variants in PHPT-associated genes, APC or genes of RAS-MAPK signaling pathway. The LN finding of metastatic adenocarcinoma prompted an endoscopy and trans-bronchial biopsy leading to the diagnosis of widely metastatic colonic adenocarcinoma, eventually resulting in his death a year later. Source of patient’s persistent PHPT remained unidentified. This is the first case with co-association of recurrent PHPT, multi-focal GCT and colon cancer. Whether the disparate tumors in this patient share common driver(s) remains unknown. Prospective surveillance of patients for similar associations may provide clues for a novel syndromic form of PHPT.
Collapse
Affiliation(s)
| | - Lee S Weinstein
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD
| | - William F Simonds
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD
| | - Smita Jha
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD
| |
Collapse
|
25
|
Vincze S, Peters NV, Kuo CL, Brown TC, Korah R, Murtha TD, Bellizzi J, Riccardi A, Parham K, Carling T, Costa-Guda J, Arnold A. GCM2 Variants in Familial and Multiglandular Primary Hyperparathyroidism. J Clin Endocrinol Metab 2022; 107:e2021-e2026. [PMID: 34967908 DOI: 10.1210/clinem/dgab929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Multiglandular and familial parathyroid disease constitute important fractions of primary hyperparathyroidism (PHPT). Germline missense variants of GCM2, a regulator of parathyroid development, were observed in familial isolated hyperparathyroidism and sporadic PHPT. However, as these previously reported GCM2 variants occur at relatively high frequencies in the population, understanding their potential clinical utility will require both additional penetrance data and functional evidence relevant to tumorigenicity. OBJECTIVE Determine the frequency of GCM2 variants of interest among patients with sporadic multigland or familial parathyroid disease and assess their penetrance. DESIGN AND PATIENTS DNA-encoding PHPT-associated GCM2 germline variants were polymerase chain reaction-amplified and sequenced from 107 patients with either sporadic multigland or suspected/confirmed familial parathyroid tumors. RESULTS GCM2 variants were observed in 9 of 107 cases (8.4%): Y282D in 4 patients (6.3%) with sporadic multigland disease; Y394S in 2 patients (11.1%) with familial PHPT and 3 (4.8%) with sporadic multigland disease. Compared with the general population, Y282D was enriched 5.9-fold in multigland disease, but its penetrance was very low (0.02%). Y394S was enriched 79-fold in sporadic multigland disease and 93-fold in familial PHPT, but its penetrance was low (1.33% and 1.04%, respectively). CONCLUSIONS Observed in vitro-activating GCM2 variant alleles are significantly overrepresented in PHPT patients with multiglandular or familial disease compared to the general population, yet penetrance values are very low; that is, most individuals with these variants in the population have a very low risk of developing PHPT. The potential clinical utility of detecting these GCM2 variants requires further investigation, including assessing their possible role as pathogenic/low-penetrance alleles.
Collapse
Affiliation(s)
- Sarah Vincze
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Nicholas V Peters
- Yale Endocrine Neoplasia Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Chia-Ling Kuo
- Biostatistics Center, Connecticut Institute for Clinical and Translational Science, University of Connecticut, Farmington, CT, USA
| | - Taylor C Brown
- Yale Endocrine Neoplasia Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO,USA
| | - Reju Korah
- Yale Endocrine Neoplasia Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Timothy D Murtha
- Yale Endocrine Neoplasia Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Justin Bellizzi
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Aaliyah Riccardi
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kourosh Parham
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Tobias Carling
- Biostatistics Center, Connecticut Institute for Clinical and Translational Science, University of Connecticut, Farmington, CT, USA
- Carling Adrenal Center, Hospital for Endocrine Surgery, Tampa, FL, USA
| | - Jessica Costa-Guda
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, CT, USA
- Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Andrew Arnold
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, CT, USA
- Division of Endocrinology and Metabolism, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
26
|
Bender C, Woo EG, Guan B, Ullah E, Feng E, Turriff A, Tumminia SJ, Sieving PA, Cukras CA, Hufnagel RB. Predominant Founder Effect among Recurrent Pathogenic Variants for an X-Linked Disorder. Genes (Basel) 2022; 13:genes13040675. [PMID: 35456481 PMCID: PMC9029724 DOI: 10.3390/genes13040675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 02/05/2023] Open
Abstract
For disorders with X-linked inheritance, variants may be transmitted through multiple generations of carrier females before an affected male is ascertained. Pathogenic RS1 variants exclusively cause X-linked retinoschisis (XLRS). While RS1 is constrained to variation, recurrent variants are frequently observed in unrelated probands. Here, we investigate recurrent pathogenic variants to determine the relative burden of mutational hotspot and founder allele events to this phenomenon. A cohort RS1 variant analysis and standardized classification, including variant enrichment in the XLRS cohort and in RS1 functional domains, were performed on 332 unrelated XLRS probands. A total of 108 unique RS1 variants were identified. A subset of 19 recurrently observed RS1 variants were evaluated in 190 probands by a haplotype analysis, using microsatellite and single nucleotide polymorphisms. Fourteen variants had at least two probands with common variant-specific haplotypes over ~1.95 centimorgans (cM) flanking RS1. Overall, 99/190 of reportedly unrelated probands had 25 distinct shared haplotypes. Examination of this XLRS cohort for common RS1 haplotypes indicates that the founder effect plays a significant role in this disorder, including variants in mutational hotspots. This improves the accuracy of clinical variant classification and may be generalizable to other X-linked disorders.
Collapse
Affiliation(s)
- Chelsea Bender
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.B.); (E.G.W.); (B.G.); (E.U.); (E.F.); (A.T.); (S.J.T.); (P.A.S.); (C.A.C.)
| | - Elizabeth Geena Woo
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.B.); (E.G.W.); (B.G.); (E.U.); (E.F.); (A.T.); (S.J.T.); (P.A.S.); (C.A.C.)
| | - Bin Guan
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.B.); (E.G.W.); (B.G.); (E.U.); (E.F.); (A.T.); (S.J.T.); (P.A.S.); (C.A.C.)
| | - Ehsan Ullah
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.B.); (E.G.W.); (B.G.); (E.U.); (E.F.); (A.T.); (S.J.T.); (P.A.S.); (C.A.C.)
| | - Eric Feng
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.B.); (E.G.W.); (B.G.); (E.U.); (E.F.); (A.T.); (S.J.T.); (P.A.S.); (C.A.C.)
| | - Amy Turriff
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.B.); (E.G.W.); (B.G.); (E.U.); (E.F.); (A.T.); (S.J.T.); (P.A.S.); (C.A.C.)
| | - Santa J. Tumminia
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.B.); (E.G.W.); (B.G.); (E.U.); (E.F.); (A.T.); (S.J.T.); (P.A.S.); (C.A.C.)
| | - Paul A. Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.B.); (E.G.W.); (B.G.); (E.U.); (E.F.); (A.T.); (S.J.T.); (P.A.S.); (C.A.C.)
