1
|
Kruczek K, Swaroop A. Patient stem cell-derived in vitro disease models for developing novel therapies of retinal ciliopathies. Curr Top Dev Biol 2023; 155:127-163. [PMID: 38043950 DOI: 10.1016/bs.ctdb.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Primary cilia are specialized organelles on the surface of almost all cells in vertebrate tissues and are primarily involved in the detection of extracellular stimuli. In retinal photoreceptors, cilia are uniquely modified to form outer segments containing components required for the detection of light in stacks of membrane discs. Not surprisingly, vision impairment is a frequent phenotype associated with ciliopathies, a heterogeneous class of conditions caused by mutations in proteins required for formation, maintenance and/or function of primary cilia. Traditionally, immortalized cell lines and model organisms have been used to provide insights into the biology of ciliopathies. The advent of methods for reprogramming human somatic cells into pluripotent stem cells has enabled the generation of in vitro disease models directly from patients suffering from ciliopathies. Such models help us in investigating pathological mechanisms specific to human physiology and in developing novel therapeutic approaches. In this article, we review current protocols to differentiate human pluripotent stem cells into retinal cell types, and discuss how these cellular and/or organoid models can be utilized to interrogate pathobiology of ciliopathies affecting the retina and for testing prospective treatments.
Collapse
Affiliation(s)
- Kamil Kruczek
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
2
|
Kabra M, Shahi PK, Wang Y, Sinha D, Spillane A, Newby GA, Saxena S, Tong Y, Chang Y, Abdeen AA, Edwards KL, Theisen CO, Liu DR, Gamm DM, Gong S, Saha K, Pattnaik BR. Nonviral base editing of KCNJ13 mutation preserves vision in a model of inherited retinal channelopathy. J Clin Invest 2023; 133:e171356. [PMID: 37561581 PMCID: PMC10541187 DOI: 10.1172/jci171356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Clinical genome editing is emerging for rare disease treatment, but one of the major limitations is the targeting of CRISPR editors' delivery. We delivered base editors to the retinal pigmented epithelium (RPE) in the mouse eye using silica nanocapsules (SNCs) as a treatment for retinal degeneration. Leber congenital amaurosis type 16 (LCA16) is a rare pediatric blindness caused by point mutations in the KCNJ13 gene, a loss of function inwardly rectifying potassium channel (Kir7.1) in the RPE. SNCs carrying adenine base editor 8e (ABE8e) mRNA and sgRNA precisely and efficiently corrected the KCNJ13W53X/W53X mutation. Editing in both patient fibroblasts (47%) and human induced pluripotent stem cell-derived RPE (LCA16-iPSC-RPE) (17%) showed minimal off-target editing. We detected functional Kir7.1 channels in the edited LCA16-iPSC-RPE. In the LCA16 mouse model (Kcnj13W53X/+ΔR), RPE cells targeted SNC delivery of ABE8e mRNA preserved normal vision, measured by full-field electroretinogram (ERG). Moreover, multifocal ERG confirmed the topographic measure of electrical activity primarily originating from the edited retinal area at the injection site. Preserved retina structure after treatment was established by optical coherence tomography (OCT). This preclinical validation of targeted ion channel functional rescue, a challenge for pharmacological and genomic interventions, reinforced the effectiveness of nonviral genome-editing therapy for rare inherited disorders.
Collapse
Affiliation(s)
- Meha Kabra
- Department of Pediatrics
- McPherson Eye Research Institute
| | - Pawan K. Shahi
- Department of Pediatrics
- McPherson Eye Research Institute
| | - Yuyuan Wang
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | - Divya Sinha
- McPherson Eye Research Institute
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Shivani Saxena
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | - Yao Tong
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | | | - Amr A. Abdeen
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | - Kimberly L. Edwards
- McPherson Eye Research Institute
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Cole O. Theisen
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - David M. Gamm
- McPherson Eye Research Institute
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Ophthalmology and Visual Sciences and
| | - Shaoqin Gong
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
- Department of Ophthalmology and Visual Sciences and
| | - Krishanu Saha
- Department of Pediatrics
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
- Center for Human Genomics and Precision Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Bikash R. Pattnaik
- Department of Pediatrics
- McPherson Eye Research Institute
- Department of Ophthalmology and Visual Sciences and
| |
Collapse
|
3
|
Xu P, Chen Z, Ma J, Shan Y, Wang Y, Xie B, Zheng D, Guo F, Song X, Gao G, Ye K, Liu Y, Pan G, Jiang B, Peng F, Zhong X. Biallelic CLCN2 mutations cause retinal degeneration by impairing retinal pigment epithelium phagocytosis and chloride channel function. Hum Genet 2023; 142:577-593. [PMID: 36964785 DOI: 10.1007/s00439-023-02531-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
CLCN2 encodes a two-pore homodimeric chloride channel protein (CLC-2) that is widely expressed in human tissues. The association between Clcn2 and the retina is well-established in mice, as loss-of-function of CLC-2 can cause retinopathy in mice; however, the ocular phenotypes caused by CLCN2 mutations in humans and the underlying mechanisms remain unclear. The present study aimed to define the ocular features and reveal the pathogenic mechanisms of CLCN2 variants associated with retinal degeneration in humans using an in vitro overexpression system, as well as patient-induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) cells and retinal organoids (ROs). A patient carrying the homozygous c.2257C > T (p.R753X) nonsense CLCN2 mutation was followed up for > 6 years. Ocular features were comprehensively characterized with multimodality imaging and functional examination. The patient presented with severe bilateral retinal degeneration with loss of photoreceptor and RPE. In vitro, mutant CLC-2 maintained the correct subcellular localization, but with reduced channel function compared to wild-type CLC-2 in HEK293T cells. Additionally, patient iPSC-derived RPE cells carrying the CLCN2 mutation exhibited dysfunctional ClC-2 chloride channels and outer segment phagocytosis. Notably, these functions were rescued following the repair of the CLCN2 mutation using the CRISPR-Cas9 system. However, this variant did not cause significant photoreceptor degeneration in patient-derived ROs, indicating that dysfunctional RPE is likely the primary cause of biallelic CLCN2 variant-mediated retinopathy. This study is the first to establish the confirmatory ocular features of human CLCN2-related retinal degeneration, and reveal a pathogenic mechanism associated with biallelic CLCN2 variants, providing new insights into the cause of inherited retinal dystrophies.
