1
|
Wydrych A, Pakuła B, Janikiewicz J, Dobosz AM, Jakubek-Olszewska P, Skowrońska M, Kurkowska-Jastrzębska I, Cwyl M, Popielarz M, Pinton P, Zavan B, Dobrzyń A, Lebiedzińska-Arciszewska M, Więckowski MR. Metabolic impairments in neurodegeneration with brain iron accumulation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149517. [PMID: 39366438 DOI: 10.1016/j.bbabio.2024.149517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a broad, heterogeneous group of rare inherited diseases (1-3 patients/1,000,000 people) characterized by progressive symptoms associated with excessive abnormal iron deposition in the brain. Approximately 15,000-20,000 individuals worldwide are estimated to be affected by NBIA. NBIA is usually associated with slowly progressive pyramidal and extrapyramidal symptoms, axonal motor neuropathy, optic nerve atrophy, cognitive impairment and neuropsychiatric disorders. To date, eleven subtypes of NBIA have been described and the most common ones include pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN). We present a comprehensive overview of the evidence for disturbed cellular homeostasis and metabolic alterations in NBIA variants, with a careful focus on mitochondrial bioenergetics and lipid metabolism which drives a new perspective in understanding the course of this infrequent malady.
Collapse
Affiliation(s)
- Agata Wydrych
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Barbara Pakuła
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Patrycja Jakubek-Olszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Skowrońska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Maciej Cwyl
- Warsaw University of Technology, Warsaw, Poland; NBIA Poland Association, Warsaw, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | | | - Mariusz R Więckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
2
|
Zachou A, Armenis G, Stamelos I, Stratigakou-Polychronaki E, Athanasopoulos F, Anagnostou E. Clinical utility of square-wave jerks in neurology and psychiatry. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1302651. [PMID: 38983056 PMCID: PMC11182280 DOI: 10.3389/fopht.2023.1302651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/12/2023] [Indexed: 07/11/2024]
Abstract
Human eye fixation is steadily interrupted by small, physiological or abnormal, eye movements. Square-wave jerks (SWJ) are the most common saccadic intrusion which can be readily seen at the bedside and also quantified using oculographic techniques. Various neurological, neuropsychiatric and psychiatric disorders display abnormal fixational eye movement patterns characterized by frequent SWJ. For the clinician, SWJ are particularly important because they can be readily observed at the bedside. Here, we will discuss the pathological conditions that present with SWJ and explore the expanding body of literature suggesting that SWJ may serve as a potential indicator for various clinical conditions.
Collapse
Affiliation(s)
- Athena Zachou
- Department of Neurology, University of Athens, Eginition Hospital, Athens, Greece
| | - Georgios Armenis
- Department of Neurology, University of Athens, Eginition Hospital, Athens, Greece
| | - Ioannis Stamelos
- Department of Neurology, University of Athens, Eginition Hospital, Athens, Greece
| | | | | | - Evangelos Anagnostou
- Department of Neurology, University of Athens, Eginition Hospital, Athens, Greece
| |
Collapse
|
3
|
Sriram N, Holla VV, Kumari R, Kamble N, Saini J, Mahale R, Netravathi M, Padmanabha H, Gowda VK, Battu R, Pandey A, Yadav R, Muthusamy B, Pal PK. Clinical, imaging and genetic profile of twenty-four patients with pantothenate kinase-associated neurodegeneration (PKAN)- A single centre study from India. Parkinsonism Relat Disord 2023; 111:105409. [PMID: 37121191 DOI: 10.1016/j.parkreldis.2023.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/20/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Pantothenate kinase-associated neurodegeneration (PKAN) is the most common "Neurodegeneration with Brain Iron Accumulation" disorder. This study aimed to study the clinical, radiological and genetic profiling of a large cohort of patients with PKAN. METHODS This is an ambispective hospital-based single centre study conducted at a tertiary care centre from India. After tabulating the clinical details, appropriate rating scales were applied followed by magnetic resonance imaging brain and exome sequencing. The segregation of the causal variants in the families were analysed using Sanger sequencing. RESULTS Twenty-four patients (14 males) with a median age at initial examination of 13 years (range: 4-54 years) and age at onset of 8 years (range: 0.5-40 years) were identified. Almost two-thirds (62%) had onset before 10 years. Difficulty walking was the most common presenting symptom (41.6%) and dystonia was the most common extrapyramidal phenomenology (100%) followed by parkinsonism (54.2%). Retinitis pigmentosa was present in 37.5% patients. MRI showed hypo intensity on T2 and SWI sequences in globus pallidus (100%), substantia nigra (70.8%) and red nucleus (12.5%). Eye-of-the-tiger sign was present in 95.8%. Biallelic variants in PANK2 gene was identified in all 20 patients who underwent genetic testing. Among the 18 unique variants identified in these 20 patients 10 were novel. Sanger sequencing confirmed the segregation of the mutation in the available family members. CONCLUSIONS Wide range of age at onset was noted. Dystonia at presentation, pathognomonic eye-of-tiger sign, and disease-causing variants in PANK2 gene were identified in nearly all patients. Ten novel variants were identified expanding the genotypic spectrum of PKAN.
Collapse
Affiliation(s)
- Neeharika Sriram
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Riyanka Kumari
- Institute of Bioinformatics, International Technology Park, Bengaluru, 560066, India; Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Jitender Saini
- Neuroimaging and Intervention Radiology, National Institute of Mental Health and Neurosciences, 560029, India
| | - Rohan Mahale
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Manjunath Netravathi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Vykuntaraju K Gowda
- Department of Paediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, 560029, India
| | - Rajani Battu
- Centre for Eye Genetics and Research, Bangalore, India
| | - Akhilesh Pandey
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bengaluru, 560066, India; Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
| |
Collapse
|
4
|
Wong EWN, Cheng SS, Woo TT, Lam RF, Lai FH. Concurrent PANK2 and OCA2 variants in a patient with retinal dystrophy, hypopigmented irides and neurodegeneration. Ophthalmic Genet 2022:1-5. [DOI: 10.1080/13816810.2022.2135107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eva Wai Nam Wong
- Department of Ophthalmology, Caritas Medical Centre, Sham Shui Po, Hong Kong
| | | | - Tiffany T.Y. Woo
- Department of Ophthalmology, Caritas Medical Centre, Sham Shui Po, Hong Kong
| | - Robert F. Lam
- Department of Ophthalmology, Caritas Medical Centre, Sham Shui Po, Hong Kong
| | - Frank H.P. Lai
- Department of Ophthalmology, Caritas Medical Centre, Sham Shui Po, Hong Kong
| |
Collapse
|
5
|
Wilson D, Hallett M, Anderson T. An Eye on Movement Disorders. Mov Disord Clin Pract 2021; 8:1168-1180. [PMID: 34765682 DOI: 10.1002/mdc3.13317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Eye disorders spanning a range of ocular tissue are common in patients with movement disorders. Highlighting these ocular manifestations will benefit patients and may even aid in diagnosis. In this educational review we outline the anatomy and function of the ocular tissues with a focus on the tissues most affected in movement disorders. We review the movement disorders associated with ocular pathology and where possible explore the underlying cellular basis thought to be driving the pathology and provide a brief overview of ophthalmic investigations available to the neurologist. This review does not cover intracranial primary visual pathways, higher visual function, or the ocular motor system.
Collapse
Affiliation(s)
- Duncan Wilson
- Department of Neurology Christchurch Hospital Christchurch New Zealand.,New Zealand Brain Research Institute Christchurch New Zealand
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH Bethesda Maryland USA
| | - Tim Anderson
- Department of Neurology Christchurch Hospital Christchurch New Zealand.,New Zealand Brain Research Institute Christchurch New Zealand.,Department of Medicine Otago University Dunedin New Zealand
| |
Collapse
|
6
|
Wang HP, Wong LC, Hsu CJ, Hu SC, Chu YJ, Lee WT. Eye motor manifestations in children with neurometabolic disorders. J Formos Med Assoc 2021; 121:736-748. [PMID: 34561118 DOI: 10.1016/j.jfma.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/11/2021] [Accepted: 09/05/2021] [Indexed: 01/15/2023] Open
Abstract
Neurometabolic diseases are complex group of rare neurogenetic disorders, which are difficult to diagnose. Patients may have toxic metabolite accumulation, inadequate energy supply, or neurotransmitter deficiency, resulting in a variety of clinical manifestations and severity with enzyme activity or transporter function defects. Multiple organ involvement is frequently seen, among which neurological symptoms and signs are one of the most encountered problems. Ocular motor problems deserve special attention for it occurs in some inborn error of metabolism. Furthermore, some are early signs or characteristic findings of certain diseases, such as the gaze palsy in Niemann-Pick disease type C and Gaucher disease or oculogyric crisis in neurotransmitter diseases. Early recognition and intervention are important for better prognosis in treatable neurometabolic disorders. In addition, ways to evaluate and describe eye movement problems also help to demonstrate the severity or clinical progression for those diagnosed with certain neurometabolic diseases. However, the complexity of eye movement and ocular motor control renders our clinical observation, recording and even anatomic localization of abnormal eye movements. Clinicians are more likely to detect early signs and unravel problems by gaining awareness of abnormal eye movement. This study amied to approach neurometabolic diseases in children via eye motor manifestations.