- UC Davis Medical Center, Ophthalmology & Vision Sciences, University of California, Davis, CA 95817, USA
| | - Catherine A. Cukras
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.B.); (E.G.W.); (B.G.); (E.U.); (E.F.); (A.T.); (S.J.T.); (P.A.S.); (C.A.C.)
| | - Robert B. Hufnagel
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.B.); (E.G.W.); (B.G.); (E.U.); (E.F.); (A.T.); (S.J.T.); (P.A.S.); (C.A.C.)
- Correspondence:
| |
Collapse
|
27
|
Capel I, Mazarico-Altisent I, Baena N. Genetic study in primary hyperparathyroidism: Which patients and which genes to study? ENDOCRINOL DIAB NUTR 2022; 69:237-239. [PMID: 35545498 DOI: 10.1016/j.endien.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Ismael Capel
- Servicio de Endocrinología y Nutrición, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT), Departament de Medicina, Universitat Autònoma de Barcelona (UAB), Sabadell, Barcelona, Spain.
| | - Isabel Mazarico-Altisent
- Servicio de Endocrinología y Nutrición, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT), Departament de Medicina, Universitat Autònoma de Barcelona (UAB), Sabadell, Barcelona, Spain
| | - Neus Baena
- Laboratorio de Genética, UDIAT, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona (UAB), Sabadell, Barcelona, Spain
| |
Collapse
|
28
|
Capel I, Mazarico-Altisent I, Baena N. Estudio genético en el hiperparatiroidismo primario: ¿a quién y qué genes estudiar? ENDOCRINOL DIAB NUTR 2022. [DOI: 10.1016/j.endinu.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Canaff L, Guarnieri V, Kim Y, Wong BYL, Nolin-Lapalme A, Cole DEC, Minisola S, Eller-Vainicher C, Cetani F, Repaci A, Turchetti D, Corbetta S, Scillitani A, Goltzman D. Novel Glial Cells Missing-2 (GCM2) variants in parathyroid disorders. Eur J Endocrinol 2022; 186:351-366. [PMID: 35038313 DOI: 10.1016/10.1530/eje-21-0433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/13/2022] [Indexed: 05/25/2023]
Abstract
OBJECTIVE The aim of this study was to analyze variants of the gene glial cells missing-2 (GCM2), encoding a parathyroid cell-specific transcription factor, in familial hypoparathyroidism and in familial isolated hyperparathyroidism (FIHP) without and with parathyroid carcinoma. DESIGN We characterized 2 families with hypoparathyroidism and 19 with FIHP in which we examined the mechanism of action of GCM2 variants. METHODS Leukocyte DNA of hypoparathyroid individuals was Sanger sequenced for CASR, PTH, GNA11 and GCM2 mutations. DNA of hyperparathyroid individuals underwent MEN1, CDKN1B, CDC73, CASR, RET and GCM2 sequencing. The actions of identified GCM2 variants were evaluated by in vitro functional analyses. RESULTS A novel homozygous p.R67C GCM2 mutation which failed to stimulate transcriptional activity in a luciferase assay was identified in affected members of two hypoparathyroid families. Oligonucleotide pull-down assay and in silico structural modeling indicated that this mutant had lost the ability to bind the consensus GCM recognition sequence of DNA. Two novel (p.I383M and p.T386S) and one previously reported (p.Y394S) heterozygous GCM2 variants that lie within a C-terminal conserved inhibitory domain were identified in three affected individuals of the hyperparathyroid families. One family member, heterozygous for p.I138M, had parathyroid carcinoma (PC), and a heterozygous p.V382M variant was found in another patient affected by sporadic PC. These variants exerted significantly enhanced in vitrotranscriptional activity, including increased stimulation of the PTH promoter. CONCLUSIONS We provide evidence that two novel GCM2 R67C inactivating mutations with an inability to bind DNA are causative of hypoparathyroidism. Additionally, we provide evidence that two novel GCM2 variants increased transactivation of the PTH promoter in vitro and are associated with FIHP. Furthermore, our studies suggest that activating GCM2 variants may contribute to facilitating more aggressive parathyroid disease.