Collapse
Affiliation(s)
- Ping Xu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhuolin Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jianchi Ma
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China, Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuan Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Dandan Zheng
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Fuying Guo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xiaojing Song
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Guanjie Gao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Ke Ye
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China, Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Kanzaki Y, Fujita H, Sato K, Hosokawa M, Matsumae H, Morizane Y, Ohuchi H. Protrusion of KCNJ13 Gene Knockout Retinal Pigment Epithelium Due to Oxidative Stress–Induced Cell Death. Invest Ophthalmol Vis Sci 2022; 63:29. [PMID: 36413373 PMCID: PMC9695160 DOI: 10.1167/iovs.63.12.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose This study was performed to elucidate the mechanisms of morphological abnormalities in a Leber congenital amaurosis 16 (LCA16) cell model using KCNJ13 knockout (KO) retinal pigment epithelial cells derived from human iPS cells (hiPSC-RPE). Methods In KCNJ13 KO and wild-type hiPSC-RPE cells, ZO-1 immunofluorescence was performed, and confocal images were captured. The area and perimeter of each cell were measured. To detect cell death, ethidium homodimer III (EthD-III) staining and LDH assay were used. Scanning electron microscopy (SEM) was used to observe the cell surface. The expression levels of oxidative stress-related genes were examined by quantitative PCR. To explore the effects of oxidative stress, tert-butyl hydroperoxide (t-BHP) was administered to the hiPSC-RPE cells. Cell viability was tested by MTS assay, whereas oxidative damage was monitored by oxidized (GSSG) and reduced glutathione levels. Results The area and perimeter of KCNJ13-KO hiPSC-RPE cells were enlarged. EthD-III-positive cells were increased with more dead cells in the protruded region. The KO RPE had significantly higher LDH levels in the medium. SEM observations revealed aggregated cells having broken cell surfaces on the KO RPE sheet. The KCNJ13-deficient RPE showed increased expression levels of oxidative stress-related genes and total glutathione levels. Furthermore, t-BHP induced a significant increase in cell death and GSSG levels in the KO RPE. Conclusions We suggest that in the absence of the Kir.7.1 potassium channel, human RPE cells are vulnerable to oxidative stress and ultimately die. The dying/dead cells form aggregates and protrude from the surviving KCNJ13-deficient RPE sheet.
Collapse
Affiliation(s)
- Yuki Kanzaki
- Department of Ophthalmology, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Cytology and Histology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mio Hosokawa
- Department of Ophthalmology, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Matsumae
- Department of Ophthalmology, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Morizane
- Department of Ophthalmology, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
5
|
Leung A, Sacristan-Reviriego A, Perdigão PRL, Sai H, Georgiou M, Kalitzeos A, Carr AJF, Coffey PJ, Michaelides M, Bainbridge J, Cheetham ME, van der Spuy J. Investigation of PTC124-mediated translational readthrough in a retinal organoid model of AIPL1-associated Leber congenital amaurosis. Stem Cell Reports 2022; 17:2187-2202. [PMID: 36084639 PMCID: PMC9561542 DOI: 10.1016/j.stemcr.2022.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 10/26/2022] Open
Abstract
Leber congenital amaurosis type 4 (LCA4), caused by AIPL1 mutations, is characterized by severe sight impairment in infancy and rapidly progressing degeneration of photoreceptor cells. We generated retinal organoids using induced pluripotent stem cells (iPSCs) from renal epithelial cells obtained from four children with AIPL1 nonsense mutations. iPSC-derived photoreceptors exhibited the molecular hallmarks of LCA4, including undetectable AIPL1 and rod cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE6) compared with control or CRISPR-corrected organoids. Increased levels of cGMP were detected. The translational readthrough-inducing drug (TRID) PTC124 was investigated as a potential therapeutic agent. LCA4 retinal organoids exhibited low levels of rescue of full-length AIPL1. However, this was insufficient to fully restore PDE6 in photoreceptors and reduce cGMP. LCA4 retinal organoids are a valuable platform for in vitro investigation of novel therapeutic agents.
