1
|
Hossein Garakani M, Kakavand K, Sabbaghian M, Ghaheri A, Masoudi NS, Shahhoseini M, Hassanzadeh V, Zamanian M, Meybodi AM, Moradi SZ. Comprehensive analysis of chromosomal breakpoints and candidate genes associated with male infertility: insights from cytogenetic studies and expression analyses. Mamm Genome 2024; 35:764-783. [PMID: 39358566 DOI: 10.1007/s00335-024-10074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The study aimed to investigate prevalent chromosomal breakpoints identified in balanced structural chromosomal anomalies and to pinpoint potential candidate genes linked with male infertility. This was acchieved through a comprehensive approach combining RNA-seq and microarray data analysis, enabling precise identification of candidate genes. The Cytogenetics data from 2,500 infertile males referred to Royan Research Institute between 2009 and 2022 were analyzed, with 391 cases meeting the inclusion criteria of balanced chromosomal rearrangement. Of these, 193 cases exhibited normal variations and were excluded from the analysis. By examining the breakpoints, potential candidate genes were suggested. Among the remaining 198 cases, reciprocal translocations were the most frequent anomaly (129 cases), followed by Robertsonian translocations (43 cases), inversions (34 cases), and insertions (3 cases).Some patients had more than one chromosomal abnormality. Chromosomal anomalies were most frequently observed in chromosomes 13 (21.1%), 14 (20.1%), and 1 (16.3%) with 13q12, 14q12, and 1p36.3 being the most prevalent breakpoints, respectively. Chromosome 1 contributed the most to reciprocal translocations (20.2%) and inversions (17.6%), while chromosome 14 was the most involved in the Robertsonian translocations (82.2%). The findings suggested that breakpoints at 1p36.3 and 14q12 might be associated with pregestational infertility, whereas breakpoints at 13q12 could be linked to both gestational and pregestational infertility. Several candidate genes located on common breakpoints were proposed as potentially involved in male infertility. Bioinformatics analyses utilizing three databases were conducted to examine the expression patterns of 78 candidate genes implicated in various causes of infertility. In azoospermic individuals, significant differential expression was observed in 19 genes: 15 were downregulated (TSSK2, SPINK2, TSSK4, CDY1, CFAP70, BPY2, BTG4, FKBP6, PPP2R1B, SPECC1L, CENPJ, SKA3, FGF9, NODAL, CLOCK), while four genes were upregulated (HSPB1, MIF, PRF1, ENTPD6). In the case of Asthenozoospermia, seven genes showed significant upregulation (PRF1, DDX21, KIT, SRD5A3, MTCH1, DDX50, NODAL). Though RNA-seq data for Teratozoospermia were unavailable, microarray data revealed differential expression insix genes: three downregulated (BUB1, KLK4, PIWIL2) and three upregulated (AURKC, NPM2, RANBP2). These findings enhance our understanding of the molecular basis of male infertility and could provide valuable insights for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Melika Hossein Garakani
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Kianoush Kakavand
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Azadeh Ghaheri
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Najmeh Sadat Masoudi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Biochemistry, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Vahideh Hassanzadeh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammadreza Zamanian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Shabnam Zarei Moradi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Kalkan BM, Baykal AT, Cicek E, Acilan C. Comprehensive proteomics analysis reveals novel Nek2-regulated pathways and therapeutic targets in cancer. Biochem Biophys Res Commun 2024; 734:150779. [PMID: 39368370 DOI: 10.1016/j.bbrc.2024.150779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
The mitotic kinase Nek2, often overexpressed in various cancers, plays a pivotal role in key cellular processes like the cell cycle, proliferation, and drug resistance. As a result, targeting Nek2 has become an appealing strategy for cancer therapy. To gain a comprehensive understanding of the cellular changes associated with Nek2 activity modulation, we performed a global proteomics analysis using LC-MS/MS. Through bioinformatics tools, we identified molecular pathways that are differentially regulated in cancer cells with Nek2 overexpression or depletion. Of the 1815 proteins identified, 358 exceeded the 20 % significance threshold. By integrating LC-MS/MS data with cancer patient datasets, we observed a strong correlation between Nek2 expression and the levels of KIF20B and RRM1. Silencing Nek2 led to a significant reduction in KIF20B and RRM1 protein levels, and potential phosphorylation sites for these proteins by Nek2 were identified. In summary, our data suggests that KIF20B and RRM1 are promising therapeutic targets, either independently or alongside Nek2 inhibitors, to improve clinical outcomes. Further analyses are necessary to fully understand Nek2's interactions with these proteins and their clinical relevance.
Collapse
Affiliation(s)
- Batuhan Mert Kalkan
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Enes Cicek
- Koç University, Graduate School of Health Sciences, Istanbul, Turkey
| | - Ceyda Acilan
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey; Koç University, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
3
|
Wang X, Shen G, Yang Y, Jiang C, Ruan T, Yang X, Zhuo L, Zhang Y, Ou Y, Zhao X, Long S, Tang X, Lin T, Shen Y. DNAH3 deficiency causes flagellar inner dynein arm loss and male infertility in humans and mice. eLife 2024; 13:RP96755. [PMID: 39503742 PMCID: PMC11540302 DOI: 10.7554/elife.96755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Axonemal protein complexes, including the outer and inner dynein arms (ODA/IDA), are highly ordered structures of the sperm flagella that drive sperm motility. Deficiencies in several axonemal proteins have been associated with male infertility, which is characterized by asthenozoospermia or asthenoteratozoospermia. Dynein axonemal heavy chain 3 (DNAH3) resides in the IDA and is highly expressed in the testis. However, the relationship between DNAH3 and male infertility is still unclear. Herein, we identified biallelic variants of DNAH3 in four unrelated Han Chinese infertile men with asthenoteratozoospermia through whole-exome sequencing (WES). These variants contributed to deficient DNAH3 expression in the patients' sperm flagella. Importantly, the patients represented the anomalous sperm flagellar morphology, and the flagellar ultrastructure was severely disrupted. Intriguingly, Dnah3 knockout (KO) male mice were also infertile, especially showing the severe reduction in sperm movement with the abnormal IDA and mitochondrion structure. Mechanically, nonfunctional DNAH3 expression resulted in decreased expression of IDA-associated proteins in the spermatozoa flagella of patients and KO mice, including DNAH1, DNAH6, and DNALI1, the deletion of which has been involved in disruption of sperm motility. Moreover, the infertility of patients with DNAH3 variants and Dnah3 KO mice could be rescued by intracytoplasmic sperm injection (ICSI) treatment. Our findings indicated that DNAH3 is a novel pathogenic gene for asthenoteratozoospermia and may further contribute to the diagnosis, genetic counseling, and prognosis of male infertility.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology, Sichuan UniversityChengduChina
| | - Gan Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Yihong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan UniversityChengduChina
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Tiechao Ruan
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Xue Yang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Liangchai Zhuo
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Yingteng Zhang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Yangdi Ou
- West China School of Medicine, Sichuan UniversityChengduChina
| | - Xinya Zhao
- West China School of Basic Medicine and Forensic Medicine, Sichuan UniversityChengduChina
| | - Shunhua Long
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and ChildrenChongqingChina
| | - Xiangrong Tang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and ChildrenChongqingChina
| | - Tingting Lin
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and ChildrenChongqingChina
| | - Ying Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Arora M, Mehta P, Sethi S, Anifandis G, Samara M, Singh R. Genetic etiological spectrum of sperm morphological abnormalities. J Assist Reprod Genet 2024:10.1007/s10815-024-03274-8. [PMID: 39417902 DOI: 10.1007/s10815-024-03274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Male infertility manifests in the form of a reduction in sperm count, sperm motility, or the loss of fertilizing ability. While the loss of sperm production can have mixed reasons, sperm structural defects, cumulatively known as teratozoospermia, have predominantly genetic bases. The aim of the present review is to undertake a comprehensive analysis of the genetic mutations leading to sperm morphological deformities/teratozoospermia. METHODS We undertook literature review for genes involved in sperm morphological abnormalities. The genes were classified according to the type of sperm defects they cause and on the basis of the level of evidence determined by the number of human studies and the availability of a mouse knockout. RESULTS Mutations in the SUN5, CEP112, BRDT, DNAH6, PMFBP1, TSGA10, and SPATA20 genes result in acephalic sperm; mutations in the DPY19L2, SPATA16, PICK1, CCNB3, CHPT1, PIWIL4, and TDRD9 genes cause globozoospermia; mutations in the AURKC gene cause macrozoospermia; mutations in the WDR12 gene cause tapered sperm head; mutations in the RNF220 and ADCY10 genes result in small sperm head; mutations in the AMZ2 gene lead to vacuolated head formation; mutations in the CC2D1B and KIAA1210 genes lead to pyriform head formation; mutations in the SEPT14, ZPBP1, FBXO43, ZCWPW1, KATNAL2, PNLDC1, and CCIN genes cause amorphous head; mutations in the SEPT12, RBMX, and ACTL7A genes cause deformed acrosome formation; mutations in the DNAH1, DNAH2, DNAH6, DNAH17, FSIP2, CFAP43, AK7, CHAP251, CFAP65, ARMC2 and several other genes result in multiple morphological abnormalities of sperm flagella (MMAF). CONCLUSIONS Altogether, mutations in 31 genes have been reported to cause head defects and mutations in 62 genes are known to cause sperm tail defects.
Collapse
Affiliation(s)
- Manvi Arora
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Poonam Mehta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shruti Sethi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - George Anifandis
- Department of Obstetrics and Gynaecology, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Mary Samara
- Department of Obstetrics and Gynaecology, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Rajender Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
5
|
Zhou Y, Yu S, Zhang W. The Molecular Basis of Multiple Morphological Abnormalities of Sperm Flagella and Its Impact on Clinical Practice. Genes (Basel) 2024; 15:1315. [PMID: 39457439 PMCID: PMC11506864 DOI: 10.3390/genes15101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) is a specific form of severe flagellar or ciliary deficiency syndrome. MMAF is characterized by primary infertility with abnormal morphology in the flagella of spermatozoa, presenting with short, absent, bent, coiled, and irregular flagella. As a rare disease first named in 2014, studies in recent years have shed light on the molecular defects of MMAF that comprise the structure and biological function of the sperm flagella. Understanding the molecular genetics of MMAF may provide opportunities for the development of diagnostic and therapeutic strategies for this rare disease. This review aims to summarize current studies regarding the molecular pathogenesis of MMAF and describe strategies of genetic counseling, clinical diagnosis, and therapy for MMAF.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Zhou D, Wu H, Wang L, Wang X, Tang S, Zhou Y, Wang J, Wu B, Tang J, Zhou X, Tian S, Liu S, Lv M, He X, Jin L, Shi H, Zhang F, Cao Y, Liu C. Deficiency of MFSD6L, an acrosome membrane protein, causes oligoasthenoteratozoospermia in humans and mice. J Genet Genomics 2024; 51:1007-1019. [PMID: 38909778 DOI: 10.1016/j.jgg.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
Oligoasthenoteratozoospermia is an important factor affecting male fertility and has been found to be associated with genetic factors. However, there are still a proportion of oligoasthenoteratozoospermia cases that cannot be explained by known pathogenic genetic variants. Here, we perform genetic analyses and identify bi-allelic loss-of-function variants of MFSD6L from an oligoasthenoteratozoospermia-affected family. Mfsd6l knock-out male mice also present male subfertility with reduced sperm concentration, motility, and deformed acrosomes. Further mechanistic analyses reveal that MFSD6L, as an acrosome membrane protein, plays an important role in the formation of acrosome by interacting with the inner acrosomal membrane protein SPACA1. Moreover, poor embryonic development is consistently observed after intracytoplasmic sperm injection treatment using spermatozoa from the MFSD6L-deficient man and male mice. Collectively, our findings reveal that MFSD6L is required for the anchoring of sperm acrosome and head shaping. The deficiency of MFSD6L affects male fertility and causes oligoasthenoteratozoospermia in humans and mice.
