1
|
Iacomino M, Houerbi N, Fortuna S, Howe J, Li S, Scorrano G, Riva A, Cheng KW, Steiman M, Peltekova I, Yusuf A, Baldassari S, Tamburro S, Scudieri P, Musante I, Di Ludovico A, Guerrisi S, Balagura G, Corsello A, Efthymiou S, Murphy D, Uva P, Verrotti A, Fiorillo C, Delvecchio M, Accogli A, Elsabbagh M, Houlden H, Scherer SW, Striano P, Zara F, Chou TF, Salpietro V. Allelic heterogeneity and abnormal vesicle recycling in PLAA-related neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1268013. [PMID: 38650658 PMCID: PMC11033462 DOI: 10.3389/fnmol.2024.1268013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/16/2024] [Indexed: 04/25/2024] Open
Abstract
The human PLAA gene encodes Phospholipase-A2-Activating-Protein (PLAA) involved in trafficking of membrane proteins. Through its PUL domain (PLAP, Ufd3p, and Lub1p), PLAA interacts with p97/VCP modulating synaptic vesicles recycling. Although few families carrying biallelic PLAA variants were reported with progressive neurodegeneration, consequences of monoallelic PLAA variants have not been elucidated. Using exome or genome sequencing we identified PLAA de-novo missense variants, affecting conserved residues within the PUL domain, in children affected with neurodevelopmental disorders (NDDs), including psychomotor regression, intellectual disability (ID) and autism spectrum disorders (ASDs). Computational and in-vitro studies of the identified variants revealed abnormal chain arrangements at C-terminal and reduced PLAA-p97/VCP interaction, respectively. These findings expand both allelic and phenotypic heterogeneity associated to PLAA-related neurological disorders, highlighting perturbed vesicle recycling as a potential disease mechanism in NDDs due to genetic defects of PLAA.
Collapse
Affiliation(s)
- Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Nadia Houerbi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Jennifer Howe
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Giovanna Scorrano
- Department of Pediatrics, Sant'Annunziata Hospital, University "G. D'Annunzio", Chieti, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Riva
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Mandy Steiman
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Iskra Peltekova
- McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Afiqah Yusuf
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Tamburro
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Armando Di Ludovico
- Department of Pediatrics, Sant'Annunziata Hospital, University "G. D'Annunzio", Chieti, Italy
| | - Sara Guerrisi
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonio Corsello
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - David Murphy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University, Montreal, QC, Canada
| | - Mayada Elsabbagh
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Stephen W Scherer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, United States
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
2
|
Boussetta A, Abida N, Jellouli M, Ziadi J, Gargah T. Delayed Graft Function in Pediatric Kidney Transplant: Risk Factors and Outcomes. EXP CLIN TRANSPLANT 2024; 22:110-117. [PMID: 38385384 DOI: 10.6002/ect.mesot2023.o20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
OBJECTIVES We aimed to identify risk factors and outcomes of delayed graft function in pediatric kidney transplant. MATERIALS AND METHODS This retrospective study included all kidney transplant recipients ≤19 years old followed up in our department for a period of 34 years, from January 1989 to December 2022. RESULTS We included 113 kidney transplant recipients. Delayed graft function occurred in 17 cases (15%). Posttransplant red blood cell transfusion was strongly associated with delayed graft function (adjusted odds ratio = 23.91; 95% CI, 2.889-197.915). Use of allografts with multiple arteries and cold ischemia time >20 hours were risk factors for delayed graft function (adjusted odds ratio = 52.51 and 49.4; 95% CI, 2.576-1070.407 and 1.833-1334.204, respectively). Sex-matched transplants and living donors were protective factors for delayed graft function (adjusted odds ratio = 0.043 and 0.027; 95% CI, 0.005-0.344 and 0.003-0.247, respectively). Total HLA mismatches <3 played a protective role for delayed graft function (adjusted odds ratio = 0.114; 95% CI, 0.020-0.662), whereas transplant within compatible but different blood types increased the risk of delayed graft function (adjusted odds ratio = 20.54; 95% CI, 1.960- 215.263). No significant correlation was shown between delayed graft function and allograft survival (P = .190). Our study suggested delayed graft function as a key factor in allograft rejection-free survival (adjusted odds ratio = 3.832; 95% CI, 1.186-12.377). Delayed graft function was a negative factor for early graft function; patients with delayed graft function had a lower estimated glomerular filtration rate at discharge (P = .024) and at 3 (P = .034), 6 (P = .019), and 12 months (P = .011) posttransplant. CONCLUSIONS Delayed graft function is a major determinant of early graft function and allograft rejection-free survival. Further research is required to establish proper preventive measures.
Collapse
Affiliation(s)
- Abir Boussetta
- From the Pediatric Nephrology Department, Charles Nicolle Hospital and the University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia
| | | | | | | | | |
Collapse
|
3
|
Kawan M, Körner M, Schlosser A, Buchberger A. p97/VCP Promotes the Recycling of Endocytic Cargo. Mol Biol Cell 2023; 34:ar126. [PMID: 37756124 PMCID: PMC10848945 DOI: 10.1091/mbc.e23-06-0237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The endocytic pathway is of central importance for eukaryotic cells, as it enables uptake of extracellular materials, membrane protein quality control and recycling, as well as modulation of receptor signaling. While the ATPase p97 (VCP, Cdc48) has been found to be involved in the fusion of early endosomes and endolysosomal degradation, its role in endocytic trafficking is still incompletely characterized. Here, we identify myoferlin (MYOF), a ferlin family member with functions in membrane trafficking and repair, as a hitherto unknown p97 interactor. The interaction of MYOF with p97 depends on the cofactor PLAA previously linked to endosomal sorting. Besides PLAA, shared interactors of p97 and MYOF comprise several proteins involved in endosomal recycling pathways, including Rab11, Rab14, and the transferrin receptor CD71. Accordingly, a fraction of p97 and PLAA localizes to MYOF-, Rab11-, and Rab14-positive endosomal compartments. Pharmacological inhibition of p97 delays transferrin recycling, indicating that p97 promotes not only the lysosomal degradation, but also the recycling of endocytic cargo.