Collapse
Affiliation(s)
- Amy Leung
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | | | - Hali Sai
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Angelos Kalitzeos
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | | | | | - Michel Michaelides
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - James Bainbridge
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | | | | |
Collapse
|
6
|
Beverley KM, Pattnaik BR. Inward rectifier potassium (Kir) channels in the retina: living our vision. Am J Physiol Cell Physiol 2022; 323:C772-C782. [PMID: 35912989 PMCID: PMC9448332 DOI: 10.1152/ajpcell.00112.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
Abstract
Channel proteins are vital for conducting ions throughout the body and are especially relevant to retina physiology. Inward rectifier potassium (Kir) channels are a class of K+ channels responsible for maintaining membrane potential and extracellular K+ concentrations. Studies of the KCNJ gene (that encodes Kir protein) expression identified the presence of all of the subclasses (Kir 1-7) of Kir channels in the retina or retinal-pigmented epithelium (RPE). However, functional studies have established the involvement of the Kir4.1 homotetramer and Kir4.1/5.1 heterotetramer in Müller glial cells, Kir2.1 in bipolar cells, and Kir7.1 in the RPE cell physiology. Here, we propose the potential roles of Kir channels in the retina based on the physiological contributions to the brain, pancreatic, and cardiac tissue functions. There are several open questions regarding the expressed KCNJ genes in the retina and RPE. For example, why does not the Kir channel subtype gene expression correspond with protein expression? Catching up with multiomics or functional "omics" approaches might shed light on posttranscriptional changes that might influence Kir subunit mRNA translation within the retina that guides our vision.
Collapse
Affiliation(s)
- Katie M Beverley
- Endocrinology and Reproductive Physiology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin
| | - Bikash R Pattnaik
- Endocrinology and Reproductive Physiology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
7
|
Pollara L, Sottile V, Valente EM. Patient-derived cellular models of primary ciliopathies. J Med Genet 2022; 59:517-527. [DOI: 10.1136/jmedgenet-2021-108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Primary ciliopathies are rare inherited disorders caused by structural or functional defects in the primary cilium, a subcellular organelle present on the surface of most cells. Primary ciliopathies show considerable clinical and genetic heterogeneity, with disruption of over 100 genes causing the variable involvement of several organs, including the central nervous system, kidneys, retina, skeleton and liver. Pathogenic variants in one and the same gene may associate with a wide range of ciliopathy phenotypes, supporting the hypothesis that the individual genetic background, with potential additional variants in other ciliary genes, may contribute to a mutational load eventually determining the phenotypic manifestations of each patient. Functional studies in animal models have uncovered some of the pathophysiological mechanisms linking ciliary gene mutations to the observed phenotypes; yet, the lack of reliable human cell models has previously limited preclinical research and the development of new therapeutic strategies for primary ciliopathies. Recent technical advances in the generation of patient-derived two-dimensional (2D) and three-dimensional (3D) cellular models give a new spur to this research, allowing the study of pathomechanisms while maintaining the complexity of the genetic background of each patient, and enabling the development of innovative treatments to target specific pathways. This review provides an overview of available models for primary ciliopathies, from existing in vivo models to more recent patient-derived 2D and 3D in vitro models. We highlight the advantages of each model in understanding the functional basis of primary ciliopathies and facilitating novel regenerative medicine, gene therapy and drug testing strategies for these disorders.
Collapse
|
8
|
Jiao X, Ma Z, Lei J, Liu P, Cai X, Shahi PK, Chan CC, Fariss R, Pattnaik BR, Dong L, Hejtmancik JF. Retinal Development and Pathophysiology in Kcnj13 Knockout Mice. Front Cell Dev Biol 2022; 9:810020. [PMID: 35096838 PMCID: PMC8790323 DOI: 10.3389/fcell.2021.810020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose: We constructed and characterized knockout and conditional knockout mice for KCNJ13, encoding the inwardly rectifying K+ channel of the Kir superfamily Kir7.1, mutations in which cause both Snowflake Vitreoretinal Degeneration (SVD) and Retinitis pigmentosa (RP) to further elucidate the pathology of this disease and to develop a potential model system for gene therapy trials. Methods: A Kcnj13 knockout mouse line was constructed by inserting a gene trap cassette expressing beta-galactosidase flanked by FRT sites in intron 1 with LoxP sites flanking exon two and converted to a conditional knockout by FLP recombination followed by crossing with C57BL/6J mice having Cre driven by the VMD2 promoter. Lentiviral replacement of Kcnj13 was driven by the EF1a or VMD2 promoters. Results: Blue-Gal expression is evident in E12.5 brain ventricular choroid plexus, lens, neural retina layer, and anterior RPE. In the adult eye expression is seen in the ciliary body, RPE and choroid. Adult conditional Kcnj13 ko mice show loss of photoreceptors in the outer nuclear layer, inner nuclear layer thinning with loss of bipolar cells, and thinning and disruption of the outer plexiform layer, correlating with Cre expression in the overlying RPE which, although preserved, shows morphological disruption. Fundoscopy and OCT show signs of retinal degeneration consistent with the histology, and photopic and scotopic ERGs are decreased in amplitude or extinguished. Lentiviral based replacement of Kcnj13 resulted in increased ERG c- but not a- or b- wave amplitudes. Conclusion: Ocular KCNJ13 expression starts in the choroid, lens, ciliary body, and anterior retina, while later expression centers on the RPE with no/lower expression in the neuroretina. Although KCNJ13 expression is not required for survival of the RPE, it is necessary for RPE maintenance of the photoreceptors, and loss of the photoreceptor, outer plexiform, and outer nuclear layers occur in adult KCNJ13 cKO mice, concomitant with decreased amplitude and eventual extinguishing of the ERG and signs of retinitis pigmentosa on fundoscopy and OCT. Kcnj13 replacement resulting in recovery of the ERG c- but not a- and b-waves is consistent with the degree of photoreceptor degeneration seen on histology.