Collapse
Affiliation(s)
- Dapeng Zhou
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200438, China; Institute of Medical Genetics and Genomics, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200433, China
| | - Xuemei Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Shuyan Tang
- Institute of Medical Genetics and Genomics, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yiling Zhou
- Institute of Medical Genetics and Genomics, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jiaxiong Wang
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, China; Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, China
| | - Bangguo Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200433, China
| | - Jianan Tang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Xuehai Zhou
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Shixiong Tian
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200433, China
| | - Shuang Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200438, China; Institute of Medical Genetics and Genomics, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200438, China
| | - Huijuan Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200438, China; Institute of Medical Genetics and Genomics, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Embryo Original Diseases, Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China.
| | - Chunyu Liu
- Shanghai Key Laboratory of Embryo Original Diseases, Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
7
|
Zhang X, Huang G, Jiang T, Meng L, Li T, Zhang G, Wu N, Chen X, Zhao B, Li N, Wu S, Guo J, Zheng R, Ji Z, Xu Z, Wang Z, Deng D, Tan Y, Xu W. CEP112 coordinates translational regulation of essential fertility genes during spermiogenesis through phase separation in humans and mice. Nat Commun 2024; 15:8465. [PMID: 39349455 PMCID: PMC11443074 DOI: 10.1038/s41467-024-52705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Spermiogenesis, the complex transformation of haploid spermatids into mature spermatozoa, relies on precise spatiotemporal regulation of gene expression at the post-transcriptional level. The mechanisms underlying this critical process remain incompletely understood. Here, we identify centrosomal protein 112 (CEP112) as an essential regulator of mRNA translation during this critical developmental process. Mutations in CEP112 are discovered in oligoasthenoteratospermic patients, and Cep112-deficient male mice recapitulate key phenotypes of human asthenoteratozoospermia. CEP112 localizes to the neck and atypical centrioles of mature sperm and forms RNA granules during spermiogenesis, enriching target mRNAs such as Fsip2, Cfap61, and Cfap74. Through multi-omics analyses and the TRICK reporter assay, we demonstrate that CEP112 orchestrates the translation of target mRNAs. Co-immunoprecipitation and mass spectrometry identify CEP112's interactions with translation-related proteins, including hnRNPA2B1, EEF1A1, and EIF4A1. In vitro, CEP112 undergoes liquid-liquid phase separation, forming condensates that recruit essential proteins and mRNAs. Moreover, variants in patient-derived CEP112 disrupt phase separation and impair translation efficiency. Our results suggest that CEP112 mediates the assembly of RNA granules through liquid-liquid phase separation to control the post-transcriptional expression of fertility-related genes. This study not only clarifies CEP112's role in spermatogenesis but also highlights the role of phase separation in translational regulation, providing insights into male infertility and suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Xueguang Zhang
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Gelin Huang
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Ting Jiang
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Lanlan Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of CITIC-Xiangya, 410008, Changsha, China
| | - Tongtong Li
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, 610041, Chengdu, China
| | - Nan Wu
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, 361005, Xiamen, China
| | - Xinyi Chen
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Sixian Wu
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Junceng Guo
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Rui Zheng
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Zhiliang Ji
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, 361005, Xiamen, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Zhenbo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Yueqiu Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of CITIC-Xiangya, 410008, Changsha, China.
| | - Wenming Xu
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
8
|
Guo S, Tang D, Chen Y, Yu H, Gu M, Geng H, Fang J, Wu B, Ruan L, Li K, Xu C, Gao Y, Tan Q, Duan Z, Wu H, Hua R, Guo R, Wei Z, Zhou P, Xu Y, Cao Y, He X, Sha Y, Lv M. Association of novel DNAH11 variants with asthenoteratozoospermia lead to male infertility. Hum Genomics 2024; 18:97. [PMID: 39256880 PMCID: PMC11389119 DOI: 10.1186/s40246-024-00658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Bi-allelic variants in DNAH11 have been identified as causative factors in Primary Ciliary Dyskinesia, leading to abnormal respiratory cilia. Nonetheless, the specific impact of these variants on human sperm flagellar and their involvement in male infertility remain largely unknown. METHODS A collaborative effort involving two Chinese reproductive centers conducted a study with 975 unrelated infertile men. Whole-exome sequencing was employed for variant screening, and Sanger sequencing confirmed the identified variants. Morphological and ultrastructural analyses of sperm were conducted using Scanning Electron Microscopy and Transmission Electron Microscopy. Western Blot Analysis and Immunofluorescence Analysis were utilized to assess protein levels and localization. ICSI was performed to evaluate its efficacy in achieving favorable pregnancy outcomes for individuals with DNAH11 variants. RESULTS In this study, we identified seven novel variants in the DNAH11 gene in four asthenoteratozoospermia subjects. These variants led the absence of DNAH11 proteins and ultrastructure defects in sperm flagella, particularly affecting the outer dynein arms (ODAs) and adjacent structures. The levels of ODA protein DNAI2 and axoneme related proteins were down regulated, instead of inner dynein arms (IDA) proteins DNAH1 and DNAH6. Two out of four individuals with DNAH11 variants achieved clinical pregnancies through ICSI. The findings confirm the association between male infertility and bi-allelic deleterious variants in DNAH11, resulting in the aberrant assembly of sperm flagella and contributing to asthenoteratozoospermia. Importantly, ICSI emerges as an effective intervention for overcoming reproductive challenges caused by DNAH11 gene variants.
Collapse
Affiliation(s)
- Senzhao Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Yuge Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hui Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Meng Gu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Jiajun Fang
- The First Clinical Medical College of Anhui Medical University, Hefei, 230032, China
| | - Baoyan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lewen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qing Tan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Provincial Human Sperm Bank First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongliu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Rong Hua
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Rui Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| |
Collapse
|
9
|
Stallmeyer B, Dicke AK, Tüttelmann F. How exome sequencing improves the diagnostics and management of men with non-syndromic infertility. Andrology 2024. [PMID: 39120565 DOI: 10.1111/andr.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Male infertility affects approximately 17% of all men and represents a complex disorder in which not only semen parameters such as sperm motility, morphology, and number of sperm are highly variable, but also testicular phenotypes range from normal spermatogenesis to complete absence of germ cells. Genetic factors significantly contribute to the disease but chromosomal aberrations, mostly Klinefelter syndrome, and microdeletions of the Y-chromosome have remained the only diagnostically and clinically considered genetic causes. Monogenic causes remain understudied and, thus, often unidentified, leaving the majority of the male factor couple infertility pathomechanistically unexplained. This has been changing mostly because of the introduction of exome sequencing that allows the analysis of multiple genes in large patient cohorts. As a result, pathogenic variants in single genes have been associated with non-syndromic forms of all aetiologic sub-categories in the last decade. This review highlights the contribution of exome sequencing to the identification of novel disease genes for isolated (non-syndromic) male infertility by presenting the results of a comprehensive literature search. Both, reduced sperm count in azoospermic and oligozoospermic patients, and impaired sperm motility and/or morphology, in asthenozoospermic and/or teratozoospermic patients are highly heterogeneous diseases with well over 100 different candidate genes described for each entity. Applying the standardized evaluation criteria of the ClinGen gene curation working group, 70 genes with at least moderate evidence to contribute to the disease are highlighted. The implementation of these valid disease genes in clinical exome sequencing is important to increase the diagnostic yield in male infertility and, thus, improve clinical decision-making and appropriate genetic counseling. Future advances in androgenetics will continue to depend on large-scale exome and genome sequencing studies of comprehensive international patient cohorts, which are the most promising approaches to identify additional disease genes and provide reliable data on the gene-disease relationship.
Collapse
Affiliation(s)
- Birgit Stallmeyer
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| | - Ann-Kristin Dicke
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| |
Collapse
|
10
|
Lv Y, Jia Z, Wang Y, Huang Y, Li C, Chen X, Xia W, Liu H, Xu S, Li Y. Prenatal EDC exposure, DNA Methylation, and early childhood growth: A prospective birth cohort study. ENVIRONMENT INTERNATIONAL 2024; 190:108872. [PMID: 38986426 DOI: 10.1016/j.envint.2024.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Exposure to endocrine-disrupting chemicals (EDCs) has been found to be associated with growth and developmental abnormalities in children. However, the potential mechanisms by which exposure to EDCs during pregnancy increases the risk of obesity in children remain unclear. OBJECTIVE We aimed to explore associations between prenatal EDC exposure and the body mass index (BMI) of children at age two, and to further explore the potential impact of DNA methylation (DNAm). METHOD This study included 285 mother-child pairs from a birth cohort conducted in Wuhan, China. The BMI of each child was assessed at around 24 months of age. The concentrations of sixteen EDCs at the 1st, 2nd, and 3rd trimesters were measured using ultra-high performance liquid chromatography coupled to a triple quadrupole mass spectrometer. The research utilized general linear models, weighted quantile sum regression, and Bayesian Kernel Machine Regression to assess the association between prenatal EDC exposure and childhood BMI z-scores (BMIz). Cord blood DNAm was measured using the Human Methylation EPIC BeadChip array. An epigenome-wide DNAm association study related to BMIz was performed using robust linear models. Mediation analysis was then applied to explore potential mediators of DNAm. RESULTS Urinary concentrations of seven EDCs were positively associated with BMIz in the 1st trimester, which remained significant in the WQS model. A total of 641 differential DNAm positions were associated with elevated BMIz. Twelve CpG positions (annotated to DUXA, TMEM132C, SEC13, ID4, GRM4, C2CD2, PRAC1&PRAC2, TSPAN6 and DNAH10) mediated the associations between urine BP-3/BPS/MEP/TCS and elevated BMIz (P < 0.05). CONCLUSION Our results revealed that prenatal exposure to EDCs was associated with a higher risk of childhood obesity, with specific DNAm acting as a partial mediator.
Collapse
Affiliation(s)
- Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yizhao Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chengxi Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaomei Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
11
|
Wang C, Xie Q, Xia X, Zhang C, Jiang S, Wang S, Zhang X, Hua R, Xue J, Zheng H. ZMYND12 serves as an IDAd subunit that is essential for sperm motility in mice. Cell Mol Life Sci 2024; 81:317. [PMID: 39066891 PMCID: PMC11335240 DOI: 10.1007/s00018-024-05344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Inner dynein arms (IDAs) are formed from a protein complex that is essential for appropriate flagellar bending and beating. IDA defects have previously been linked to the incidence of asthenozoospermia (AZS) and male infertility. The testes-enriched ZMYND12 protein is homologous with an IDA component identified in Chlamydomonas. ZMYND12 deficiency has previously been tied to infertility in males, yet the underlying mechanism remains uncertain. Here, a CRISPR/Cas9 approach was employed to generate Zmynd12 knockout (Zmynd12-/-) mice. These Zmynd12-/- mice exhibited significant male subfertility, reduced sperm motile velocity, and impaired capacitation. Through a combination of co-immunoprecipitation and mass spectrometry, ZMYND12 was found to interact with TTC29 and PRKACA. Decreases in the levels of PRKACA were evident in the sperm of these Zmynd12-/- mice, suggesting that this change may account for the observed drop in male fertility. Moreover, in a cohort of patients with AZS, one patient carrying a ZMYND12 variant was identified, expanding the known AZS-related variant spectrum. Together, these findings demonstrate that ZMYND12 is essential for flagellar beating, capacitation, and male fertility.
Collapse
Affiliation(s)
- Chang Wang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Qingsong Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, 230032, China
| | - Xun Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, 230032, China
| | - Chuanying Zhang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Shan Jiang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Sihan Wang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Xi Zhang
- Department of Reproductive Health and Infertility Clinic, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Rong Hua
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, 230032, China.
| | - Jiangyang Xue
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, 315000, China.
| | - Haoyu Zheng
- Department of Gynaecology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China.
| |
Collapse
|
12
|
Geng H, Wang K, Liang D, Ni X, Yu H, Tang D, Lv M, Wu H, Li K, Shen Q, Gao Y, Xu C, Zhou P, Wei Z, Cao Y, Sha Y, Yang X, He X. Further evidence from DNAH12 supports favorable fertility outcomes of infertile males with dynein axonemal heavy chain gene family variants. iScience 2024; 27:110366. [PMID: 39071892 PMCID: PMC11278020 DOI: 10.1016/j.isci.2024.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Male infertility is a major concern affecting reproductive health. Biallelic deleterious variants of most DNAH gene family members have been linked to male infertility, with intracytoplasmic sperm injection (ICSI) being an efficacious way to achieve offspring. However, the association between DNAH12 and male infertility is still limited. Here, we identified one homozygous variant and two compound heterozygous variants in DNAH12 from three infertile Chinese men. Semen analysis revealed severe asthenozoospermia, abnormal morphology, and structure of sperm flagella. Furthermore, the Dnah12 knock-out mouse revealed severe spermatogenesis failure and validated the same male infertility phenotype. Favorable fertility outcomes were achieved through ICSI in three human individuals and Dnah12 knock-out mice. Collectively, our study indicated that biallelic variants of DNAH12 can induce male infertility in both human beings and mice. Notably, evidence from DNAH12 enhanced that ICSI was an optimal intervention to achieve favorable fertility outcomes for infertile males with DNAH gene family variants.
Collapse
Affiliation(s)
- Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Kai Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Dan Liang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Xiaoqing Ni
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Hui Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Qunshan Shen
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Yanwei Sha
- School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| |
Collapse
|
13
|
Miyata H, Shimada K, Kaneda Y, Ikawa M. Development of functional spermatozoa in mammalian spermiogenesis. Development 2024; 151:dev202838. [PMID: 39036999 DOI: 10.1242/dev.202838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Infertility is a global health problem affecting one in six couples, with 50% of cases attributed to male infertility. Spermatozoa are male gametes, specialized cells that can be divided into two parts: the head and the flagellum. The head contains a vesicle called the acrosome that undergoes exocytosis and the flagellum is a motility apparatus that propels the spermatozoa forward and can be divided into two components, axonemes and accessory structures. For spermatozoa to fertilize oocytes, the acrosome and flagellum must be formed correctly. In this Review, we describe comprehensively how functional spermatozoa develop in mammals during spermiogenesis, including the formation of acrosomes, axonemes and accessory structures by focusing on analyses of mouse models.
