1
|
Forte G, Battagliola ET, Malvasi M, Ruberti N, Daniele P, Mantovani A, Bocca B, Pacella E. Trace Element Concentration in the Blood and Aqueous Humor of Subjects with Eye Cataract. Biol Trace Elem Res 2025; 203:684-693. [PMID: 38687421 DOI: 10.1007/s12011-024-04207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Cataract, characterized by the opacification of the lens, is the leading cause of reversible blindness and visual impairment globally. The study aims to investigate the role of trace elements such as Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn in the development and severity of cataract. Elements were quantified by inductively coupled plasma mass spectrometry in blood and aqueous humor of 32 cataract cases and 27 controls living in the Latium region, Italy. The association between element concentration in blood and aqueous humor and cataract severity, gender, and age of subjects were also assessed. Results showed Cr levels significantly elevated in both blood and aqueous humor of cataract cases, with concentrations that increased with cataract severity. In addition, blood Pb levels were significantly higher in older cases and positively correlated with the age of cataract cases, while blood Co and Cu levels negatively correlated with cataract severity, suggesting changes in the levels of these elements. In conclusion, this study provides evidence of the involvement of specific elements in cataract development and severity, and the findings highlighted important avenues for future research. Understanding the biological mechanism underlying element-induced cataract may contribute to preventing cataractogenesis and providing targeted interventions.
Collapse
Affiliation(s)
- Giovanni Forte
- Department of Environment and Health, Italian National Institute of Health, 00161, Rome, Italy
| | | | - Mariaelena Malvasi
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | - Niccolò Ruberti
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | - Pierluigi Daniele
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | | | - Beatrice Bocca
- Department of Environment and Health, Italian National Institute of Health, 00161, Rome, Italy
| | - Elena Pacella
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy.
| |
Collapse
|
2
|
Choudhari JK, Yadav H, Chouhan U. TraceEyeDisease: a web-based database for investigating trace elements and their imbalances in eye diseases. BMC Res Notes 2024; 17:334. [PMID: 39533428 PMCID: PMC11556128 DOI: 10.1186/s13104-024-06981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Eye diseases remain a significant global health concern, with trace elements crucial in maintaining ocular health and preventing ocular disorders. In ocular health, trace elements have been recognized as critical factors influencing the development and progression of multiple eye diseases. In this study, we conducted a thorough literature search through PubMed to acquire data concerning different eye diseases associated with trace elements. These diseases are essential in trace element imbalances or deficiencies in their progression. Our approach included a meticulous compilation of information from various databases, systematically integrated into a carefully curated database. In total, we identified 178 distinct genes that encode proteins linked to fourteen trace elements in this comprehensive list. A web-based database designed to formulate evidence-based hypotheses regarding the impact of trace element deficiency and imbalance on eye diseases was presented using Shiny R. This study underscores the vital role of trace elements in preserving ocular health. The Shiny R application facilitates subsequent investigations, fostering enhanced insights into public health, clinical practices, and eye disease research. The URL of TraceEyeDiseas is https://tredis.shinyapps.io/TraceEyeDisease/ .
Collapse
Affiliation(s)
| | - Hritik Yadav
- Govt. V.Y.T. Post Graduate Autonomous College, Durg Chhattisgarh, India
| | - Usha Chouhan
- Maulana Azad National Institute of Technology, Bhopal, India
| |
Collapse
|
3
|
Brodzka S, Baszyński J, Rektor K, Hołderna-Bona K, Stanek E, Kurhaluk N, Tkaczenko H, Malukiewicz G, Woźniak A, Kamiński P. Immunogenetic and Environmental Factors in Age-Related Macular Disease. Int J Mol Sci 2024; 25:6567. [PMID: 38928273 PMCID: PMC11203563 DOI: 10.3390/ijms25126567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is a chronic disease, which often develops in older people, but this is not the rule. AMD pathogenesis changes include the anatomical and functional complex. As a result of damage, it occurs, in the retina and macula, among other areas. These changes may lead to partial or total loss of vision. This disease can occur in two clinical forms, i.e., dry (progression is slowly and gradually) and exudative (wet, progression is acute and severe), which usually started as dry form. A coexistence of both forms is possible. AMD etiology is not fully understood. Extensive genetic studies have shown that this disease is multifactorial and that genetic determinants, along with environmental and metabolic-functional factors, are important risk factors. This article reviews the impact of heavy metals, macro- and microelements, and genetic factors on the development of AMD. We present the current state of knowledge about the influence of environmental factors and genetic determinants on the progression of AMD in the confrontation with our own research conducted on the Polish population from Kuyavian-Pomeranian and Lubusz Regions. Our research is concentrated on showing how polluted environments of large agglomerations affects the development of AMD. In addition to confirming heavy metal accumulation, the growth of risk of acute phase factors and polymorphism in the genetic material in AMD development, it will also help in the detection of new markers of this disease. This will lead to a better understanding of the etiology of AMD and will help to establish prevention and early treatment.