Collapse
Affiliation(s)
- Lucie Canaff
- Metabolic Complications and Disorders, Research Institute-McGill University Health Centre, Montreal, Quebec, Canada
| | - Vito Guarnieri
- Division of Medical Genetics and Unit of Endocrinology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Yoojung Kim
- Metabolic Complications and Disorders, Research Institute-McGill University Health Centre, Montreal, Quebec, Canada
| | - Betty Y L Wong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alexis Nolin-Lapalme
- Metabolic Complications and Disorders, Research Institute-McGill University Health Centre, Montreal, Quebec, Canada
| | - David E C Cole
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Salvatore Minisola
- Department of Internal Medicine and Medical Disciplines, 'Sapienza' Rome University, Rome, Italy
| | - Cristina Eller-Vainicher
- Department of Medical Sciences and Community, Fondazione Ca'Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Andrea Repaci
- Unit of Endocrinology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Daniela Turchetti
- Center for the Studies of Hereditary Cancers, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Corbetta
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Alfredo Scillitani
- Division of Medical Genetics and Unit of Endocrinology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - David Goltzman
- Metabolic Complications and Disorders, Research Institute-McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Canaff L, Guarnieri V, Kim Y, Wong BYL, Nolin-Lapalme A, Cole DEC, Minisola S, Eller-Vainicher C, Cetani F, Repaci A, Turchetti D, Corbetta S, Scillitani A, Goltzman D. Novel Glial Cells Missing-2 (GCM2) variants in parathyroid disorders. Eur J Endocrinol 2022; 186:351-366. [PMID: 35038313 PMCID: PMC8859918 DOI: 10.1530/eje-21-0433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/13/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The aim of this study was to analyze variants of the gene glial cells missing-2 (GCM2), encoding a parathyroid cell-specific transcription factor, in familial hypoparathyroidism and in familial isolated hyperparathyroidism (FIHP) without and with parathyroid carcinoma. DESIGN We characterized 2 families with hypoparathyroidism and 19 with FIHP in which we examined the mechanism of action of GCM2 variants. METHODS Leukocyte DNA of hypoparathyroid individuals was Sanger sequenced for CASR, PTH, GNA11 and GCM2 mutations. DNA of hyperparathyroid individuals underwent MEN1, CDKN1B, CDC73, CASR, RET and GCM2 sequencing. The actions of identified GCM2 variants were evaluated by in vitro functional analyses. RESULTS A novel homozygous p.R67C GCM2 mutation which failed to stimulate transcriptional activity in a luciferase assay was identified in affected members of two hypoparathyroid families. Oligonucleotide pull-down assay and in silico structural modeling indicated that this mutant had lost the ability to bind the consensus GCM recognition sequence of DNA. Two novel (p.I383M and p.T386S) and one previously reported (p.Y394S) heterozygous GCM2 variants that lie within a C-terminal conserved inhibitory domain were identified in three affected individuals of the hyperparathyroid families. One family member, heterozygous for p.I138M, had parathyroid carcinoma (PC), and a heterozygous p.V382M variant was found in another patient affected by sporadic PC. These variants exerted significantly enhanced in vitrotranscriptional activity, including increased stimulation of the PTH promoter. CONCLUSIONS We provide evidence that two novel GCM2 R67C inactivating mutations with an inability to bind DNA are causative of hypoparathyroidism. Additionally, we provide evidence that two novel GCM2 variants increased transactivation of the PTH promoter in vitro and are associated with FIHP. Furthermore, our studies suggest that activating GCM2 variants may contribute to facilitating more aggressive parathyroid disease.
Collapse
Affiliation(s)
- Lucie Canaff
- Metabolic Complications and Disorders, Research Institute-McGill University Health Centre, Montreal, Quebec, Canada
| | - Vito Guarnieri
- Division of Medical Genetics and Unit of Endocrinology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Yoojung Kim
- Metabolic Complications and Disorders, Research Institute-McGill University Health Centre, Montreal, Quebec, Canada
| | - Betty Y L Wong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alexis Nolin-Lapalme
- Metabolic Complications and Disorders, Research Institute-McGill University Health Centre, Montreal, Quebec, Canada
| | - David E C Cole
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Salvatore Minisola
- Department of Internal Medicine and Medical Disciplines, ‘Sapienza’ Rome University, Rome, Italy
| | - Cristina Eller-Vainicher
- Department of Medical Sciences and Community, Fondazione Ca’Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Andrea Repaci
- Unit of Endocrinology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Daniela Turchetti
- Center for the Studies of Hereditary Cancers, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Corbetta
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Alfredo Scillitani
- Division of Medical Genetics and Unit of Endocrinology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - David Goltzman
- Metabolic Complications and Disorders, Research Institute-McGill University Health Centre, Montreal, Quebec, Canada
- Correspondence should be addressed to D Goltzman;
| |
Collapse
|
31
|
De Sousa SMC, Carroll RW, Henderson A, Burgess J, Clifton-Bligh RJ. A contemporary clinical approach to genetic testing for heritable hyperparathyroidism syndromes. Endocrine 2022; 75:23-32. [PMID: 34773560 DOI: 10.1007/s12020-021-02927-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The improved access and affordability of next generation sequencing has facilitated the clinical use of gene panel testing to test concurrently patients for multiple heritable hyperparathyroidism syndromes. However, there is little guidance as to which patients should be selected for gene panel testing and which genes should be included in such panels. In this review, we provide a practical approach to considering, interpreting and managing genetic testing for familial primary hyperparathyroidism (PHPT) syndromes and familial hypocalciuric hypercalcaemia (FHH) in patients with PTH-dependent hypercalcaemia. We discuss known genes implicated in PHPT and FHH, testing criteria and yields, pre-test counselling, laboratory considerations, and post-test management. METHODS In addition to reviewing the literature, we conducted audits of local genetic testing data to examine the real-world yield of genetic testing in patients with PTH-dependent hypercalcaemia. RESULTS Our local audits revealed a positive genetic testing rate of 15-26% in patients with suspected hyperparathyroidism syndromes. CONCLUSION Based on the particular testing criteria met, affected patients should be tested for variants in the genes currently implicated in PHPT (MEN1, CDC73, RET, CDKN1B, GCM2, CASR) and/or FHH (CASR, GNA11, AP2S1). Patients should be provided with pre- and post-test counselling, including consideration of potential implications for family members.
Collapse
Affiliation(s)
- Sunita M C De Sousa
- Endocrine & Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia.
- South Australian Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| | - Richard W Carroll
- Endocrine, Diabetes, and Research Centre, Wellington Regional Hospital, Wellington, New Zealand
| | - Alex Henderson
- Wellington Hospital, Genetic Health Service New Zealand, Wellington, New Zealand
| | - John Burgess
- Department of Diabetes and Endocrinology, Royal Hobart Hospital, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Roderick J Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Park HS, Lee YH, Hong N, Won D, Rhee Y. Germline Mutations Related to Primary Hyperparathyroidism Identified by Next-Generation Sequencing. Front Endocrinol (Lausanne) 2022; 13:853171. [PMID: 35586626 PMCID: PMC9109676 DOI: 10.3389/fendo.2022.853171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Primary hyperparathyroidism (PHPT) is characterized by overproduction of parathyroid hormone and subsequent hypercalcemia. Approximately 10% of PHPT cases are hereditary, and several genes, such as MEN1, RET, CASR, and CDC73, are responsible for the familial forms of PHPT. However, other genetic mutations involved in the etiology of PHPT are largely unknown. In this study, we identified genetic variants that might be responsible for PHPT, including familial PHPT, benign sporadic PHPT, and sporadic parathyroid cancer, using next-generation sequencing (NGS). A total of 107 patients with PHPT who underwent NGS from 2017 to 2021 at Severance Hospital were enrolled. We reviewed the pathogenic variants, likely pathogenic variants, and variants of uncertain significance (VUS) according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology criteria. Of the 107 patients (mean age: 47.6 ± 16.1 years, women 73.8%), 12 patients were diagnosed with familial PHPT, 13 with parathyroid cancer, and 82 with benign sporadic PHPT. Using NGS, we identified three pathogenic variants in two genes (CDC73 and MEN1), 10 likely pathogenic variants in six genes (CASR, CDC73, LRP5, MEN1, SDHA, and VHL), and 39 non-synonymous VUS variants that could be related to parathyroid disease. Interestingly, we identified one GCM2 variant (c.1162A>G [p.Lys388Glu]) and five APC variants that were previously reported in familial isolated hyperparathyroidism, benign sporadic PHPT, and parathyroid cancer. We also analyzed the characteristics of subjects with positive genetic test results (pathogenic or likely pathogenic variants), and 76.9% of them had at least one of the following features: 1) age < 40 years, 2) family history of PHPT, 3) multiglandular PHPT, or 4) recurrent PHPT. In this study, we analyzed the NGS data of patients with PHPT and observed variants that could possibly be related to PHPT pathogenesis. NGS screening for selected patients with PHPT might help in the diagnosis and management of the disease.