Collapse
Affiliation(s)
- Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Kaneda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Gill K, Machałowski T, Harasny P, Grabowska M, Duchnik E, Piasecka M. Low human sperm motility coexists with sperm nuclear DNA damage and oxidative stress in semen. Andrology 2024; 12:1154-1169. [PMID: 38018344 DOI: 10.1111/andr.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Low sperm motility, one of the common causes of male infertility, is associated with abnormal sperm quality. Currently, important sperm/semen biomarkers are sperm chromatin status and oxidation‒reduction potential (ORP) in semen. Because the association between sperm motility and these biomarkers is still not fully clarified, our study was designed to verify the distribution and risk of sperm DNA fragmentation (SDF) and oxidative stress in semen in asthenozoospermic men. MATERIALS AND METHODS This study was carried out on discharged sperm cells of asthenozoospermic men (isolated asthenozoospermia or coexisted with reduced sperm number and/or morphology), nonasthenozoospermic men (reduced total sperm count and/or sperm morphology) (experimental groups) and normozoospermic men (proven and presumed fertility) (control group). Basic semen analysis was evaluated according to the 6th edition of the World Health Organization manual guidelines. SDF was assessed using the sperm chromatin dispersion test, while static(s) ORP in semen was measured by means of a MiOXSYS analyser. RESULTS The men from the asthenozoospermic group had lower basic semen parameters than those from the control and nonasthenozoospermic groups. In men with poor sperm motility SDF and sORP, prevalence and risk for > 20% SDF (high level of DNA damage) and for > 1.37 sORP (oxidative stress) were significantly higher than those of control and nonasthenozoospermic subjects. The risk for sperm DNA damage and oxidative stress in asthenozoospermic men was over 10-fold higher and almost 6-fold higher than those in control subjects and almost or over 3-fold higher than those in nonasthenozoospermic men. CONCLUSIONS AND DISCUSSION Poor human sperm motility coexisted with low basic sperm quality. Sperm DNA damage and oxidative stress in semen were much more frequent in asthenozoospermia. These abnormalities can decrease the sperm fertilizing capability under both natural and medically assisted reproduction conditions. Thus, in asthenozoospermia, the evaluation of sperm chromatin status and oxidation-reduction potential in semen is justified and inevitable, and the appropriate antioxidant therapy can be suggested.
Collapse
Affiliation(s)
- Kamil Gill
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Machałowski
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Perinatology, Obstetrics and Gynecology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Police, Poland
| | - Patryk Harasny
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Urology and Urological Oncology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Duchnik
- Department of Aesthetic Dermatology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Małgorzata Piasecka
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
15
|
Min CG, Ma X, Wang YC, Zhong CK, Yuan CS, Zhang KY, Zhan CL, Hou SK, Wang XH, Wang J, Zhao J, Fang Y, Liu HY, Ding H, Guo J, Lu WF. The effects of repeated freezing and thawing on bovine sperm morphometry and function. Cryobiology 2024; 115:104892. [PMID: 38593909 DOI: 10.1016/j.cryobiol.2024.104892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Refreezing the remaining genetic resources after in vitro fertilization (IVF) can conserve genetic materials. However, the precise damage inflicted by repeated freezing and thawing on bovine sperm and its underlying mechanism remain largely unexplored. Thus, this study investigates the impact of repeated freeze-thaw cycles on sperm. Our findings indicate that such cycles significantly reduce sperm viability and motility. Furthermore, the integrity of the sperm plasma membrane and acrosome is compromised during this process, exacerbating the advanced apoptosis triggered by oxidative stress. Additionally, transmission electron microscopy exposed severe damage to the plasma membranes of both the sperm head and tail. Notably, the "9 + 2" structure of the tail was disrupted, along with a significant decrease in the level of the axonemal protein DNAH10, leading to reduced sperm motility. IVF outcomes revealed that repeated freeze-thaw cycles considerably impair sperm fertilization capability, ultimately reducing the blastocyst rate. In summary, our research demonstrates that repeated freeze-thaw cycles lead to a decline in sperm viability and motility, attributed to oxidative stress-induced apoptosis and DNAH10-related dynamic deficiency. As a result, the utility of semen is compromised after repeated freezing.
Collapse
Affiliation(s)
- Chang-Guo Min
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Xin Ma
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Yu-Chan Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Cheng-Kun Zhong
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Chong-Shan Yuan
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Kai-Yan Zhang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Cheng-Lin Zhan
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Sheng-Kui Hou
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Xin-Hai Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Jun Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Jing Zhao
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Yi Fang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Hong-Yu Liu
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - He Ding
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Jing Guo
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China.
| | - Wen-Fa Lu
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
16
|
Yuan Z, Zhu X, Xie X, Wang C, Gu H, Yang J, Fan L, Xiang R, Yang Y, Tan Z. Identification of a novel MYO1D variant associated with laterality defects, congenital heart diseases, and sperm defects in humans. Front Med 2024; 18:558-564. [PMID: 38684630 DOI: 10.1007/s11684-023-1042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/15/2023] [Indexed: 05/02/2024]
Abstract
The establishment of left-right asymmetry is a fundamental process in animal development. Interference with this process leads to a range of disorders collectively known as laterality defects, which manifest as abnormal arrangements of visceral organs. Among patients with laterality defects, congenital heart diseases (CHD) are prevalent. Through multiple model organisms, extant research has established that myosin-Id (MYO1D) deficiency causes laterality defects. This study investigated over a hundred cases and identified a novel biallelic variant of MYO1D (NM_015194: c.1531G>A; p.D511N) in a consanguineous family with complex CHD and laterality defects. Further examination of the proband revealed asthenoteratozoospermia and shortened sperm. Afterward, the effects of the D511N variant and another known MYO1D variant (NM_015194: c.2293C>T; p.P765S) were assessed. The assessment showed that both enhance the interaction with β-actin and SPAG6. Overall, this study revealed the genetic heterogeneity of this rare disease and found that MYO1D variants are correlated with laterality defects and CHD in humans. Furthermore, this research established a connection between sperm defects and MYO1D variants. It offers guidance for exploring infertility and reproductive health concerns. The findings provide a critical basis for advancing personalized medicine and genetic counseling.
Collapse
Affiliation(s)
- Zhuangzhuang Yuan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Xin Zhu
- Department of Gynecology and Obstetrics, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Xiaohui Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Chenyu Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Heng Gu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Junlin Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Liangliang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zhiping Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
17
|
Lu W, Li Y, Meng L, Tan C, Nie H, Zhang Q, Song Y, Zhang H, Tan YQ, Tu C, Guo H, Wu L, Du J. Novel SPEF2 variants cause male infertility and likely primary ciliary dyskinesia. J Assist Reprod Genet 2024; 41:1485-1498. [PMID: 38568462 PMCID: PMC11224184 DOI: 10.1007/s10815-024-03106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE This study aimed to identify the genetic causes of male infertility and primary ciliary dyskinesia (PCD)/PCD-like phenotypes in three unrelated Han Chinese families. METHODS We conducted whole-exome sequencing of three patients with male infertility and PCD/PCD-like phenotypes from three unrelated Chinese families. Ultrastructural and immunostaining analyses of patient spermatozoa and respiratory cilia and in vitro analyses were performed to analyze the effects of SPEF2 variants. Intracytoplasmic sperm injection (ICSI) was administered to three affected patients. RESULTS We identified four novel SPEF2 variants, including one novel homozygous splicing site variant [NC_000005.10(NM_024867.4): c.4447 + 1G > A] of the SPEF2 gene in family 1, novel compound heterozygous nonsense variants [NC_000005.10(NM_024867.4): c.1339C > T (p.R447*) and NC_000005.10(NM_024867.4): c.1645G > T (p.E549*)] in family 2, and one novel homozygous missense variant [NC_000005.10(NM_024867.4): c.2524G > A (p.D842N)] in family 3. All the patients presented with male infertility and PCD/likely PCD. All variants were present at very low levels in public databases, predicted to be deleterious in silico prediction tools, and were further confirmed deleterious by in vitro analyses. Ultrastructural analyses of the spermatozoa of the patients revealed the absence of the central pair complex in the sperm flagella. Immunostaining of the spermatozoa and respiratory cilia of the patients validated the pathogenicity of the SPEF2 variants. All patients carrying SPEF2 variants underwent one ICSI cycle and delivered healthy infants. CONCLUSION Our study reported four novel pathogenic variants of SPEF2 in three male patients with infertility and PCD/PCD-like phenotypes, which not only extend the spectrum of SPEF2 mutations but also provide information for genetic counseling and treatment of such conditions.
Collapse
Affiliation(s)
- Wenqing Lu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Chen Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Hongchuan Nie
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yuying Song
- Changsha Maternal and Child Health Care Hospital, Changsha, China
| | - Huan Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Haichun Guo
- Changsha Maternal and Child Health Care Hospital, Changsha, China.
| | - Longxiang Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
| |
Collapse
|
18
|
Graziani A, Rocca MS, Vinanzi C, Masi G, Grande G, De Toni L, Ferlin A. Genetic Causes of Qualitative Sperm Defects: A Narrative Review of Clinical Evidence. Genes (Basel) 2024; 15:600. [PMID: 38790229 PMCID: PMC11120687 DOI: 10.3390/genes15050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Several genes are implicated in spermatogenesis and fertility regulation, and these genes are presently being analysed in clinical practice due to their involvement in male factor infertility (MFI). However, there are still few genetic analyses that are currently recommended for use in clinical practice. In this manuscript, we reviewed the genetic causes of qualitative sperm defects. We distinguished between alterations causing reduced sperm motility (asthenozoospermia) and alterations causing changes in the typical morphology of sperm (teratozoospermia). In detail, the genetic causes of reduced sperm motility may be found in the alteration of genes associated with sperm mitochondrial DNA, mitochondrial proteins, ion transport and channels, and flagellar proteins. On the other hand, the genetic causes of changes in typical sperm morphology are related to conditions with a strong genetic basis, such as macrozoospermia, globozoospermia, and acephalic spermatozoa syndrome. We tried to distinguish alterations approved for routine clinical application from those still unsupported by adequate clinical studies. The most important aspect of the study was related to the correct identification of subjects to be tested and the correct application of genetic tests based on clear clinical data. The correct application of available genetic tests in a scenario where reduced sperm motility and changes in sperm morphology have been observed enables the delivery of a defined diagnosis and plays an important role in clinical decision-making. Finally, clarifying the genetic causes of MFI might, in future, contribute to reducing the proportion of so-called idiopathic MFI, which might indeed be defined as a subtype of MFI whose cause has not yet been revealed.
Collapse
Affiliation(s)
- Andrea Graziani
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
| | - Maria Santa Rocca
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| | - Cinzia Vinanzi
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| | - Giulia Masi
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
| | - Giuseppe Grande
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| | - Luca De Toni
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
| | - Alberto Ferlin
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| |
Collapse
|
19
|
Wang Y, Chen J, Huang X, Wu B, Dai P, Zhang F, Li J, Wang L. Gene-knockout by iSTOP enables rapid reproductive disease modeling and phenotyping in germ cells of the founder generation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1035-1050. [PMID: 38332217 DOI: 10.1007/s11427-023-2408-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 02/10/2024]
Abstract
Cytosine base editing achieves C•G-to-T•A substitutions and can convert four codons (CAA/CAG/CGA/TGG) into STOP-codons (induction of STOP-codons, iSTOP) to knock out genes with reduced mosaicism. iSTOP enables direct phenotyping in founders' somatic cells, but it remains unknown whether this works in founders' germ cells so as to rapidly reveal novel genes for fertility. Here, we initially establish that iSTOP in mouse zygotes enables functional characterization of known genes in founders' germ cells: Cfap43-iSTOP male founders manifest expected sperm features resembling human "multiple morphological abnormalities of the flagella" syndrome (i.e., MMAF-like features), while oocytes of Zp3-iSTOP female founders have no zona pellucida. We further illustrate iSTOP's utility for dissecting the functions of unknown genes with Ccdc183, observing MMAF-like features and male infertility in Ccdc183-iSTOP founders, phenotypes concordant with those of Ccdc183-KO offspring. We ultimately establish that CCDC183 is essential for sperm morphogenesis through regulating the assembly of outer dynein arms and participating in the intra-flagellar transport. Our study demonstrates iSTOP as an efficient tool for direct reproductive disease modeling and phenotyping in germ cells of the founder generation, and rapidly reveals the essentiality of Ccdc183 in fertility, thus providing a time-saving approach for validating genetic defects (like nonsense mutations) for human infertility.
Collapse
Affiliation(s)
- Yaling Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Jingwen Chen
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Xueying Huang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bangguo Wu
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Peng Dai
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingbo Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
20
|
Zhao S, Liu Q, Su L, Meng L, Tan C, Wei C, Zhang H, Luo T, Zhang Q, Tan YQ, Tu C, Chen H, Gao X. Identification of novel homozygous asthenoteratospermia-causing ARMC2 mutations associated with multiple morphological abnormalities of the sperm flagella. J Assist Reprod Genet 2024; 41:1297-1306. [PMID: 38492154 PMCID: PMC11143164 DOI: 10.1007/s10815-024-03087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
PURPOSE To identify the genetic causes of multiple morphological abnormalities in sperm flagella (MMAF) and male infertility in patients from two unrelated Han Chinese families. METHODS Whole-exome sequencing was conducted using blood samples from the two individuals with MMAF and male infertility. Hematoxylin and eosin staining and scanning electron microscopy were performed to evaluate sperm morphology. Ultrastructural and immunostaining analyses of the spermatozoa were performed. The HEK293T cells were used to confirm the pathogenicity of the variants. RESULTS We identified two novel homozygous missense ARMC2 variants: c.314C > T: p.P105L and c.2227A > G: p.N743D. Both variants are absent or rare in the human population genome data and are predicted to be deleterious. In vitro experiments indicated that both ARMC2 variants caused a slightly increased protein expression. ARMC2-mutant spermatozoa showed multiple morphological abnormalities (bent, short, coiled, absent, and irregular) in the flagella. In addition, the spermatozoa of the patients revealed a frequent absence of the central pair complex and disrupted axonemal ultrastructure. CONCLUSION We identified two novel ARMC2 variants that caused male infertility and MMAF in Han Chinese patients. These findings expand the mutational spectrum of ARMC2 and provide insights into the complex causes and pathogenesis of MMAF.