Collapse
Affiliation(s)
- Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jingqi Lei
- Genetic Engineering Core, National Eye Institute, National Institute of Health, Bethesda, MD, United States
| | - Pinghu Liu
- Genetic Engineering Core, National Eye Institute, National Institute of Health, Bethesda, MD, United States
| | - Xiaoyu Cai
- Genetic Engineering Core, National Eye Institute, National Institute of Health, Bethesda, MD, United States
| | - Pawan K Shahi
- Departments of Pediatrics and Ophthalmology and Visual Sciences and the McPherson Eye Research Institute, University of Wisconsin, Madison, AL, United States
| | - Chi-Chao Chan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Robert Fariss
- Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Bikash R Pattnaik
- Departments of Pediatrics and Ophthalmology and Visual Sciences and the McPherson Eye Research Institute, University of Wisconsin, Madison, AL, United States
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institute of Health, Bethesda, MD, United States
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Korkka I, Skottman H, Nymark S. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:753-766. [PMID: 35639962 PMCID: PMC9299513 DOI: 10.1093/stcltm/szac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/09/2022] [Indexed: 11/15/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived retinal pigment epithelium (RPE) is extensively used in RPE research, disease modeling, and transplantation therapies. For successful outcomes, a thorough evaluation of their physiological authenticity is a necessity. Essential determinants of this are the different ion channels of the RPE, yet studies evaluating this machinery in hPSC-RPE are scarce. We examined the functionality and localization of potassium (K+) channels in the human embryonic stem cell (hESC)-derived RPE. We observed a heterogeneous pattern of voltage-gated K+ (KV) and inwardly rectifying K+ (Kir) channels. Delayed rectifier currents were recorded from most of the cells, and immunostainings showed the presence of KV1.3 channel. Sustained M-currents were also present in the hESC-RPE, and based on immunostaining, these currents were carried by KCNQ1-KCNQ5 channel types. Some cells expressed transient A-type currents characteristic of native human fetal RPE (hfRPE) and cultured primary RPE and carried by KV1.4 and KV4.2 channels. Of the highly important Kir channels, we found that Kir7.1 is present both at the apical and basolateral membranes of the hESC- and fresh native mouse RPE. Kir currents, however, were recorded only from 14% of the hESC-RPE cells with relatively low amplitudes. Compared to previous studies, our data suggest that in the hESC-RPE, the characteristics of the delayed rectifier and M-currents resemble native adult RPE, while A-type and Kir currents resemble native hfRPE or cultured primary RPE. Overall, the channelome of the RPE is a sensitive indicator of maturity and functionality affecting its therapeutic utility.
Collapse
Affiliation(s)
- Iina Korkka
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heli Skottman
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Soile Nymark
- Corresponding author: Soile Nymark, PhD, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland. Tel: +358 40 849 0009; E-mail:
| |
Collapse
|
10
|
Hernández-Juárez J, Rodríguez-Uribe G, Borooah S. Toward the Treatment of Inherited Diseases of the Retina Using CRISPR-Based Gene Editing. Front Med (Lausanne) 2021; 8:698521. [PMID: 34660621 PMCID: PMC8517184 DOI: 10.3389/fmed.2021.698521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal dystrophies [IRDs] are a common cause of severe vision loss resulting from pathogenic genetic variants. The eye is an attractive target organ for testing clinical translational approaches in inherited diseases. This has been demonstrated by the approval of the first gene supplementation therapy to treat an autosomal recessive IRD, RPE65-linked Leber congenital amaurosis (type 2), 4 years ago. However, not all diseases are amenable for treatment using gene supplementation therapy, highlighting the need for alternative strategies to overcome the limitations of this supplementation therapeutic modality. Gene editing has become of increasing interest with the discovery of the CRISPR-Cas9 platform. CRISPR-Cas9 offers several advantages over previous gene editing technologies as it facilitates targeted gene editing in an efficient, specific, and modifiable manner. Progress with CRISPR-Cas9 research now means that gene editing is a feasible strategy for the treatment of IRDs. This review will focus on the background of CRISPR-Cas9 and will stress the differences between gene editing using CRISPR-Cas9 and traditional gene supplementation therapy. Additionally, we will review research that has led to the first CRISPR-Cas9 trial for the treatment of CEP290-linked Leber congenital amaurosis (type 10), as well as outline future directions for CRISPR-Cas9 technology in the treatment of IRDs.