Collapse
Affiliation(s)
- Hsin-Pei Wang
- Department of Pediatrics, National Taiwan University Hospital YunLin branch, Yun-Lin, Taiwan
| | - Lee-Chin Wong
- Department of Pediatrics, Cathy General Hospital, Taipei, Taiwan
| | - Chia-Jui Hsu
- Department of Pediatrics, National Taiwan University Hospital Hsinchu branch, Hsinchu, Taiwan
| | - Su-Ching Hu
- Department of Pediatrics, Cathy General Hospital, Taipei, Taiwan
| | - Yen-Ju Chu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
7
|
Planellas L, Mayà G, Painous C, Santacruz P, Santamaria J, Martí MJ. Characterization of sleep in six patients with pantothenate kinase-associated neurodegeneration. Sleep Med 2021; 84:389-396. [PMID: 34252845 DOI: 10.1016/j.sleep.2021.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pantothenate kinase-associated neurodegeneration (PKAN) is a rare neurologic disorder included in the group of neurodegeneration with brain iron accumulation diseases (NBIA). Information regarding sleep in patients with PKAN is limited. OBJECTIVES To describe the clinical and polysomnographic characteristics of sleep in six patients with genetically confirmed PKAN. METHODS The evaluation included a clinical interview, sleep questionnaires -Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality Index (PSQI) and Hospital Anxiety and Depression Scale (HADS)- and a video-polysomnography (VPSG). In addition to standard sleep measures we manually quantified sleep spindle density in stage N2 and rapid eye movements in REM sleep comparing the results with matched controls. Quantification of EMG activity in REM sleep was performed following standard criteria. RESULTS All the patients reported at least one sleep complaint, most commonly sleep fragmentation (4/6) and sleep onset insomnia (3/6). ESS and PSQI were abnormal in 3/6 and 4/6, respectively. VPSG showed in 4/6 decreased ocular movements during REM sleep, an increase in sleep spindles in 3/6 (all of them with deep brain pallidal stimulation), an absence of slow wave sleep in 2 and undifferentiated NREM sleep and delayed sleep phase in one. Three patients had an abnormal sleep apnea/hypopnea index, and 2 periodic limb movements of sleep. REM sleep muscular atonia was preserved in all. CONCLUSIONS Sleep disorders are common in patients with PKAN. Although our sample is small and heterogeneous, with different symptomatic treatments possibly influencing the results, it suggests that evaluation of sleep should be considered in their management.
Collapse
Affiliation(s)
- Lluís Planellas
- Parkinson's Disease and Movement Disorders Unit, Neurology Department, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.
| | - Gerard Mayà
- Sleep Unit, Neurology Department, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.
| | - Cèlia Painous
- Parkinson's Disease and Movement Disorders Unit, Neurology Department, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.
| | - Pilar Santacruz
- Parkinson's Disease and Movement Disorders Unit, Neurology Department, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.
| | - Joan Santamaria
- Sleep Unit, Neurology Department, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain; Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.
| | - M J Martí
- Parkinson's Disease and Movement Disorders Unit, Neurology Department, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain; Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain; European Reference Network for Rare Neurological Diseases - Project ID No 739510, Spain.
| |
Collapse
|
8
|
Hinarejos I, Machuca C, Sancho P, Espinós C. Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA). Antioxidants (Basel) 2020; 9:antiox9101020. [PMID: 33092153 PMCID: PMC7589120 DOI: 10.3390/antiox9101020] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
The syndromes of neurodegeneration with brain iron accumulation (NBIA) encompass a group of invalidating and progressive rare diseases that share the abnormal accumulation of iron in the basal ganglia. The onset of NBIA disorders ranges from infancy to adulthood. Main clinical signs are related to extrapyramidal features (dystonia, parkinsonism and choreoathetosis), and neuropsychiatric abnormalities. Ten NBIA forms are widely accepted to be caused by mutations in the genes PANK2, PLA2G6, WDR45, C19ORF12, FA2H, ATP13A2, COASY, FTL1, CP, and DCAF17. Nonetheless, many patients remain without a conclusive genetic diagnosis, which shows that there must be additional as yet undiscovered NBIA genes. In line with this, isolated cases of known monogenic disorders, and also, new genetic diseases, which present with abnormal brain iron phenotypes compatible with NBIA, have been described. Several pathways are involved in NBIA syndromes: iron and lipid metabolism, mitochondrial dynamics, and autophagy. However, many neurodegenerative conditions share features such as mitochondrial dysfunction and oxidative stress, given the bioenergetics requirements of neurons. This review aims to describe the existing link between the classical ten NBIA forms by examining their connection with mitochondrial impairment as well as oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Isabel Hinarejos
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Candela Machuca
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Unit of Stem Cells Therapies in Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Paula Sancho
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Department of Genetics, University of Valencia, 46100 Valencia, Spain
- Correspondence: ; Tel.: +34-963-289-680
| |
Collapse
|
9
|
Brezavar D, Bonnen PE. Incidence of PKAN determined by bioinformatic and population-based analysis of ~140,000 humans. Mol Genet Metab 2019; 128:463-469. [PMID: 31540697 PMCID: PMC8610229 DOI: 10.1016/j.ymgme.2019.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
Panthothenate kinase-associated neurodegeneration (PKAN, OMIM 234200), is an inborn is an autosomal recessive inborn error of metabolism caused by pathogenic variants in PANK2. PANK2 encodes the enzyme pantothenate kinase 2 (EC 2.7.1.33), an essential regulatory enzyme in CoA biosynthesis. Clinical presentation includes dystonia, rigidity, bradykinesia, dysarthria, pigmentary retinopathy and dementia with variable age of onset ranging from childhood to adulthood. In order to provide an accurate incidence estimate of PKAN, we conducted a systematic review of the literature and databases for pathogenic mutations and constructed a bioinformatic profile for pathogenic missense variants in PANK2. We then studied the gnomAD cohort of ~140,000 unrelated adults from global populations to determine the allele frequency of the variants in PANK2 reported pathogenic for PKAN and for those additional variants identified in gnomAD that met bioinformatics criteria for being potentially pathogenic. Incidence was estimated based on three different models using the allele frequencies of pathogenic PKAN variants with or without those bioinformatically determined to be potentially pathogenic. Disease incidence calculations showed PKAN incidence ranging from 1:396,006 in Europeans, 1:1,526,982 in Africans, 1:480,826 in Latino, 1:523,551 in East Asians and 1:531,118 in South Asians. These results indicate PKAN is expected to occur in approximately 2 of every 1 million live births globally outside of Africa, and has a much lower incidence 1 in 1.5 million live births in the African population.
Collapse
Affiliation(s)
- Daniel Brezavar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Jeong SY, Hogarth P, Placzek A, Gregory AM, Fox R, Zhen D, Hamada J, van der Zwaag M, Lambrechts R, Jin H, Nilsen A, Cobb J, Pham T, Gray N, Ralle M, Duffy M, Schwanemann L, Rai P, Freed A, Wakeman K, Woltjer RL, Sibon OCM, Hayflick SJ. 4'-Phosphopantetheine corrects CoA, iron, and dopamine metabolic defects in mammalian models of PKAN. EMBO Mol Med 2019; 11:e10489. [PMID: 31660701 PMCID: PMC6895607 DOI: 10.15252/emmm.201910489] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 11/19/2022] Open
Abstract
Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease-vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4'-phosphopantetheine, normalized levels of the CoA-, iron-, and dopamine-related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4'-phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron-sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4'-phosphopantetheine as a candidate therapeutic for PKAN.