Collapse
Affiliation(s)
- Mona Kawan
- Chair of Biochemistry I, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Maria Körner
- Chair of Biochemistry I, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Alexander Buchberger
- Chair of Biochemistry I, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
4
|
Chu S, Xie X, Payan C, Stochaj U. Valosin containing protein (VCP): initiator, modifier, and potential drug target for neurodegenerative diseases. Mol Neurodegener 2023; 18:52. [PMID: 37545006 PMCID: PMC10405438 DOI: 10.1186/s13024-023-00639-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Collapse
Affiliation(s)
- Siwei Chu
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Xinyi Xie
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Carla Payan
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada.
- Quantitative Life Sciences Program, McGill University, Montreal, Canada.
| |
Collapse
|
5
|
Navarro-Martínez A, Vicente-García C, Carvajal JJ. NMJ-related diseases beyond the congenital myasthenic syndromes. Front Cell Dev Biol 2023; 11:1216726. [PMID: 37601107 PMCID: PMC10436495 DOI: 10.3389/fcell.2023.1216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Neuromuscular junctions (NMJs) are a special type of chemical synapse that transmits electrical stimuli from motor neurons (MNs) to their innervating skeletal muscle to induce a motor response. They are an ideal model for the study of synapses, given their manageable size and easy accessibility. Alterations in their morphology or function lead to neuromuscular disorders, such as the congenital myasthenic syndromes, which are caused by mutations in proteins located in the NMJ. In this review, we highlight novel potential candidate genes that may cause or modify NMJs-related pathologies in humans by exploring the phenotypes of hundreds of mouse models available in the literature. We also underscore the fact that NMJs may differ between species, muscles or even sexes. Hence the importance of choosing a good model organism for the study of NMJ-related diseases: only taking into account the specific features of the mammalian NMJ, experimental results would be efficiently translated to the clinic.
Collapse
Affiliation(s)
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, Spain
| | | |
Collapse
|
6
|
Blueggel M, Kroening A, Kracht M, van den Boom J, Dabisch M, Goehring A, Kaschani F, Kaiser M, Bayer P, Meyer H, Beuck C. The UBX domain in UBXD1 organizes ubiquitin binding at the C-terminus of the VCP/p97 AAA-ATPase. Nat Commun 2023; 14:3258. [PMID: 37277335 DOI: 10.1038/s41467-023-38604-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
The AAA+ ATPase p97/VCP together with different sets of substrate-delivery adapters and accessory cofactor proteins unfolds ubiquitinated substrates to facilitate degradation by the proteasome. The UBXD1 cofactor is connected to p97-associated multisystem proteinopathy but its biochemical function and structural organization on p97 has remained largely elusive. Using a combination of crosslinking mass spectrometry and biochemical assays, we identify an extended UBX (eUBX) module in UBXD1 related to a lariat in another cofactor, ASPL. Of note, the UBXD1-eUBX intramolecularly associates with the PUB domain in UBXD1 close to the substrate exit pore of p97. The UBXD1 PUB domain can also bind the proteasomal shuttling factor HR23b via its UBL domain. We further show that the eUBX domain has ubiquitin binding activity and that UBXD1 associates with an active p97-adapter complex during substrate unfolding. Our findings suggest that the UBXD1-eUBX module receives unfolded ubiquitinated substrates after they exit the p97 channel and before hand-over to the proteasome. The interplay of full-length UBXD1 and HR23b and their function in the context of an active p97:UBXD1 unfolding complex remains to be studied in future work.
Collapse
Affiliation(s)
- Mike Blueggel
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Alexander Kroening
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Kracht
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Matthias Dabisch
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Anna Goehring
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hemmo Meyer
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
7
|
Zheng Z, Han L, Li Y, Chen Z, Yang W, Liu C, Tao M, Jiang Y, Ke X, Liu Y, Guo X. Phospholipase A2-activating protein induces mitophagy trough anti-apoptotic MCL1-mediated NLRX1 oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023:119487. [PMID: 37211156 DOI: 10.1016/j.bbamcr.2023.119487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Mitochondrial protein homeostasis is fine-tuned by diverse physiological processes such as mitochondria-associated degradation (MAD), which is regulated by valosin-containing protein (VCP) and its cofactors. As a cofactor of VCP, the mutation of phospholipase A-2-activating protein (PLAA) is the genetic cause of PLAA-associated neurodevelopmental disorder (PLAAND). However, the physiological and pathological roles of PLAA in mitochondria remain unclear. Here, we demonstrate that PLAA partially associates with mitochondria. Deficiency in PLAA increases mitochondrial reactive oxygen species (ROS) production, reduces mitochondrial membrane potential, inhibits mitochondrial respiratory activity and causes excessive mitophagy. Mechanically, PLAA interacts with myeloid cell leukemia-1 (MCL1) and facilitates its retro-translocation and proteasome-dependent degradation. The upregulation of MCL1 promotes the oligomerization of NLR family member X1 (NLRX1) and activation of mitophagy. Whereas downregulating NLRX1 abolishes MCL1 induced mitophagy. In summary, our data identify PLAA as a novel mediator of mitophagy by regulating MCL1-NLRX1 axis. We propose mitophagy as a target for therapeutic intervention in PLAAND.
Collapse
Affiliation(s)
- Zhilong Zheng
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Lu Han
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanbo Li
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhen Chen
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wangju Yang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunyue Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yueqing Jiang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
8
|
Meyer H, van den Boom J. Targeting of client proteins to the VCP/p97/Cdc48 unfolding machine. Front Mol Biosci 2023; 10:1142989. [PMID: 36825201 PMCID: PMC9941556 DOI: 10.3389/fmolb.2023.1142989] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
The AAA+ ATPase p97 (also called VCP or Cdc48) is a major protein unfolding machine with hundreds of clients in diverse cellular pathways that are critical for cell homeostasis, proliferation and signaling. In this review, we summarize recent advances in understanding how diverse client proteins are targeted to the p97 machine to facilitate client degradation or to strip clients from binding partners for regulation. We describe an elaborate system that is governed by at least two types of alternative adapters. The Ufd1-Npl4 adapter along with accessory adapters targets ubiquitylated clients in the majority of pathways and uses ubiquitin as a universal unfolding tag. In contrast, the family of SEP-domain adapters such as p37 can target clients directly to p97 in a ubiquitin-independent manner. Despite the different targeting strategies, both pathways converge by inserting the client into the p97 pore to initiate a peptide threading mechanism through the central channel of p97 that drives client protein unfolding, protein extraction from membranes and protein complex disassembly processes.