Collapse
Affiliation(s)
- Jennifer Hernández-Juárez
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, United States
| | - Genaro Rodríguez-Uribe
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Mexico.,Department of Ocular Genetics and Research, CODET Vision Institute, Tijuana, Mexico
| | - Shyamanga Borooah
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Zhang Y, Liu H, Lin X, Zhang F, Meng P, Tan S, Lammi MJ, Guo X. Dysregulation of Cells Cycle and Apoptosis in Human Induced Pluripotent Stem Cells Chondrocytes Through p53 Pathway by HT-2 Toxin: An in vitro Study. Front Genet 2021; 12:677723. [PMID: 34421989 PMCID: PMC8371750 DOI: 10.3389/fgene.2021.677723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
Kashin–Beck disease (KBD) mainly damages growth plate of adolescents and is susceptible to both gene and gene–environmental risk factors. HT-2 toxin, which is a primary metabolite of T-2 toxin, was regarded as one of the environmental risk factors of KBD. We used successfully generated KBD human induced pluripotent stem cells (hiPSCs) and control hiPSCs, which carry different genetic information. They have potential significance in exploring the effects of HT-2 toxin on hiPSC chondrocytes and interactive genes with HT-2 toxin for the purpose of providing a cellular disease model for KBD. In this study, we gave HT-2 toxin treatment to differentiating hiPSC chondrocytes in order to investigate the different responses of KBD hiPSC chondrocytes and control hiPSC chondrocytes to HT-2 toxin. The morphology of HT-2 toxin-treated hiPSC chondrocytes investigated by transmission electron microscope clearly showed that the ultrastructure of organelles was damaged and type II collagen expression in hiPSC chondrocytes was downregulated by HT-2 treatment. Moreover, dysregulation of cell cycle was observed; and p53, p21, and CKD6 gene expressions were dysregulated in hiPSC chondrocytes after T-2 toxin treatment. Flow cytometry also demonstrated that there were significantly increased amounts of late apoptotic cells in KBD hiPSC chondrocytes and that the mRNA expression level of Fas was upregulated. In addition, KBD hiPSC chondrocytes presented stronger responses to HT-2 toxin than control hiPSC chondrocytes. These findings confirmed that HT-2 is an environmental risk factor of KBD and that p53 pathway interacted with HT-2 toxin, causing damaged ultrastructure of organelles, accelerating cell cycle in G1 phase, and increasing late apoptosis in KBD hiPSC chondrocytes.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, China
| | - Huan Liu
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, China
| | - Xialu Lin
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, China
| | - Feng'e Zhang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, China
| | - Peilin Meng
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, China
| | - Sijia Tan
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, China
| | - Mikko J Lammi
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, China.,Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Xiong Guo
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, China
| |
Collapse
|
12
|
Mamaeva D, Jazouli Z, DiFrancesco ML, Erkilic N, Dubois G, Hilaire C, Meunier I, Boukhaddaoui H, Kalatzis V. Novel roles for voltage-gated T-type Ca 2+ and ClC-2 channels in phagocytosis and angiogenic factor balance identified in human iPSC-derived RPE. FASEB J 2021; 35:e21406. [PMID: 33724552 DOI: 10.1096/fj.202002754r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 01/26/2023]
Abstract
Human-induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) is a powerful tool for pathophysiological studies and preclinical therapeutic screening, as well as a source for clinical cell transplantation. Thus, it must be validated for maturity and functionality to ensure correct data readouts and clinical safety. Previous studies have validated hiPSC-derived RPE as morphologically characteristic of the tissue in the human eye. However, information concerning the expression and functionality of ion channels is still limited. We screened hiPSC-derived RPE for the polarized expression of a panel of L-type (CaV 1.1, CaV 1.3) and T-type (CaV 3.1, CaV 3.3) Ca2+ channels, K+ channels (Maxi-K, Kir4.1, Kir7.1), and the Cl- channel ClC-2 known to be expressed in native RPE. We also tested the roles of these channels in key RPE functions using specific inhibitors. In addition to confirming the native expression profiles and function of certain channels, such as L-type Ca2+ channels, we show for the first time that T-type Ca2+ channels play a role in both phagocytosis and vascular endothelial growth factor (VEGF) secretion. Moreover, we demonstrate that Maxi-K and Kir7.1 channels are involved in the polarized secretion of VEGF and pigment epithelium-derived factor (PEDF). Furthermore, we show a novel localization for ClC-2 channel on the apical side of hiPSC-derived RPE, with an overexpression at the level of fluid-filled domes, and demonstrate that it plays an important role in phagocytosis, as well as VEGF and PEDF secretion. Taken together, hiPSC-derived RPE is a powerful model for advancing fundamental knowledge of RPE functions.