Collapse
Affiliation(s)
- Siyi Zhao
- Department of Urology, The First Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Qiong Liu
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Affiliated Maternal and Child Health Hospital of Nanchang University, Nanchang, China
- Nanchang Medical College, Nanchang, China
| | - Lilan Su
- National Engineering and Research Center of Human Stem Cells and Institute of Reproductive and Stem Cell Engineering, Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Lanlan Meng
- National Engineering and Research Center of Human Stem Cells and Institute of Reproductive and Stem Cell Engineering, Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya and Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha, China
| | - Chen Tan
- Reproductive and Genetic Hospital of CITIC-Xiangya and Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha, China
| | - Chunjia Wei
- National Engineering and Research Center of Human Stem Cells and Institute of Reproductive and Stem Cell Engineering, Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Huan Zhang
- National Engineering and Research Center of Human Stem Cells and Institute of Reproductive and Stem Cell Engineering, Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya and Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha, China
| | - Tao Luo
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qianjun Zhang
- National Engineering and Research Center of Human Stem Cells and Institute of Reproductive and Stem Cell Engineering, Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya and Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha, China
| | - Yue-Qiu Tan
- National Engineering and Research Center of Human Stem Cells and Institute of Reproductive and Stem Cell Engineering, Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya and Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha, China
| | - Chaofeng Tu
- National Engineering and Research Center of Human Stem Cells and Institute of Reproductive and Stem Cell Engineering, Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China.
- Reproductive and Genetic Hospital of CITIC-Xiangya and Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha, China.
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Affiliated Maternal and Child Health Hospital of Nanchang University, Nanchang, China.
| | - Xingcheng Gao
- Department of Urology, The First Clinical College of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
22
|
Wang Y, Huang X, Sun G, Chen J, Wu B, Luo J, Tang S, Dai P, Zhang F, Li J, Wang L. Coiled-coil domain-containing 38 is required for acrosome biogenesis and fibrous sheath assembly in mice. J Genet Genomics 2024; 51:407-418. [PMID: 37709195 DOI: 10.1016/j.jgg.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
During spermiogenesis, haploid spermatids undergo dramatic morphological changes to form slender sperm flagella and cap-like acrosomes, which are required for successful fertilization. Severe deformities in flagella cause a male infertility syndrome, multiple morphological abnormalities of the flagella (MMAF), while acrosomal hypoplasia in some cases leads to sub-optimal embryonic developmental potential. However, evidence regarding the occurrence of acrosomal hypoplasia in MMAF is limited. Here, we report the generation of base-edited mice knocked out for coiled-coil domain-containing 38 (Ccdc38) via inducing a nonsense mutation and find that the males are infertile. The Ccdc38-KO sperm display acrosomal hypoplasia and typical MMAF phenotypes. We find that the acrosomal membrane is loosely anchored to the nucleus and fibrous sheaths are disorganized in Ccdc38-KO sperm. Further analyses reveal that Ccdc38 knockout causes a decreased level of TEKT3, a protein associated with acrosome biogenesis, in testes and an aberrant distribution of TEKT3 in sperm. We finally show that intracytoplasmic sperm injection overcomes Ccdc38-related infertility. Our study thus reveals a previously unknown role for CCDC38 in acrosome biogenesis and provides additional evidence for the occurrence of acrosomal hypoplasia in MMAF.
Collapse
Affiliation(s)
- Yaling Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xueying Huang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guoying Sun
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Jingwen Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Bangguo Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jiahui Luo
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Shuyan Tang
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Peng Dai
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Feng Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.
| |
Collapse
|
23
|
Poursafari Talemi E, Hosseini SH, Gourabi H, Sabbaghian M, Mohseni Meybodi A. Evaluation of The 1499T>C Variant in The AKAP3 Gene of Infertile Men with Multiple Morphological Abnormalities of The Sperm Flagella Phenotype: A Case-Control Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:180-184. [PMID: 38368523 PMCID: PMC10875313 DOI: 10.22074/ijfs.2023.561016.1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/18/2023] [Accepted: 05/25/2023] [Indexed: 02/19/2024]
Abstract
BACKGROUND Infertile men with multiple morphological abnormalities of the sperm flagella (MMAF) phenotype exhibit mosaic sperm flagella abnormalities such as short, bent, coiled, and irregular flagella or absent flagella. Sperm flagellum has an ultrastructurally axonemal structure that contains a large number of proteins. A-Kinase Anchoring Protein 3 (AKAP3) is expressed in spermatozoa. It may function as a regulator of motility and the acrosome reaction. This study aimed to compare genetic changes in infertile men suffering MMAF phenotype with the control group. MATERIALS AND METHODS In this case-control study, genetic variants of the AKAP3 gene were evaluated in 60 infertile men with MMAF phenotype and 40 fertile men, as control. As exon five of the AKAP3 gene encodes the functional domain of this protein, its genetic variants were studied. Therefore, polymerase chain reaction (PCR)-sequencing was undertaken on the DNA extracted from control and patients' blood samples. RESULTS Sixty infertile men with MMAF phenotype and 40 normozoospermic men, as control, were enrolled in this study. Four haplotype variants 1378T>C (rs10774251), 1391C>G (rs11063266), 1437T>C (rs11063265), and 1573G>A (rs1990312) were detected in all patients and controls. On the other hand, a missense mutation 1499T>C (rs12366671) was observed in four patients with the homozygous form while seven patients carried the heterozygous form. No mutation was identified in the controls (P=0.04). The difference between the variation allele frequencies was assessed in the patient and control groups by the Fisher Exact Test. CONCLUSION In the homozygous form, this mutation changed Isoleucine to Threonine. This alternation occurred inside the AKAP4 binding domain of the AKAP3 protein. The observed variants caused no significant deviation in the secondary structure of AKAP3 protein and probably its function in spermatozoa flagella. So, these variants cannot be considered as the causes of MMAF phenotype in the studied patients.
Collapse
Affiliation(s)
- Elham Poursafari Talemi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Seyedeh-Hanieh Hosseini
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Anahita Mohseni Meybodi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
24
|
Ma S, Tan J, Xiong Y, Peng Y, Gong F, Hu L, Wang X, Tan L, Liu R, Hocher B, Sun X, Lin G. Cohort Profile: CITIC-Xiangya Assisted Reproductive Technology Cohort (CXART Cohort). Int J Epidemiol 2024; 53:dyad188. [PMID: 38205885 DOI: 10.1093/ije/dyad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 01/12/2024] Open
Affiliation(s)
- Shujuan Ma
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Jing Tan
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiquan Xiong
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yangqin Peng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Liang Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Xiaojuan Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Lu Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ruwei Liu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Berthold Hocher
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Fifth Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xin Sun
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
25
|
Yi S, Wang W, Su L, Meng L, Li Y, Tan C, Liu Q, Zhang H, Fan L, Lu G, Hu L, Du J, Lin G, Tan YQ, Tu C, Zhang Q. Deleterious variants in X-linked RHOXF1 cause male infertility with oligo- and azoospermia. Mol Hum Reprod 2024; 30:gaae002. [PMID: 38258527 DOI: 10.1093/molehr/gaae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Oligozoospermia and azoospermia are two common phenotypes of male infertility characterized by massive sperm defects owing to failure of spermatogenesis. The deleterious impact of candidate variants with male infertility is to be explored. In our study, we identified three hemizygous missense variants (c.388G>A: p.V130M, c.272C>T: p.A91V, and c.467C>T: p.A156V) and one hemizygous nonsense variant (c.478C>T: p.R160X) in the Rhox homeobox family member 1 gene (RHOXF1) in four unrelated cases from a cohort of 1201 infertile Chinese men with oligo- and azoospermia using whole-exome sequencing and Sanger sequencing. RHOXF1 was absent in the testicular biopsy of one patient (c.388G>A: p.V130M) whose histological analysis showed a phenotype of Sertoli cell-only syndrome. In vitro experiments indicated that RHOXF1 mutations significantly reduced the content of RHOXF1 protein in HEK293T cells. Specifically, the p.V130M, p.A156V, and p.R160X mutants of RHOXF1 also led to increased RHOXF1 accumulation in cytoplasmic particles. Luciferase assays revealed that p.V130M and p.R160X mutants may disrupt downstream spermatogenesis by perturbing the regulation of doublesex and mab-3 related transcription factor 1 (DMRT1) promoter activity. Furthermore, ICSI treatment could be beneficial in the context of oligozoospermia caused by RHOXF1 mutations. In conclusion, our findings collectively identified mutated RHOXF1 to be a disease-causing X-linked gene in human oligo- and azoospermia.
Collapse
Affiliation(s)
- Sibing Yi
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Weili Wang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
| | - Lilan Su
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qiang Liu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Department of Hepatobiliary Surgery, Hunan Cancer Hospital and the Affiliated Cancer of Xiangya School of Medicine, Central South University, Changsha, China
| | - Huan Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Guangxiu Lu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Liang Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| |
Collapse
|
26
|
Chen H, Fang X, Shao J, Zhang Q, Xu L, Chen J, Mei Y, Jiang M, Wang Y, Li Z, Chen Z, Chen Y, Yu C, Ma L, Zhang P, Zhang T, Liao Y, Lv Y, Wang X, Yang L, Fu Y, Chen D, Jiang L, Yan F, Lu W, Chen G, Shen H, Wang J, Wang C, Liang T, Han X, Wang Y, Guo G. Pan-Cancer Single-Nucleus Total RNA Sequencing Using snHH-Seq. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304755. [PMID: 38010945 PMCID: PMC10837386 DOI: 10.1002/advs.202304755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Indexed: 11/29/2023]
Abstract
Tumor heterogeneity and its drivers impair tumor progression and cancer therapy. Single-cell RNA sequencing is used to investigate the heterogeneity of tumor ecosystems. However, most methods of scRNA-seq amplify the termini of polyadenylated transcripts, making it challenging to perform total RNA analysis and somatic mutation analysis.Therefore, a high-throughput and high-sensitivity method called snHH-seq is developed, which combines random primers and a preindex strategy in the droplet microfluidic platform. This innovative method allows for the detection of total RNA in single nuclei from clinically frozen samples. A robust pipeline to facilitate the analysis of full-length RNA-seq data is also established. snHH-seq is applied to more than 730 000 single nuclei from 32 patients with various tumor types. The pan-cancer study enables it to comprehensively profile data on the tumor transcriptome, including expression levels, mutations, splicing patterns, clone dynamics, etc. New malignant cell subclusters and exploring their specific function across cancers are identified. Furthermore, the malignant status of epithelial cells is investigated among different cancer types with respect to mutation and splicing patterns. The ability to detect full-length RNA at the single-nucleus level provides a powerful tool for studying complex biological systems and has broad implications for understanding tumor pathology.
Collapse
|
27
|
Meng GQ, Wang Y, Luo C, Tan YM, Li Y, Tan C, Tu C, Zhang QJ, Hu L, Zhang H, Meng LL, Liu CY, Deng L, Lu GX, Lin G, Du J, Tan YQ, Sha Y, Wang L, He WB. Bi-allelic variants in DNAH3 cause male infertility with asthenoteratozoospermia in humans and mice. Hum Reprod Open 2024; 2024:hoae003. [PMID: 38312775 PMCID: PMC10834362 DOI: 10.1093/hropen/hoae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/21/2023] [Indexed: 02/06/2024] Open
Abstract
STUDY QUESTION Are there other pathogenic genes for asthenoteratozoospermia (AT)? SUMMARY ANSWER DNAH3 is a novel candidate gene for AT in humans and mice. WHAT IS KNOWN ALREADY AT is a major cause of male infertility. Several genes underlying AT have been reported; however, the genetic aetiology remains unknown in a majority of affected men. STUDY DESIGN SIZE DURATION A total of 432 patients with AT were recruited in this study. DNAH3 mutations were identified by whole-exome sequencing (WES). Dnah3 knockout mice were generated using the genome editing tool. The morphology and motility of sperm from Dnah3 knockout mice were investigated. The entire study was conducted over 3 years. PARTICIPANTS/MATERIALS SETTING METHODS WES was performed on 432 infertile patients with AT. In addition, two lines of Dnah3 knockout mice were generated. Haematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), immunostaining, and computer-aided sperm analysis (CASA) were performed to investigate the morphology and motility of the spermatozoa. ICSI was used to overcome the infertility of one patient and of the Dnah3 knockout mice. MAIN RESULTS AND THE ROLE OF CHANCE DNAH3 biallelic variants were identified in three patients from three unrelated families. H&E staining revealed various morphological abnormalities in the flagella of sperm from the patients, and TEM and immunostaining further showed the loss of the central pair of microtubules, a dislocated mitochondrial sheath and fibrous sheath, as well as a partial absence of the inner dynein arms. In addition, the two Dnah3 knockout mouse lines demonstrated AT. One patient and the Dnah3 knockout mice showed good treatment outcomes after ICSI. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION This is a preliminary report suggesting that defects in DNAH3 can lead to asthenoteratozoospermia in humans and mice. The pathogenic mechanism needs to be further examined in a future study. WIDER IMPLICATIONS OF THE FINDINGS Our findings show that DNAH3 is a novel candidate gene for AT in humans and mice and provide crucial insights into the biological underpinnings of this disorder. The findings may also be beneficial for counselling affected individuals. STUDY FUNDING/COMPETING INTERESTS This work was supported by grants from National Natural Science Foundation of China (82201773, 82101961, 82171608, 32322017, 82071697, and 81971447), National Key Research and Development Program of China (2022YFC2702604), Scientific Research Foundation of the Health Committee of Hunan Province (B202301039323, B202301039518), Hunan Provincial Natural Science Foundation (2023JJ30716), the Medical Innovation Project of Fujian Province (2020-CXB-051), the Science and Technology Project of Fujian Province (2023D017), China Postdoctoral Science Foundation (2022M711119), and Guilin technology project for people's benefit (20180106-4-7). The authors declare no competing interests.