Collapse
Affiliation(s)
- Hemmo Meyer
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
9
|
Birdsall V, Kirwan K, Zhu M, Imoto Y, Wilson SM, Watanabe S, Waites CL. Axonal transport of Hrs is activity dependent and facilitates synaptic vesicle protein degradation. Life Sci Alliance 2022; 5:5/10/e202000745. [PMID: 35636965 PMCID: PMC9152131 DOI: 10.26508/lsa.202000745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
This study describes an activity-dependent mechanism for transporting ESCRT-0 protein Hrs to synaptic vesicle (SV) pools, facilitating SV protein degradation in response to increased neuronal firing. Turnover of synaptic vesicle (SV) proteins is vital for the maintenance of healthy and functional synapses. SV protein turnover is driven by neuronal activity in an endosomal sorting complex required for transport (ESCRT)-dependent manner. Here, we characterize a critical step in this process: axonal transport of ESCRT-0 component Hrs, necessary for sorting proteins into the ESCRT pathway and recruiting downstream ESCRT machinery to catalyze multivesicular body (MVB) formation. We find that neuronal activity stimulates the formation of presynaptic endosomes and MVBs, as well as the motility of Hrs+ vesicles in axons and their delivery to SV pools. Hrs+ vesicles co-transport ESCRT-0 component STAM1 and comprise a subset of Rab5+ vesicles, likely representing pro-degradative early endosomes. Furthermore, we identify kinesin motor protein KIF13A as essential for the activity-dependent transport of Hrs to SV pools and the degradation of SV membrane proteins. Together, these data demonstrate a novel activity- and KIF13A-dependent mechanism for mobilizing axonal transport of ESCRT machinery to facilitate the degradation of SV membrane proteins.
Collapse
Affiliation(s)
- Veronica Birdsall
- Neurobiology and Behavior PhD Program, Columbia University, New York, NY, USA
| | - Konner Kirwan
- Neurobiology and Behavior PhD Program, Columbia University, New York, NY, USA
| | - Mei Zhu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Scott M Wilson
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA.,Solomon H Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA .,Department of Neuroscience, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Johnson MA, Klickstein JA, Khanna R, Gou Y, Raman M. The Cure VCP Scientific Conference 2021: Molecular and clinical insights into neurodegeneration and myopathy linked to multisystem proteinopathy-1 (MSP-1). Neurobiol Dis 2022; 169:105722. [PMID: 35405261 PMCID: PMC9169230 DOI: 10.1016/j.nbd.2022.105722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022] Open
Abstract
The 2021 VCP Scientific Conference took place virtually from September 9–10, 2021. This conference, planned and organized by the nonprofit patient advocacy group Cure VCP Disease, Inc. (https://www.curevcp.org), was the first VCP focused meeting since the 215th ENMC International Workshop VCP-related multi-system proteinopathy in 2016 (Evangelista et al., 2016). Mutations in VCP cause a complex and heterogenous disease termed inclusion body myopathy (IBM) with Paget’s disease of the bone (PDB) and frontotemporal dementia (FTD) (IBMPFD), or multisystem proteinopathy 1 (MSP-1) Kimonis (n.d.), Kovach et al. (2001), Kimonis et al. (2000). In addition, VCP mutations also cause other age-related neurodegenerative disorders including amyptrophic lateral sclerosis (ALS), Parkinsonism, Charcot-Marie type II-B, vacuolar tauopathy among others (Korb et al., 2022). The objectives of this conference were as follows: (1) to provide a forum that facilitates sharing of published and unpublished information on physiological roles of p97/VCP, and on how mutations of VCP lead to diseases; (2) to bolster understanding of mechanisms involved in p97/VCP-relevant diseases and to enable identification of therapeutics to treat these conditions; (3) to identify gaps and barriers of further discoveries and translational research in the p97/VCP field; (4) to set a concrete basic and translational research agenda for future studies including crucial discussions on biomarker discoveries and patient longitudinal studies to facilitate near-term clinical trials; (5) to accelerate cross-disciplinary research collaborations among p97/VCP researchers; (6) to enable attendees to learn about new tools and reagents with the potential to facilitate p97/VCP research; (7) to assist trainees in propelling their research and to foster mentorship from leaders in the field; and (8) to promote diversity and inclusion of under-represented minorities in p97/VCP research as diversity is critically important for strong scientific research. Given the range of topics, the VCP Scientific Conference brought together over one hundred and forty individuals representing a diverse group of research scientists, trainees, medical practitioners, industry representatives, and patient advocates. Twenty-five institutions with individuals from thirteen countries attended this virtual meeting. In this report, we summarize the major topics presented at this conference by a range of experts.
Collapse
Affiliation(s)
- Michelle A Johnson
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Jacob A Klickstein
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Richa Khanna
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Yunzi Gou
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, United States of America
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
11
|
Moll T, Marshall JNG, Soni N, Zhang S, Cooper-Knock J, Shaw PJ. Membrane lipid raft homeostasis is directly linked to neurodegeneration. Essays Biochem 2021; 65:999-1011. [PMID: 34623437 PMCID: PMC8709890 DOI: 10.1042/ebc20210026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Age-associated neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD) are an unmet health need, with significant economic and societal implications, and an ever-increasing prevalence. Membrane lipid rafts (MLRs) are specialised plasma membrane microdomains that provide a platform for intracellular trafficking and signal transduction, particularly within neurons. Dysregulation of MLRs leads to disruption of neurotrophic signalling and excessive apoptosis which mirrors the final common pathway for neuronal death in ALS, PD and AD. Sphingomyelinase (SMase) and phospholipase (PL) enzymes process components of MLRs and therefore play central roles in MLR homeostasis and in neurotrophic signalling. We review the literature linking SMase and PL enzymes to ALS, AD and PD with particular attention to attractive therapeutic targets, where functional manipulation has been successful in preclinical studies. We propose that dysfunction of these enzymes is upstream in the pathogenesis of neurodegenerative diseases and to support this we provide new evidence that ALS risk genes are enriched with genes involved in ceramide metabolism (P=0.019, OR = 2.54, Fisher exact test). Ceramide is a product of SMase action upon sphingomyelin within MLRs, and it also has a role as a second messenger in intracellular signalling pathways important for neuronal survival. Genetic risk is necessarily upstream in a late age of onset disease such as ALS. We propose that manipulation of MLR structure and function should be a focus of future translational research seeking to ameliorate neurodegenerative disorders.