Collapse
Affiliation(s)
- Suh Young Jeong
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Penelope Hogarth
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
- Department of NeurologyOregon Health & Science UniversityPortlandORUSA
| | - Andrew Placzek
- Medicinal Chemistry CoreOregon Health & Science UniversityPortlandORUSA
| | - Allison M Gregory
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Rachel Fox
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Dolly Zhen
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Jeffrey Hamada
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | | | - Roald Lambrechts
- Department of Cell BiologyUniversity Medical Center GroningenGroningenthe Netherlands
| | - Haihong Jin
- Medicinal Chemistry CoreOregon Health & Science UniversityPortlandORUSA
| | - Aaron Nilsen
- Medicinal Chemistry CoreOregon Health & Science UniversityPortlandORUSA
| | - Jared Cobb
- Department of PathologyOregon Health & Science UniversityPortlandORUSA
| | - Thao Pham
- Department of PathologyOregon Health & Science UniversityPortlandORUSA
| | - Nora Gray
- Department of NeurologyOregon Health & Science UniversityPortlandORUSA
| | - Martina Ralle
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Megan Duffy
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Leila Schwanemann
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Puneet Rai
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Alison Freed
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Katrina Wakeman
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Randall L Woltjer
- Department of PathologyOregon Health & Science UniversityPortlandORUSA
| | - Ody CM Sibon
- Department of Cell BiologyUniversity Medical Center GroningenGroningenthe Netherlands
| | - Susan J Hayflick
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
- Department of NeurologyOregon Health & Science UniversityPortlandORUSA
- Department of PediatricsOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
11
|
Novel PANK2 mutation discovered among South East Asian children living in Thailand affected with pantothenate kinase associated neurodegeneration. J Clin Neurosci 2019; 66:187-190. [DOI: 10.1016/j.jocn.2019.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 01/11/2019] [Accepted: 04/28/2019] [Indexed: 11/17/2022]
|
12
|
Koens LH, Tijssen MAJ, Lange F, Wolffenbuttel BHR, Rufa A, Zee DS, de Koning TJ. Eye movement disorders and neurological symptoms in late-onset inborn errors of metabolism. Mov Disord 2018; 33:1844-1856. [PMID: 30485556 PMCID: PMC6587951 DOI: 10.1002/mds.27484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 11/06/2022] Open
Abstract
Inborn errors of metabolism in adults are still largely unexplored. Despite the fact that adult‐onset phenotypes have been known for many years, little attention is given to these disorders in neurological practice. The adult‐onset presentation differs from childhood‐onset phenotypes, often leading to considerable diagnostic delay. The identification of these patients at the earliest stage of disease is important, given that early treatment may prevent or lessen further brain damage. Neurological and psychiatric symptoms occur more frequently in adult forms. Abnormalities of eye movements are also common and can be the presenting sign. Eye movement disorders can be classified as central or peripheral. Central forms are frequently observed in lysosomal storage disorders, whereas peripheral forms are a key feature of mitochondrial disease. Furthermore, oculogyric crisis is an important feature in disorders affecting dopamine syntheses or transport. Ocular motor disorders are often not reported by the patient, and abnormalities can be easily overlooked in a general examination. In adults with unexplained psychiatric and neurological symptoms, a special focus on examination of eye movements can serve as a relatively simple clinical tool to detect a metabolic disorder. Eye movements can be easily quantified and analyzed with video‐oculography, making them a valuable biomarker for following the natural course of disease or the response to therapies. Here, we review, for the first time, eye movement disorders that can occur in inborn errors of metabolism, with a focus on late‐onset forms. We provide a step‐by‐step overview that will help clinicians to examine and interpret eye movement disorders. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lisette H Koens
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Marina A J Tijssen
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Fiete Lange
- University of Groningen, University Medical Center Groningen, Department of Clinical Neurophysiology, Groningen, The Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alessandra Rufa
- Department of Medicine Surgery and Neurosciences, University of Siena, Eye tracking and Visual Application Lab (EVA Lab)-Neurology and Neurometabolic Unit, Siena, Italy
| | - David S Zee
- Department of Neuroscience, Department of Ophthalmology, The Johns Hopkins University, The Johns Hopkins Hospital, Department of Neurology, Department of Otolaryngology-Head and Neck Surgery, Baltimore, Maryland, USA
| | - Tom J de Koning
- University of Groningen, Division of Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Darling A, Aguilera-Albesa S, Tello CA, Serrano M, Tomás M, Camino-León R, Fernández-Ramos J, Jiménez-Escrig A, Poó P, O'Callaghan M, Ortez C, Nascimento A, Fernández Mesaque RC, Madruga M, Arrabal L, Roldan S, Gómez-Martín H, Garrido C, Temudo T, Jou-Muñoz C, Muchart J, Huisman TAGM, Poretti A, Lupo V, Espinós C, Pérez-Dueñas B. PLA2G6-associated neurodegeneration: New insights into brain abnormalities and disease progression. Parkinsonism Relat Disord 2018; 61:179-186. [PMID: 30340910 DOI: 10.1016/j.parkreldis.2018.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/19/2018] [Accepted: 10/12/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTION PLA2G6-associated neurodegeneration (PLAN) comprises a continuum of three phenotypes with overlapping clinical and radiologic features. METHODS Observational clinical study in a cohort of infantile and childhood onset PLAN patients and genetic analysis of the PLA2G6 gene. We analysed chronological evolution in terms of age at onset and disease course through a 66-item questionnaire. We performed qualitative and quantitative assessment of MRI abnormalities and searched for clinical and radiological phenotype and genotype correlations. RESULTS Sixteen PLAN patients (mean age: 10.2 years, range 3-33) were evaluated, with a median onset (years) of signs/symptoms as follows: neurological regression (1.5), oculomotor abnormalities (1.5), hypotonia (1.8), gait loss (2.2), pyramidal signs (3.0), axonal neuropathy (3.0), dysphagia (4.0), optic atrophy (4.0), psychiatric symptoms (4.0), seizures (5.9), joint contractures (6.0), dystonia (8.0), bladder dysfunction (13.0) and parkinsonism (15.0). MRI assessment identified cerebellar atrophy (19/19), brain iron deposition (10/19), clava hypertrophy (8/19) and T2/FLAIR hyperintensity of the cerebellar cortex (6/19). The mid-sagittal vermis relative diameter (MVRD) correlated with age at onset of clinical variants, meaning that the earlier the onset, the more severe the cerebellar atrophy. All patients harboured missense, nonsense and frameshift mutations in PLA2G6, including four novel variants. CONCLUSIONS Cerebellar atrophy was a universal radiological sign in infantile and childhood onset PLAN, and correlated with the severity of the phenotype. Iron accumulation within the globus pallidum and substantia nigra was also a common and strikingly uniform feature regardless of the phenotype.
Collapse
Affiliation(s)
- Alejandra Darling
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, Pamplona, Spain
| | - Cristina Aisha Tello
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Mercedes Serrano
- Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, CIBERER, Instituto de Salud Carlos III, Spain
| | - Miguel Tomás
- Pediatric Neurology Department, Hospital Universitario Politécnico La Fe, Valencia, Spain
| | - Rafael Camino-León
- Pediatric Neurology Department, Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | | | - Pilar Poó
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Mar O'Callaghan
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Carlos Ortez
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Andrés Nascimento
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | | | - Marcos Madruga
- Pediatric Neurology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Luisa Arrabal
- Pediatric Neurology Department, Hospital Virgen de las Nieves, Granada, Spain
| | - Susana Roldan
- Pediatric Neurology Department, Hospital Virgen de las Nieves, Granada, Spain
| | - Hilario Gómez-Martín
- Pediatric Neurology Department, Hospital San Pedro de Alcántara, Complejo Hospitalario Universitario de Cáceres, Spain
| | - Cristina Garrido
- Pediatric Neurology Department, Centro Materno-Infantil, Centro Hospitalario do Porto, Porto, Portugal
| | - Teresa Temudo
- Pediatric Neurology Department, Centro Materno-Infantil, Centro Hospitalario do Porto, Porto, Portugal
| | - Cristina Jou-Muñoz
- Pathology Department, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, CIBERER, Instituto de Salud Carlos III, Spain
| | - Jordi Muchart
- Neuroradiology Department, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, Spain
| | - Thierry A G M Huisman
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Poretti
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Belén Pérez-Dueñas
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain; Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
14
|
Tiedemann LM, Reed D, Joseph A, Yoo SH. Ocular and systemic manifestations of beta-propeller protein-associated neurodegeneration. J AAPOS 2018; 22:403-405. [PMID: 30092264 DOI: 10.1016/j.jaapos.2018.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 10/28/2022]
Abstract
Beta-propeller protein-associated neurodegeneration (BPAN) is a rare genetic disorder characterized by neurodegeneration with brain iron accumulation (NBIA). We report an infant diagnosed with BPAN who was found to have high myopia and astigmatism, strabismus, and bilateral retinal pigmentary changes. While retinal pigmentary changes have been described in other disorders of NBIA, it has been only rarely reported in BPAN.
Collapse
Affiliation(s)
- Laura M Tiedemann
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Dallas Reed
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, Massachusetts; Department of Pediatrics, Division of Medical Genetics, Tufts Medical Center, Boston, Massachusetts
| | - Anthony Joseph
- Vitreoretinal Surgery and Disease, Ophthalmic Consultants of Boston, Boston, Massachusetts
| | - Sylvia H Yoo
- Department of Ophthalmology, New England Eye Center, Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
15
|
Warnecke T, Schmitz J, Kerkhoff S, Hinkelbein J. Anästhesie bei Patienten mit NBIA. Anaesthesist 2018; 67:871-877. [DOI: 10.1007/s00101-018-0488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Affiliation(s)
- Olga Waln
- Department of Neurology, Houston Methodist Neurological Institute, Houston, TX, USA
| | - Joseph Jankovic
- Parkinson’s Disease Center and Movement Disorder Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Do HK, Jo GY, Kwon JK, Kim WJ. Botulinum Toxin-A Injection in the Treatment of Spasticity in a Infantile-Onset Neurodegeneration With Brain Iron Accumulation: A Case Report. Ann Rehabil Med 2018; 42:363-367. [PMID: 29765892 PMCID: PMC5940615 DOI: 10.5535/arm.2018.42.2.363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/10/2017] [Indexed: 11/25/2022] Open
Abstract
Pantothenate kinase-associated neurodegeneration (PKAN) is a neurodegenerative disorder characterized by iron accumulation in the globus pallidus (GP) of the brain (neurodegeneration with brain iron accumulation [NBIA]), which is characterized by dystonia and spasticity resulting in postural difficulties. A 33-month-old boy was admitted with a pronounced gait disturbance. Marked hypertonicity in the patient's both calf muscles was noted, resulting in waddling with repeated slip-falls. NBIA was suspected by high T2 intensity in the GP on brain MRI, then it was confirmed by detecting PANK2 mutation. Botulinum toxin-A injection was administered to both calf muscles. After 2 weeks, a decrease in spasticity and an increase in range of motion were observed, and consequently, an increase in the patient's gait stability with both heels touching the ground, enabling him to walk straight independently. A definitive treatment for NBIA has not been established, and a symptomatic therapy is currently the mainstay of treatment in this case. This is the first case report of botulinum toxin injection for treatment of gait disturbance caused by spasticity in an infantile-onset PKAN.