Collapse
Affiliation(s)
- Gui-Quan Meng
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Yaling Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Chen Luo
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Yu-Mei Tan
- GuangDong Provincial Fertility Hospital (GuangDong Provincial Reproductive Science Institute), Guangzhou, China
| | - Yong Li
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Chen Tan
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Chaofeng Tu
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Qian-Jun Zhang
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Liang Hu
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Huan Zhang
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Lan-Lan Meng
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Chun-Yu Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Leiyu Deng
- Reproductive Center of No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Guang-Xiu Lu
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Ge Lin
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Juan Du
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Yue-Qiu Tan
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Yanwei Sha
- Department of Andrology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wen-Bin He
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
28
|
Shao ZM, Zhu YT, Gu M, Guo SC, Yu H, Li KK, Tang DD, Xu YP, Lv MR. Novel variants in DNAH6 cause male infertility associated with multiple morphological abnormalities of the sperm flagella (MMAF) and ICSI outcomes. Asian J Androl 2024; 26:91-98. [PMID: 37594300 PMCID: PMC10846836 DOI: 10.4103/aja202328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/07/2023] [Indexed: 08/19/2023] Open
Abstract
Variations in the dynein axonemal heavy chain gene, dynein axonemal heavy chain 6 ( DNAH6 ), lead to multiple morphological abnormalities of the flagella. Recent studies have reported that these deficiencies may result in sperm head deformation. However, whether DNAH6 is also involved in human acrosome biogenesis remains unknown. The purpose of this study was to investigate DNAH6 gene variants and their potential functions in the formation of defective sperm heads and flagella. Whole-exome sequencing was performed on a cohort of 375 patients with asthenoteratozoospermia from the First Affiliated Hospital of Anhui Medical University (Hefei, China). Hematoxylin and eosin staining, scanning electron microscopy, and transmission electron microscopy were performed to analyze the sperm morphology and ultrastructure. Immunofluorescence staining and Western blot analysis were conducted to examine the effects of genetic variants. We identified three novel deleterious variants in DNAH6 among three unrelated families. The absence of inner dynein arms and radial spokes was observed in the sperm of patients with DNAH6 variants. Additionally, deficiencies in the acrosome, abnormal chromatin compaction, and vacuole-containing sperm heads were observed in these patients with DNAH6 variants. The decreased levels of the component proteins in these defective structures were further confirmed in sperm from patients with DNAH6 variants using Western blot. After intracytoplasmic sperm injection (ICSI) treatment, the partner of one patient with a DNAH6 variant achieved successful pregnancy. Overall, novel variants in DNAH6 genes that contribute to defects in the sperm head and flagella were identified, and the findings indicated ICSI as an effective clinical treatment for such patients.
Collapse
Affiliation(s)
- Zhong-Mei Shao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Obstetrics and Gynecology, Fuyang Hospital of Anhui Medical University, Fuyang 236112, China
| | - Yu-Tong Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, China
| | - Meng Gu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, China
| | - Sen-Chao Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, China
| | - Hui Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Obstetrics and Gynecology, Fuyang Hospital of Anhui Medical University, Fuyang 236112, China
| | - Kuo-Kuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, China
| | - Dong-Dong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, China
| | - Yu-Ping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, China
| | - Ming-Rong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Obstetrics and Gynecology, Fuyang Hospital of Anhui Medical University, Fuyang 236112, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, China
| |
Collapse
|
29
|
Jin HJ, Ruan T, Dai S, Geng XY, Yang Y, Shen Y, Chen SR. Identification of CFAP52 as a novel diagnostic target of male infertility with defects of sperm head-tail connection and flagella development. eLife 2023; 12:RP92769. [PMID: 38126872 PMCID: PMC10735225 DOI: 10.7554/elife.92769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Male infertility is a worldwide population health concern. Asthenoteratozoospermia is a common cause of male infertility, but its etiology remains incompletely understood. No evidence indicates the relevance of CFAP52 mutations to human male infertility. Our whole-exome sequencing identified compound heterozygous mutations in CFAP52 recessively cosegregating with male infertility status in a non-consanguineous Chinese family. Spermatozoa of CFAP52-mutant patient mainly exhibited abnormal head-tail connection and deformed flagella. Cfap52-knockout mice resembled the human infertile phenotype, showing a mixed acephalic spermatozoa syndrome (ASS) and multiple morphological abnormalities of the sperm flagella (MMAF) phenotype. The ultrastructural analyses further revealed a failure of connecting piece formation and a serious disorder of '9+2' axoneme structure. CFAP52 interacts with a head-tail coupling regulator SPATA6 and is essential for its stability. Expression of microtubule inner proteins and radial spoke proteins were reduced after the CFAP52 deficiency. Moreover, CFAP52-associated male infertility in humans and mice could be overcome by intracytoplasmic sperm injection (ICSI). The study reveals a prominent role for CFAP52 in sperm development, suggesting that CFAP52 might be a novel diagnostic target for male infertility with defects of sperm head-tail connection and flagella development.
Collapse
Affiliation(s)
- Hui-Juan Jin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Tiechao Ruan
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Siyu Dai
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan UniversityChengduChina
| | - Xin-Yan Geng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Yihong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology, Sichuan UniversityChengduChina
| | - Ying Shen
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan UniversityChengduChina
| | - Su-Ren Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal UniversityBeijingChina
| |
Collapse
|
30
|
Ma Y, Wu B, Chen Y, Ma S, Wang L, Han T, Lin X, Yang F, Liu C, Zhao J, Li W. CCDC146 is required for sperm flagellum biogenesis and male fertility in mice. Cell Mol Life Sci 2023; 81:1. [PMID: 38038747 PMCID: PMC11072088 DOI: 10.1007/s00018-023-05025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/19/2023] [Accepted: 10/28/2023] [Indexed: 12/02/2023]
Abstract
Multiple morphological abnormalities of the flagella (MMAF) is a severe disease of male infertility, while the pathogenetic mechanisms of MMAF are still incompletely understood. Previously, we found that the deficiency of Ccdc38 might be associated with MMAF. To understand the underlying mechanism of this disease, we identified the potential partner of this protein and found that the coiled-coil domain containing 146 (CCDC146) can interact with CCDC38. It is predominantly expressed in the testes, and the knockout of this gene resulted in complete infertility in male mice but not in females. The knockout of Ccdc146 impaired spermiogenesis, mainly due to flagellum and manchette organization defects, finally led to MMAF-like phenotype. Furthermore, we demonstrated that CCDC146 could interact with both CCDC38 and CCDC42. It also interacts with intraflagellar transport (IFT) complexes IFT88 and IFT20. The knockout of this gene led to the decrease of ODF2, IFT88, and IFT20 protein levels, but did not affect CCDC38, CCDC42, or ODF1 expression. Additionally, we predicted and validated the detailed interactions between CCDC146 and CCDC38 or CCDC42, and built the interaction models at the atomic level. Our results suggest that the testis predominantly expressed gene Ccdc146 is essential for sperm flagellum biogenesis and male fertility, and its mutations might be associated with MMAF in some patients.
Collapse
Affiliation(s)
- Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Tingting Han
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Xiaolei Lin
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Fulin Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Wang R, Yang D, Tu C, Lei C, Ding S, Guo T, Wang L, Liu Y, Lu C, Yang B, Ouyang S, Gong K, Tan Z, Deng Y, Tan Y, Qing J, Luo H. Dynein axonemal heavy chain 10 deficiency causes primary ciliary dyskinesia in humans and mice. Front Med 2023; 17:957-971. [PMID: 37314648 DOI: 10.1007/s11684-023-0988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/31/2023] [Indexed: 06/15/2023]
Abstract
Primary ciliary dyskinesia (PCD) is a congenital, motile ciliopathy with pleiotropic symptoms. Although nearly 50 causative genes have been identified, they only account for approximately 70% of definitive PCD cases. Dynein axonemal heavy chain 10 (DNAH10) encodes a subunit of the inner arm dynein heavy chain in motile cilia and sperm flagella. Based on the common axoneme structure of motile cilia and sperm flagella, DNAH10 variants are likely to cause PCD. Using exome sequencing, we identified a novel DNAH10 homozygous variant (c.589C > T, p.R197W) in a patient with PCD from a consanguineous family. The patient manifested sinusitis, bronchiectasis, situs inversus, and asthenoteratozoospermia. Immunostaining analysis showed the absence of DNAH10 and DNALI1 in the respiratory cilia, and transmission electron microscopy revealed strikingly disordered axoneme 9+2 architecture and inner dynein arm defects in the respiratory cilia and sperm flagella. Subsequently, animal models of Dnah10-knockin mice harboring missense variants and Dnah10-knockout mice recapitulated the phenotypes of PCD, including chronic respiratory infection, male infertility, and hydrocephalus. To the best of our knowledge, this study is the first to report DNAH10 deficiency related to PCD in human and mouse models, which suggests that DNAH10 recessive mutation is causative of PCD.
Collapse
Affiliation(s)
- Rongchun Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Danhui Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Cheng Lei
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Shuizi Ding
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Ting Guo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Lin Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Ying Liu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Chenyang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Binyi Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Shi Ouyang
- Zebrafish Genetics Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ke Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, 410011, China
| | - Zhiping Tan
- Clinical Center for Gene Diagnosis and Therapy, Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yun Deng
- Zebrafish Genetics Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Jie Qing
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China.
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China.
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China.
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China.
| |
Collapse
|
32
|
Greither T, Dejung M, Behre HM, Butter F, Herlyn H. The human sperm proteome-Toward a panel for male fertility testing. Andrology 2023; 11:1418-1436. [PMID: 36896575 DOI: 10.1111/andr.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Although male factor accounts for 40%-50% of unintended childlessness, we are far from fully understanding the detailed causes. Usually, affected men cannot even be provided with a molecular diagnosis. OBJECTIVES We aimed at a higher resolution of the human sperm proteome for better understanding of the molecular causes of male infertility. We were particularly interested in why reduced sperm count decreases fertility despite many normal-looking spermatozoa and which proteins might be involved. MATERIAL AND METHODS Applying mass spectrometry analysis, we qualitatively and quantitatively examined the proteomic profiles of spermatozoa from 76 men differing in fertility. Infertile men had abnormal semen parameters and were involuntarily childless. Fertile subjects exhibited normozoospermia and had fathered children without medical assistance. RESULTS We discovered proteins from about 7000 coding genes in the human sperm proteome. These were mainly known for involvements in cellular motility, response to stimuli, adhesion, and reproduction. Numbers of sperm proteins showing at least threefold deviating abundances increased from oligozoospermia (N = 153) and oligoasthenozoospermia (N = 154) to oligoasthenoteratozoospermia (N = 368). Deregulated sperm proteins primarily engaged in flagellar assembly and sperm motility, fertilization, and male gametogenesis. Most of these participated in a larger network of male infertility genes and proteins. DISCUSSION We expose 31 sperm proteins displaying deviant abundances under infertility, which already were known before to have fertility relevance, including ACTL9, CCIN, CFAP47, CFAP65, CFAP251 (WDR66), DNAH1, and SPEM1. We propose 18 additional sperm proteins with at least eightfold differential abundance for further testing of their diagnostic potential, such as C2orf16, CYLC1, SPATA31E1, SPATA31D1, SPATA48, EFHB (CFAP21), and FAM161A. CONCLUSION Our results shed light on the molecular background of the dysfunctionality of the fewer spermatozoa produced in oligozoospermia and syndromes including it. The male infertility network presented may prove useful in further elucidating the molecular mechanism of male infertility.