Collapse
Affiliation(s)
- Hye-Sun Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yeon Hee Lee
- Department of Internal Medicine, Seoul Eco Internal Medicine Clinic, Seoul, South Korea
| | - Namki Hong
- Department of Internal Medicine, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongju Won
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yumie Rhee
- Department of Internal Medicine, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Yumie Rhee,
| |
Collapse
|
33
|
Abstract
Primary hyperparathyroidism (PHPT) is a commonly encountered clinical problem and occurs as part of an inherited disorder in ∼10% of patients. Several features may alert the clinician to the possibility of a hereditary PHPT disorder (eg, young age of disease onset) whilst establishing any relevant family history is essential to the clinical evaluation and will help inform the diagnosis. Genetic testing should be offered to patients at risk of a hereditary PHPT disorder, as this may improve management and allow the identification and investigation of other family members who may also be at risk of disease.
Collapse
Affiliation(s)
- Paul J Newey
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Jacqui Wood Cancer Centre, James Arrott Drive, Dundee, Scotland DD1 9SY, UK.
| |
Collapse
|
34
|
Abstract
Extracellular calcium is normally tightly regulated by parathyroid hormone (PTH), 1,25-dihydroxyvitamin D, as well as by calcium ion (Ca++) itself. Dysregulated PTH production leading to hypercalcemia occurs most commonly in sporadic primary hyperparathryoidism (PHPT) but may also result from select genetic mutations in familial disorders. Parathyroid hormone-related protein shares molecular mechanisms of action with PTH and is the most common cause of hypercalcemia of malignancy. Other cytokines and mediators may also cause resorptive hypercalcemia once bone metastases have occurred. Less commonly, extrarenal production of calcitriol can occur in malignancies and in infectious and noninfectious inflammatory conditions and can cause hypercalcemia.
Collapse
Affiliation(s)
- David Goltzman
- Calcium Research Laboratory, Department of Medicine and Physiology, McGill University, Research Institute of the McGill University Health Centre, Glen Site, 1001 Decarie Boulevard, Room EM1.3220, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
35
|
Karunakar P, Krishnamurthy S, Rajavelu TN, Deepthi B, Thangaraj A, Chidambaram AC. A child with tetany, convulsions, and nephrocalcinosis: Answers. Pediatr Nephrol 2021; 36:4119-4122. [PMID: 34491438 DOI: 10.1007/s00467-021-05238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Pediredla Karunakar
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Sriram Krishnamurthy
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India.
| | | | - Bobbity Deepthi
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Abarna Thangaraj
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Aakash Chandran Chidambaram
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| |
Collapse
|
36
|
Parathyroid Tumors: Molecular Signatures. Int J Mol Sci 2021; 22:ijms222011206. [PMID: 34681865 PMCID: PMC8540444 DOI: 10.3390/ijms222011206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
Parathyroid tumors are rare endocrine neoplasms affecting 0.1–0.3% of the general population, including benign parathyroid adenomas (PAs; about 98% of cases), intermediate atypical parathyroid adenomas (aPAs; 1.2–1.3% of cases) and malignant metastatic parathyroid carcinomas (PCs; less than 1% of cases). These tumors are characterized by a variable spectrum of clinical phenotypes and an elevated cellular, histological and molecular heterogeneity that make it difficult to pre-operatively distinguish PAs, aPAs and PCs. Thorough knowledge of genetic, epigenetic, and molecular signatures, which characterize different parathyroid tumor subtypes and drive different tumorigeneses, is a key step to identify potential diagnostic biomarkers able to distinguish among different parathyroid neoplastic types, as well as provide novel therapeutic targets and strategies for these rare neoplasms, which are still a clinical and therapeutic challenge. Here, we review the current knowledge on gene mutations and epigenetic changes that have been associated with the development of different clinical types of parathyroid tumors, both in familial and sporadic forms of these endocrine neoplasms.