Collapse
Affiliation(s)
- Hwan Kwon Do
- Department of Physical Medicine and Rehabilitation, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Geun Yeol Jo
- Department of Physical Medicine and Rehabilitation, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jun Koo Kwon
- Department of Physical Medicine and Rehabilitation, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Woo Jin Kim
- Department of Physical Medicine and Rehabilitation, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
18
|
Dard R, Meyniel C, Touitou V, Stevanin G, Lamari F, Durr A, Ewenczyk C, Mochel F. Mutations in DDHD1 , encoding a phospholipase A1, is a novel cause of retinopathy and neurodegeneration with brain iron accumulation. Eur J Med Genet 2017; 60:639-642. [DOI: 10.1016/j.ejmg.2017.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 12/22/2022]
|
19
|
Pretegiani E, Optican LM. Eye Movements in Parkinson's Disease and Inherited Parkinsonian Syndromes. Front Neurol 2017; 8:592. [PMID: 29170650 PMCID: PMC5684125 DOI: 10.3389/fneur.2017.00592] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/23/2017] [Indexed: 12/02/2022] Open
Abstract
Despite extensive research, the functions of the basal ganglia (BG) in movement control have not been fully understood. Eye movements, particularly saccades, are convenient indicators of BG function. Here, we review the main oculomotor findings reported in Parkinson’s disease (PD) and genetic parkinsonian syndromes. PD is a progressive, neurodegenerative disorder caused by dopaminergic cell loss within the substantia nigra pars compacta, resulting in depletion of striatal dopamine and subsequent increased inhibitory BG output from the internal globus pallidus and the substantia nigra pars reticulata. Eye movement abnormalities are common in PD: anomalies are more evident in voluntary than reflexive saccades in the initial stages, but visually guided saccades may also be involved at later stages. Saccadic hypometria (including abnormally fragmented saccades), reduced accuracy, and increased latency are among the most prominent deficits. PD patients show also unusually frequent and large square wave jerks and impaired inhibition of reflexive saccades when voluntary mirror saccades are required. Poor convergence ability and altered pursuit are common. Inherited parkinsonisms are a heterogeneous group of rare syndromes due to gene mutations causing symptoms resembling those of PD. Eye movement characteristics of some parkinsonisms have been studied. While sharing some PD features, each syndrome has a distinctive profile that could contribute to better define the clinical phenotype of parkinsonian disorders. Moreover, because the pathogenesis and the underlying neural circuit failure of inherited parkinsonisms are often well defined, they might offer a better prospect than idiopathic PD to understand the BG function.
Collapse
Affiliation(s)
- Elena Pretegiani
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD, United States
| | - Lance M Optican
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
20
|
Neuro-Ophthalmic Manifestations of Pediatric Neurodegenerative Disease. J Neuroophthalmol 2017; 37 Suppl 1:S4-S13. [DOI: 10.1097/wno.0000000000000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Darling A, Tello C, Martí MJ, Garrido C, Aguilera-Albesa S, Tomás Vila M, Gastón I, Madruga M, González Gutiérrez L, Ramos Lizana J, Pujol M, Gavilán Iglesias T, Tustin K, Lin JP, Zorzi G, Nardocci N, Martorell L, Lorenzo Sanz G, Gutiérrez F, García PJ, Vela L, Hernández Lahoz C, Ortigoza Escobar JD, Martí Sánchez L, Moreira F, Coelho M, Correia Guedes L, Castro Caldas A, Ferreira J, Pires P, Costa C, Rego P, Magalhães M, Stamelou M, Cuadras Pallejà D, Rodríguez-Blazquez C, Martínez-Martín P, Lupo V, Stefanis L, Pons R, Espinós C, Temudo T, Pérez Dueñas B. Clinical rating scale for pantothenate kinase-associated neurodegeneration: A pilot study. Mov Disord 2017; 32:1620-1630. [PMID: 28845923 DOI: 10.1002/mds.27129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pantothenate kinase-associated neurodegeneration is a progressive neurological disorder occurring in both childhood and adulthood. The objective of this study was to design and pilot-test a disease-specific clinical rating scale for the assessment of patients with pantothenate kinase-associated neurodegeneration. METHODS In this international cross-sectional study, patients were examined at the referral centers following a standardized protocol. The motor examination was filmed, allowing 3 independent specialists in movement disorders to analyze 28 patients for interrater reliability assessment. The scale included 34 items (maximal score, 135) encompassing 6 subscales for cognition, behavior, disability, parkinsonism, dystonia, and other neurological signs. RESULTS Forty-seven genetically confirmed patients (30 ± 17 years; range, 6-77 years) were examined with the scale (mean score, 62 ± 21; range, 20-106). Dystonia with prominent cranial involvement and atypical parkinsonian features were present in all patients. Other common signs were cognitive impairment, psychiatric features, and slow and hypometric saccades. Dystonia, parkinsonism, and other neurological features had a moderate to strong correlation with disability. The scale showed good internal consistency for the total scale (Cronbach's α = 0.87). On interrater analysis, weighted kappa values (0.30-0.93) showed substantial or excellent agreement in 85% of the items. The scale also discriminated a subgroup of homozygous c.1583C>T patients with lower scores, supporting construct validity for the scale. CONCLUSIONS The proposed scale seems to be a reliable and valid instrument for the assessment of pediatric and adult patients with pantothenate kinase-associated neurodegeneration. Additional validation studies with a larger sample size will be required to confirm the present results and to complete the scale validation testing. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alejandra Darling
- Unit of Pediatric Movement Disorders, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Cristina Tello
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Josep Martí
- Neurology Department, Hospital Clínic de Barcelona, Institut d'Investigacions Biomediques IDIBAPS. Barcelona, Catalonia, Centro de Investigación Biomédica en Red-Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Garrido
- Pediatric Neurology Department, Centro Materno-Infantil Centro Hospitalario do Porto, Porto, Portugal
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Department, Complejo Hospitalario de Navarra, Navarrabiomed, Pamplona, Spain
| | - Miguel Tomás Vila
- Pediatric Neurology Department, Hospital Universitario Politécnico La Fe, Valencia, Spain
| | - Itziar Gastón
- Neurology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Marcos Madruga
- Pediatric Neurology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | | | | | | | | - Kylee Tustin
- Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jean Pierre Lin
- Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Giovanna Zorzi
- Department of Pediatric Neuroscience, Fondazione IRCCS "C. Besta", Milano, Italy
| | - Nardo Nardocci
- Department of Pediatric Neuroscience, Fondazione IRCCS "C. Besta", Milano, Italy
| | - Loreto Martorell
- Molecular Genetics Department, Hospital Sant Joan de Déu, Barcelona. CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Fuencisla Gutiérrez
- Neurology Department, Complejo Asistencial Universitario de Palencia, Palencia, Spain
| | - Pedro J García
- Neurology Department, Fundación Jiménez Díaz, Madrid, Spain
| | - Lidia Vela
- Neurology Department, Hospital de Alcorcón, Madrid, Spain
| | | | | | - Laura Martí Sánchez
- Unit of Pediatric Movement Disorders, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Fradique Moreira
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Miguel Coelho
- Clinical Pharmacology Unit, Instituto de Medicina Molecular and Department of Neurosciences, Service of Neurology, Hospital Santa Maria, Lisboa, Portugal
| | - Leonor Correia Guedes
- Laboratory of Clinical Pharmacology and Therapeutics, Lisbon Faculty of Medicine, Lisbon, Portual
| | - Ana Castro Caldas
- Neurology Department, Hospital de Santo Espirito, Ilha Terceira, Portugal
| | - Joaquim Ferreira
- Clinical Pharmacology Unit, Instituto de Medicina Molecular and Department of Neurosciences, Service of Neurology, Hospital Santa Maria, Lisboa, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Lisbon Faculty of Medicine, Lisbon, Portual
| | - Paula Pires
- Neurology Department, Hospital de Santo Espirito, Ilha Terceira, Portugal
| | - Cristina Costa
- Neurology Department, Hospital Fernando Fonseca, Lisboa, Portugal
| | - Paulo Rego
- Pediatric Department, Hospital Central de Funchal, Funchal, Portugal
| | | | - María Stamelou
- Second Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Parkinson's Disease and other Movement Disorders Department, HYGEIA Hospital, Athens, Greece
| | | | | | - Pablo Martínez-Martín
- National Center of Epidemiology and CIBERNED, Institute of Health Carlos III, Madrid, Spain
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Leonidas Stefanis
- Second Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Roser Pons
- Pediatric Neurology Unit, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Hospital Agia Sofía, Athens, Greece
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Teresa Temudo
- Pediatric Neurology Department, Centro Materno-Infantil Centro Hospitalario do Porto, Porto, Portugal
| | - Belén Pérez Dueñas
- Unit of Pediatric Movement Disorders, Hospital Sant Joan de Déu, Barcelona, Spain.,CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Hamedani AG, Gold DR. Eyelid Dysfunction in Neurodegenerative, Neurogenetic, and Neurometabolic Disease. Front Neurol 2017; 8:329. [PMID: 28769865 PMCID: PMC5513921 DOI: 10.3389/fneur.2017.00329] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022] Open
Abstract
Eye movement abnormalities are among the earliest clinical manifestations of inherited and acquired neurodegenerative diseases and play an integral role in their diagnosis. Eyelid movement is neuroanatomically linked to eye movement, and thus eyelid dysfunction can also be a distinguishing feature of neurodegenerative disease and complements eye movement abnormalities in helping us to understand their pathophysiology. In this review, we summarize the various eyelid abnormalities that can occur in neurodegenerative, neurogenetic, and neurometabolic diseases. We discuss eyelid disorders, such as ptosis, eyelid retraction, abnormal spontaneous and reflexive blinking, blepharospasm, and eyelid apraxia in the context of the neuroanatomic pathways that are affected. We also review the literature regarding the prevalence of eyelid abnormalities in different neurologic diseases as well as treatment strategies (Table 1).