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mario Dejung
- Proteomics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Falk Butter
- Department of Quantitative Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Holger Herlyn
- Anthropology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
33
|
Song B, Yang T, Shen Q, Liu Y, Wang C, Li G, Gao Y, Cao Y, He X. Novel mutations in DNAH17 cause sperm flagellum defects and their influence on ICSI outcome. J Assist Reprod Genet 2023; 40:2485-2492. [PMID: 37574497 PMCID: PMC10504183 DOI: 10.1007/s10815-023-02897-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE To identify new mutations in DNAH17 that cause male infertility and analyze intracytoplasmic sperm injection (ICSI) outcomes in patients with DNAH17 mutations. METHODS A total of five cases of new DNAH17 mutations exhibiting the multiple morphological abnormalities of the sperm flagella (MMAF) phenotype were identified through semen analysis and genetic testing. They were recruited at our reproductive medicine center from September 2018 to July 2022. Information on DNAH17 genetic mutations and ICSI outcomes was systematically explored following a literature review. RESULTS Three novel compound mutations in DNAH17 were identified in patients with male infertility caused by MMAF. This study and previous publications included 21 patients with DNAH17 mutations. DNAH17 has been associated with asthenozoospermia and male infertility, but different types of DNAH17 variants appear to be involved in different sperm phenotypes. In 11 couples of infertile patients with DNAH17 mutations, there were 17 ICSI cycles and 13 embryo transplantation cycles. Only three men with DNAH17 variants ultimately achieved clinical pregnancy with their partners through ICSI combined with assisted oocyte activation (AOA). CONCLUSIONS Loss-of-function mutations in DNAH17 can lead to severe sperm flagellum defects and male infertility. Patients with MMAF-harboring DNAH17 mutations generally have worse pregnancy outcomes following ICSI. ICSI combined with AOA may improve the outcome of assisted reproductive techniques (ARTs) for men with DNAH17 variants.
Collapse
Affiliation(s)
- Bing Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Tianjin Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Yiyuan Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Chao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Guanjian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| |
Collapse
|
34
|
Tian S, Tu C, He X, Meng L, Wang J, Tang S, Gao Y, Liu C, Wu H, Zhou Y, Lv M, Lin G, Jin L, Cao Y, Tang D, Zhang F, Tan YQ. Biallelic mutations in CFAP54 cause male infertility with severe MMAF and NOA. J Med Genet 2023; 60:827-834. [PMID: 36593121 DOI: 10.1136/jmg-2022-108887] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Spermatogenic impairments can lead to male infertility by different pathological conditions, such as multiple morphological abnormalities of the sperm flagella (MMAF) and non-obstructive azoospermia (NOA). Genetic factors are involved in impaired spermatogenesis. METHODS AND RESULTS Here, we performed genetic analyses through whole-exome sequencing in a cohort of 334 Han Chinese probands with severe MMAF or NOA. Biallelic variants of CFAP54 were identified in three unrelated men, including one homozygous frameshift variant (c.3317del, p.Phe1106Serfs*19) and two compound heterozygous variants (c.878G>A, p.Arg293His; c.955C>T, p.Arg319Cys and c.4885C>T, p.Arg1629Cys; c.937G>A, p.Gly313Arg). All of the identified variants were absent or extremely rare in the public human genome databases and predicted to be damaging by bioinformatic tools. The men harbouring CFAP54 mutations exhibited abnormal sperm morphology, reduced sperm concentration and motility in ejaculated semen. Significant axoneme disorganisation and other ultrastructure abnormities were also detected inside the sperm cells from men harbouring CFAP54 mutations. Furthermore, immunofluorescence assays showed remarkably reduced staining of four flagellar assembly-associated proteins (IFT20, IFT52, IFT122 and SPEF2) in the spermatozoa of CFAP54-deficient men. Notably, favourable clinical pregnancy outcomes were achieved with sperm from men carrying CFAP54 mutations after intracytoplasmic sperm injection treatment. CONCLUSION Our genetic analyses and experimental observations revealed that biallelic deleterious mutations of CFAP54 can induce severe MMAF and NOA in humans.
Collapse
Affiliation(s)
- Shixiong Tian
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Jiaxiong Wang
- Center for Reproduction and Genetics, State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Shuyan Tang
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Chunyu Liu
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Yiling Zhou
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Li Jin
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Feng Zhang
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
35
|
Huang F, Zeng J, Liu D, Zhang J, Liang B, Gao J, Yan R, Shi X, Chen J, Song W, Huang HL. A novel frameshift mutation in DNAH6 associated with male infertility and asthenoteratozoospermia. Front Endocrinol (Lausanne) 2023; 14:1122004. [PMID: 37424858 PMCID: PMC10324608 DOI: 10.3389/fendo.2023.1122004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Asthenoteratozoospermia is one of the most common causes of male infertility. Several genes have been identified as genetic causative factors, but there is a considerable genetic heterogeneity underlying asthenoteratozoospermia. In this study, we performed a genetic analysis of two brothers from a consanguineous Uighur family in China to identify gene mutations causative for asthenoteratozoospermia-related male infertility. Methods Two related patients with asthenoteratozoospermia from a large consanguineous family were sequenced by whole-exome sequencing and Sanger sequencing to identify disease-causing genes. Scanning and transmission electron microscopy analysis revealed ultrastructural abnormalities of spermatozoa. Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence (IF) analysis were used to assess the expression of the mutant messenger RNA (mRNA) and protein. Results A novel homozygous frameshift mutation (c.2823dupT, p.Val942Cysfs*21) in DNAH6 was identified in both affected individuals and was predicted to be pathogenic. Papanicolaou staining and electron microscopy revealed multiple morphological and ultrastructural abnormalities of affected spermatozoa. qRT-PCR and IF analysis showed abnormal expression of DNAH6 in affected sperm, probably due to premature termination code and decay of abnormal 3' untranslated region (UTR) region of mRNA. Furthermore, intracytoplasmic sperm injection could achieve successful fertilization in infertile men with DNAH6 mutations. Discussion The novel frameshift mutation identified in DNAH6 may contribute to asthenoteratozoospermia. These findings expand the spectrum of genetic mutations and phenotypes associated with asthenoteratozoospermia and may be useful for genetic and reproductive counseling in male infertility.
Collapse
|
36
|
Jin HJ, Wang JL, Geng XY, Wang CY, Wang BB, Chen SR. CFAP70 is a solid and valuable target for the genetic diagnosis of oligo-astheno-teratozoospermia in infertile men. EBioMedicine 2023; 93:104675. [PMID: 37352829 DOI: 10.1016/j.ebiom.2023.104675] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Male infertility is a worldwide population health concern, but its aetiology remains largely understood. Although CFAP70 variants have already been reported in two oligo-astheno-teratozoospermia (OAT) individuals by sequencing, animal evidence to support CFAP70 as a credible OAT-pathogenic gene is lacking. METHOD Cfap70-KO mice were generated to explore the physiological role of CFAP70. CFAP70 variants were detected in infertile men with OAT by whole exome sequencing and Sanger sequencing confirmation. Cfap70-truncated mice were further generated to explore the pathogenicity of the nonsense variant of CFAP70 identified in the proband. FINDINGS Here, we demonstrate that Cfap70-KO mice are sterile mainly due to OAT and further identify a Chinese infertile man carrying a homozygous nonsense variant (c.2962C > T/p.R988X) of CFAP70. Cfap70-truncated mice lacking 5-8 tetratricopeptide repeats (TPRs) mimic the patient's symptoms. CFAP70 is required for the biogenesis of spermatid flagella partially by regulating the expression of OAT-associated proteins (e.g., QRICH2), assisting the cytoplasmic preassembly of the calmodulin- and radial spoke-associated complex (CSC), and controlling the manchette localization of axoneme-related proteins. Moreover, we suggest that CFAP70-associated male infertility could be overcome by intracytoplasmic sperm injection (ICSI) treatment. INTERPRETATION Overall, we demonstrate that CFAP70 is necessary to assemble spermatid flagella and that CFAP70 gene could be used as a diagnostic target for male infertility with OAT in the clinic. FUNDING This study was supported by the National Key Research and Development Project (2019YFA0802101 to S.C), Open Fund of Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education (to S.C), Central Government to Guide Local Scientific and Technological Development (ZY21195023 to B.W), and Basic Research Projects of Central Scientific Research Institutes (to B.W).
Collapse
Affiliation(s)
- Hui-Juan Jin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jun-Li Wang
- Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China; Environmental Health Risk Assessment and Prevention Engineering Center of Ecological Aluminum Industry Base of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xin-Yan Geng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chun-Yan Wang
- Center for Genetics, National Research Institute of Family Planning, Beijing, 100081, China; Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Bin-Bin Wang
- Center for Genetics, National Research Institute of Family Planning, Beijing, 100081, China; Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100005, China; NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, 100081 Beijing, China.
| | - Su-Ren Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
37
|
Meng L, Liu Q, Tan C, Xu X, He W, Hu T, Tu C, Li Y, Du J, Zhang Q, Lu G, Fan LQ, Lin G, Nie H, Zhang H, Tan YQ. Novel homozygous variants in TTC12 cause male infertility with asthenoteratozoospermia owing to dynein arm complex and mitochondrial sheath defects in flagella. Front Cell Dev Biol 2023; 11:1184331. [PMID: 37325566 PMCID: PMC10267457 DOI: 10.3389/fcell.2023.1184331] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Tracing the genetic causes for male infertility due to asthenoteratozoospermia has revealed at least 40 causative genes, which provides valuable reference for the genetic testing of asthenoteratozoospermia in clinical practice. To identify deleterious variants in the human tetratricopeptide repeat domain 12 (TTC12) gene in a large cohort of infertile Chinese males with asthenoteratozoospermia. Methods: A total of 314 unrelated asthenoteratozoospermia-affected men were recruited for whole exome sequencing. The effects of the identified variants were evaluated by in silico analysis, and confirmed by in vitro experiments. Intracytoplasmic sperm injection (ICSI) was used to evaluate the efficiency of assisted reproduction technique therapy. Results and Discussion: Novel homozygous TTC12 variants (c.1467_1467delG (p.Asp490Thrfs*14), c.1139_1139delA (p.His380Profs*4), and c.1117G>A (p.Gly373Arg)) were identified in three (0.96%) of the 314 cases. Three mutants were indicated to be damaging using in silico prediction tools, and were further confirmed by in vitro functional analysis. Hematoxylin and eosin staining and ultrastructural observation of the spermatozoa revealed multiple morphological abnormalities of flagella, with the absence of outer and inner dynein arms. Notably, significant mitochondrial sheath malformations were also observed in the sperm flagella. Immunostaining assays indicated that TTC12 is present throughout the flagella, and was strongly concentrated in the mid-piece in control spermatozoa. However, spermatozoa from TTC12-mutated individuals exhibited almost no staining intensity of TTC12 and outer and inner dynein arms components. The three men accepted ICSI treatment using their ejaculated spermatozoa, and two female partners successfully delivered healthy babies. Our findings provide direct genetic evidence that homozygous variants in TTC12 cause male infertility with asthenoteratozoospermia by causing dynein arm complex defects and mitochondrial sheath malformations in the flagellar. We also demonstrated that TTC12 deficiency-mediated infertility could be overcome by ICSI technology.