Collapse
Affiliation(s)
- Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| | - Jack N G Marshall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| | - Nikita Soni
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, U.S.A
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| |
Collapse
|
12
|
Wani A, Zhu J, Ulrich JD, Eteleeb A, Sauerbeck AD, Reitz SJ, Arhzaouy K, Ikenaga C, Yuede CM, Pittman SK, Wang F, Li S, Benitez BA, Cruchaga C, Kummer TT, Harari O, Chou TF, Schröder R, Clemen CS, Weihl CC. Neuronal VCP loss of function recapitulates FTLD-TDP pathology. Cell Rep 2021; 36:109399. [PMID: 34289347 PMCID: PMC8383344 DOI: 10.1016/j.celrep.2021.109399] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/06/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
The pathogenic mechanism by which dominant mutations in VCP cause multisystem proteinopathy (MSP), a rare neurodegenerative disease that presents as fronto-temporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), remains unclear. To explore this, we inactivate VCP in murine postnatal forebrain neurons (VCP conditional knockout [cKO]). VCP cKO mice have cortical brain atrophy, neuronal loss, autophago-lysosomal dysfunction, and TDP-43 inclusions resembling FTLD-TDP pathology. Conditional expression of a single disease-associated mutation, VCP-R155C, in a VCP null background similarly recapitulates features of VCP inactivation and FTLD-TDP, suggesting that this MSP mutation is hypomorphic. Comparison of transcriptomic and proteomic datasets from genetically defined patients with FTLD-TDP reveal that progranulin deficiency and VCP insufficiency result in similar profiles. These data identify a loss of VCP-dependent functions as a mediator of FTLD-TDP and reveal an unexpected biochemical similarity with progranulin deficiency.
Collapse
Affiliation(s)
- Abubakar Wani
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiang Zhu
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason D Ulrich
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Abdallah Eteleeb
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew D Sauerbeck
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Sydney J Reitz
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Khalid Arhzaouy
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Chiseko Ikenaga
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Carla M Yuede
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Sara K Pittman
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bruno A Benitez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Terrance T Kummer
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany; Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Conrad C Weihl
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Pinto MJ, Tomé D, Almeida RD. The Ubiquitinated Axon: Local Control of Axon Development and Function by Ubiquitin. J Neurosci 2021; 41:2796-2813. [PMID: 33789876 PMCID: PMC8018891 DOI: 10.1523/jneurosci.2251-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 02/01/2023] Open
Abstract
Ubiquitin tagging sets protein fate. With a wide range of possible patterns and reversibility, ubiquitination can assume many shapes to meet specific demands of a particular cell across time and space. In neurons, unique cells with functionally distinct axons and dendrites harboring dynamic synapses, the ubiquitin code is exploited at the height of its power. Indeed, wide expression of ubiquitination and proteasome machinery at synapses, a diverse brain ubiquitome, and the existence of ubiquitin-related neurodevelopmental diseases support a fundamental role of ubiquitin signaling in the developing and mature brain. While special attention has been given to dendritic ubiquitin-dependent control, how axonal biology is governed by this small but versatile molecule has been considerably less discussed. Herein, we set out to explore the ubiquitin-mediated spatiotemporal control of an axon's lifetime: from its differentiation and growth through presynaptic formation, function, and pruning.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Diogo Tomé
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
14
|
Perenc L, Guzik A, Podgórska-Bednarz J, Drużbicki M. Microsomic and macrosomic body structure in children and adolescents affected by syndromes or diseases associated with neurodysfunction. Sci Rep 2021; 11:6349. [PMID: 33737592 PMCID: PMC7973426 DOI: 10.1038/s41598-021-85587-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
In Poland the issue of microsomic body structure (micro-SBS) and macrosomic body structure (macro-SBS) has so far been overlooked. Up until now only a small amount of data have been published, most often as an overview of the problem. The current study was designed to investigate the co-occurrence of microsomic/macrosomic body structure (micro/macro-SBS) and congenital nervous system disorders or neurological syndromes with symptoms visible from infancy, based on essential data acquired during admission procedures at a neurological rehabilitation ward for children and adolescents. The study applied a retrospective analysis of data collected during hospitalization of 327 children and adolescents, aged 4-18 years who had been affected since infancy by congenital disorders of the nervous system and/or neurological syndromes associated with a minimum of one neurodysfunction. To identify subjects with microsomic or macrosomic body structure in the group of children and adolescents, the adopted criteria took into account z-score values for body height (z-score Ht), body weight (z-score Wt), head circumference (z-score HC), BMI (z-score BMI) and head circumference index (z-score HCI). The rates of micro/macro-SBS in the study group amounted to 7.3% and 0.6%, respectively. The findings show a more frequent co-occurrence of, as well as statistically significant correlations between, micro/macro-SBS and type of spasticity (cerebral palsy) (p = 0.024) as well as hydrocephalus not treated surgically (p < 0.001). Macro-SBS was found to more frequently co-occur with hemiplegia and hydrocephalus not treated surgically.