Collapse
|
37
|
Singh P, Bhadada SK, Dahiya D, Saikia UN, Arya AK, Sachdeva N, Kaur J, Behera A, Brandi ML, Rao SD. GCM2 Silencing in Parathyroid Adenoma Is Associated With Promoter Hypermethylation and Gain of Methylation on Histone 3. J Clin Endocrinol Metab 2021; 106:e4084-e4096. [PMID: 34077544 PMCID: PMC8475237 DOI: 10.1210/clinem/dgab374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Glial cells missing 2 (GCM2), a zinc finger-transcription factor, is essentially required for the development of the parathyroid glands. OBJECTIVE We sought to identify whether the epigenetic alterations in GCM2 transcription are involved in the pathogenesis of sporadic parathyroid adenoma. In addition, we examined the association between promoter methylation and histone modifications with disease indices. METHODS Messenger RNA (mRNA) and protein expression of GCM2 were analyzed by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in 33 adenomatous and 10 control parathyroid tissues. DNA methylation and histone methylation/acetylation of the GCM2 promoter were measured by bisulfite sequencing and chromatin immunoprecipitation-qPCR. Additionally, we investigated the role of epigenetic modifications on GCM2 and DNA methyltransferase 1 (DNMT1) expression in parathyroid (PTH)-C1 cells by treating with 5-aza-2'-deoxycytidine (DAC) and BRD4770 and assessed for GCM2 mRNA and DNMT1 protein levels. RESULTS mRNA and protein expression of GCM2 were lower in sporadic adenomatous than in control parathyroid tissues. This reduction correlated with hypermethylation (P < .001) and higher H3K9me3 levels in the GCM2 promoter (P < .04) in adenomas. In PTH-C1 cells, DAC treatment resulted in increased GCM2 transcription and decreased DNMT1 protein expression, while cells treated with the BRD4770 showed reduced H3K9me3 levels but a nonsignificant change in GCM2 transcription. CONCLUSION These findings suggest the concurrent association of promoter hypermethylation and higher H3K9me3 with the repression of GCM2 expression in parathyroid adenomas. Treatment with DAC restored GCM2 expression in PTH-C1 cells. Our results showed a possible epigenetic landscape in the tumorigenesis of parathyroid adenoma and also that DAC may be a promising avenue of research for parathyroid adenoma therapeutics.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
- Correspondence: Sanjay Kumar Bhadada, MD, DM, Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Divya Dahiya
- Department of General Surgery, PGIMER, Chandigarh, 160012, India
| | | | - Ashutosh Kumar Arya
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Jyotdeep Kaur
- Department of Biochemistry, PGIMER, Chandigarh, 160012, India
| | - Arunanshu Behera
- Department of General Surgery, PGIMER, Chandigarh, 160012, India
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50121, Italy
| | - Sudhaker Dhanwada Rao
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, Michigan 48202, USA
| |
Collapse
|
38
|
The Core Stem Genes SOX2, POU5F1/OCT4, and NANOG Are Expressed in Human Parathyroid Tumors and Modulated by MEN1, YAP1, and β-catenin Pathways Activation. Biomedicines 2021; 9:biomedicines9060637. [PMID: 34199594 PMCID: PMC8227846 DOI: 10.3390/biomedicines9060637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022] Open
Abstract
Tumors of the parathyroid glands are the second most common endocrine neoplasia. Epigenetic studies revealed an embryonic signature involved in parathyroid tumorigenesis. Here, we investigated the expression of the stem core genes SOX2, POU5F1/OCT4, and NANOG. Rare cells within normal parathyroid glands expressed POU5F1/OCT4 and NANOG, while SOX2 was undetectable. Nuclear SOX2 expression was detectable in 18% of parathyroid adenomas (PAds, n = 34) involving 5–30% of cells, while OCT4 and NANOG were expressed at the nuclear level in a more consistent subset of PAds involving 15–40% of cells. Most parathyroid carcinomas expressed the core stem genes. SOX2-expressing cells co-expressed parathormone (PTH). In PAds-derived primary cultures, silencing of the tumor suppressor gene MEN1 induced the expression of SOX2, likely through a MEN1/HAR1B/SOX2 axis, while calcium-sensing receptor activation increased SOX2 mRNA levels through YAP1 activation. In addition, inducing nuclear β-catenin accumulation in PAds-derived primary cultures by short-term incubation with lithium chloride (LiCl), SOX2 and POU5F1/OCT4 expression levels increased, while NANOG transcripts were reduced, and LiCl long-term incubation induced an opposite pattern of gene expression. In conclusion, detection of the core stem genes in parathyroid tumors supports their embryogenic signature, which is modulated by crucial genes involved in parathyroid tumorigenesis.
Collapse
|
39
|
Goliusova DV, Klementieva NV, Panova AV, Mokrysheva NG, Kiselev SL. The Role of Genetic Factors in Endocrine Tissues Development and Its Regulation In Vivo and In Vitro. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542103008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
40
|
Wang SC, Liao LM, Ansar M, Lin SY, Hsu WW, Su CM, Chung YM, Liu CC, Hung CS, Lin RK. Automatic Detection of the Circulating Cell-Free Methylated DNA Pattern of GCM2, ITPRIPL1 and CCDC181 for Detection of Early Breast Cancer and Surgical Treatment Response. Cancers (Basel) 2021; 13:cancers13061375. [PMID: 33803633 PMCID: PMC8002961 DOI: 10.3390/cancers13061375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/31/2022] Open
Abstract
The early detection of cancer can reduce cancer-related mortality. There is no clinically useful noninvasive biomarker for early detection of breast cancer. The aim of this study was to develop accurate and precise early detection biomarkers and a dynamic monitoring system following treatment. We analyzed a genome-wide methylation array in Taiwanese and The Cancer Genome Atlas (TCGA) breast cancer (BC) patients. Most breast cancer-specific circulating methylated CCDC181, GCM2 and ITPRIPL1 biomarkers were found in the plasma. An automatic analysis process of methylated ccfDNA was established. A combined analysis of CCDC181, GCM2 and ITPRIPL1 (CGIm) was performed in R using Recursive Partitioning and Regression Trees to establish a new prediction model. Combined analysis of CCDC181, GCM2 and ITPRIPL1 (CGIm) was found to have a sensitivity level of 97% and an area under the curve (AUC) of 0.955 in the training set, and a sensitivity level of 100% and an AUC of 0.961 in the test set. The circulating methylated CCDC181, GCM2 and ITPRIPL1 was also significantly decreased after surgery (all p < 0.001). The aberrant methylation patterns of the CCDC181, GCM2 and ITPRIPL1 genes means that they are potential biomarkers for the detection of early BC and can be combined with breast imaging data to achieve higher accuracy, sensitivity and specificity, facilitating breast cancer detection. They may also be applied to monitor the surgical treatment response.
Collapse
Affiliation(s)
- Sheng-Chao Wang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan;
| | - Li-Min Liao
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
| | - Muhamad Ansar
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Shih-Yun Lin
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Wei-Wen Hsu
- Department of Statistics, College of Arts and Sciences, Kansas State University, 101 Dickens Hall, 1116 Mid-Campus Drive N, Manhattan, KS 66506-0802, USA;
| | - Chih-Ming Su
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan
| | - Yu-Mei Chung
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Cai-Cing Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Chin-Sheng Hung
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan
- Correspondence: (C.-S.H.); (R.-K.L.); Tel.: +886-970-405-127 (C.-S.H.); +886-2-2736-1661 (ext. 6162) (R.-K.L.)
| | - Ruo-Kai Lin
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan;
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Clinical trial center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110, Taiwan
- Correspondence: (C.-S.H.); (R.-K.L.); Tel.: +886-970-405-127 (C.-S.H.); +886-2-2736-1661 (ext. 6162) (R.-K.L.)