Collapse
Affiliation(s)
- Sylwia Brodzka
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| | - Jędrzej Baszyński
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Katarzyna Rektor
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| | - Karolina Hołderna-Bona
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Emilia Stanek
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (N.K.); (H.T.)
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (N.K.); (H.T.)
| | - Grażyna Malukiewicz
- Department of Eye Diseases, University Hospital No. 1, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland;
| | - Piotr Kamiński
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| |
Collapse
|
4
|
Cirovic A, Cirovic A, Yimthiang S, Vesey DA, Satarug S. Modulation of Adverse Health Effects of Environmental Cadmium Exposure by Zinc and Its Transporters. Biomolecules 2024; 14:650. [PMID: 38927054 PMCID: PMC11202194 DOI: 10.3390/biom14060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Zinc (Zn) is the second most abundant metal in the human body and is essential for the function of 10% of all proteins. As metals cannot be synthesized or degraded, they must be assimilated from the diet by specialized transport proteins, which unfortunately also provide an entry route for the toxic metal pollutant cadmium (Cd). The intestinal absorption of Zn depends on the composition of food that is consumed, firstly the amount of Zn itself and then the quantity of other food constituents such as phytate, protein, and calcium (Ca). In cells, Zn is involved in the regulation of intermediary metabolism, gene expression, cell growth, differentiation, apoptosis, and antioxidant defense mechanisms. The cellular influx, efflux, subcellular compartmentalization, and trafficking of Zn are coordinated by transporter proteins, solute-linked carriers 30A and 39A (SLC30A and SLC39A), known as the ZnT and Zrt/Irt-like protein (ZIP). Because of its chemical similarity with Zn and Ca, Cd disrupts the physiological functions of both. The concurrent induction of a Zn efflux transporter ZnT1 (SLC30A1) and metallothionein by Cd disrupts the homeostasis and reduces the bioavailability of Zn. The present review highlights the increased mortality and the severity of various diseases among Cd-exposed persons and the roles of Zn and other transport proteins in the manifestation of Cd cytotoxicity. Special emphasis is given to Zn intake levels that may lower the risk of vision loss and bone fracture associated with Cd exposure. The difficult challenge of determining a permissible intake level of Cd is discussed in relation to the recommended dietary Zn intake levels.
Collapse
Affiliation(s)
- Ana Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.C.); (A.C.)
| | - Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.C.); (A.C.)
| | - Supabhorn Yimthiang
- Environmental Safety Technology and Health, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, QLD 4102, Australia;
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, QLD 4102, Australia;
| |
Collapse
|
5
|
Basyal D, Lee S, Kim HJ. Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration. Antioxidants (Basel) 2024; 13:568. [PMID: 38790673 PMCID: PMC11117704 DOI: 10.3390/antiox13050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related macular degeneration (AMD) severely affects central vision due to progressive macular degeneration and its staggering prevalence is rising globally, especially in the elderly population above 55 years. Increased oxidative stress with aging is considered an important contributor to AMD pathogenesis despite multifaceted risk factors including genetic predisposition and environmental agents. Wet AMD can be managed with routine intra-vitreal injection of angiogenesis inhibitors, but no satisfactory medicine has been approved for the successful management of the dry form. The toxic carbonyls due to photo-oxidative degradation of accumulated bisretinoids within lysosomes initiate a series of events including protein adduct formation, impaired autophagy flux, complement activation, and chronic inflammation, which is implicated in dry AMD. Therapy based on antioxidants has been extensively studied for its promising effect in reducing the impact of oxidative stress. This paper reviews the dry AMD pathogenesis, delineates the effectiveness of dietary and nutrition supplements in clinical studies, and explores pre-clinical studies of antioxidant molecules, extracts, and formulations with their mechanistic insights.