Collapse
Affiliation(s)
- Daria Mamaeva
- Institute for Neurosciences of Montpellier, Inserm, Montpellier University, Montpellier, France
| | - Zhour Jazouli
- Institute for Neurosciences of Montpellier, Inserm, Montpellier University, Montpellier, France
| | - Mattia L DiFrancesco
- Institute for Neurosciences of Montpellier, Inserm, Montpellier University, Montpellier, France
| | - Nejla Erkilic
- Institute for Neurosciences of Montpellier, Inserm, Montpellier University, Montpellier, France.,National Reference Centre for Inherited Sensory Diseases, Montpellier University, CHU, Montpellier, France
| | - Gregor Dubois
- Institute for Neurosciences of Montpellier, Inserm, Montpellier University, Montpellier, France
| | - Cecile Hilaire
- Institute for Neurosciences of Montpellier, Inserm, Montpellier University, Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier, Inserm, Montpellier University, Montpellier, France.,National Reference Centre for Inherited Sensory Diseases, Montpellier University, CHU, Montpellier, France
| | - Hassan Boukhaddaoui
- Institute for Neurosciences of Montpellier, Inserm, Montpellier University, Montpellier, France
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier, Inserm, Montpellier University, Montpellier, France
| |
Collapse
|
13
|
Padhy SK, Takkar B, Narayanan R, Venkatesh P, Jalali S. Voretigene Neparvovec and Gene Therapy for Leber's Congenital Amaurosis: Review of Evidence to Date. APPLICATION OF CLINICAL GENETICS 2020; 13:179-208. [PMID: 33268999 PMCID: PMC7701157 DOI: 10.2147/tacg.s230720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Gene therapy has now evolved as the upcoming modality for management of many disorders, both inheritable and non-inheritable. Knowledge of genetics pertaining to a disease has therefore become paramount for physicians across most specialities. Inheritable retinal dystrophies (IRDs) are notorious for progressive and relentless vision loss, frequently culminating in complete blindness in both eyes. Leber’s congenital amaurosis (LCA) is a typical example of an IRD that manifests very early in childhood. Research in gene therapy has led to the development and approval of voretigene neparvovec (VN) for use in patients of LCA with a deficient biallelic RPE65 gene. The procedure involves delivery of a recombinant virus vector that carries the RPE65 gene in the subretinal space. This comprehensive review reports the evidence thus far in support of gene therapy for LCA. We explore and compare the various gene targets including but not limited to RPE65, and discuss the choice of vector and method for ocular delivery. The review details the evolution of gene therapy with VN in a phased manner, concluding with the challenges that lie ahead for its translation for use in communities that differ much both genetically and economically.
Collapse
Affiliation(s)
- Srikanta Kumar Padhy
- Vitreoretina and Uveitis Services, L V Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Brijesh Takkar
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India.,Center of Excellence for Rare Eye Diseases, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| | - Raja Narayanan
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India
| | - Pradeep Venkatesh
- Dr RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Subhadra Jalali
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India.,Jasti V. Ramanamma Childrens' Eye Care Centre, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
14
|
Sharma R, Bose D, Maminishkis A, Bharti K. Retinal Pigment Epithelium Replacement Therapy for Age-Related Macular Degeneration: Are We There Yet? Annu Rev Pharmacol Toxicol 2020; 60:553-572. [PMID: 31914900 DOI: 10.1146/annurev-pharmtox-010919-023245] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pluripotent stem cells (PSCs) are a potential replacement tissue source for degenerative diseases. Age-related macular degeneration (AMD) is a blinding disease triggered by degeneration of the retinal pigment epithelium (RPE), a monolayer tissue that functionally supports retinal photoreceptors. Recently published clinical and preclinical studies have tested PSC-derived RPE as a potential treatment for AMD. Multiple approaches have been used to manufacture RPE cells, to validate them functionally, to confirm their safety profile, and to deliver them to patients either as suspension or as a monolayer patch. Since most of these studies are at an early regulatory approval stage, the primary outcome has been to determine the safety of RPE transplants in patients. However, preliminary signs of efficacy were observed in a few patients. Here, we review the current progress in the PSC-derived RPE transplantation field and provide a comparative assessment of various approaches under development as potential therapeutics for AMD.
Collapse
Affiliation(s)
- Ruchi Sharma
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Devika Bose
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Arvydas Maminishkis
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
15
|
Kanzaki Y, Fujita H, Sato K, Hosokawa M, Matsumae H, Shiraga F, Morizane Y, Ohuchi H. KCNJ13 Gene Deletion Impairs Cell Alignment and Phagocytosis in Retinal Pigment Epithelium Derived from Human-Induced Pluripotent Stem Cells. Invest Ophthalmol Vis Sci 2020; 61:38. [PMID: 32437550 PMCID: PMC7405706 DOI: 10.1167/iovs.61.5.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The purpose of this study was to establish and analyze a cell model of Leber congenital amaurosis type 16 (LCA16), which is caused by mutations in the KCNJ13 gene encoding Kir7.1, an inward-rectifying potassium ion channel. Methods The two guide RNAs specific to the target sites in the KCNJ13 gene were designed and KCNJ13 knock-out (KO) human-induced pluripotent stem cells (hiPSCs) were generated using the CRISPR/Cas9 system. The KCNJ13-KO hiPSCs were differentiated into retinal pigment epithelial cells (hiPSC-RPEs). The KCNJ13-KO in hiPSC-RPEs was confirmed by immunostaining. Phagocytic activity of hiPSC-RPEs was assessed using the uptake of fluorescently labeled porcine photoreceptor outer segments (POSs). Phagocytosis-related genes in RPE cells were assessed by quantitative polymerase chain reaction. Results Most of the translated region of the KCNJ13 gene was deleted in the KCNJ13-KO hiPSCs by the CRISPR/Cas9 system, and this confirmed that the Kir7.1 protein was not present in RPE cells induced from the hiPSCs. Expression of RPE marker genes such as BEST1 and CRALBP was retained in the wild-type (WT) and in the KCNJ13-KO hiPSC-RPE cells. However, phagocytic activity and expression of phagocytosis-related genes in the KCNJ13-null hiPSC-RPE cells were significantly reduced compared to those of WT. Conclusions We succeeded in generating an RPE model of LCA16 using hiPSCs. We suggest that Kir7.1 is required for phagocytosis of POSs by RPE cells and that impaired phagocytosis in the absence of Kir7.1 would be involved in the retinal degeneration found in LCA16.