| |
Collapse
|
41
|
Juhlin CC, Erickson LA. Genomics and Epigenomics in Parathyroid Neoplasia: from Bench to Surgical Pathology Practice. Endocr Pathol 2021; 32:17-34. [PMID: 33269427 PMCID: PMC7960610 DOI: 10.1007/s12022-020-09656-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
The majority of parathyroid disease encountered in routine practice is due to single parathyroid adenoma, of which the majority arise as sporadic tumors. This is usually a straightforward diagnosis in endocrine pathology when in the appropriate clinical setting, although subsets of cases will exhibit atypical histological features that may warrant additional immunohistochemical and genetic analyses to estimate the malignant potential. Parathyroid carcinomas on the other hand, are bona fide malignant tumors characterized by their unequivocal invasion demonstrated through routine histology or metastasis. The ultimate endpoint for any molecular marker discovered through laboratory investigations is to be introduced in clinical routine practice and guide the surgical pathologist in terms of diagnostics and prognostication. For parathyroid tumors, the two main diagnostic challenges include the distinction between parathyroid adenoma and parathyroid carcinoma, as well as the pinpointing of hereditable disease for familial screening purposes. While numerous markers on genetic, epigenetic, and protein levels have been proposed as discriminative in these aspects, this review aims to condense the scientific coverage of these enigmatic topics and to propose a focused surgical pathology approach to the subject.
Collapse
Affiliation(s)
- C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
42
|
Five patients with disorders of calcium metabolism presented with GCM2 gene variants. Sci Rep 2021; 11:2968. [PMID: 33536578 PMCID: PMC7859196 DOI: 10.1038/s41598-021-82661-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The GCM2 gene encodes a transcription factor predominantly expressed in parathyroid cells that is known to be critical for development, proliferation and maintenance of the parathyroid cells. A cohort of 127 Spanish patients with a disorder of calcium metabolism were screened for mutations by Next-Generation Sequencing (NGS). A targeted panel for disorders of calcium and phosphorus metabolism was designed to include 65 genes associated with these disorders. We observed two variants of uncertain significance (p.(Ser487Phe) and p.Asn315Asp), one likely pathogenic (p.Val382Met) and one benign variant (p.Ala393_Gln395dup) in the GCM2 gene in the heterozygous state in five families (two index cases had hypocalcemia and hypoparathyroidism, respectively, and three index cases had primary hyperparathyroidism). Our study shows the utility of NGS in unravelling the genetic origin of some disorders of the calcium and phosphorus metabolism, and confirms the GCM2 gene as an important element for the maintenance of calcium homeostasis. Importantly, a novel variant in the GCM2 gene (p.(Ser487Phe)) has been found in a patient with hypocalcemia.
Collapse
|
43
|
Hu Y, Zhang X, Wang O, Cui M, Li X, Wang M, Hua S, Liao Q. Integrated Whole-Exome and Transcriptome Sequencing of Sporadic Parathyroid Adenoma. Front Endocrinol (Lausanne) 2021; 12:631680. [PMID: 34054720 PMCID: PMC8163014 DOI: 10.3389/fendo.2021.631680] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Hyperparathyroidism is the third most common endocrine disease. Parathyroid adenoma (PA) accounts for approximately 85% of cases of primary hyperparathyroidism, but the molecular mechanism is not fully understood. Herein, we aimed to investigate the genetic and transcriptomic profiles of sporadic PA. METHODS Whole-exome sequencing (WES) and transcriptome sequencing (RNA-seq) of 41 patients with PA and RNA-seq of 5 normal parathyroid tissues were performed. Gene mutations and characterized expression changes were identified. To elucidate the molecular mechanism underlying PA, unsupervised consensus clustering of RNA-seq data was performed. The correlations between the sequencing data and clinicopathological features of these patients were analyzed. RESULTS Previously reported PA driver gene mutations, such as MEN1 (9/41), mTOR (4/41), ZFX (3/41), CASR (3/41), EZH2 (2/41) and FAT1 (2/41), were also identified in our cohort. Furthermore, somatic mutation of EZH1, which had not been reported in PA, was found in 4 samples. RNA-seq showed that the expression levels of 84 genes were upregulated and 646 were downregulated in PA samples compared with normal samples. Unsupervised clustering analysis of RNA-seq data clustered these patients into 10 subgroups related to mutation or abnormal expression of a group of potential pathogenic genes. CONCLUSION MEN1, EZH2, CASR, EZH1, ZFX, mTOR and FAT1 mutations in PA were revealed. According to the RNA-seq data clustering analysis, cyclin D1, β-catenin, VDR, CASR and GCM2 may be important factors contributing to the PA gene expression profile.
Collapse
Affiliation(s)
- Ya Hu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiang Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ou Wang
- Laboratory of Endocrinology, Department of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaobin Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengyi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Surong Hua
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Quan Liao,
| |
Collapse
|
44
|
Abstract
Regulation of the serum calcium level in humans is achieved by the endocrine action of parathyroid glands working in concert with vitamin D and a set of critical target cells and tissues including osteoblasts, osteoclasts, the renal tubules, and the small intestine. The parathyroid glands, small highly vascularized endocrine organs located behind the thyroid gland, secrete parathyroid hormone (PTH) into the systemic circulation as is needed to keep the serum free calcium concentration within a tight physiologic range. Primary hyperparathyroidism (HPT), a disorder of mineral metabolism usually associated with abnormally elevated serum calcium, results from the uncontrolled release of PTH from one or several abnormal parathyroid glands. Although in the vast majority of cases HPT is a sporadic disease, it can also present as a manifestation of a familial syndrome. Many benign and malignant sporadic parathyroid neoplasms are caused by loss-of-function mutations in tumor suppressor genes that were initially identified by the study of genomic DNA from patients who developed HPT as a manifestation of an inherited syndrome. Somatic and inherited mutations in certain proto-oncogenes can also result in the development of parathyroid tumors. The clinical and genetic investigation of familial HPT in kindreds found to lack germline variants in the already known HPT-predisposition genes represents a promising future direction for the discovery of novel genes relevant to parathyroid tumor development.