Collapse
Affiliation(s)
- Lanlan Meng
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Qiang Liu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital and the Affiliated Cancer of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen Tan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| | - Xilin Xu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Wenbin He
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Tongyao Hu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| | - Chaofeng Tu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Yong Li
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| | - Juan Du
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Qianjun Zhang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Guangxiu Lu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Li-Qing Fan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Ge Lin
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Hongchuan Nie
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Huan Zhang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Yue-Qiu Tan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
38
|
Wang W, Su L, Meng L, He J, Tan C, Yi D, Cheng D, Zhang H, Lu G, Du J, Lin G, Zhang Q, Tu C, Tan YQ. Biallelic variants in KCTD19 associated with male factor infertility and oligoasthenoteratozoospermia. Hum Reprod 2023:7165695. [PMID: 37192818 DOI: 10.1093/humrep/dead095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
STUDY QUESTION Can whole-exome sequencing (WES) reveal new genetic factors responsible for male infertility characterized by oligozoospermia? SUMMARY ANSWER We identified biallelic missense variants in the Potassium Channel Tetramerization Domain Containing 19 gene (KCTD19) and confirmed it to be a novel pathogenic gene for male infertility. WHAT IS KNOWN ALREADY KCTD19 is a key transcriptional regulator that plays an indispensable role in male fertility by regulating meiotic progression. Kctd19 gene-disrupted male mice exhibit infertility due to meiotic arrest. STUDY DESIGN, SIZE, DURATION We recruited a cohort of 536 individuals with idiopathic oligozoospermia from 2014 to 2022 and focused on five infertile males from three unrelated families. Semen analysis data and ICSI outcomes were collected. WES and homozygosity mapping were performed to identify potential pathogenic variants. The pathogenicity of the identified variants was investigated in silico and in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS Male patients diagnosed with primary infertility were recruited from the Reproductive and Genetic Hospital of CITIC-Xiangya. Genomic DNA extracted from affected individuals was used for WES and Sanger sequencing. Sperm phenotype, sperm nuclear maturity, chromosome aneuploidy, and sperm ultrastructure were assessed using hematoxylin and eosin staining and toluidine blue staining, FISH and transmission electron microscopy. The functional effects of the identified variants in HEK293T cells were investigated via western blotting and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE We identified three homozygous missense variants (NM_001100915, c.G628A:p.E210K, c.C893T:p.P298L, and c.G2309A:p.G770D) in KCTD19 in five infertile males from three unrelated families. Abnormal morphology of the sperm heads with immature nuclei and/or nuclear aneuploidy were frequently observed in individuals with biallelic KCTD19 variants, and ICSI was unable to rescue these deficiencies. These variants reduced the abundance of KCTD19 due to increased ubiquitination and impaired its nuclear colocalization with its functional partner, zinc finger protein 541 (ZFP541), in HEK293T cells. LIMITATIONS, REASONS FOR CAUTION The exact pathogenic mechanism remains unclear, and warrants further studies using knock-in mice that mimic the missense mutations found in individuals with biallelic KCTD19 variants. WIDER IMPLICATIONS OF THE FINDINGS Our study is the first to report a likely causal relationship between KCTD19 deficiency and male infertility, confirming the critical role of KCTD19 in human reproduction. Additionally, this study provided evidence for the poor ICSI clinical outcomes in individuals with biallelic KCTD19 variants, which may guide clinical treatment strategies. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research and Developmental Program of China (2022YFC2702604 to Y.-Q.T.), the National Natural Science Foundation of China (81971447 and 82171608 to Y.-Q.T., 82101961 to C.T.), a key grant from the Prevention and Treatment of Birth Defects from Hunan Province (2019SK1012 to Y.-Q.T.), a Hunan Provincial Grant for Innovative Province Construction (2019SK4012), and the China Postdoctoral Science Foundation (2022M721124 to W.W.). The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Weili Wang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Lilan Su
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Lanlan Meng
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Jiaxin He
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Chen Tan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Duo Yi
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Dehua Cheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Huan Zhang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Juan Du
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qianjun Zhang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- College of Life Science, Hunan Normal University, Changsha, China
| | - Chaofeng Tu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
39
|
Wu Y, Li J, Li C, Lu S, Wei X, Li Y, Xia W, Qian C, Wang Z, Liu M, Gu Y, Huang B, Tan Y, Hu Z. Fat mass and obesity-associated factor (FTO)-mediated N6-methyladenosine regulates spermatogenesis in an age-dependent manner. J Biol Chem 2023:104783. [PMID: 37146971 DOI: 10.1016/j.jbc.2023.104783] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent reversible RNA modification in the mammalian transcriptome. It has recently been demonstrated that m6A is crucial for male germline development. Fat mass and obesity-associated factor (FTO), a known m6A demethylase, is widely expressed in human and mouse tissues and is involved in manifold biological processes and human diseases. However, the function of FTO in spermatogenesis and male fertility remains poorly understood. Here, we generated an Fto knockout mouse model using CRISPR/Cas9-mediated genome editing techniques to address this knowledge gap. Remarkably, we found that loss of Fto in mice caused spermatogenesis defects in an age-dependent manner, resulting from the attenuated proliferation ability of undifferentiated spermatogonia and increased male germ cell apoptosis. Further research showed that FTO plays a vital role in the modulation of spermatogenesis and Leydig cell maturation by regulating the translation of the androgen receptor in an m6A-dependent manner. In addition, we identified two functional mutations of FTO in male infertility patients, resulting in truncated FTO protein and increased m6A modification in vitro. Our results highlight the crucial effects of FTO on spermatogonia and Leydig cells for the long-term maintenance of spermatogenesis and expand our understanding of the function of m6A in male fertility.
Collapse
Affiliation(s)
- Yifei Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jincheng Li
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Suzhou Municipal Hospital, Suzhou 215002, China
| | - Chenmeijie Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuai Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyu Wei
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yang Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenjuan Xia
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Suzhou Municipal Hospital, Suzhou 215002, China
| | - Chunfeng Qian
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Suzhou Municipal Hospital, Suzhou 215002, China
| | - Zihang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Suzhou Municipal Hospital, Suzhou 215002, China.
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410000, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410000, China.
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
40
|
Cui Y, Zhou M, He Q, He Z. Zbtb40 Deficiency Leads to Morphological and Phenotypic Abnormalities of Spermatocytes and Spermatozoa and Causes Male Infertility. Cells 2023; 12:cells12091264. [PMID: 37174664 PMCID: PMC10177581 DOI: 10.3390/cells12091264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Studies on the gene regulation of spermatogenesis are of unusual significance for maintaining male reproduction and treating male infertility. Here, we have demonstrated, for the first time, that a loss of ZBTB40 function leads to abnormalities in the morphological and phenotypic characteristics of mouse spermatocytes and spermatids as well as male infertility. We revealed that Zbtb40 was expressed in spermatocytes of mouse testes, and it was co-localized with γH2AX in mouse secondary spermatocytes. Interestingly, spermatocytes of Zbtb40 knockout mice had longer telomeres, compromised double-strand break (DSB) repair in the sex chromosome, and a higher apoptosis ratio compared to wild-type (WT) mice. The testis weight, testicular volume, and cauda epididymis body weight of the Zbtb40+/- male mice were significantly lower than in WT mice. Mating tests indicated that Zbtb40+/- male mice were able to mate normally, but they failed to produce any pups. Notably, sperm of Zbtb40+/- mice showed flagellum deformities and abnormal acrosome biogenesis. Furthermore, a ZBTB40 mutation was associated with non-obstructive azoospermia. Our results implicate that ZBTB40 deficiency leads to morphological and phenotypic abnormalities of spermatocytes and spermatids and causes male infertility. This study thus offers a new genetic mechanism regulating mammalian spermatogenesis and provides a novel target for gene therapy in male infertility.
Collapse
Affiliation(s)
- Yinghong Cui
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, China
- The Manufacture-Based Learning & Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Mingqing Zhou
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Quanyuan He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, China
- The Manufacture-Based Learning & Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| |
Collapse
|
41
|
Li Q, Wang Y, Zheng W, Guo J, Zhang S, Gong F, Lu GX, Lin G, Dai J. Biallelic variants in IQCN cause sperm flagellar assembly defects and male infertility. Hum Reprod 2023:7142890. [PMID: 37140151 DOI: 10.1093/humrep/dead079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
STUDY QUESTION What is the effect of defects in the manchette protein IQ motif-containing N (IQCN) on sperm flagellar assembly? SUMMARY ANSWER Deficiency in IQCN causes sperm flagellar assembly defects and male infertility. WHAT IS KNOWN ALREADY The manchette is a transient structure that is involved in the shaping of the human spermatid nucleus and protein transport within flagella. Our group recently reported that the manchette protein IQCN is essential for fertilization. Variants in IQCN lead to total fertilization failure and defective acrosome structure phenotypes. However, the function of IQCN in sperm flagellar assembly is still unknown. STUDY DESIGN, SIZE, DURATION Fifty men with infertility were recruited from a university-affiliated center from January 2014 to October 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS Genomic DNA was extracted from the peripheral blood samples of all 50 individuals for whole-exome sequencing. The ultrastructure of the spermatozoa was assessed by transmission electron microscopy. Computer-assisted sperm analysis (CASA) was used to test the parameters of curvilinear velocity (VCL), straight-line velocity (VSL), and average path velocity (VAP). An Iqcn knockout (Iqcn-/-) mouse model was generated by CRISPR-Cas9 technology to evaluate sperm motility and the ultrastructure of the flagellum. Hyperactivation and sperm fertilizing ability were assessed in a mouse model. Immunoprecipitation followed by liquid chromatography-mass spectrometry was used to detect IQCN-binding proteins. Immunofluorescence was used to validate the localization of IQCN-binding proteins. MAIN RESULTS AND THE ROLE OF CHANCE Biallelic variants in IQCN (c.3913A>T and c.3040A>G; c.2453_2454del) were identified in our cohort of infertile men. The sperm from the affected individuals showed an irregular '9 + 2' structure of the flagellum, which resulted in abnormal CASA parameters. Similar phenotypes were observed in Iqcn-/- male mice. VSL, VCL, and VAP in the sperm of Iqcn-/- male mice were significantly lower than those in Iqcn+/+ male mice. Partial peripheral doublet microtubules (DMTs) and outer dense fibers (ODFs) were absent, or a chaotic arrangement of DMTs was observed in the principal piece and end piece of the sperm flagellum. Hyperactivation and IVF ability were impaired in Iqcn-/- male mice. In addition, we investigated the causes of motility defects and identified IQCN-binding proteins including CDC42 and the intraflagellar transport protein families that regulate flagellar assembly during spermiogenesis. LIMITATIONS, REASONS FOR CAUTION More cases are needed to demonstrate the relation between IQCN variants and phenotypes. WIDER IMPLICATIONS OF THE FINDINGS Our findings expand the genetic and phenotypic spectrum of IQCN variants in causing male infertility, providing a genetic marker for sperm motility deficiency and male infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China (81974230 and 82202053), the Changsha Municipal Natural Science Foundation (kq2202072), the Hunan Provincial Natural Science Foundation (2022JJ40658), and the Scientific Research Foundation of Reproductive and Genetic Hospital of CITIC-Xiangya (YNXM-202114 and YNXM-202201). No conflicts of interest were declared. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Qi Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Yize Wang
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Wei Zheng
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Jing Guo
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Shunji Zhang
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Fei Gong
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Guang-Xiu Lu
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Ge Lin
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Jing Dai
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| |
Collapse
|
42
|
DNALI1 deficiency causes male infertility with severe asthenozoospermia in humans and mice by disrupting the assembly of the flagellar inner dynein arms and fibrous sheath. Cell Death Dis 2023; 14:127. [PMID: 36792588 PMCID: PMC9932082 DOI: 10.1038/s41419-023-05653-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
The axonemal dynein arms (outer (ODA) and inner dynein arms (IDAs)) are multiprotein structures organized by light, intermediate, light intermediate (LIC), and heavy chain proteins. They hydrolyze ATP to promote ciliary and flagellar movement. Till now, a variety of dynein protein deficiencies have been linked with asthenospermia (ASZ), highlighting the significance of these structures in human sperm motility. Herein, we detected bi-allelic DNALI1 mutations [c.663_666del (p.Glu221fs)], in an ASZ patient, which resulted in the complete loss of the DNALI1 in the patient's sperm. We identified loss of sperm DNAH1 and DNAH7 rather than DNAH10 in both DNALI1663_666del patient and Dnali1-/- mice, demonstrating that mammalian DNALI1 is a LIC protein of a partial IDA subspecies. More importantly, we revealed that DNALI1 loss contributed to asymmetries in the most fibrous sheath (FS) of the sperm flagellum in both species. Immunoprecipitation revealed that DNALI1 might interact with the cytoplasmic dynein complex proteins in the testes. Furthermore, DNALI1 loss severely disrupted the transport and assembly of the FS proteins, especially AKAP3 and AKAP4, during flagellogenesis. Hence, DNALI1 may possess a non-classical molecular function, whereby it regulates the cytoplasmic dynein complex that assembles the flagella. We conclude that a DNALI deficiency-induced IDAs injury and an asymmetric FS-driven tail rigid structure alteration may simultaneously cause flagellum immotility. Finally, intracytoplasmic sperm injection (ICSI) can effectively resolve patient infertility. Collectively, we demonstrate that DNALI1 is a newly causative gene for AZS in both humans and mice, which possesses multiple crucial roles in modulating flagellar assembly and motility.
Collapse
|
43
|
Ma A, Zhou J, Ali H, Abbas T, Ali I, Muhammad Z, Dil S, Chen J, Huang X, Ma H, Zhao D, Zhang B, Zhang Y, Shah W, Shah B, Murtaza G, Iqbal F, Khan MA, Khan A, Li Q, Xu B, Wu L, Zhang H, Shi Q. Loss-of-function mutations in CFAP57 cause multiple morphological abnormalities of the flagella in humans and mice. JCI Insight 2023; 8:e166869. [PMID: 36752199 PMCID: PMC9977434 DOI: 10.1172/jci.insight.166869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/15/2022] [Indexed: 02/09/2023] Open
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) are the most severe form of asthenozoospermia due to impaired axoneme structure in sperm flagella. Dynein arms are necessary components of the sperm flagellar axoneme. In this study, we recruited 3 unrelated consanguineous Pakistani families with multiple MMAF-affected individuals, who had no overt ciliary symptoms. Whole-exome sequencing and Sanger sequencing identified 2 cilia and flagella associated protein 57 (CFAP57) loss-of-function mutations (c.2872C>T, p. R958*; and c.2737C>T, p. R913*) recessively segregating with male infertility. A mouse model mimicking the mutation (c.2872C>T) was generated and recapitulated the typical MMAF phenotype of CFAP57-mutated individuals. Both CFAP57 mutations caused loss of the long transcript-encoded CFAP57 protein in spermatozoa from MMAF-affected individuals or from the Cfap57-mutant mouse model while the short transcript was not affected. Subsequent examinations of the spermatozoa from Cfap57-mutant mice revealed that CFAP57 deficiency disrupted the inner dynein arm (IDA) assembly in sperm flagella and that single-headed IDAs were more likely to be affected. Thus, our study identified 2 pathogenic mutations in CFAP57 in MMAF-affected individuals and reported a conserved and pivotal role for the long transcript-encoded CFAP57 in IDAs' assembly and male fertility.
