1
|
Wang L, Khunsriraksakul C, Markus H, Chen D, Zhang F, Chen F, Zhan X, Carrel L, Liu DJ, Jiang B. Integrating single cell expression quantitative trait loci summary statistics to understand complex trait risk genes. Nat Commun 2024; 15:4260. [PMID: 38769300 PMCID: PMC11519974 DOI: 10.1038/s41467-024-48143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Transcriptome-wide association study (TWAS) is a popular approach to dissect the functional consequence of disease associated non-coding variants. Most existing TWAS use bulk tissues and may not have the resolution to reveal cell-type specific target genes. Single-cell expression quantitative trait loci (sc-eQTL) datasets are emerging. The largest bulk- and sc-eQTL datasets are most conveniently available as summary statistics, but have not been broadly utilized in TWAS. Here, we present a new method EXPRESSO (EXpression PREdiction with Summary Statistics Only), to analyze sc-eQTL summary statistics, which also integrates 3D genomic data and epigenomic annotation to prioritize causal variants. EXPRESSO substantially improves existing methods. We apply EXPRESSO to analyze multi-ancestry GWAS datasets for 14 autoimmune diseases. EXPRESSO uniquely identifies 958 novel gene x trait associations, which is 26% more than the second-best method. Among them, 492 are unique to cell type level analysis and missed by TWAS using whole blood. We also develop a cell type aware drug repurposing pipeline, which leverages EXPRESSO results to identify drug compounds that can reverse disease gene expressions in relevant cell types. Our results point to multiple drugs with therapeutic potentials, including metformin for type 1 diabetes, and vitamin K for ulcerative colitis.
Collapse
Affiliation(s)
- Lida Wang
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Chachrit Khunsriraksakul
- Bioinformatics and Genomics PhD Program; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Institute for Personalized Medicine; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Havell Markus
- Bioinformatics and Genomics PhD Program; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Institute for Personalized Medicine; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Dieyi Chen
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Fan Zhang
- Bioinformatics and Genomics PhD Program; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Fang Chen
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Xiaowei Zhan
- Department of Statistical Science, Southern Methodist University, Dallas, TX, US
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, US
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, US
| | - Laura Carrel
- Department of Biochemistry and Molecular Biology; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
| | - Dajiang J Liu
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
- Bioinformatics and Genomics PhD Program; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
- Department of Statistical Science, Southern Methodist University, Dallas, TX, US.
| | - Bibo Jiang
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
2
|
Pedersen EM, Agerbo E, Plana-Ripoll O, Grove J, Dreier JW, Musliner KL, Bækvad-Hansen M, Athanasiadis G, Schork A, Bybjerg-Grauholm J, Hougaard DM, Werge T, Nordentoft M, Mors O, Dalsgaard S, Christensen J, Børglum AD, Mortensen PB, McGrath JJ, Privé F, Vilhjálmsson BJ. Accounting for age of onset and family history improves power in genome-wide association studies. Am J Hum Genet 2022; 109:417-432. [PMID: 35139346 PMCID: PMC8948165 DOI: 10.1016/j.ajhg.2022.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/07/2022] [Indexed: 11/01/2022] Open
Abstract
Genome-wide association studies (GWASs) have revolutionized human genetics, allowing researchers to identify thousands of disease-related genes and possible drug targets. However, case-control status does not account for the fact that not all controls may have lived through their period of risk for the disorder of interest. This can be quantified by examining the age-of-onset distribution and the age of the controls or the age of onset for cases. The age-of-onset distribution may also depend on information such as sex and birth year. In addition, family history is not routinely included in the assessment of control status. Here, we present LT-FH++, an extension of the liability threshold model conditioned on family history (LT-FH), which jointly accounts for age of onset and sex as well as family history. Using simulations, we show that, when family history and the age-of-onset distribution are available, the proposed approach yields statistically significant power gains over LT-FH and large power gains over genome-wide association study by proxy (GWAX). We applied our method to four psychiatric disorders available in the iPSYCH data and to mortality in the UK Biobank and found 20 genome-wide significant associations with LT-FH++, compared to ten for LT-FH and eight for a standard case-control GWAS. As more genetic data with linked electronic health records become available to researchers, we expect methods that account for additional health information, such as LT-FH++, to become even more beneficial.