Collapse
Affiliation(s)
- Jenny E. Blau
- Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: William F. Simonds,
| |
Collapse
|
45
|
Gierlikowski W, Skwarek-Szewczyk A, Popow M. A Novel Germline c.1267T>A MEN1 Mutation in MEN1 Family—from Phenotype to Gene and Back. Genes (Basel) 2020; 11:genes11111382. [PMID: 33233395 PMCID: PMC7700542 DOI: 10.3390/genes11111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/27/2022] Open
Abstract
Primary hyperparathyroidism is a relatively common endocrine disorder, which may be hereditary. This report describes clinical, biochemical, radiographic, and genetic findings, the latter obtained using next generation sequencing (NGS), in three consanguineous patients. Gene panels in NGS consisted of 5 or 70 genes, including MEN1 and RET. The first patient suffered from recurrent primary hyperparathyroidism. Primary hyperparathyroidism and pituitary microadenomas were afterwards diagnosed in two of her daughters. No clinical nor radiological features of gastroenteropancreatic neuroendocrine tumors were found. All three family members were heterozygous for MEN1 NM_130799: c.1267T>A transversion, which is predicted to result in substitution of tryptophan with arginine in position 423. Additionally, the first patient was also a carrier of RET NM_020975: c.1946C>T missense mutation, which was not present in two other family members. We describe a family with a novel heterozygous mutation (NM_130799: c.1267T>A) in MEN1 gene and postulate that it leads to MEN1 syndrome. The study underlies the importance of genetic testing in primary hyperparathyroidism in personalizing patients’ care.
Collapse
|
46
|
Mariathasan S, Andrews KA, Thompson E, Challis BG, Wilcox S, Pierce H, Hale J, Spiden S, Fuller G, Simpson HL, Fish B, Jani P, Seetho I, Armstrong R, Izatt L, Joshi M, Velusamy A, Park SM, Casey RT. Genetic testing for hereditary hyperparathyroidism and familial hypocalciuric hypercalcaemia in a large UK cohort. Clin Endocrinol (Oxf) 2020; 93:409-418. [PMID: 32430905 DOI: 10.1111/cen.14254] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Primary hyperparathyroidism (PHPTH) is a common endocrine disorder and an estimated 10% of cases are hereditary, related to syndromes including; multiple endocrine neoplasia (MEN) type 1, MEN type 4, MEN2A and hereditary hyperparathyroidism-jaw tumour syndrome. Establishing the underlying genetic cause for PHPTH allows for personalized and cost-effective management. Familial hypocalicuric hypercalcaemia (FHH) is a benign disorder of hypercalcaemia associated with an inappropriately low urinary calcium excretion, which is quantified by the calcium creatinine clearance ratio (CCCR). Recent NHS England National Genomic Test Directory testing criteria for familial hyperparathyroidism state testing patients presenting with PHPTH and CCCR > 0.02 presenting (i) <35 years of age, or (ii) <45y with one of (a) multiglandular disease, or (b) hyperplasia on histology, or (c) ossifying fibroma(s) of the maxilla and/ or mandible, or (d) a family history of unexplained PHPTH. The testing criterion for FHH is a CCCR < 0.02. AIMS AND METHODS A retrospective review of patients referred for genetic testing over a 4 year period for suspected hereditary HPTH was performed. Genetic analysis was performed by next-generation sequencing of the following genes; MEN1, CDC73, CASR, CDKN1A, CDKN1B, CDKN2B, CDKN2C, RET, GCM2, GNA11, and AP2S1 in NHS-accredited Regional Genetic laboratories. Aims of this study were to better define testing criteria for suspected hereditary PHPTH in a UK cohort. RESULTS A total of 121 patients were included in this study (92 female) with a mean age of 41 years (SD 17). A pathogenic germline variant was identified in 16% (n = 19). A pathogenic variant was identified in the PHPTH genes CDC73 in a single patient and MEN1 in six patients (6% of total), in the FHH genes, CASR in 11 patients and AP2S1 in a single paediatric case (10% of total). A variant of uncertain significance (VUS) was identified in eight patients (6%) but over the course of this study familial segregation studies and computational analysis enabled re-classification of four of the variants, with two VUS's in the CASR gene being upgraded to likely pathogenic variants. Age at diagnosis and multiglandular disease as sole risk factors were not predictive of a pathogenic germline variant in this cohort but a positive family history was strongly predictive (P = .0002). A significant difference in the mean calcium creatinine clearance ratio (CCCR) in those patients with an identified CASR pathogenic variant versus those without (P = .0001) was demonstrated in this study. Thirty-three patients were aged over 50 years and the diagnostic rate of a pathogenic variant was 15.1% in those patients >50 years of age compared to 15.9% in those <50 years. Five patients >50 years and with a CCCR of <0.01, were diagnosed with a pathogenic variant in CASR. CONCLUSION Family history was the strongest predictor of hereditary PHPTH in this cohort. This study has highlighted the importance of re-evaluating VUS's in order to inform patient management and enable appropriate genetic counselling. Finally, this study has demonstrated the need to consider genetic testing for PHPTH in patients of any age, particularly those with additional risk factors.
Collapse
Affiliation(s)
- Sashi Mariathasan
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Katrina A Andrews
- Department of Clinical Genetics, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Edward Thompson
- East Midlands and East of England NHS Genomic Laboratory Hub, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Ben G Challis
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sarah Wilcox
- Department of Clinical Genetics, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Heather Pierce
- Department of Clinical Genetics, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Julia Hale
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Sarah Spiden
- East Midlands and East of England NHS Genomic Laboratory Hub, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Gavin Fuller
- East Midlands and East of England NHS Genomic Laboratory Hub, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Helen L Simpson
- Department of Endocrinology, University College Hospital, London, UK
| | - Brian Fish
- Department of Head and Neck Surgery, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Piyush Jani
- Department of Head and Neck Surgery, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Ian Seetho
- Department of Endocrinology, Northwick Park Hospital, London North West University Hospital NHS Trust, London, UK
| | - Ruth Armstrong
- Department of Clinical Genetics, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Louise Izatt
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mamta Joshi
- Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Anand Velusamy
- Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Ruth T Casey
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, Cambridge University, Cambridge, UK
| |
Collapse
|
47
|
Song A, Yang Y, Wang Y, Liu S, Nie M, Jiang Y, Li M, Xia W, Wang O, Xing X. Germline GCM2 Mutation Screening in Chinese Primary Hyperparathyroidism Patients. Endocr Pract 2020; 26:1093-1104. [PMID: 33471711 DOI: 10.4158/ep-2020-0132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/10/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Glial cell missing 2 (GCM2), the critical regulator in the development of parathyroid glands, has been associated with the pathogenesis of primary hyperparathyroidism (PHPT). Relevant data in Chinese and other Asian populations are still lacking. This study aimed to screen the germline mutations of GCM2 in Chinese PHPT patients. METHODS A total of 232 patients diagnosed with PHPT at the Peking Union Medical College Hospital from July, 2016, to February, 2019, were screened using targeted next-generation sequencing to identify rare variants of 8 candidate genes associated with PHPT, including GCM2. Luciferase assays were performed to determine the functional impact of the GCM2 variants. RESULTS Four male patients were found to carry 3 rare missense variants of the GCM2 gene, including c.1162A>G (p.K388E), c.1144G>A (p.V382M), and c.1247A>G (p.Y416C). Two variants (p.K388E and p.V382M) located within a highly conserved region were associated with GCM2 transactivation function. The 2 cases carrying the p.K388E mutation had a pathology of carcinoma, and the case with the p.V382M mutation had atypical adenoma. CONCLUSION This study determined an overall GCM2 gain-of-function mutation frequency of 1.3% in a relatively large-sample-sized Chinese PHPT cohort and supported a higher malignant tendency in cases carrying activating GCM2 mutations. Hence, preoperative screening for these GCM2 mutations might be beneficial to treatment decisions, and longer follow-up for such patients is recommended.