Collapse
Affiliation(s)
- Ali G Hamedani
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel R Gold
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States.,Department of Ophthalmology, Johns Hopkins Hospital, Baltimore, MD, United States.,Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, United States.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
23
|
Jesus-Ribeiro J, Farinha C, Amorim M, Matos A, Reis A, Lemos J, Castelo-Branco M, Januário C. Visual and ocular motor function in the atypical form of neurodegeneration with brain iron accumulation type I. Br J Ophthalmol 2017; 102:102-108. [PMID: 28487376 DOI: 10.1136/bjophthalmol-2017-310181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS Neurodegeneration with brain iron accumulation (NBIA) type I is a rare disease that can be divided into a classical or atypical variant, according to age of onset and clinical pattern. Neuro-ophthalmological involvement has been documented in the classical variant but only anecdotically in the atypical variant. We sought to describe the visual and ocular motor function in patients with atypical form of NBIA type I. METHODS Cross-sectional study, including patients with genetically confirmed NBIA type I and classified as atypical variant, who underwent ophthalmological examination with best corrected visual acuity (BCVA), optical coherence tomography (OCT), fundus autofluorescence (FAF), electroretinography (ERG), visual evoked potentials (VEP) and video-oculography. RESULTS Seven patients with a mean BCVA of 0.12±0.14 logMAR were included. Only two patients showed structural evidence of advanced retinopathy in OCT and FAF, and there were no cases of optic atrophy. ERG data, however, showed abnormal scotopic and/or photopic responses in all patients. VEP were normal in all three patients. Ocular fixation was markedly unstable (eg, increased rate of saccadic pulses) in the majority of patients (5). Additional mild ocular motor disturbances included low gain pursuit (2), hypermetric saccades (1), low gain optokinetic (2) and caloric and rotatory responses (3). CONCLUSION Functional retinal changes associated with marked instability of ocular fixation should be included in the clinical spectrum of NBIA, particularly in the atypical form.
Collapse
Affiliation(s)
- Joana Jesus-Ribeiro
- Department of Neurology, Coimbra University Hospital Center, Coimbra, Portugal
| | - Cláudia Farinha
- Department of Ophthalmology, Coimbra University Hospital Center, Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Margarida Amorim
- Department of Otorhinolaryngology, Coimbra University Hospital Center, Coimbra, Portugal
| | - Anabela Matos
- Department of Neurology, Coimbra University Hospital Center, Coimbra, Portugal.,Department of Neurophysiology, Coimbra University Hospital Center, Coimbra, Portugal
| | - Aldina Reis
- Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Lemos
- Department of Neurology, Coimbra University Hospital Center, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cristina Januário
- Department of Neurology, Coimbra University Hospital Center, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
24
|
Hogarth P, Kurian MA, Gregory A, Csányi B, Zagustin T, Kmiec T, Wood P, Klucken A, Scalise N, Sofia F, Klopstock T, Zorzi G, Nardocci N, Hayflick SJ. Consensus clinical management guideline for pantothenate kinase-associated neurodegeneration (PKAN). Mol Genet Metab 2017; 120:278-287. [PMID: 28034613 DOI: 10.1016/j.ymgme.2016.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Penelope Hogarth
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, USA; Department of Neurology, Oregon Health & Science University, Portland, USA
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Institute of Child Health, London, UK
| | - Allison Gregory
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, USA
| | - Barbara Csányi
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Institute of Child Health, London, UK
| | - Tamara Zagustin
- Department of Physiatry, Children's Healthcare of Atlanta, GA, USA
| | - Tomasz Kmiec
- Department of Child Neurology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | | | - Natale Scalise
- AISNAF - Associazione Italiana Sindromi Neurodegenerative Da Accumulo Di Ferro, Rossano, Italy
| | | | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Giovanna Zorzi
- Department of Pediatric Neuroscience, IRCCS Foundation Neurological Institute C. Besta, Milan, Italy
| | - Nardo Nardocci
- Department of Pediatric Neuroscience, IRCCS Foundation Neurological Institute C. Besta, Milan, Italy
| | - Susan J Hayflick
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, USA; Department of Neurology, Oregon Health & Science University, Portland, USA
| |
Collapse
|
25
|
Iodice A, Spagnoli C, Salerno GG, Frattini D, Bertani G, Bergonzini P, Pisani F, Fusco C. Infantile neuroaxonal dystrophy and PLA2G6-associated neurodegeneration: An update for the diagnosis. Brain Dev 2017; 39:93-100. [PMID: 27884548 DOI: 10.1016/j.braindev.2016.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022]
Abstract
Infantile neuroaxonal dystrophy is a rare neurodegenerative disorder characterized by infantile onset of rapid motor and cognitive regression and hypotonia evolving into spasticity. Recessively inherited mutations of the PLA2G6 gene are causative of infantile neuroaxonal dystrophy and other PLA2G6-associated neurodegeneration, which includes conditions known as atypical neuroaxonal dystrophy, Karak syndrome and early-onset dystonia-parkinsonism with cognitive impairment. Phenotypic spectrum continues to evolve and genotype-phenotype correlations are currently limited. Due to the overlapping phenotypes and heterogeneity of clinical findings characterization of the syndrome is not always achievable. We reviewed the most recent clinical and neuroradiological information in the way to make easier differential diagnosis with other degenerative disorders in the paediatric age. Recognizing subtle signs and symptoms is a fascinating challenge to drive towards better diagnostic and genetic investigations.
Collapse
Affiliation(s)
- Alessandro Iodice
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy.
| | - Carlotta Spagnoli
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy
| | | | - Daniele Frattini
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy
| | - Gianna Bertani
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy
| | - Patrizia Bergonzini
- Pediatric Neurology Unit, Department of Mother & Child, University Hospital of Modena, Italy
| | - Francesco Pisani
- Child Neuropsychiatry Unit, Neuroscience Department, University of Parma, Italy
| | - Carlo Fusco
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy
| |
Collapse
|
26
|
Abstract
Neurodegeneration with brain iron accumulation (NBIA) describes a heterogeneous group of inherited rare clinical and genetic entities. Clinical core symptoms comprise a combination of early-onset dystonia, pyramidal and extrapyramidal signs with ataxia, cognitive decline, behavioral abnormalities, and retinal and axonal neuropathy variably accompanying these core features. Increased nonphysiologic, nonaging-associated brain iron, most pronounced in the basal ganglia, is often termed the unifying characteristic of these clinically variable disorders, though occurrence and extent can be fluctuating or even absent. Neuropathologically, NBIA disorders usually are associated with widespread axonal spheroids and local iron accumulation in the basal ganglia. Postmortem, Lewy body, TDP-43, or tau pathology has been observed. Genetics have fostered ongoing progress in elucidating underlying pathophysiologic mechanisms of NBIA disorders. Ten associated genes have been established, with many more being suggested as new technologies and data emerge. Clinically, certain symptom combinations can suggest a specific genetic defect. Genetic tests, combined with postmortem neuropathology, usually make for the final disease confirmation. Despite these advances, treatment to date remains mainly symptomatic. This chapter reviews the established genetic defects leading to different NBIA subtypes, highlights phenotypic presentations to direct genetic testing, and briefly discusses the scarce available treatment options and upcoming challenges and future hopes of the field.
Collapse
Affiliation(s)
- Sarah Wiethoff
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom; Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany.
| | - Henry Houlden
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
27
|
Langwinska-Wosko E, Skowronska M, Kmiec T, Czlonkowska A. Retinal and optic nerve abnormalities in neurodegeneration associated with mutations in C19orf12 (MPAN). J Neurol Sci 2016; 370:237-240. [DOI: 10.1016/j.jns.2016.09.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/11/2016] [Accepted: 09/22/2016] [Indexed: 10/21/2022]
|
28
|
Optic Atrophy in a Patient With Atypical Pantothenate Kinase-Associated Neurodegeneration. J Neuroophthalmol 2016; 36:182-6. [DOI: 10.1097/wno.0000000000000335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Nassif D, Pereira JS, Spitz M, Capitão C, Faria A. Neurodegeneration with brain iron accumulation: A case report. Dement Neuropsychol 2016; 10:160-164. [PMID: 29213449 PMCID: PMC5642409 DOI: 10.1590/s1980-5764-2016dn1002014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pantothenate kinase-associated neurodegeneration (PKAN) is an autosomal recessive disorder caused by mutation in the PANK2 gene. It is characterized by abnormal brain iron accumulation, mainly in the globus pallidus. PKAN is included in a group of disorders known as neurodegeneration with brain iron accumulation (NBIA). We report a case of atypical PKAN with its most characteristic presentation, exhibiting marked psychiatric symptoms, speech disorder and focal dystonia. Brain MRI has great diagnostic importance in this group of disorders and, in this case, disclosed the eye-of-the-tiger sign. Genetic testing confirmed the diagnosis.