Collapse
Affiliation(s)
- Emil M Pedersen
- National Centre for Register-Based Research, Aarhus University, 8210 Aarhus, Denmark; Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark.
| | - Esben Agerbo
- National Centre for Register-Based Research, Aarhus University, 8210 Aarhus, Denmark; Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark; Centre for Integrated Register-Based Research at Aarhus University, 8210 Aarhus, Denmark
| | - Oleguer Plana-Ripoll
- National Centre for Register-Based Research, Aarhus University, 8210 Aarhus, Denmark
| | - Jakob Grove
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark; Bioinformatics Research Centre, Aarhus University, 8000 Aarhus, Denmark; Department of Biomedicine and Center for Integrative Sequencing, Aarhus University, 8000 Aarhus, Denmark; Center for Genomics and Personalized Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Julie W Dreier
- National Centre for Register-Based Research, Aarhus University, 8210 Aarhus, Denmark; Centre for Integrated Register-Based Research at Aarhus University, 8210 Aarhus, Denmark
| | - Katherine L Musliner
- National Centre for Register-Based Research, Aarhus University, 8210 Aarhus, Denmark; Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark; Centre for Integrated Register-Based Research at Aarhus University, 8210 Aarhus, Denmark
| | - Marie Bækvad-Hansen
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark; Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Georgios Athanasiadis
- Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services Copenhagen, 4000 Roskilde, Denmark
| | - Andrew Schork
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark; Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services Copenhagen, 4000 Roskilde, Denmark
| | - Jonas Bybjerg-Grauholm
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark; Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - David M Hougaard
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark; Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Thomas Werge
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark; Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services Copenhagen, 4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Merete Nordentoft
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark; Mental Health Services in the Capital Region of Denmark, Mental Health Center Copenhagen, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ole Mors
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark; Psychosis Research Unit, Aarhus University Hospital, 8245 Risskov, Denmark
| | - Søren Dalsgaard
- National Centre for Register-Based Research, Aarhus University, 8210 Aarhus, Denmark
| | - Jakob Christensen
- National Centre for Register-Based Research, Aarhus University, 8210 Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, 8200 Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Anders D Børglum
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark; Center for Genomics and Personalized Medicine, Aarhus University, 8000 Aarhus, Denmark; Department of Biomedicine - Human Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Preben B Mortensen
- National Centre for Register-Based Research, Aarhus University, 8210 Aarhus, Denmark; Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark; Centre for Integrated Register-Based Research at Aarhus University, 8210 Aarhus, Denmark
| | - John J McGrath
- National Centre for Register-Based Research, Aarhus University, 8210 Aarhus, Denmark; Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia; Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD 4076, Australia
| | - Florian Privé
- National Centre for Register-Based Research, Aarhus University, 8210 Aarhus, Denmark
| | - Bjarni J Vilhjálmsson
- National Centre for Register-Based Research, Aarhus University, 8210 Aarhus, Denmark; Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark; Bioinformatics Research Centre, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
3
|
Lencz T, Backenroth D, Granot-Hershkovitz E, Green A, Gettler K, Cho JH, Weissbrod O, Zuk O, Carmi S. Utility of polygenic embryo screening for disease depends on the selection strategy. eLife 2021; 10:e64716. [PMID: 34635206 PMCID: PMC8510582 DOI: 10.7554/elife.64716] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Polygenic risk scores (PRSs) have been offered since 2019 to screen in vitro fertilization embryos for genetic liability to adult diseases, despite a lack of comprehensive modeling of expected outcomes. Here we predict, based on the liability threshold model, the expected reduction in complex disease risk following polygenic embryo screening for a single disease. A strong determinant of the potential utility of such screening is the selection strategy, a factor that has not been previously studied. When only embryos with a very high PRS are excluded, the achieved risk reduction is minimal. In contrast, selecting the embryo with the lowest PRS can lead to substantial relative risk reductions, given a sufficient number of viable embryos. We systematically examine the impact of several factors on the utility of screening, including: variance explained by the PRS, number of embryos, disease prevalence, parental PRSs, and parental disease status. We consider both relative and absolute risk reductions, as well as population-averaged and per-couple risk reductions, and also examine the risk of pleiotropic effects. Finally, we confirm our theoretical predictions by simulating 'virtual' couples and offspring based on real genomes from schizophrenia and Crohn's disease case-control studies. We discuss the assumptions and limitations of our model, as well as the potential emerging ethical concerns.