Collapse
Affiliation(s)
- Lidia Perenc
- Department of Physiotherapy, Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Agnieszka Guzik
- Department of Physiotherapy, Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland.
| | - Justyna Podgórska-Bednarz
- Department of Physiotherapy, Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Mariusz Drużbicki
- Department of Physiotherapy, Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
15
|
Remodeling without destruction: non-proteolytic ubiquitin chains in neural function and brain disorders. Mol Psychiatry 2021; 26:247-264. [PMID: 32709994 PMCID: PMC9229342 DOI: 10.1038/s41380-020-0849-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022]
Abstract
Ubiquitination is a fundamental posttranslational protein modification that regulates diverse biological processes, including those in the CNS. Several topologically and functionally distinct polyubiquitin chains can be assembled on protein substrates, modifying their fates. The classical and most prevalent polyubiquitin chains are those that tag a substrate to the proteasome for degradation, which has been established as a major mechanism driving neural circuit deconstruction and remodeling. In contrast, proteasome-independent non-proteolytic polyubiquitin chains regulate protein scaffolding, signaling complex formation, and kinase activation, and play essential roles in an array of signal transduction processes. Despite being a cornerstone in immune signaling and abundant in the mammalian brain, these non-proteolytic chains are underappreciated in neurons and synapses in the brain. Emerging studies have begun to generate exciting insights about some fundamental roles played by these non-degradative chains in neuronal function and plasticity. In addition, their roles in a number of brain diseases are being recognized. In this article, we discuss recent advances on these nonconventional ubiquitin chains in neural development, function, plasticity, and related pathologies.
Collapse
|
16
|
Ohkawa R, Low H, Mukhamedova N, Fu Y, Lai SJ, Sasaoka M, Hara A, Yamazaki A, Kameda T, Horiuchi Y, Meikle PJ, Pernes G, Lancaster G, Ditiatkovski M, Nestel P, Vaisman B, Sviridov D, Murphy A, Remaley AT, Sviridov D, Tozuka M. Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood. J Lipid Res 2020; 61:1577-1588. [PMID: 32907987 PMCID: PMC7707172 DOI: 10.1194/jlr.ra120000635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional cholesterol transport between RBCs and plasma lipoproteins was saturable and temperature-, energy-, and time-dependent, consistent with an active process. We did not find LDLR, ABCG1, or scavenger receptor class B type 1 in RBCs but found a substantial amount of ABCA1 mRNA and protein. However, specific cholesterol efflux from RBCs to isolated apoA-I was negligible, and ABCA1 silencing with siRNA or inhibition with vanadate and Probucol did not inhibit the efflux to apoA-I, HDL, or plasma. Cholesterol efflux from and cholesterol uptake by RBCs from Abca1+/+ and Abca1-/- mice were similar, arguing against the role of ABCA1 in cholesterol flux between RBCs and lipoproteins. Bioinformatics analysis identified ABCA7, ABCG5, lipoprotein lipase, and mitochondrial translocator protein as possible candidates that may mediate the cholesterol flux. Together, these results suggest that RBCs actively participate in cholesterol transport in the blood, but the role of cholesterol transporters in RBCs remains uncertain.
Collapse
Affiliation(s)
- Ryunosuke Ohkawa
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - Hann Low
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Ying Fu
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Shao-Jui Lai
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mai Sasaoka
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayuko Hara
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Azusa Yamazaki
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Kameda
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuna Horiuchi
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Gerard Pernes
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | | | - Paul Nestel
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Boris Vaisman
- Lipoprotein Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Denis Sviridov
- Lipoprotein Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Murphy
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Alan T Remaley
- Lipoprotein Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.
| | - Minoru Tozuka
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Life Science Research Center, Nagano Children's Hospital, Azumino, Japan
| |
Collapse
|
17
|
Sabaie H, Ahangar NK, Ghafouri-Fard S, Taheri M, Rezazadeh M. Clinical and genetic features of PEHO and PEHO-Like syndromes: A scoping review. Biomed Pharmacother 2020; 131:110793. [PMID: 33152950 DOI: 10.1016/j.biopha.2020.110793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 01/15/2023] Open
Abstract
Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is a genetic neurological condition characterized by extreme cerebellar atrophy. PEHO-Like syndrome is comparable to PEHO syndrome, with the exception that there is no typical neuro-radiologic or neuro-ophthalmic findings. PEHO spectrum disorders are highly clinically and genetically heterogeneous, and this has challenged their diagnosis. This scoping review aims to summarize and discuss common clinical and genetic features of these syndromes to help future researches. This study was performed according to a six-stage methodology structure and PRISMA guideline. A systematic search of seven databases was performed to find eligible publications prior to June 2020. Articles screening and data extraction were independently performed by two reviewers and quantitative and qualitative analyses were conducted. Thirty-eight articles were identified that fulfill the inclusion criteria. Cerebellar atrophy was the main clinical difference between the two groups but data on optic atrophy and infantile spasms/hypsarrhythmia were not consistent with the previously essential diagnostic criteria. Genetic analysis was performed in several studies, leading to identification of pathogenic variants in different genes that caused these conditions due to different mechanisms. Genetic studies could revolutionize the diagnosis process and our understanding of the etiology of this challenging group of patients by providing targeted sequencing panels and exome- or genome-scale studies in the future.
Collapse
Affiliation(s)
- Hani Sabaie
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Folci A, Mirabella F, Fossati M. Ubiquitin and Ubiquitin-Like Proteins in the Critical Equilibrium between Synapse Physiology and Intellectual Disability. eNeuro 2020; 7:ENEURO.0137-20.2020. [PMID: 32719102 PMCID: PMC7544190 DOI: 10.1523/eneuro.0137-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
Posttranslational modifications (PTMs) represent a dynamic regulatory system that precisely modulates the functional organization of synapses. PTMs consist in target modifications by small chemical moieties or conjugation of lipids, sugars or polypeptides. Among them, ubiquitin and a large family of ubiquitin-like proteins (UBLs) share several features such as the structure of the small protein modifiers, the enzymatic cascades mediating the conjugation process, and the targeted aminoacidic residue. In the brain, ubiquitination and two UBLs, namely sumoylation and the recently discovered neddylation orchestrate fundamental processes including synapse formation, maturation and plasticity, and their alteration is thought to contribute to the development of neurological disorders. Remarkably, emerging evidence suggests that these pathways tightly interplay to modulate the function of several proteins that possess pivotal roles for brain homeostasis as well as failure of this crosstalk seems to be implicated in the development of brain pathologies. In this review, we outline the role of ubiquitination, sumoylation, neddylation, and their functional interplay in synapse physiology and discuss their implication in the molecular pathogenesis of intellectual disability (ID), a neurodevelopmental disorder that is frequently comorbid with a wide spectrum of brain pathologies. Finally, we propose a few outlooks that might contribute to better understand the complexity of these regulatory systems in regard to neuronal circuit pathophysiology.