Collapse
Affiliation(s)
| | | | - Hye Jin Kim
- College of Pharmacy, Keimyung University, Dauge 42601, Republic of Korea
| |
Collapse
|
6
|
Jacaruso L. Insights into the nutritional prevention of macular degeneration based on a comparative topic modeling approach. PeerJ Comput Sci 2024; 10:e1940. [PMID: 38660183 PMCID: PMC11042009 DOI: 10.7717/peerj-cs.1940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 04/26/2024]
Abstract
Topic modeling and text mining are subsets of natural language processing (NLP) with relevance for conducting meta-analysis (MA) and systematic review (SR). For evidence synthesis, the above NLP methods are conventionally used for topic-specific literature searches or extracting values from reports to automate essential phases of SR and MA. Instead, this work proposes a comparative topic modeling approach to analyze reports of contradictory results on the same general research question. Specifically, the objective is to identify topics exhibiting distinct associations with significant results for an outcome of interest by ranking them according to their proportional occurrence in (and consistency of distribution across) reports of significant effects. Macular degeneration (MD) is a disease that affects millions of people annually, causing vision loss. Augmenting evidence synthesis to provide insight into MD prevention is therefore of central interest in this article. The proposed method was tested on broad-scope studies addressing whether supplemental nutritional compounds significantly benefit macular degeneration. Six compounds were identified as having a particular association with reports of significant results for benefiting MD. Four of these were further supported in terms of effectiveness upon conducting a follow-up literature search for validation (omega-3 fatty acids, copper, zeaxanthin, and nitrates). The two not supported by the follow-up literature search (niacin and molybdenum) also had scores in the lowest range under the proposed scoring system. Results therefore suggest that the proposed method's score for a given topic may be a viable proxy for its degree of association with the outcome of interest, and can be helpful in the systematic search for potentially causal relationships. Further, the compounds identified by the proposed method were not simultaneously captured as salient topics by state-of-the-art topic models that leverage document and word embeddings (Top2Vec) and transformer models (BERTopic). These results underpin the proposed method's potential to add specificity in understanding effects from broad-scope reports, elucidate topics of interest for future research, and guide evidence synthesis in a scalable way. All of this is accomplished while yielding valuable and actionable insights into the prevention of MD.
Collapse
Affiliation(s)
- Lucas Jacaruso
- University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
7
|
Rusciano D, Bagnoli P. Pharmacotherapy and Nutritional Supplements for Neovascular Eye Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1334. [PMID: 37512145 PMCID: PMC10383223 DOI: 10.3390/medicina59071334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In this review, we aim to provide an overview of the recent findings about the treatment of neovascular retinal diseases. The use of conventional drugs and nutraceuticals endowed with antioxidant and anti-inflammatory properties that may support conventional therapies will be considered, with the final aim of achieving risk reduction (prevention) and outcome improvement (cooperation between treatments) of such sight-threatening proliferative retinopathies. For this purpose, we consider a medicinal product one that contains well-defined compound(s) with proven pharmacological and therapeutic effects, usually given for the treatment of full-blown diseases. Rarely are prescription drugs given for preventive purposes. A dietary supplement refers to a compound (often an extract or a mixture) used in the prevention or co-adjuvant treatment of a given pathology. However, it must be kept in mind that drug-supplement interactions may exist and might affect the efficacy of certain drug treatments. Moreover, the distinction between medicinal products and dietary supplements is not always straightforward. For instance, melatonin is formulated as a medicinal product for the treatment of sleep and behavioral problems; at low doses (usually below 1 mg), it is considered a nutraceutical, while at higher doses, it is sold as a psychotropic drug. Despite their lower status with respect to drugs, increasing evidence supports the notion of the beneficial effects of dietary supplements on proliferative retinopathies, a major cause of vision loss in the elderly. Therefore, we believe that, on a patient-by-patient basis, the administration of nutraceuticals, either alone or in association, could benefit many patients, delaying the progression of their disease and likely improving the efficacy of pharmaceutical drugs.