Collapse
Affiliation(s)
- Daniel Nassif
- Movement Disorders Sector, Neurology Service, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro RJ, Brazil
| | - João Santos Pereira
- Movement Disorders Sector, Neurology Service, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro RJ, Brazil.,Post Graduate Stricto Sensu Program in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro RJ, Brazil
| | - Mariana Spitz
- Movement Disorders Sector, Neurology Service, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro RJ, Brazil.,Post Graduate Stricto Sensu Program in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro RJ, Brazil
| | - Cláudia Capitão
- Movement Disorders Sector, Neurology Service, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro RJ, Brazil
| | - Alessandra Faria
- Movement Disorders Sector, Neurology Service, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro RJ, Brazil
| |
Collapse
|
30
|
Hogarth P. Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord 2015; 8:1-13. [PMID: 25614780 PMCID: PMC4298713 DOI: 10.14802/jmd.14034] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/14/2022] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) encompasses a group of inherited disorders that share the clinical features of an extrapyramidal movement disorder accompanied by varying degrees of intellectual disability and abnormal iron deposition in the basal ganglia. The genetic basis of ten forms of NBIA is now known. The clinical features of NBIA range from rapid global neurodevelopmental regression in infancy to mild parkinsonism with minimal cognitive impairment in adulthood, with wide variation seen between and within the specific NBIA sub-type. This review describes the clinical presentations, imaging findings, pathologic features, and treatment considerations for this heterogeneous group of disorders.
Collapse
Affiliation(s)
- Penelope Hogarth
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
31
|
Amaral LLF, Gaddikeri S, Chapman PR, Roy R, Gaddikeri RS, Marussi VH, Bag AK. Neurodegeneration with Brain Iron Accumulation: Clinicoradiological Approach to Diagnosis. J Neuroimaging 2014; 25:539-51. [PMID: 25545045 DOI: 10.1111/jon.12195] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/30/2014] [Accepted: 08/16/2014] [Indexed: 11/28/2022] Open
Abstract
Discovery of genetic abnormalities associated with neurodegeneration with brain iron accumulation (NBIA) has led to use of a genetic-based NBIA classification schema. Most NBIA subtypes demonstrate characteristic imaging abnormalities. While clinical diagnosis of NBIA is difficult, analysis of both clinical findings and characteristic imaging abnormalities allows accurate diagnosis of most of the NBIA subtypes. This article reviews recent updates in the genetic, clinical, and imaging findings of NBIA subtypes and provides a practical step-by-step clinicoradiological algorithm toward clinical diagnosis of different NBIA subtypes.
Collapse
Affiliation(s)
- Lázaro L F Amaral
- Department of Radiology, Medimagem - Hospital da Beneficência Portuguesa, São Paulo, Brazil.,Department of Radiology, Santa Casa de Misericordia of Sao Paulo, Brazil
| | | | - Philip R Chapman
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Rasmoni Roy
- Department of Neurology, University of Tennessee Health Sciences Center, Memphis, TN
| | | | - Victor Hugo Marussi
- Department of Radiology, Medimagem - Hospital da Beneficência Portuguesa, São Paulo, Brazil
| | - Asim K Bag
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
32
|
Update on neurodegeneration with brain iron accumulation. Neurol Neurochir Pol 2014; 48:206-13. [PMID: 24981186 DOI: 10.1016/j.pjnns.2014.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/06/2014] [Indexed: 11/22/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) defines a heterogeneous group of progressive neurodegenerative disorders characterized by excessive iron accumulation in the brain, particularly affecting the basal ganglia. In the recent years considerable development in the field of neurodegenerative disorders has been observed. Novel genetic methods such as autozygosity mapping have recently identified several genetic causes of NBIA. Our knowledge about clinical spectrum has broadened and we are now more aware of an overlap between the different NBIA disorders as well as with other diseases. Neuropathologic point of view has also been changed. It has been postulated that pantothenate kinase-associated neurodegeneration (PKAN) is not synucleinopathy. However, exact pathologic mechanism of NBIA remains unknown. The situation implicates a development of new therapies, which still are symptomatic and often unsatisfactory. In the present review, some of the main clinical presentations, investigational findings and therapeutic results of the different NBIA disorders will be presented.
Collapse
|
33
|
Tanteles GA, Spanou-Aristidou E, Antoniou C, Christophidou-Anastasiadou V, Kleopa KA. Novel homozygous PANK2 mutation causing atypical pantothenate kinase-associated neurodegeneration (PKAN) in a Cypriot family. J Neurol Sci 2014; 340:233-6. [DOI: 10.1016/j.jns.2014.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/25/2014] [Accepted: 03/01/2014] [Indexed: 12/14/2022]
|
34
|
Khan AO, AlDrees A, Elmalik SA, Hassan HH, Koenig M, Stevanin G, Azzedine H, Salih MA. Ophthalmic features ofPLA2G6-related paediatric neurodegeneration with brain iron accumulation. Br J Ophthalmol 2014; 98:889-93. [DOI: 10.1136/bjophthalmol-2013-304527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Williams S, Gregory A, Hogarth P, Hayflick SJ, Gillingham MB. Metabolism and energy requirements in pantothenate kinase-associated neurodegeneration. Mol Genet Metab 2013; 110:336-41. [PMID: 23891537 PMCID: PMC6059611 DOI: 10.1016/j.ymgme.2013.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 01/04/2023]
Abstract
Pantothenate kinase-associated neurodegeneration (PKAN) is an autosomal recessive disorder of coenzyme A homeostasis caused by defects in the mitochondrial pantothenate kinase 2. Patients with PKAN present with a progressive neurological decline and brain iron accumulation, but general energy balance and nutrition status among these patients has not been reported. To determine if defects in PANK2 change basic energy metabolism in humans, we measured body composition, resting energy expenditure, dietary intake, and blood metabolites among 16 subjects with PKAN. Subjects had a broad range of disease severity but, despite the essential role of coenzyme A in energy metabolism, the subjects had remarkably normal body composition, dietary intake and energy metabolism compared to population normal values. We did observe increased resting energy expenditure associated with disease severity, suggesting increased energy needs later in the disease process, and elevated urinary mevalonate levels.
Collapse
Affiliation(s)
- Sarah Williams
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
| | - Allison Gregory
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
| | - Penelope Hogarth
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
- Department of Neurology, Oregon Health & Science University, Portland, USA
| | - Susan J. Hayflick
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
- Department of Neurology, Oregon Health & Science University, Portland, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, USA
- Corresponding author at: Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA. Fax: +1 503 494 6886. (S.J. Hayflick)
| | - Melanie B. Gillingham
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
| |
Collapse
|
36
|
Schneider SA, Zorzi G, Nardocci N. Pathophysiology and treatment of neurodegeneration with brain iron accumulation in the pediatric population. Curr Treat Options Neurol 2013; 15:652-67. [PMID: 23888388 DOI: 10.1007/s11940-013-0254-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OPINION STATEMENT Syndromes of neurodegeneration with brain iron accumulation (NBIA) are characterized by increased iron deposition in the basal ganglia leading to complex progressive neurological symptoms. Several genetically distinct subforms have been recognized. In addition to pantothenate kinase-associated neurodegeneration (PKAN, NBIA1) and PLA2G6-associated neurodegeneration (PLAN, NBIA2), further genetic causes continue to be identified. Most of these present in childhood and are inherited following an autosomal recessive trait. However, the clinical and pathological spectrum has broadened and new age-dependent presentations have been described and there is overlap between the different NBIA disorders and with other diseases (such as spastic paraplegias, leukodystrophies and neuronal ceroid lipofuscinosis). Thus, additional clinical information (e.g., radiological findings such as precise patters of deposition of iron or co-occurrence of white matter lesions) may be useful when prioritizing genetic screening. Neuropathological work-up demonstrated variable involvement of iron deposition, but also Lewy bodies, neurofibrillary tangles and spheroid bodies. Treatment remains symptomatic. Here we review characteristic features of NBIA syndromes with a focus on pediatric cases.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology, University of Kiel, Arnold Heller Str 3, 24105, Kiel, Germany,
| | | | | |
Collapse
|
37
|
Pandey V, Varun P, Turm H, Hagit T, Bekenstein U, Uriya B, Shifman S, Sagiv S, Kadener S, Sebastian K. A new in vivo model of pantothenate kinase-associated neurodegeneration reveals a surprising role for transcriptional regulation in pathogenesis. Front Cell Neurosci 2013; 7:146. [PMID: 24058333 PMCID: PMC3766815 DOI: 10.3389/fncel.2013.00146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 08/21/2013] [Indexed: 01/24/2023] Open
Abstract
Pantothenate Kinase-Associated Neurodegeneration (PKAN) is a neurodegenerative disorder with a poorly understood molecular mechanism. It is caused by mutations in Pantothenate Kinase, the first enzyme in the Coenzyme A (CoA) biosynthetic pathway. Here, we developed a Drosophila model of PKAN (tim-fbl flies) that allows us to continuously monitor the modeled disease in the brain. In tim-fbl flies, downregulation of fumble, the Drosophila PanK homologue in the cells containing a circadian clock results in characteristic features of PKAN such as developmental lethality, hypersensitivity to oxidative stress, and diminished life span. Despite quasi-normal circadian transcriptional rhythms, tim-fbl flies display brain-specific aberrant circadian locomotor rhythms, and a unique transcriptional signature. Comparison with expression data from flies exposed to paraquat demonstrates that, as previously suggested, pathways others than oxidative stress are affected by PANK downregulation. Surprisingly we found a significant decrease in the expression of key components of the photoreceptor recycling pathways, which could lead to retinal degeneration, a hallmark of PKAN. Importantly, these defects are not accompanied by changes in structural components in eye genes suggesting that changes in gene expression in the eye precede and may cause the retinal degeneration. Indeed tim-fbl flies have diminished response to light transitions, and their altered day/night patterns of activity demonstrates defects in light perception. This suggest that retinal lesions are not solely due to oxidative stress and demonstrates a role for the transcriptional response to CoA deficiency underlying the defects observed in dPanK deficient flies. Moreover, in the present study we developed a new fly model that can be applied to other diseases and that allows the assessment of neurodegeneration in the brains of living flies.