Collapse
Affiliation(s)
- Alessandra Folci
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
| | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve 9 Emanuele - Milan, Italy
| | - Matteo Fossati
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
- CNR-Institute of Neuroscience, via Manzoni 56, 20089, Rozzano (MI), Italy
| |
Collapse
|
19
|
Microinjection induces changes in the transcriptome of bovine oocytes. Sci Rep 2020; 10:11211. [PMID: 32641751 PMCID: PMC7343835 DOI: 10.1038/s41598-020-67603-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 12/30/2022] Open
Abstract
Gene knockdown techniques are widely used to examine the function of specific genes or proteins. While a variety of techniques are available, a technique commonly used on mammalian oocytes is mRNA knockdown by microinjection of small interfering RNA (siRNA), with non-specific siRNA injection used as a technical control. Here, we investigate whether and how the microinjection procedure itself affects the transcriptome of bovine oocytes. Injection of non-specific siRNA resulted in differential expression of 119 transcripts, of which 76 were down-regulated. Gene ontology analysis revealed that the differentially regulated genes were enriched in the biological processes of ATP synthesis, molecular transport and regulation of protein polyubiquitination. This study establishes a background effect of the microinjection procedure that should be borne in mind by those using microinjection to manipulate gene expression in oocytes.
Collapse
|
20
|
mTOR-Related Cell-Clearing Systems in Epileptic Seizures, an Update. Int J Mol Sci 2020; 21:ijms21051642. [PMID: 32121250 PMCID: PMC7084443 DOI: 10.3390/ijms21051642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that autophagy impairment is implicated in the epileptogenic mechanisms downstream of mTOR hyperactivation. This holds true for a variety of genetic and acquired epileptic syndromes besides malformations of cortical development which are classically known as mTORopathies. Autophagy suppression is sufficient to induce epilepsy in experimental models, while rescuing autophagy prevents epileptogenesis, improves behavioral alterations, and provides neuroprotection in seizure-induced neuronal damage. The implication of autophagy in epileptogenesis and maturation phenomena related to seizure activity is supported by evidence indicating that autophagy is involved in the molecular mechanisms which are implicated in epilepsy. In general, mTOR-dependent autophagy regulates the proliferation and migration of inter-/neuronal cortical progenitors, synapse development, vesicular release, synaptic plasticity, and importantly, synaptic clustering of GABAA receptors and subsequent excitatory/inhibitory balance in the brain. Similar to autophagy, the ubiquitin–proteasome system is regulated downstream of mTOR, and it is implicated in epileptogenesis. Thus, mTOR-dependent cell-clearing systems are now taking center stage in the field of epilepsy. In the present review, we discuss such evidence in a variety of seizure-related disorders and models. This is expected to provide a deeper insight into the molecular mechanisms underlying seizure activity.
Collapse
|
21
|
Zhu J, Tsai NP. Ubiquitination and E3 Ubiquitin Ligases in Rare Neurological Diseases with Comorbid Epilepsy. Neuroscience 2020; 428:90-99. [DOI: 10.1016/j.neuroscience.2019.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
|
22
|
Molecular pathways of mitochondrial outer membrane protein degradation. Biochem Soc Trans 2019; 47:1437-1447. [DOI: 10.1042/bst20190275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
Abstract
Abstract
Mitochondrial outer membrane (MOM) encloses inner compartments of mitochondria and integrates cytoplasmic signals to regulate essential mitochondrial processes, such as protein import, dynamics, metabolism, cell death, etc. A substantial understanding of MOM associated proteostatic stresses and quality control pathways has been obtained in recent years. Six MOM associated protein degradation (MAD) pathways center on three AAA ATPases: Cdc48 in the cytoplasm, Msp1 integral to MOM, and Yme1 integral to the inner membrane. These pathways survey MOM proteome from the cytoplasmic and the inter-membrane space (IMS) sides. They detect and degrade MOM proteins with misfolded cytoplasmic and IMS domains, remove mistargeted tail-anchored proteins, and clear mitochondrial precursor proteins clogged in the TOM import complex. These MOM associated protein quality control pathways collaboratively maintain mitochondrial proteostasis and cell viability.
Collapse
|
23
|
Dai C, Zeng S, Tan Z, Yang X, Du J, Lu G, Wang J. Neurodevelopmental disorder with progressive microcephaly, spasticity, and brain anomalies in China caused by novel mutations of PLAA. Clin Genet 2019; 96:380-381. [PMID: 31322726 DOI: 10.1111/cge.13608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Congling Dai
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Hunan, China
| | - Sicong Zeng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Hunan, China
| | | | - Xiaowen Yang
- Reproductive and Genetic Hospital of Citic-Xiangya, Hunan, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Hunan, China
| | - Guangxiu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Hunan, China
| | - Jian Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Hunan, China.,Hunan Guangxiu Hospital, Hunan, China
| |
Collapse
|
24
|
A semiautomated whole-exome sequencing workflow leads to increased diagnostic yield and identification of novel candidate variants. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003756. [PMID: 30755392 PMCID: PMC6549575 DOI: 10.1101/mcs.a003756] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/06/2019] [Indexed: 01/10/2023] Open
Abstract
Advancing the clinical utility of whole-exome sequencing (WES) for patients with suspected genetic disorders is largely driven by bioinformatics approaches that streamline data processing and analysis. Herein, we describe our experience with implementing a semiautomated and phenotype-driven WES diagnostic workflow, incorporating both the DRAGEN pipeline and the Exomiser variant prioritization tool, at an academic children's hospital with an ethnically diverse pediatric patient population. We achieved a 41% molecular diagnostic rate for 66 duo-, quad-, or trio-WES cases, and 28% for 40 singleton-WES cases. Preliminary results were returned to ordering physicians within 1 wk for 12 of 38 (32%) probands with positive findings, which were instrumental in guiding the appropriate clinical management for a variety of patients, especially in critical care settings. The semiautomated and streamlined WES workflow also enabled us to identify novel variants in candidate disease genes in patients with developmental delay and autism and immune disorders and cancer, including ANK2, BPTF, BCL11A, FOXN1, PLAA, ATRX, DNAJC21, and RAD50. Together, we demonstrated the implementation of a streamlined WES workflow that was successfully applied for both clinical and research purposes.