Collapse
Affiliation(s)
| | - Paola Bagnoli
- Department of Biology, University of Pisa, 56123 Pisa, Italy
| |
Collapse
|
8
|
Rondanelli M, Gasparri C, Riva A, Petrangolini G, Barrile GC, Cavioni A, Razza C, Tartara A, Perna S. Diet and ideal food pyramid to prevent or support the treatment of diabetic retinopathy, age-related macular degeneration, and cataracts. Front Med (Lausanne) 2023; 10:1168560. [PMID: 37324128 PMCID: PMC10265999 DOI: 10.3389/fmed.2023.1168560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Many eye diseases, such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and cataracts are preventable and treatable with lifestyle. The objective of this review is to assess the most recent research on the ideal dietary approach to prevent or support the treatment of DR, AMD, and cataracts, as well as to construct a food pyramid that makes it simple for people who are at risk of developing these pathologies to decide what to eat. The food pyramid presented here proposes what should be consumed every day: 3 portions of low glycemic index (GI) grains (for fiber and zinc content), 5 portions (each portion: ≥200 g/day) of fruits and vegetables (spinach, broccoli, zucchini cooked, green leafy vegetables, orange, kiwi, grapefruit for folic acid, vitamin C, and lutein/zeaxanthin content, at least ≥42 μg/day, are to be preferred), extra virgin olive (EVO) oil (almost 20 mg/day for vitamin E and polyphenols content), nuts or oil seeds (20-30 g/day, for zinc content, at least ≥15.8 mg/day); weekly: fish (4 portions, for omega-3 content and eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) 0.35-1.4 g/day), white meat (3 portions for vitamin B12 content), legumes (2 portions for vegetal proteins), eggs (2 portions for lutein/zeaxanthin content), light cheeses (2 portions for vitamin B6 content), and almost 3-4 times/week microgreen and spices (saffron and curcumin). At the top of the pyramid, there are two pennants: one green, which indicates the need for personalized supplementation (if daily requirements cannot be met through diet, omega-3, and L-methylfolate supplementation), and one red, which indicates that certain foods are prohibited (salt and sugar). Finally, 3-4 times per week, 30-40 min of aerobic and resistance exercises are required.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
- Unit of Human and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | | | | | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | - Alice Tartara
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Zallaq, Bahrain
| |
Collapse
|
9
|
Hosseinpour Mashkani SM, Bishop DP, Raoufi-Rad N, Adlard PA, Shimoni O, Golzan SM. Distribution of Copper, Iron, and Zinc in the Retina, Hippocampus, and Cortex of the Transgenic APP/PS1 Mouse Model of Alzheimer's Disease. Cells 2023; 12:cells12081144. [PMID: 37190053 DOI: 10.3390/cells12081144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
A mis-metabolism of transition metals (i.e., copper, iron, and zinc) in the brain has been recognised as a precursor event for aggregation of Amyloid-β plaques, a pathological hallmark of Alzheimer's disease (AD). However, imaging cerebral transition metals in vivo can be extremely challenging. As the retina is a known accessible extension of the central nervous system, we examined whether changes in the hippocampus and cortex metal load are also mirrored in the retina. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to visualise and quantify the anatomical distribution and load of Cu, Fe, and Zn in the hippocampus, cortex, and retina of 9-month-old Amyloid Precursor Protein/Presenilin 1 (APP/PS1, n = 10) and Wild Type (WT, n = 10) mice. Our results show a similar metal load trend between the retina and the brain, with the WT mice displaying significantly higher concentrations of Cu, Fe, and Zn in the hippocampus (p < 0.05, p < 0.0001, p < 0.01), cortex (p < 0.05, p = 0.18, p < 0.0001) and the retina (p < 0.001, p = 0.01, p < 0.01) compared with the APP/PS1 mice. Our findings demonstrate that dysfunction of the cerebral transition metals in AD is also extended to the retina. This could lay the groundwork for future studies on the assessment of transition metal load in the retina in the context of early AD.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseinpour Mashkani
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory (HyMaS), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - Newsha Raoufi-Rad
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Olga Shimoni
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - S Mojtaba Golzan
- Vision Science Group, Graduate School of Health (GSH), University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
10
|
Multiomic Mass Spectrometry Imaging to Advance Future Pathological Understanding of Ocular Disease. Metabolites 2022; 12:metabo12121239. [PMID: 36557277 PMCID: PMC9786289 DOI: 10.3390/metabo12121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Determining the locations of proteins within the eye thought to be involved in ocular pathogenesis is important to determine how best to target them for therapeutic benefits. However, immunohistochemistry is limited by the availability and specificity of antibodies. Additionally, the perceived role of both essential and non-essential metals within ocular tissue has been at the forefront of age-related macular degeneration (AMD) pathology for decades, yet even key metals such as copper and zinc have yet to have their roles deconvoluted. Here, mass spectrometry imaging (MSI) is employed to identify and spatially characterize both proteomic and metallomic species within ocular tissue to advance the application of a multiomic imaging methodology for the investigation of ocular diseases.
