1
|
Studneva IM, Veselova OM, Dobrokhotov IV, Serebryakova LI, Palkeeva ME, Avdeev DV, Molokoedov AS, Sidorova MV, Pisarenko OI. The structural analogue of apelin-12 prevents energy disorders in the heart in experimental type 1 diabetes mellitus. BIOMEDITSINSKAIA KHIMIIA 2024; 70:135-144. [PMID: 38940202 DOI: 10.18097/pbmc20247003135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is the most severe form of diabetes, which is characterized by absolute insulin deficiency induced by the destruction of pancreatic beta cells. The aim of this study was to evaluate the effect of a structural analogue of apelin-12 ((NαMe)Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-OH, metilin) on hyperglycemia, mitochondrial (MCh) respiration in permeabilized cardiac left ventricular (LV) fibers, the myocardial energy state, and cardiomyocyte membranes damage in a model of streptozotocin (STZ) diabetes in rats. Metilin was prepared by solid-phase synthesis using the Fmoc strategy and purified using HPLC. Four groups of animals were used: initial state (IS); control (C), diabetic control (D) and diabetic animals additionally treated with metilin (DM). The following parameters have been studied: blood glucose, MCh respiration in LV fibers, the content of cardiac ATP, ADP, AMP, phosphocreatine (PCr) and creatine (Cr), the activity of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) in blood plasma. Administration of metilin to STZ-treated rats decreased blood glucose, increased state 3 oxygen consumption, the respiratory control ratio in MCh of permeabilized LV fibers, and increased the functional coupling of mitochondrial CK (mt-CK) to oxidative phosphorylation compared with these parameters in group D. In STZ-treated animals metilin administration caused an increase in the PCr content and prevention of the loss of total creatine (ΣCr=PCr+Cr) in the diabetic hearts, as well as restoration of the PCr/ATP ratio in the myocardium and a decrease in the activity of CK-MB and LDH in plasma to initial values. Thus, metilin prevented energy disorders disturbances in cardiomyocytes of animals with experimental T1DM.
Collapse
Affiliation(s)
- I M Studneva
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - O M Veselova
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - I V Dobrokhotov
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - L I Serebryakova
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - M E Palkeeva
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - D V Avdeev
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - A S Molokoedov
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - M V Sidorova
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - O I Pisarenko
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| |
Collapse
|
2
|
Khoshsirat S, Abbaszadeh HA, Peyvandi AA, Heidari F, Peyvandi M, Simani L, Niknazar S. Apelin-13 prevents apoptosis in the cochlear tissue of noise-exposed rat via Sirt-1 regulation. J Chem Neuroanat 2021; 114:101956. [PMID: 33831513 DOI: 10.1016/j.jchemneu.2021.101956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022]
Abstract
Noise-induced hearing loss (NIHL) is the second most common cause of acquired hearing loss. Acoustic trauma can cause oxidative damage in the cochlear hair cells (HCs) through apoptotic pathways. Apelin is a newly discovered neuropeptide with neuroprotective effects against the oxidative stress in neurodegenerative disorder. We investigated the preventive effects of apelin-13 on the cochlear HCs and spiral ganglion neurons (SGNs) against acoustic trauma via Sirtuin-1 (Sirt-1) regulation in rats. Animals were assigned to control, control + apelin-13 (50 or 100 μg/kg, ip), and noise exposure groups without any treatment or were administered apelin-13 (50 or 100 μg/kg, ip) and EX-527 (an inhibitor of Sirt-1) prior to each noise session. In the noise groups, 110 dB white noise was applied for 6 h per 5 days. Pre- and post-exposure distortion product otoacoustic emissions (DPOAE) and cochlear superoxide dismutase (SOD) activity were assessed. Western blot evaluated the cochlear protein expressions of Sirt-1, cleaved-caspase-3, Bax, and Bcl-2. Cell apoptosis was detected through TUNEL staining. Immunofluorescence was used to examine expression of HCs and SGNs specific protein. DPOAE level were significantly improved in the noise exposure group receiving 100 μg/kg apelin-13. At high doses, apelin augmented SOD levels in the rat cochlea subjected to noise. Apelin 100 markedly increased Sirt-1, and decreased cleaved- caspase-3 expression as well as Bax/Bcl-2 ratio in the cochlea tissue of noise-exposed rats. These findings suggest the promising therapeutic potential of apelin-13 for the prevention of noise-induced injury to cochlea and hearing loss.