Collapse
Affiliation(s)
- Varun Pandey
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Pandey Varun
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hayflick SJ, Kruer MC, Gregory A, Haack TB, Kurian MA, Houlden HH, Anderson J, Boddaert N, Sanford L, Harik SI, Dandu VH, Nardocci N, Zorzi G, Dunaway T, Tarnopolsky M, Skinner S, Holden KR, Frucht S, Hanspal E, Schrander-Stumpel C, Mignot C, Héron D, Saunders DE, Kaminska M, Lin JP, Lascelles K, Cuno SM, Meyer E, Garavaglia B, Bhatia K, de Silva R, Crisp S, Lunt P, Carey M, Hardy J, Meitinger T, Prokisch H, Hogarth P. β-Propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain 2013; 136:1708-17. [PMID: 23687123 PMCID: PMC3673459 DOI: 10.1093/brain/awt095] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/22/2013] [Accepted: 02/24/2013] [Indexed: 11/14/2022] Open
Abstract
Neurodegenerative disorders with high iron in the basal ganglia encompass an expanding collection of single gene disorders collectively known as neurodegeneration with brain iron accumulation. These disorders can largely be distinguished from one another by their associated clinical and neuroimaging features. The aim of this study was to define the phenotype that is associated with mutations in WDR45, a new causative gene for neurodegeneration with brain iron accumulation located on the X chromosome. The study subjects consisted of WDR45 mutation-positive individuals identified after screening a large international cohort of patients with idiopathic neurodegeneration with brain iron accumulation. Their records were reviewed, including longitudinal clinical, laboratory and imaging data. Twenty-three mutation-positive subjects were identified (20 females). The natural history of their disease was remarkably uniform: global developmental delay in childhood and further regression in early adulthood with progressive dystonia, parkinsonism and dementia. Common early comorbidities included seizures, spasticity and disordered sleep. The symptoms of parkinsonism improved with l-DOPA; however, nearly all patients experienced early motor fluctuations that quickly progressed to disabling dyskinesias, warranting discontinuation of l-DOPA. Brain magnetic resonance imaging showed iron in the substantia nigra and globus pallidus, with a 'halo' of T1 hyperintense signal in the substantia nigra. All patients harboured de novo mutations in WDR45, encoding a beta-propeller protein postulated to play a role in autophagy. Beta-propeller protein-associated neurodegeneration, the only X-linked disorder of neurodegeneration with brain iron accumulation, is associated with de novo mutations in WDR45 and is recognizable by a unique combination of clinical, natural history and neuroimaging features.
Collapse
Affiliation(s)
- Susan J Hayflick
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jo SH, Cheon CK, Kim YU, Jung JH. A Case of Retinal Pigmentary Degeneration in PKAN. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2013. [DOI: 10.3341/jkos.2013.54.3.529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Seong Ho Jo
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Chong Kun Cheon
- Department of Pediatrics, Division of Genetics and Metabolism, Pusan National University Children's Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Yong U Kim
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Jae Ho Jung
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
40
|
Kurian MA, Hayflick SJ. Pantothenate kinase-associated neurodegeneration (PKAN) and PLA2G6-associated neurodegeneration (PLAN): review of two major neurodegeneration with brain iron accumulation (NBIA) phenotypes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 110:49-71. [PMID: 24209433 PMCID: PMC6059649 DOI: 10.1016/b978-0-12-410502-7.00003-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) comprises a heterogeneous group of disorders characterized by the presence of radiologically discernible high brain iron, particularly within the basal ganglia. A number of childhood NBIA syndromes are described, of which two of the major subtypes are pantothenate kinase-associated neurodegeneration (PKAN) and PLA2G6-associated neurodegeneration (PLAN). PKAN and PLAN are autosomal recessive NBIA disorders due to mutations in PANK2 and PLA2G6, respectively. Presentation is usually in childhood, with features of neurological regression and motor dysfunction. In both PKAN and PLAN, a number of classical and atypical phenotypes are reported. In this chapter, we describe the clinical, radiological, and genetic features of these two disorders and also discuss the pathophysiological mechanisms postulated to play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Manju A Kurian
- Neurosciences Unit, UCL-Institute of Child Health, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital, London, United Kingdom.
| | | |
Collapse
|
41
|
Schneider SA, Dusek P, Hardy J, Westenberger A, Jankovic J, Bhatia KP. Genetics and Pathophysiology of Neurodegeneration with Brain Iron Accumulation (NBIA). Curr Neuropharmacol 2013; 11:59-79. [PMID: 23814539 PMCID: PMC3580793 DOI: 10.2174/157015913804999469] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/06/2012] [Accepted: 07/03/2012] [Indexed: 01/19/2023] Open
Abstract
Our understanding of the syndromes of Neurodegeneration with Brain Iron Accumulation (NBIA) continues to grow considerably. In addition to the core syndromes of pantothenate kinase-associated neurodegeneration (PKAN, NBIA1) and PLA2G6-associated neurodegeneration (PLAN, NBIA2), several other genetic causes have been identified (including FA2H, C19orf12, ATP13A2, CP and FTL). In parallel, the clinical and pathological spectrum has broadened and new age-dependent presentations are being described. There is also growing recognition of overlap between the different NBIA disorders and other diseases including spastic paraplegias, leukodystrophies and neuronal ceroid lipofuscinosis which makes a diagnosis solely based on clinical findings challenging. Autopsy examination of genetically-confirmed cases demonstrates Lewy bodies, neurofibrillary tangles, and other hallmarks of apparently distinct neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease. Until we disentangle the various NBIA genes and their related pathways and move towards pathogenesis-targeted therapies, the treatment remains symptomatic. Our aim here is to provide an overview of historical developments of research into iron metabolism and its relevance in neurodegenerative disorders. We then focus on clinical features and investigational findings in NBIA and summarize therapeutic results reviewing reports of iron chelation therapy and deep brain stimulation. We also discuss genetic and molecular underpinnings of the NBIA syndromes.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology; University of Kiel, 24105 Kiel, Germany
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London WC1N 3BG, UK
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, UCL, Queen Square, London WC1N 3BG, England
| | - Ana Westenberger
- Schilling Section of Clinical and Molecular Neurogenetics at the Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
42
|
Hadziahmetovic M, Kumar U, Song Y, Grieco S, Song D, Li Y, Tobias JW, Dunaief JL. Microarray analysis of murine retinal light damage reveals changes in iron regulatory, complement, and antioxidant genes in the neurosensory retina and isolated RPE. Invest Ophthalmol Vis Sci 2012; 53:5231-41. [PMID: 22736611 DOI: 10.1167/iovs.12-10204] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate light damage-induced transcript changes within neurosensory retina (NSR) and isolated retinal pigment epithelium (RPE). Similar studies have been conducted previously, but were usually limited to the NSR and only a portion of the transcriptome. Herein most of the transcriptome, not just in the NSR but also in isolated RPE, was queried. METHODS Mice were exposed to 10,000 lux cool white fluorescent light for 18 hours and euthanized 4 hours after photic injury. NSR and isolated RPE were collected, and RNA was isolated. DNA microarray hybridization was conducted as described in the Affymetrix GeneChip Expression Analysis Technical Manual. Microarray analysis was performed using probe intensity data derived from the Mouse Gene 1.0 ST Array. For the genes of interest, confirmation of gene expression was done using quantitative real-time PCR. Immunofluorescence assessed protein levels and localization. RESULTS Numerous iron regulatory genes were significantly changed in the light-exposed NSR and RPE. Several of these gene expression changes favored an iron-overloaded state. For example, the transferrin receptor was upregulated in both light-exposed NSR and RPE. Consistent with this, there was stronger transferrin receptor immunoreactivity in the light-exposed retinas. Significant changes in gene expression following light damage were also observed in oxidative stress and complement system genes. CONCLUSIONS The concept of a photooxidative stress-induced vicious cycle of increased iron uptake leading to further oxidative stress was introduced.
Collapse
Affiliation(s)
- Majda Hadziahmetovic
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Salsano E, Umeh C, Rufa A, Pareyson D, Zee DS. Vertical supranuclear gaze palsy in Niemann-Pick type C disease. Neurol Sci 2012; 33:1225-32. [PMID: 22810120 DOI: 10.1007/s10072-012-1155-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/03/2012] [Indexed: 11/28/2022]
Abstract
Vertical supranuclear gaze palsy (VSGP) is a key clinical feature in patients with Niemann-Pick type C disease (NP-C), a rare, autosomal recessive, neuro-visceral disorder caused by mutations in either the NPC1 or NPC2 gene. VSGP is present in approximately 65 % of the cases and is, with gelastic cataplexy, an important risk indicator for NP-C. VSGP in NP-C is characterized by a paralysis of vertical saccades, especially downward, with the slow vertical eye movement systems (smooth pursuit and the vestibulo-ocular reflex) spared in the early phase of the disease. This dissociation is caused by a selective vulnerability of the neurons in the rostral interstitial nuclei of the medial longitudinal fasciculus (riMLF) in NP-C. Here we discuss VSGP in NP-C and how clinicians can best elicit this sign.
