1
|
Cirnigliaro M, Chang TS, Arteaga SA, Pérez-Cano L, Ruzzo EK, Gordon A, Bicks LK, Jung JY, Lowe JK, Wall DP, Geschwind DH. The contributions of rare inherited and polygenic risk to ASD in multiplex families. Proc Natl Acad Sci U S A 2023; 120:e2215632120. [PMID: 37506195 PMCID: PMC10400943 DOI: 10.1073/pnas.2215632120] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) has a complex genetic architecture involving contributions from both de novo and inherited variation. Few studies have been designed to address the role of rare inherited variation or its interaction with common polygenic risk in ASD. Here, we performed whole-genome sequencing of the largest cohort of multiplex families to date, consisting of 4,551 individuals in 1,004 families having two or more autistic children. Using this study design, we identify seven previously unrecognized ASD risk genes supported by a majority of rare inherited variants, finding support for a total of 74 genes in our cohort and a total of 152 genes after combined analysis with other studies. Autistic children from multiplex families demonstrate an increased burden of rare inherited protein-truncating variants in known ASD risk genes. We also find that ASD polygenic score (PGS) is overtransmitted from nonautistic parents to autistic children who also harbor rare inherited variants, consistent with combinatorial effects in the offspring, which may explain the reduced penetrance of these rare variants in parents. We also observe that in addition to social dysfunction, language delay is associated with ASD PGS overtransmission. These results are consistent with an additive complex genetic risk architecture of ASD involving rare and common variation and further suggest that language delay is a core biological feature of ASD.
Collapse
Affiliation(s)
- Matilde Cirnigliaro
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Timothy S. Chang
- Movement Disorders Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Stephanie A. Arteaga
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Laura Pérez-Cano
- STALICLA Discovery and Data Science Unit, World Trade Center, Barcelona08039, Spain
| | - Elizabeth K. Ruzzo
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Aaron Gordon
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Lucy K. Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Jae-Yoon Jung
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA94304
- Department of Biomedical Data Science, Stanford University, Stanford, CA94305
| | - Jennifer K. Lowe
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Dennis P. Wall
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA94304
- Department of Biomedical Data Science, Stanford University, Stanford, CA94305
| | - Daniel H. Geschwind
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Movement Disorders Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
2
|
Long M, Li Z, Zhang W, Li Q. The Cauchy Combination Test under Arbitrary Dependence Structures. AM STAT 2022. [DOI: 10.1080/00031305.2022.2116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mingya Long
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences
| | | | - Wei Zhang
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences
| | - Qizhai Li
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences
| |
Collapse
|