Collapse
Affiliation(s)
- Ao Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Jianteng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Haider Ali
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Tanveer Abbas
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Imtiaz Ali
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Zubair Muhammad
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Sobia Dil
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Jing Chen
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Xiongheng Huang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Hui Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Daren Zhao
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Beibei Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Yuanwei Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Wasim Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Basit Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Ghulam Murtaza
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Furhan Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan, Pakistan
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Asad Khan
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Qing Li
- The Central Laboratory of Medical Research Center, First Affiliated Hospital of USTC, Hefei, China
| | - Bo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Limin Wu
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| |
Collapse
|
44
|
Hu T, Meng L, Tan C, Luo C, He WB, Tu C, Zhang H, Du J, Nie H, Lu GX, Lin G, Tan YQ. Biallelic CFAP61 variants cause male infertility in humans and mice with severe oligoasthenoteratozoospermia. J Med Genet 2023; 60:144-153. [PMID: 35387802 DOI: 10.1136/jmedgenet-2021-108249] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/16/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND The genetic causes for most male infertility due to severe oligoasthenoteratozoospermia (OAT) remain unclear. OBJECTIVE To identify the genetic cause of male infertility characterised by OAT. METHODS Variant screening was performed by whole-exome sequencing from 325 infertile patients with OAT and 392 fertile individuals. In silico and in vitro analyses were performed to evaluate the impacts of candidate disease-causing variants. A knockout mouse model was generated to confirm the candidate disease-causing gene, and intracytoplasmic sperm injection (ICSI) was used to evaluate the efficiency of clinical treatment. RESULTS We identified biallelic CFAP61 variants (NM_015585.4: c.1654C>T (p.R552C) and c.2911G>A (p.D971N), c.144-2A>G and c.1666G>A (p.G556R)) in two (0.62%) of the 325 OAT-affected men. In silico bioinformatics analysis predicted that all four variants were deleterious, and in vitro functional analysis confirmed the deleterious effects of the mutants. Notably, H&E staining and electron microscopy analyses of the spermatozoa revealed multiple morphological abnormalities of sperm flagella, the absence of central pair microtubules and mitochondrial sheath malformation in sperm flagella from man with CFAP61 variants. Further immunofluorescence assays revealed markedly reduced CFAP61 staining in the sperm flagella. In addition, Cfap61-deficient mice showed the OAT phenotype, suggesting that loss of function of CFAP61 was the cause of OAT. Two individuals accepted ICSI therapy using their own ejaculated sperm, and one of them succeeded in fathering a healthy baby. CONCLUSIONS Our findings indicate that CFAP61 is essential for spermatogenesis and that biallelic CFAP61 variants lead to male infertility in humans and mice with OAT.
Collapse
Affiliation(s)
- Tongyao Hu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science,Central South University, Changsha, People's Republic of China
| | - Lanlan Meng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science,Central South University, Changsha, People's Republic of China.,Genetic Center, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, People's Republic of China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, People's Republic of China.,NHC key laboratory of human stem cell and reproductive engineering, Changsha, People's Republic of China
| | - Chen Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science,Central South University, Changsha, People's Republic of China
| | - Chen Luo
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science,Central South University, Changsha, People's Republic of China
| | - Wen-Bin He
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science,Central South University, Changsha, People's Republic of China.,Genetic Center, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, People's Republic of China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, People's Republic of China.,NHC key laboratory of human stem cell and reproductive engineering, Changsha, People's Republic of China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science,Central South University, Changsha, People's Republic of China.,Genetic Center, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, People's Republic of China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, People's Republic of China.,NHC key laboratory of human stem cell and reproductive engineering, Changsha, People's Republic of China
| | - Huan Zhang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science,Central South University, Changsha, People's Republic of China.,Genetic Center, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, People's Republic of China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, People's Republic of China.,NHC key laboratory of human stem cell and reproductive engineering, Changsha, People's Republic of China
| | - Juan Du
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science,Central South University, Changsha, People's Republic of China.,Genetic Center, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, People's Republic of China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, People's Republic of China.,NHC key laboratory of human stem cell and reproductive engineering, Changsha, People's Republic of China
| | - Hongchuan Nie
- Genetic Center, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, People's Republic of China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, People's Republic of China
| | - Guang-Xiu Lu
- Genetic Center, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, People's Republic of China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, People's Republic of China.,NHC key laboratory of human stem cell and reproductive engineering, Changsha, People's Republic of China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science,Central South University, Changsha, People's Republic of China.,Genetic Center, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, People's Republic of China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, People's Republic of China.,NHC key laboratory of human stem cell and reproductive engineering, Changsha, People's Republic of China.,College of Life Science, Hunan Normal University, Changsha, People's Republic of China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science,Central South University, Changsha, People's Republic of China .,Genetic Center, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, People's Republic of China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, People's Republic of China.,NHC key laboratory of human stem cell and reproductive engineering, Changsha, People's Republic of China.,College of Life Science, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
45
|
Meng Z, Meng Q, Gao T, Zhou H, Xue J, Li H, Wu Y, Lv J. Identification of bi-allelic KIF9 loss-of-function variants contributing to asthenospermia and male infertility in two Chinese families. Front Endocrinol (Lausanne) 2023; 13:1091107. [PMID: 36686457 PMCID: PMC9846173 DOI: 10.3389/fendo.2022.1091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Asthenozoospermia (AZS) is a leading cause of male infertility, affecting an estimated 18% of infertile patients. Kinesin proteins function as molecular motors capable of moving along microtubules. The highly conserved kinesin family member 9 (KIF9) localizes to the central microtubule pair in the flagella of Chlamydomonas cells. The loss of KIF9 expression in mice has been linked to AZS phenotypes. Methods Variant screening was performed by whole exome sequencing from 92 Chinese infertile patients with AZS. Western blot was used to was used for analyzing of candidate proteins expression. Patients' sperm samples were stained with immunofluorescent to visualise proteins localization and were visualised by transmission electron microscopy (TEM) to determine axoneme structures. Co-immunoprecipitation assay was used to verify the binding proteins of KIF9. In vitro fertilization (IVF) was used to evaluate the efficiency of clinical treatment. Results Bi-allelic KIF9 loss-of-function variants were identified in two unrelated Chinese males exhibiting atypical sperm motility phenotypes. Both of these men exhibited typical AZS and suffered from infertility together with the complete absence of KIF9 expression. In contrast to these KIF9-deficient patients, positive KIF9 staining was evident throughout the flagella of sperm from normal control individuals. KIF9 was able to interact with the microtubule central pair (CP) component hydrocephalus-inducing protein homolog (HYDIN) in human samples. And KIF9 was undetectable in spermatozoa harboring CP deletions. The morphologicy of KIF9-deficient spermatozoa appeared normal under gross examination and TEM. Like in mice, in vitro fertilization was sufficient to overcome the fertility issues for these two patients. Discussion These findings indicate that KIF9 associates with the central microtubules in human sperm and that it functions to specifically regulate flagellar swinging. Overall, these results offer greater insight into the biological functions of KIF9 in the assembly of the human flagella and its role in male fertility.
Collapse
Affiliation(s)
- Zhixiang Meng
- Center for Reproduction, Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University), Suzhou, China
| | - Qingxia Meng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Tingting Gao
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Hui Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jiajia Xue
- Center for Reproduction, Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University), Suzhou, China
| | - Hong Li
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jinxing Lv
- Center for Reproduction, Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University), Suzhou, China
| |
Collapse
|
46
|
Wang J, Wang W, Shen L, Zheng A, Meng Q, Li H, Yang S. Clinical detection, diagnosis and treatment of morphological abnormalities of sperm flagella: A review of literature. Front Genet 2022; 13:1034951. [PMID: 36425067 PMCID: PMC9679630 DOI: 10.3389/fgene.2022.1034951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2023] Open
Abstract
Sperm carries male genetic information, and flagella help move the sperm to reach oocytes. When the ultrastructure of the flagella is abnormal, the sperm is unable to reach the oocyte and achieve insemination. Multiple morphological abnormalities of sperm flagella (MMAF) is a relatively rare idiopathic condition that is mainly characterized by multiple defects in sperm flagella. In the last decade, with the development of high-throughput DNA sequencing approaches, many genes have been revealed to be related to MMAF. However, the differences in sperm phenotypes and reproductive outcomes in many cases are attributed to different pathogenic genes or different pathogenic mutations in the same gene. Here, we will review information about the various phenotypes resulting from different pathogenic genes, including sperm ultrastructure and encoding proteins with their location and functions as well as assisted reproductive technology (ART) outcomes. We will share our clinical detection and diagnosis experience to provide additional clinical views and broaden the understanding of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenmin Yang
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
47
|
Whole-Genome Profile of Greek Patients with Teratozοοspermia: Identification of Candidate Variants and Genes. Genes (Basel) 2022; 13:genes13091606. [PMID: 36140773 PMCID: PMC9498395 DOI: 10.3390/genes13091606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 01/09/2023] Open
Abstract
Male infertility is a global health problem that affects a large number of couples worldwide. It can be categorized into specific subtypes, including teratozoospermia. The present study aimed to identify new variants associated with teratozoospermia in the Greek population and to explore the role of genes on which these were identified. For this reason, whole-genome sequencing (WGS) was performed on normozoospermic and teratozoospermic individuals, and after selecting only variants found in teratozoospermic men, these were further prioritized using a wide range of tools, functional and predictive algorithms, etc. An average of 600,000 variants were identified, and of them, 61 were characterized as high impact and 153 as moderate impact. Many of these are mapped in genes previously associated with male infertility, yet others are related for the first time to teratozoospermia. Furthermore, pathway enrichment analysis and Gene ontology (GO) analyses revealed the important role of the extracellular matrix in teratozoospermia. Therefore, the present study confirms the contribution of genes studied in the past to male infertility and sheds light on new molecular mechanisms by providing a list of variants and candidate genes associated with teratozoospermia in the Greek population.
Collapse
|
48
|
Levkova M, Radanova M, Angelova L. Potential role of dynein-related genes in the etiology of male infertility: A systematic review and a meta-analysis. Andrology 2022; 10:1484-1499. [PMID: 36057791 DOI: 10.1111/andr.13287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The dynein-related genes may have a role in the etiology of male infertility, particularly in cases of impaired sperm motility. OBJECTIVES The goal of this review is to compile a list of the most important dynein-related candidate genes that may contribute to male factor infertility. MATERIALS AND METHODS Databases were searched using the keywords "dynein", "male", "infertility" and by applying strict inclusion criteria. A meta-analysis was also performed by using the eligible case-control studies. The odd ratios (OR), the Z-test score, and the level of significance were determined using a fixed model with a p value of 0.05. Funnel plots were used to check for publication bias. RESULTS There were 35 studies that met the inclusion criteria. There were a total of fifteen genes responsible for the production of dynein structural proteins, the production of dynein assembling factors, and potentially associated with male infertility. A total of five case-control studies were eligible for inclusion in the meta-analysis. Variants in the dynein-related genes were linked to an increased the risk of male infertility (OR = 21.52, 95% Confidence Interval (CI) 8.34 - 55.50, Z test = 6.35, p < 0.05). The percentage of heterogeneity, I2 , was 47.00%. The lack of variants in the dynein genes was an advantage and this was statistically significant. DISCUSSION The results from the present review illustrate that pathogenic variants in genes both for dynein synthesis and for dynein assembly factors could be associated with isolated cases of male infertility without any other symptoms. CONCLUSIONS The genes addressed in this study, which are involved in both the production and assembly of dynein, could be used as molecular targets for future research into the etiology of sperm motility problems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mariya Levkova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria.,Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, Varna, 9000, Bulgaria
| | - Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University Varna, Tzar Osvoboditel Str 84b, Varna, 9000, Bulgaria
| | - Lyudmila Angelova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria
| |
Collapse
|
49
|
Novel Compound Heterozygous Mutation in FSIP2 Causes Multiple Morphological Abnormalities of the Sperm Flagella (MMAF) and Male Infertility. Reprod Sci 2022; 29:2697-2702. [DOI: 10.1007/s43032-022-00965-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/01/2022] [Indexed: 12/20/2022]
|
50
|
Wu X, Zhou L, Shi J, Cheng CY, Sun F. Multiomics analysis of male infertility. Biol Reprod 2022; 107:118-134. [PMID: 35639635 DOI: 10.1093/biolre/ioac109] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
Infertility affects 8-12% of couples globally, and the male factor is a primary cause in approximately 50% of couples. Male infertility is a multifactorial reproductive disorder, which can be caused by paracrine and autocrine factors, hormones, genes, and epigenetic changes. Recent studies in rodents and most notably in humans using multiomics approach have yielded important insights into understanding the biology of spermatogenesis. Nonetheless, the etiology and pathogenesis of male infertility are still largely unknown. In this review, we summarized and critically evaluated findings based on the use of advanced technologies to compare normal and obstructive azoospermia (OA) versus non-obstructive azoospermia (NOA) men, including whole-genome bisulfite sequencing (WGBS), single cell RNA-seq (scRNA-seq), whole exome sequencing (WES), and ATAC-seq. It is obvious that the multiomics approach is the method of choice for basic research and clinical studies including clinical diagnosis of male infertility.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Liwei Zhou
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - C Yan Cheng
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Fei Sun
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| |
Collapse
|