Collapse
Affiliation(s)
- Ettore Salsano
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milano, Italy.
| | | | | | | | | |
Collapse
|
44
|
Prohaska R, Sibon OC, Rudnicki DD, Danek A, Hayflick SJ, Verhaag EM, Jan J V, Margolis RL, Walker RH. Brain, blood, and iron: perspectives on the roles of erythrocytes and iron in neurodegeneration. Neurobiol Dis 2012; 46:607-24. [PMID: 22426390 PMCID: PMC3352961 DOI: 10.1016/j.nbd.2012.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/17/2012] [Accepted: 03/01/2012] [Indexed: 12/20/2022] Open
Abstract
The terms "neuroacanthocytosis" (NA) and "neurodegeneration with brain iron accumulation" (NBIA) both refer to groups of genetically heterogeneous disorders, classified together due to similarities of their phenotypic or pathological findings. Even collectively, the disorders that comprise these sets are exceedingly rare and challenging to study. The NBIA disorders are defined by their appearance on brain magnetic resonance imaging, with iron deposition in the basal ganglia. Clinical features vary, but most include a movement disorder. New causative genes are being rapidly identified; however, the mechanisms by which mutations cause iron accumulation and neurodegeneration are not well understood. NA syndromes are also characterized by a progressive movement disorder, accompanied by cognitive and psychiatric features, resulting from mutations in a number of genes whose roles are also basically unknown. An overlapping feature of the two groups, NBIA and NA, is the occurrence of acanthocytes, spiky red cells with a poorly-understood membrane dysfunction. In this review we summarise recent developments in this field, specifically insights into cellular mechanisms and from animal models. Cell membrane research may shed light upon the significance of the erythrocyte abnormality, and upon possible connections between the two sets of disorders. Shared pathophysiologic mechanisms may lead to progress in the understanding of other types of neurodegeneration.
Collapse
Affiliation(s)
- Rainer Prohaska
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Ody C.M. Sibon
- Section of Radiation & Stress Cell Biology, Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Dobrila D. Rudnicki
- Department of Psychiatry, Division of Neurobiology, Laboratory of Genetic Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Susan J. Hayflick
- Departments of Molecular & Medical Genetics, Pediatrics and Neurology, Oregon Health & Science University, Portland OR USA
| | - Esther M. Verhaag
- Section of Radiation & Stress Cell Biology, Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Vonk Jan J
- Section of Radiation & Stress Cell Biology, Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Russell L. Margolis
- Department of Psychiatry, Division of Neurobiology, Laboratory of Genetic Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruth H. Walker
- Departments of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA and Mount Sinai School of Medicine, New York, NY USA
| |
Collapse
|
45
|
Schneider SA, Bhatia KP. Syndromes of neurodegeneration with brain iron accumulation. Semin Pediatr Neurol 2012; 19:57-66. [PMID: 22704258 DOI: 10.1016/j.spen.2012.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In parallel to recent developments of genetic techniques, understanding of the syndromes of neurodegeneration with brain iron accumulation has grown considerably. The acknowledged clinical spectrum continues to broaden, with age-dependent presentations being recognized. Postmortem brain examination of genetically confirmed cases has demonstrated Lewy bodies and/or tangles in some forms, bridging the gap to more common neurodegenerative disorders, including Parkinson disease. In this review, the major forms of neurodegeneration with brain iron accumulation (NBIA) are summarized, concentrating on clinical findings and molecular insights. In addition to pantothenate kinase-associated neurodegeneration (PKAN) and phospholipase A2-associated neurodegeneration (PLAN), fatty acid hydroxylase-associated neurodegeneration (FAHN) NBIA, mitochondrial protein-associated neurodegeneration, Kufor-Rakeb disease, aceruloplasminemia, neuroferritinopathy, and SENDA syndrome (static encephalopathy of childhood with neurodegeneration in adulthood) are discussed.
Collapse
Affiliation(s)
- Susanne A Schneider
- Schilling Section of Clinical and Molecular Neurogenetics, Department of Neurology, University of Lübeck, Lübeck, Germany.
| | | |
Collapse
|
46
|
Finno CJ, Aleman M, Ofri R, Hollingsworth SR, Madigan JE, Winfield L, Bannasch DL. Electrophysiological studies in American Quarter horses with neuroaxonal dystrophy. Vet Ophthalmol 2012; 15 Suppl 2:3-7. [DOI: 10.1111/j.1463-5224.2012.00997.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Schneider SA, Hardy J, Bhatia KP. Syndromes of neurodegeneration with brain iron accumulation (NBIA): An update on clinical presentations, histological and genetic underpinnings, and treatment considerations. Mov Disord 2011; 27:42-53. [DOI: 10.1002/mds.23971] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 11/07/2022] Open
|
48
|
Abstract
The condition originally called Hallervorden-Spatz syndrome is a collection of related disorders involving abnormal iron accumulation in the basal ganglia, usually manifesting with a movement disorder. To date, mutations in the following genes have been associated with neurodegeneration with brain iron accumulation (NBIA) phenotypes: PANK2, PLA2G6, FA2H, ATP13A2, C2orf37, CP, and FTL. This collection, now classified under the umbrella term NBIA, continues to evolve as new genes and associated phenotypes are recognized. As this body of information continues to grow, better approaches to diagnosis and treatment have become available. Continued investigations of the underlying pathogenesis of disease, with a focus on lipid, iron, and energy metabolism, will lead to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Allison Gregory
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Mailcode L103, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
49
|
García-Cazorla A, Ortez C, Pérez-Dueñas B, Serrano M, Pineda M, Campistol J, Fernández-Álvarez E. Hypokinetic-rigid syndrome in children and inborn errors of metabolism. Eur J Paediatr Neurol 2011; 15:295-302. [PMID: 21612960 DOI: 10.1016/j.ejpn.2011.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 11/24/2022]
Abstract
Hypokinetic-rigid syndrome (HRS) or "parkinsonism" is rare in children. From a clinical point of view it is characterised by a group of signs in which hypokinesia (decreased number of movements), bradykinesia (slowness of movements), rigidity and rest tremor are the fundamental traits. Nervous system infections, immunomediated encephalitis, hypoxia and some drugs have been described as acquired or secondary causes of HRS in the paediatric age. Inborn errors of metabolism (IEM) comprise and important group regarding genetic causes. Main diseases causing HRS in children are neurotransmitter (biogenic amines) defects, metal storage diseases, energy metabolism disorders and lysosomal diseases. In general, in IEM, the HRS is associated to other neurological signs such as dykinesias, pyramidal signs, and psychomotor delay, is very rare in the neonatal period, tends to be more frequent in advanced stages of progressive diseases, and may respond to specific therapies. In particular, l-dopa + carbidopa can be a very effective treatment in neurotransmitter defects, whereas other disorders such as Wilson disease and some particular lysosomal disorders have different therapeutic possibilities. Furthermore, other genetic conditions in dopa-responsive and non-responsive HRS should be also considered, especially in juvenile parkinsonism. Through this review, a practical orientation for paediatric neurologists concerning clinical clues, diagnostic procedure and treatment of metabolic HRS will be provided.
Collapse
Affiliation(s)
- A García-Cazorla
- Department of Neurology, Hospital Sant Joan de Déu, Passeig Sant Joan de Deu 2, 08950 Esplugues, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
Kruer MC, Hiken M, Gregory A, Malandrini A, Clark D, Hogarth P, Grafe M, Hayflick SJ, Woltjer RL. Novel histopathologic findings in molecularly-confirmed pantothenate kinase-associated neurodegeneration. Brain 2011; 134:947-58. [PMID: 21459825 DOI: 10.1093/brain/awr042] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pantothenate kinase-associated neurodegeneration is a form of neurodegeneration with brain iron accumulation, characterized by a progressive movement disorder and prominent iron deposition in the globus pallidus. Formerly referred to as Hallervorden-Spatz syndrome, the disorder was renamed pantothenate kinase-associated neurodegeneration after discovery of the causative gene, PANK2. Although the pathological features of clinically characterized Hallervorden-Spatz syndrome have been described, the literature is confounded by the historical use of this term for nearly all conditions with prominent basal ganglia iron accumulation and by the fact that this term encompasses a genetically heterogeneous group of disorders, now referred to as 'neurodegeneration with brain iron accumulation'. As a result, interpreting reports that precede molecular characterization of specific forms of neurodegeneration with brain iron accumulation is problematic. In the present studies, we describe neuropathological findings in six cases of molecularly confirmed pantothenate kinase-associated neurodegeneration. We identify prominent ubiquinated deposits in pantothenate kinase-associated neurodegeneration. We also characterize two distinct origins of spheroid bodies and delineate histological features of iron deposition. In so doing, we characterize fundamental features of the disease and redefine its nosological relationship to other neurodegenerative disorders.
Collapse
Affiliation(s)
- Michael C Kruer
- Division of Developmental Paediatrics, Child Development and Rehabilitation Centre, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | |
Collapse
|