Collapse
|
25
|
Chitre M, Nahorski MS, Stouffer K, Dunning-Davies B, Houston H, Wakeling EL, Brady AF, Zuberi SM, Suri M, Parker APJ, Woods CG. PEHO syndrome: the endpoint of different genetic epilepsies. J Med Genet 2018; 55:803-813. [DOI: 10.1136/jmedgenet-2018-105288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/10/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023]
Abstract
BackgroundProgressive encephalopathy, hypsarrhythmia and optic atrophy (PEHO) has been described as a clinically distinct syndrome. It has been postulated that it is an autosomal recessive condition. However, the aetiology is poorly understood, and the genetic basis of the condition has not been fully elucidated. Our objective was to discover if PEHO syndrome is a single gene disorder.MethodChildren with PEHO and PEHO-like syndrome were recruited. Clinical, neurological and dysmorphic features were recorded; EEG reports and MRI scans were reviewed. Where possible, exome sequencing was carried out first to seek mutations in known early infantile developmental and epileptic encephalopathy (DEE) genes and then to use an agnostic approach to seek novel candidate genes. We sought intra–interfamilial phenotypic correlations and genotype–phenotype correlations when pathological mutations were identified.ResultsTwenty-three children were recruited from a diverse ethnic background, 19 of which were suitable for inclusion. They were similar in many of the core and the supporting features of PEHO, but there was significant variation in MRI and ophthalmological findings, even between siblings with the same mutation. A pathogenic genetic variant was identified in 15 of the 19 children. One further girl’s DNA failed analysis, but her two affected sisters shared confirmed variants. Pathogenic variants were identified in seven different genes.ConclusionsWe found significant clinical and genetic heterogeneity. Given the intrafamily variation demonstrated, we question whether the diagnostic criteria for MRI and ophthalmic findings should be altered. We also question whether PEHO and PEHO-like syndrome represent differing points on a clinical spectrum of the DEE. We conclude that PEHO and PEHO-like syndrome are clinically and genetically diverse entities—and are phenotypic endpoints of many severe genetic encephalopathies.
Collapse
|
26
|
Papadopoulos C, Meyer H. Detection and Clearance of Damaged Lysosomes by the Endo-Lysosomal Damage Response and Lysophagy. Curr Biol 2018; 27:R1330-R1341. [PMID: 29257971 DOI: 10.1016/j.cub.2017.11.012] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lysosomal membrane permeabilization or lysosomal rupture is recognized as a common and severe stress condition relevant for infection, cellular degeneration and cancer. However, the cellular response mechanisms that protect cells from the consequences of lysosomal damage and ensure lysosomal quality control and homeostasis have only recently been explored. Key elements of this response involve the specific sensing of the damage followed by extensive modification of the organelles with ubiquitin to mark them for clearance by selective macroautophagy, termed lysophagy. Efficient lysophagy is ensured by additional layers of regulation, including modulation by the ubiquitin-directed AAA-ATPase VCP/p97. Lysophagy shares many features with mitophagy, the macroautophagic removal of damaged mitochondria. This review aims to gather available data from different fields and to define the key steps necessary for sensing and subsequent clearance of damaged lysosomes. We conclude with a discussion of disease implications with a focus on neurodegeneration.
Collapse
Affiliation(s)
- Chrisovalantis Papadopoulos
- Molecular Biology I, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany.
| | - Hemmo Meyer
- Molecular Biology I, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany.
| |
Collapse
|
27
|
Mali GR, Yeyati PL, Mizuno S, Dodd DO, Tennant PA, Keighren MA, Zur Lage P, Shoemark A, Garcia-Munoz A, Shimada A, Takeda H, Edlich F, Takahashi S, von Kreigsheim A, Jarman AP, Mill P. ZMYND10 functions in a chaperone relay during axonemal dynein assembly. eLife 2018; 7:34389. [PMID: 29916806 PMCID: PMC6044906 DOI: 10.7554/elife.34389] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones promote the folding and macromolecular assembly of a diverse set of 'client' proteins. How ubiquitous chaperone machineries direct their activities towards specific sets of substrates is unclear. Through the use of mouse genetics, imaging and quantitative proteomics we uncover that ZMYND10 is a novel co-chaperone that confers specificity for the FKBP8-HSP90 chaperone complex towards axonemal dynein clients required for cilia motility. Loss of ZMYND10 perturbs the chaperoning of axonemal dynein heavy chains, triggering broader degradation of dynein motor subunits. We show that pharmacological inhibition of FKBP8 phenocopies dynein motor instability associated with the loss of ZMYND10 in airway cells and that human disease-causing variants of ZMYND10 disrupt its ability to act as an FKBP8-HSP90 co-chaperone. Our study indicates that primary ciliary dyskinesia (PCD), caused by mutations in dynein assembly factors disrupting cytoplasmic pre-assembly of axonemal dynein motors, should be considered a cell-type specific protein-misfolding disease.