Collapse
Affiliation(s)
- Todd Lencz
- Departments of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/NorthwellHempsteadUnited States
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell HealthGlen OaksUnited States
- Institute for Behavioral Science, The Feinstein Institutes for Medical ResearchManhassetUnited States
| | - Daniel Backenroth
- Braun School of Public Health and Community Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Einat Granot-Hershkovitz
- Braun School of Public Health and Community Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Adam Green
- Braun School of Public Health and Community Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Kyle Gettler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Judy H Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Omer Weissbrod
- Department of Epidemiology, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Or Zuk
- Department of Statistics and Data Science, The Hebrew University of JerusalemJerusalemIsrael
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
4
|
Hecker J, Townes FW, Kachroo P, Laurie C, Lasky-Su J, Ziniti J, Cho MH, Weiss ST, Laird NM, Lange C. A unifying framework for rare variant association testing in family-based designs, including higher criticism approaches, SKATs, and burden tests. Bioinformatics 2021; 36:5432-5438. [PMID: 33367522 PMCID: PMC8016468 DOI: 10.1093/bioinformatics/btaa1055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/20/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION Analysis of rare variants in family-based studies remains a challenge. Transmission-based approaches provide robustness against population stratification, but the evaluation of the significance of test statistics based on asymptotic theory can be imprecise. Also, power will depend heavily on the choice of the test statistic and on the underlying genetic architecture of the locus, which will be generally unknown. RESULTS In our proposed framework, we utilize the FBAT haplotype algorithm to obtain the conditional offspring genotype distribution under the null hypothesis given the sufficient statistic. Based on this conditional offspring genotype distribution, the significance of virtually any association test statistic can be evaluated based on simulations or exact computations, without the need for asymptotic approximations. Besides standard linear burden-type statistics, this enables our approach to also evaluate other test statistics such as variance components statistics, higher criticism approaches, and maximum-single-variant-statistics, where asymptotic theory might be involved or does not provide accurate approximations for rare variant data. Based on these P-values, combined test statistics such as the aggregated Cauchy association test (ACAT) can also be utilized. In simulation studies, we show that our framework outperforms existing approaches for family-based studies in several scenarios. We also applied our methodology to a TOPMed whole-genome sequencing dataset with 897 asthmatic trios from Costa Rica. AVAILABILITY AND IMPLEMENTATION FBAT software is available at https://sites.google.com/view/fbatwebpage. Simulation code is available at https://github.com/julianhecker/FBAT_rare_variant_test_simulations. Whole-genome sequencing data for 'NHLBI TOPMed: The Genetic Epidemiology of Asthma in Costa Rica' is available at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000988.v4.p1. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Julian Hecker
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - F William Townes
- Department of Computer Science, Princeton University, Princeton, NJ 08540-5233, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Cecelia Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98195-1617, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - John Ziniti
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nan M Laird
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Christoph Lange
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
5
|
Novel directions in data pre-processing and genome-wide association study (GWAS) methodologies to overcome ongoing challenges. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Wu W, Wang Z, Xu K, Zhang X, Amei A, Gelernter J, Zhao H, Justice AC, Wang Z. Retrospective Association Analysis of Longitudinal Binary Traits Identifies Important Loci and Pathways in Cocaine Use. Genetics 2019; 213:1225-1236. [PMID: 31591132 PMCID: PMC6893384 DOI: 10.1534/genetics.119.302598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
Longitudinal phenotypes have been increasingly available in genome-wide association studies (GWAS) and electronic health record-based studies for identification of genetic variants that influence complex traits over time. For longitudinal binary data, there remain significant challenges in gene mapping, including misspecification of the model for phenotype distribution due to ascertainment. Here, we propose L-BRAT (Longitudinal Binary-trait Retrospective Association Test), a retrospective, generalized estimating equation-based method for genetic association analysis of longitudinal binary outcomes. We also develop RGMMAT, a retrospective, generalized linear mixed model-based association test. Both tests are retrospective score approaches in which genotypes are treated as random conditional on phenotype and covariates. They allow both static and time-varying covariates to be included in the analysis. Through simulations, we illustrated that retrospective association tests are robust to ascertainment and other types of phenotype model misspecification, and gain power over previous association methods. We applied L-BRAT and RGMMAT to a genome-wide association analysis of repeated measures of cocaine use in a longitudinal cohort. Pathway analysis implicated association with opioid signaling and axonal guidance signaling pathways. Lastly, we replicated important pathways in an independent cocaine dependence case-control GWAS. Our results illustrate that L-BRAT is able to detect important loci and pathways in a genome scan and to provide insights into genetic architecture of cocaine use.