Collapse
Affiliation(s)
- Shahrokh Khoshsirat
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Heidari
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Audiology, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Simani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Niknazar
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mostafa F, Abdel-Moneim A, Abdul-Hamid M, Galaly SR, Mohamed HM. Polydatin and polydatin-loaded chitosan nanoparticles attenuate diabetic cardiomyopathy in rats. J Mol Histol 2021; 52:135-152. [PMID: 33389430 DOI: 10.1007/s10735-020-09930-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Hyperglycemia is associated with impairment of heart function. The current study aimed to investigate the ameliorative effect of polydatin-loaded chitosan nanoparticles (PD-CSNPs), polydatin (PD) and metformin (MET) on diabetic cardiomyopathy in rats. Rats divided into six groups; normal-control, diabetic-control, diabetic + CSNPs (diabetic rats treated with 50 mg/kg blank chitosan nanoparticles), diabetic + PD-CSNPs (diabetic rats treated with PD-CSNPs equivalent to 50 mg/kg of polydatin), diabetic + PD (diabetic rats given 50 mg/kg polydatin), diabetic + MET (diabetic rats given 100 mg/kg metformin), orally and daily for 4 weeks. Treatment of diabetic rats with PD-CSNPs, PD and MET showed a significant reduction in the values of glucose and glycosylated hemoglobin with improvement in heart function biomarkers through decreasing serum creatine kinase and creatine kinase myocardial band activities compared to diabetic control. The treatment agents also suppressed the elevated lipid peroxidation product, increased values of glutathione content, superoxide dismutase, superoxide peroxidase, and catalase activities in the heart of diabetic treated rats. Furthermore, PD-CSNPs, PD and MET decreased heart tissue levels of a pro-inflammatory cytokine; tumor necrosis factor-alpha and nuclear factor-kappa β, upregulation of heart gene expressions; nuclear factor erythroid 2-related factor 2 and heme oxygenase-1. Histological and ultrastructural examinations revealed the ameliorative effect of PD-CSNPs, PD and MET against the harmful of diabetic cardiomyopathy by reducing the cardiac fibers, necrotic cardiac myocytes, inflammatory cell infiltration, and the arrangement of the myofibrils and intercalated discs. In conclusion, the new formula of PD-CSNPs was more effective than PD and MET in amelioration the diabetic cardiomyopathy through its antioxidant, anti-inflammatory and prolonged-release properties.
Collapse
Affiliation(s)
- Fatma Mostafa
- Histology and Cytology Division, Faculty of Science, Zoology Department, Beni-Suef University, Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Zoology Department, Beni-Suef University, Salah Salem St, Beni-Suef, 62511, Egypt.
| | - Manal Abdul-Hamid
- Histology and Cytology Division, Faculty of Science, Zoology Department, Beni-Suef University, Beni-Suef, Egypt
| | - Sanaa R Galaly
- Histology and Cytology Division, Faculty of Science, Zoology Department, Beni-Suef University, Beni-Suef, Egypt
| | - Hanaa M Mohamed
- Genetic and Molecular Genetic Division, Faculty of Science, Zoology Department, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Parikh VN, Liu J, Shang C, Woods C, Chang AC, Zhao M, Charo DN, Grunwald Z, Huang Y, Seo K, Tsao PS, Bernstein D, Ruiz-Lozano P, Quertermous T, Ashley EA. Apelin and APJ orchestrate complex tissue-specific control of cardiomyocyte hypertrophy and contractility in the hypertrophy-heart failure transition. Am J Physiol Heart Circ Physiol 2018; 315:H348-H356. [PMID: 29775410 PMCID: PMC6139625 DOI: 10.1152/ajpheart.00693.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
Abstract
The G protein-coupled receptor APJ is a promising therapeutic target for heart failure. Constitutive deletion of APJ in the mouse is protective against the hypertrophy-heart failure transition via elimination of ligand-independent, β-arrestin-dependent stretch transduction. However, the cellular origin of this stretch transduction and the details of its interaction with apelin signaling remain unknown. We generated mice with conditional elimination of APJ in the endothelium (APJendo-/-) and myocardium (APJmyo-/-). No baseline difference was observed in left ventricular function in APJendo-/-, APJmyo-/-, or control (APJendo+/+, APJmyo+/+) mice. After exposure to transaortic constriction, APJendo-/- mice displayed decreased left ventricular systolic function and increased wall thickness, whereas APJmyo-/- mice were protected. At the cellular level, carbon fiber stretch of freshly isolated single cardiomyocytes demonstrated decreased contractile responses to stretch in APJ-/- cardiomyocytes compared with APJ+/+ cardiomyocytes. Ca2+ transients did not change with stretch in either APJ-/- or APJ+/+ cardiomyocytes. Application of apelin to APJ+/+ cardiomyocytes resulted in decreased Ca2+ transients. Furthermore, hearts of mice treated with apelin exhibited decreased phosphorylation in cardiac troponin I NH2-terminal residues (Ser22 and Ser23) consistent with increased Ca2+ sensitivity. These data establish that APJ stretch transduction is mediated specifically by myocardial APJ, that APJ is necessary for stretch-induced increases in contractility, and that apelin opposes APJ's stretch-mediated hypertrophy signaling by lowering Ca2+ transients while maintaining contractility through myofilament Ca2+ sensitization. These findings underscore apelin's unique potential as a therapeutic agent that can simultaneously support cardiac function and protect against the hypertrophy-heart failure transition. NEW & NOTEWORTHY These data address fundamental gaps in our understanding of apelin-APJ signaling in heart failure by localizing APJ's ligand-independent stretch sensing to the myocardium, identifying a novel mechanism of apelin-APJ inotropy via myofilament Ca2+ sensitization, and identifying potential mitigating effects of apelin in APJ stretch-induced hypertrophic signaling.
Collapse
Affiliation(s)
- Victoria N Parikh
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Jing Liu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Ching Shang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | | | - Alex C Chang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Mingming Zhao
- Department of Pediatric Cardiology, Lucile Packard Children's Hospital of Stanford University , Palo Alto, California
| | - David N Charo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Zachary Grunwald
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Yong Huang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Kinya Seo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Daniel Bernstein
- Department of Pediatric Cardiology, Lucile Packard Children's Hospital of Stanford University , Palo Alto, California
| | | | - Thomas Quertermous
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Euan A Ashley
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
- Department of Genetics, Stanford University School of Medicine , Stanford, California
| |
Collapse
|