Collapse
|
16
|
Sensing through Non-Sensing Ocular Ion Channels. Int J Mol Sci 2020; 21:ijms21186925. [PMID: 32967234 PMCID: PMC7554890 DOI: 10.3390/ijms21186925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. In the eye, ion channels are involved in various physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to an array of blindness, termed ocular channelopathies. These mutations result in either a loss- or gain-of channel functions affecting the structure, assembly, trafficking, and localization of channel proteins. A dominant-negative effect is caused in a few channels formed by the assembly of several subunits that exist as homo- or heteromeric proteins. Here, we review the role of different mutations in switching a “sensing” ion channel to “non-sensing,” leading to ocular channelopathies like Leber’s congenital amaurosis 16 (LCA16), cone dystrophy, congenital stationary night blindness (CSNB), achromatopsia, bestrophinopathies, retinitis pigmentosa, etc. We also discuss the various in vitro and in vivo disease models available to investigate the impact of mutations on channel properties, to dissect the disease mechanism, and understand the pathophysiology. Innovating the potential pharmacological and therapeutic approaches and their efficient delivery to the eye for reversing a “non-sensing” channel to “sensing” would be life-changing.
Collapse
|
17
|
Eintracht J, Toms M, Moosajee M. The Use of Induced Pluripotent Stem Cells as a Model for Developmental Eye Disorders. Front Cell Neurosci 2020; 14:265. [PMID: 32973457 PMCID: PMC7468397 DOI: 10.3389/fncel.2020.00265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Approximately one-third of childhood blindness is attributed to developmental eye disorders, of which 80% have a genetic cause. Eye morphogenesis is tightly regulated by a highly conserved network of transcription factors when disrupted by genetic mutations can result in severe ocular malformation. Human-induced pluripotent stem cells (hiPSCs) are an attractive tool to study early eye development as they are more physiologically relevant than animal models, can be patient-specific and their use does not elicit the ethical concerns associated with human embryonic stem cells. The generation of self-organizing hiPSC-derived optic cups is a major advancement to understanding mechanisms of ocular development and disease. Their development in vitro has been found to mirror that of the human eye and these early organoids have been used to effectively model microphthalmia caused by a VSX2 variant. hiPSC-derived optic cups, retina, and cornea organoids are powerful tools for future modeling of disease phenotypes and will enable a greater understanding of the pathophysiology of many other developmental eye disorders. These models will also provide an effective platform for identifying molecular therapeutic targets and for future clinical applications.
Collapse
Affiliation(s)
| | - Maria Toms
- UCL Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
18
|
Sinha D, Steyer B, Shahi PK, Mueller KP, Valiauga R, Edwards KL, Bacig C, Steltzer SS, Srinivasan S, Abdeen A, Cory E, Periyasamy V, Siahpirani AF, Stone EM, Tucker BA, Roy S, Pattnaik BR, Saha K, Gamm DM. Human iPSC Modeling Reveals Mutation-Specific Responses to Gene Therapy in a Genotypically Diverse Dominant Maculopathy. Am J Hum Genet 2020; 107:278-292. [PMID: 32707085 DOI: 10.1016/j.ajhg.2020.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
Dominantly inherited disorders are not typically considered to be therapeutic candidates for gene augmentation. Here, we utilized induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) to test the potential of gene augmentation to treat Best disease, a dominant macular dystrophy caused by over 200 missense mutations in BEST1. Gene augmentation in iPSC-RPE fully restored BEST1 calcium-activated chloride channel activity and improved rhodopsin degradation in an iPSC-RPE model of recessive bestrophinopathy as well as in two models of dominant Best disease caused by different mutations in regions encoding ion-binding domains. A third dominant Best disease iPSC-RPE model did not respond to gene augmentation, but showed normalization of BEST1 channel activity following CRISPR-Cas9 editing of the mutant allele. We then subjected all three dominant Best disease iPSC-RPE models to gene editing, which produced premature stop codons specifically within the mutant BEST1 alleles. Single-cell profiling demonstrated no adverse perturbation of retinal pigment epithelium (RPE) transcriptional programs in any model, although off-target analysis detected a silent genomic alteration in one model. These results suggest that gene augmentation is a viable first-line approach for some individuals with dominant Best disease and that non-responders are candidates for alternate approaches such as gene editing. However, testing gene editing strategies for on-target efficiency and off-target events using personalized iPSC-RPE model systems is warranted. In summary, personalized iPSC-RPE models can be used to select among a growing list of gene therapy options to maximize safety and efficacy while minimizing time and cost. Similar scenarios likely exist for other genotypically diverse channelopathies, expanding the therapeutic landscape for affected individuals.