Collapse
Affiliation(s)
- Weimiao Wu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06520
| | - Zhong Wang
- Baker Institute for Animal Health, Cornell University, Ithaca, New York 14850
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511
- VA Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Xinyu Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511
- VA Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Amei Amei
- Department of Mathematical Sciences, University of Nevada, Las Vegas, Nevada 89154
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511
- VA Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06520
| | - Amy C Justice
- VA Connecticut Healthcare System, West Haven, Connecticut 06516
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06511
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06520
| |
Collapse
|
7
|
A Novel Model to Explain Extreme Feather Pecking Behavior in Laying Hens. Behav Genet 2019; 50:41-50. [PMID: 31541310 DOI: 10.1007/s10519-019-09971-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
Feather pecking (FP) is a serious economic and welfare problem in the domestic fowl. It has recently been shown that the distribution of FP bouts within groups is heterogeneous and contains a sub-population of extreme feather peckers (EFP). The present study proposed a novel model to detect EFP hens. A mixture of two negative binomial distributions was fitted to FP data of a F2 cross of about 960 hens, and, based on the results, a calculation of the posterior probability for each hen belonging to the EFP subgroup (pEFP) was done. The fit of the mixture distribution revealed that the EFP subgroup made up a proportion of one third of the F2 cross. The EFP birds came more frequently into pecking mood and showed higher pecking intensities compared to the remaining birds. Tonic immobility and emerge box tests were conducted at juvenile and adult age of the hens to relate fearfulness to EFP. After dichotomization, all traits were analyzed in a multivariate threshold model and a genomewide association study was performed. The new trait pEFP has a medium heritability of 0.35 and is positively correlated with the fear traits. Breeding for this new trait could be an interesting option to reduce the proportion of extreme feather peckers. An index of fear related traits might serve as a proxy to breed indirectly for pEFP. GWAS revealed that all traits are typical quantitative traits with many genes and small effects contributing to the genetic variance.
Collapse
|
8
|
Hecker J, Laird N, Lange C. A comparison of popular TDT-generalizations for family-based association analysis. Genet Epidemiol 2019; 43:300-317. [PMID: 30609057 DOI: 10.1002/gepi.22181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/26/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022]
Abstract
The transmission disequilibrium test (TDT) is the gold standard for testing the association between a genetic variant and disease in samples consisting of affected individuals and their parents. In practice, more complex pedigree structures, that is siblings with no parents, or three-generational pedigrees with possibly missing genotypes, are common. There are several generalizations of the TDT that are suitable for use with arbitrary pedigree structures. We consider three such frequently used generalizations, family-based association test, pedigree disequilibrium test, and generalized disequilibrium test, that have accompanying software and compare them regarding validity and power in the single variant setting. We use simulations to study the effects of population admixture, populations whose genotypes are not in Hardy-Weinberg equilibrium (HWE), different pedigree structures, and the presence of linkage. Whereas our results show that some TDT generalizations can have a substantially increased Type 1 error, these tests are often used in substantive research without caveats about the validity of their Type 1 error. For the association analysis of rare variants in sequencing studies, region-based extensions of the TDT generalizations, that rely on the postulated robustness of the single variant tests, have been proposed. We discuss the implications of our results for these region-based extensions.
Collapse
Affiliation(s)
- Julian Hecker
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Nan Laird
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Christoph Lange
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|