Collapse
Affiliation(s)
- An Song
- From the Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Yang
- From the Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yabing Wang
- From the Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuzhong Liu
- the Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences
| | - Min Nie
- From the Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Jiang
- From the Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Li
- From the Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Weibo Xia
- From the Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ou Wang
- From the Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaoping Xing
- From the Key laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
48
|
Abstract
Parathyroid gland excision specimens are common and sometimes underestimated cases that many surgical pathologists encounter regularly. In the vast majority of cases, these will be spot diagnoses of sporadic primary parathyroid adenomas or, perhaps, hyperplasias commonly in the setting of renal failure. However, a small but significant number of parathyroid gland excisions may be due to heritable disease. In most cases, hereditary disease is suspected by the referring clinicians. Nevertheless, a subset of these are undetected which is significant, particularly in the setting of the multiple endocrine neoplasia (MEN), and the hyperparathyroidism jaw tumour (HPT-JT) syndromes. There have been recent advances in recognition of the morphological and immunohistochemical characteristics of these tumours and hyperplasias. While hereditary kindreds are over-represented at specialist referral centres, with awareness of the characteristic clinical and morphological features, the general surgical pathologist is frequently able to suggest the possibility of hereditary parathyroid disease. We therefore provide a succinct guide for pathologists to increase the recognition of hereditary parathyroid disease.
Collapse
MESH Headings
- Diagnosis, Differential
- Diagnostic Techniques, Endocrine/standards
- Genetic Diseases, Inborn/diagnosis
- Genetic Diseases, Inborn/metabolism
- Genetic Diseases, Inborn/pathology
- Humans
- Hyperparathyroidism, Primary/diagnosis
- Hyperparathyroidism, Primary/genetics
- Hyperparathyroidism, Primary/metabolism
- Hyperparathyroidism, Primary/pathology
- Immunohistochemistry
- Parathyroid Diseases/diagnosis
- Parathyroid Diseases/genetics
- Parathyroid Diseases/metabolism
- Parathyroid Diseases/pathology
- Parathyroid Glands/metabolism
- Parathyroid Glands/pathology
- Pathologists/standards
- Pathologists/statistics & numerical data
- Practice Patterns, Physicians'/standards
Collapse
Affiliation(s)
- John Turchini
- Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, 2113, Australia.
- Discipline of Pathology, MQ Health, Macquarie University, Macquarie Park, NSW, 2113, Australia.
- Sydney Medical School, The University of Sydney, Sydney, 2006, Australia.
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St Leonards, NSW, 2065, Australia.
| | - Anthony J Gill
- Sydney Medical School, The University of Sydney, Sydney, 2006, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St Leonards, NSW, 2065, Australia
- Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| |
Collapse
|
49
|
Gorbacheva AM, Eremkina AK, Mokrysheva NG. [Hereditary syndromal and nonsyndromal forms of primary hyperparathyroidism]. ACTA ACUST UNITED AC 2020; 66:23-34. [PMID: 33351310 DOI: 10.14341/probl10357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/21/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022]
Abstract
Primary hyperparathyroidism is a common disorder of mineral homeostasis, characterized by overproduction of parathyroid hormone and upper normal or elevated calcium levels due to hyperplasia or a tumor of parathyroid gland. 90−95% of cases of primary hyperparathyroidism are sporadic, while hereditary genetic forms occur in 5–10% of all cases. Primary hyperparathyroidism as the component of hereditary syndromes can present in various clinical forms (asymptomatic, symptomatic), can be associated with other endocrine or non-endocrine diseases, and require special approaches to treatment. Given that primary hyperparathyroidism is one of the most common components of these syndromes, it can be used as an important diagnostic tool in identifying affected families. This review is devoted to modern ideas about the clinical course and genetic characteristics of hereditary variants of primary hyperparathyroidism and the diagnostic and treatment algorithms recommended today. The review considers primary hyperparathyroidism as a component of hereditary syndromes including multiple endocrine neoplasias types 1, 2A and 4 and syndrome of hyperparathyroidism with a jaw tumor. Also non-syndromic hereditary forms are descripted, such as familial isolated hyperparathyroidism, familial hypocalciuric hypercalcemia, and severe neonatal primary hyperparathyroidism.
Collapse
|
50
|
Abstract
Calcium homeostasis is maintained by the actions of the parathyroid glands, which release parathyroid hormone into the systemic circulation as necessary to maintain the serum calcium concentration within a tight physiologic range. Excessive secretion of parathyroid hormone from one or more neoplastic parathyroid glands, however, causes the metabolic disease primary hyperparathyroidism (HPT) typically associated with hypercalcemia. Although the majority of cases of HPT are sporadic, it can present in the context of a familial syndrome. Mutations in the tumor suppressor genes discovered by the study of such families are now recognized to be pathogenic for many sporadic parathyroid tumors. Inherited and somatic mutations of proto-oncogenes causing parathyroid neoplasia are also known. Future investigation of somatic changes in parathyroid tumor DNA and the study of kindreds with HPT yet lacking germline mutation in the set of genes known to predispose to HPT represent two avenues likely to unmask additional novel genes relevant to parathyroid neoplasia.
Collapse
Affiliation(s)
- William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|