Collapse
Affiliation(s)
- Girish R Mali
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Patricia L Yeyati
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Seiya Mizuno
- Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan
| | - Daniel O Dodd
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter A Tennant
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret A Keighren
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Petra Zur Lage
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | | | - Atsuko Shimada
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany.,BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Satoru Takahashi
- Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Alex von Kreigsheim
- Systems Biology Ireland, University College Dublin, Dublin, Ireland.,Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Martínez O, Reyes-Valdés MH. On an algorithmic definition for the components of the minimal cell. PLoS One 2018; 13:e0198222. [PMID: 29856803 PMCID: PMC5983409 DOI: 10.1371/journal.pone.0198222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/15/2018] [Indexed: 11/19/2022] Open
Abstract
Living cells are highly complex systems comprising a multitude of elements that are engaged in the many convoluted processes observed during the cell cycle. However, not all elements and processes are essential for cell survival and reproduction under steady-state environmental conditions. To distinguish between essential from expendable cell components and thus define the ‘minimal cell’ and the corresponding ‘minimal genome’, we postulate that the synthesis of all cell elements can be represented as a finite set of binary operators, and within this framework we show that cell elements that depend on their previous existence to be synthesized are those that are essential for cell survival. An algorithm to distinguish essential cell elements is presented and demonstrated within an interactome. Data and functions implementing the algorithm are given as supporting information. We expect that this algorithmic approach will lead to the determination of the complete interactome of the minimal cell, which could then be experimentally validated. The assumptions behind this hypothesis as well as its consequences for experimental and theoretical biology are discussed.
Collapse
Affiliation(s)
- Octavio Martínez
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
- * E-mail:
| | - M. Humberto Reyes-Valdés
- Graduate Program on Plant Genetic Resources for Arid Lands, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, México
| |
Collapse
|
29
|
Ziv NE. Maintaining the active zone: Demand, supply and disposal of core active zone proteins. Neurosci Res 2018; 127:70-77. [DOI: 10.1016/j.neures.2017.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022]
|
30
|
Shaikh SS, Nahorski MS, Woods CG. A third HSAN5 mutation disrupts the nerve growth factor furin cleavage site. Mol Pain 2018; 14:1744806918809223. [PMID: 30296891 PMCID: PMC6207963 DOI: 10.1177/1744806918809223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 11/17/2022] Open
Abstract
Bi-allelic dysfunctional mutations in nerve growth factor (NGF) cause the rare human phenotype hereditary sensory and autonomic neuropathy type 5 (HSAN5). We describe a novel NGF mutation in an individual with typical HSAN5 findings. The mutation c.361C>T, p.R121W is at the last residue of the furin cleavage motif Arg-Ser-Lys-Arg in proNGF. We show that the p.R121W mutation completely abolishes the formation of mature NGF-β. Surprisingly, mutant p.R121W cells produced very little proNGF. Instead, the two progressive cleavage products of proNGF were produced, proA-NGF and proB-NGF, with proB-NGF being the predominant NGF-derived peptide and the only peptide secreted by mutant p.R121W cells. We found that the ability of the p.R121W mutation to cause tropomyosin receptor kinase A autophosphorylation and mitogen-activated protein kinase phosphorylation was significantly reduced compared to controls (p < 0.05 and p < 0.01). By studying the PC12 cell line morphology and neurite length over a week, we found the p.R121W mutation had residual, but much reduced, neurotrophic activity when compared to wild-type NGF. Finally, we assessed whether the p.R121W mutation affected apoptosis and found a reduced protective effect compared to wild-type NGF. Our results suggest that the p.R121W NGF mutation causes HSAN5 through negating the ability of furin to cleave proNGF to produce NGF-β.
Collapse
Affiliation(s)
- Samiha S Shaikh
- Cambridge Institute for Medical Research, Addenbrooke's Biomedical Research Centre, Cambridge, UK
| | - Michael S Nahorski
- Cambridge Institute for Medical Research, Addenbrooke's Biomedical Research Centre, Cambridge, UK
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, Addenbrooke's Biomedical Research Centre, Cambridge, UK
- Department of Clinical Genetics, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
31
|
Pacheco NL, Heaven MR, Holt LM, Crossman DK, Boggio KJ, Shaffer SA, Flint DL, Olsen ML. RNA sequencing and proteomics approaches reveal novel deficits in the cortex of Mecp2-deficient mice, a model for Rett syndrome. Mol Autism 2017; 8:56. [PMID: 29090078 PMCID: PMC5655833 DOI: 10.1186/s13229-017-0174-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MeCP2. Much of our understanding of MeCP2 function is derived from transcriptomic studies with the general assumption that alterations in the transcriptome correlate with proteomic changes. Advances in mass spectrometry-based proteomics have facilitated recent interest in the examination of global protein expression to better understand the biology between transcriptional and translational regulation. METHODS We therefore performed the first comprehensive transcriptome-proteome comparison in a RTT mouse model to elucidate RTT pathophysiology, identify potential therapeutic targets, and further our understanding of MeCP2 function. The whole cortex of wild-type and symptomatic RTT male littermates (n = 4 per genotype) were analyzed using RNA-sequencing and data-independent acquisition liquid chromatography tandem mass spectrometry. Ingenuity® Pathway Analysis was used to identify significantly affected pathways in the transcriptomic and proteomic data sets. RESULTS Our results indicate these two "omics" data sets supplement one another. In addition to confirming previous works regarding mRNA expression in Mecp2-deficient animals, the current study identified hundreds of novel protein targets. Several selected protein targets were validated by Western blot analysis. These data indicate RNA metabolism, proteostasis, monoamine metabolism, and cholesterol synthesis are disrupted in the RTT proteome. Hits common to both data sets indicate disrupted cellular metabolism, calcium signaling, protein stability, DNA binding, and cytoskeletal cell structure. Finally, in addition to confirming disrupted pathways and identifying novel hits in neuronal structure and synaptic transmission, our data indicate aberrant myelination, inflammation, and vascular disruption. Intriguingly, there is no evidence of reactive gliosis, but instead, gene, protein, and pathway analysis suggest astrocytic maturation and morphological deficits. CONCLUSIONS This comparative omics analysis supports previous works indicating widespread CNS dysfunction and may serve as a valuable resource for those interested in cellular dysfunction in RTT.
Collapse
Affiliation(s)
- Natasha L. Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
| | - Michael R. Heaven
- Vulcan Analytical, LLC, 1500 1st Ave. North, Birmingham, AL 35203 USA
| | - Leanne M. Holt
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| | - David K. Crossman
- UAB Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Kaul 424A, 1720 2nd Ave. South, Birmingham, AL 35294 USA
| | - Kristin J. Boggio
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Daniel L. Flint
- Luxumbra Strategic Research, LLC, 1331 South Eads St, Arlington, VA 22202 USA
| | - Michelle L. Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| |
Collapse
|