Collapse
Affiliation(s)
- Divya Sinha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Benjamin Steyer
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Pawan K Shahi
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Katherine P Mueller
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rasa Valiauga
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Cole Bacig
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stephanie S Steltzer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Sandhya Srinivasan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Amr Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Evan Cory
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Viswesh Periyasamy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Budd A Tucker
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biostatistics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Bikash R Pattnaik
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Krishanu Saha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - David M Gamm
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
19
|
Kessi M, Chen B, Peng J, Tang Y, Olatoutou E, He F, Yang L, Yin F. Intellectual Disability and Potassium Channelopathies: A Systematic Review. Front Genet 2020; 11:614. [PMID: 32655623 PMCID: PMC7324798 DOI: 10.3389/fgene.2020.00614] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023] Open
Abstract
Intellectual disability (ID) manifests prior to adulthood as severe limitations to intellectual function and adaptive behavior. The role of potassium channelopathies in ID is poorly understood. Therefore, we aimed to evaluate the relationship between ID and potassium channelopathies. We hypothesized that potassium channelopathies are strongly associated with ID initiation, and that both gain- and loss-of-function mutations lead to ID. This systematic review explores the burden of potassium channelopathies, possible mechanisms, advancements using animal models, therapies, and existing gaps. The literature search encompassed both PubMed and Embase up to October 2019. A total of 75 articles describing 338 cases were included in this review. Nineteen channelopathies were identified, affecting the following genes: KCNMA1, KCNN3, KCNT1, KCNT2, KCNJ10, KCNJ6, KCNJ11, KCNA2, KCNA4, KCND3, KCNH1, KCNQ2, KCNAB1, KCNQ3, KCNQ5, KCNC1, KCNB1, KCNC3, and KCTD3. Twelve of these genes presented both gain- and loss-of-function properties, three displayed gain-of-function only, three exhibited loss-of-function only, and one had unknown function. How gain- and loss-of-function mutations can both lead to ID remains largely unknown. We identified only a few animal studies that focused on the mechanisms of ID in relation to potassium channelopathies and some of the few available therapeutic options (channel openers or blockers) appear to offer limited efficacy. In conclusion, potassium channelopathies contribute to the initiation of ID in several instances and this review provides a comprehensive overview of which molecular players are involved in some of the most prominent disease phenotypes.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China.,Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yulin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Eleonore Olatoutou
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
20
|
Way CM, Lima Cunha D, Moosajee M. Translational readthrough inducing drugs for the treatment of inherited retinal dystrophies. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1762489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Christopher M Way
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Dulce Lima Cunha
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
21
|
Zhang W, Das P, Kelangi S, Bei M. Potassium channels as potential drug targets for limb wound repair and regeneration. PRECISION CLINICAL MEDICINE 2020; 3:22-33. [PMID: 32257531 PMCID: PMC7093894 DOI: 10.1093/pcmedi/pbz029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 12/02/2022] Open
Abstract
Background Ion channels are a large family of transmembrane proteins, accessible by soluble membrane-impermeable molecules, and thus are targets for development of therapeutic drugs. Ion channels are the second most common target for existing drugs, after G protein-coupled receptors, and are expected to make a big impact on precision medicine in many different diseases including wound repair and regeneration. Research has shown that endogenous bioelectric signaling mediated by ion channels is critical in non-mammalian limb regeneration. However, the role of ion channels in regeneration of limbs in mammalian systems is not yet defined. Methods To explore the role of potassium channels in limb wound repair and regeneration, the hindlimbs of mouse embryos were amputated at E12.5 when the wound is expected to regenerate and E15.5 when the wound is not expected to regenerate, and gene expression of potassium channels was studied. Results Most of the potassium channels were downregulated, except for the potassium channel kcnj8 (Kir6.1) which was upregulated in E12.5 embryos after amputation. Conclusion This study provides a new mouse limb regeneration model and demonstrates that potassium channels are potential drug targets for limb wound healing and regeneration.
Collapse
Affiliation(s)
- Wengeng Zhang
- Center for Engineering in Medicine, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA.,Shriners Hospital for Children, Boston, MA 02114, USA
| | - Pragnya Das
- Center for Regenerative Developmental Biology, The Forsyth Institute, Cambridge, MA 02116, USA
| | - Sarah Kelangi
- Center for Engineering in Medicine, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA.,Shriners Hospital for Children, Boston, MA 02114, USA
| | - Marianna Bei
- Center for Engineering in Medicine, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA.,Shriners Hospital for Children, Boston, MA 02114, USA
| |
Collapse
|