Collapse
|
11
|
Zinc transport from the endoplasmic reticulum to the cytoplasm via Zip7 is necessary for barrier dysfunction mediated by inflammatory signaling in RPE cells. PLoS One 2022; 17:e0271656. [PMID: 35901031 PMCID: PMC9333247 DOI: 10.1371/journal.pone.0271656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Inflammatory signaling induces barrier dysfunction in retinal-pigmented epithelium (RPE) cells and plays a role in the pathology of age-related macular degeneration (AMD). We studied the role of Zn flux from the endoplasmic reticulum (ER) to the cytoplasm via Zip7 during inflammatory signaling in RPE cells. In ARPE-19 cells, Zip7 inhibition reduced impedance loss, FITC-dextran permeability and cytokine induction caused by challenge with IL-1β/TNF-α. Zip7 inhibition in iPS-derived RPE cells challenged with TNF- α reduced barrier loss in TER assays. In ARPE-19 cells, a Zn ionophore restored cytokine induction and barrier loss in cells challenged with IL-1 β /TNF- α despite Zip7 inhibition. A cell permeable Zn chelator demonstrated that Zn is essential for IL-1 β /TNF- α signaling. ER stress caused by Zip7 inhibition in ARPE-19 cells was found to partially contribute to reducing barrier dysfunction caused by IL-1 β /TNF- α. Overall, it was shown that Zn flux through Zip7 from the ER to the cytoplasm plays a critical role in driving barrier dysfunction caused by inflammatory cytokines in RPE cells.
Collapse
|
12
|
Márquez García A, Salazar V, Lima Pérez L. Consequences of zinc deficiency on zinc localization, taurine transport, and zinc transporters in rat retina. Microsc Res Tech 2022; 85:3382-3390. [PMID: 35836361 DOI: 10.1002/jemt.24193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
The colocalization of taurine and zinc transporters (TAUT, ZnTs) has not been explored in retina. Our objective is to evaluate the effect of the intracellular zinc chelator N,N,N,N-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN) on zinc localization and colocalization TAUT and ZnT-1 (of plasma membrane), 3 (vesicular), and 7 (vesicular and golgi apparatus) in layers of retina by immunohistochemistry. To mark zinc, it was used cell-permeable fluorescent Zinquin ethyl ester. Specific first and secondary antibodies, conjugated with rhodamine or fluorescein-isothiocyanate were used to mark TAUT and ZnTs. The fluorescence results were reported as integrated optical density (IOD). Zinc was detected in all layers of the retina. The treatment with TPEN produced changes in the distribution of zinc in layers of retina less in the outer nuclear layer compared with the control. TAUT was detected in all layers of retina and TPEN chelator produced decrease of IOD in all layers of retina except in the photoreceptor compared with the control. ZnT 1, 3, and 7 were distributed in all retina layers, with more intensity in ganglion cell layer (GCL) and in the layers where there is synaptic connection. For all transporters, the treatment with TPEN produced significant decrease of IOD in layers of retina least in the inner nuclear layer for ZnT1, in the photoreceptor for ZnT3 and in the GCL and outer plexiform layer for ZnT7. The distribution of zinc, TAUT, and ZnTs in the layers of retina is indicative of the interaction of taurine and zinc for the function of the retina and normal operation of said layers. HIGHLIGHTS: Taurine and zinc are two molecules highly concentrated in the retina and with relevant functions in this structure. Maintaining zinc homeostasis in this tissue is necessary for the normal function of the taurine system in the retina. The study of the taurine transporter and the different zinc transporters in the retina (responsible for maintaining adequate levels of taurine and zinc) is relevant and novel, since it is indicative of the interactions between both molecules in this structure.
Collapse
Affiliation(s)
- Asarí Márquez García
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela.,Universidad de Granada-Junta de Andalucía de Genómica e investigación Oncológica, Granada, Spain
| | - Víctor Salazar
- Servicio de Microscopía de Luz, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela
| | - Lucimey Lima Pérez
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela
| |
Collapse
|
13
|
Shakya M, Holland A, Klein AR, Rees GN, Laird J, McCallum JC, Ryan CG, Silvester E. Biomolecular modifications in the sacfry of Mogurnda adspersa in response to copper stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106179. [PMID: 35576718 DOI: 10.1016/j.aquatox.2022.106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/29/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Copper (Cu) is one of the most harmful contaminants in fresh-water systems. Fish larvae such as sacfry are particularly vulnerable to metals such as copper (Cu) due to a less-developed excretory organ system and permeable skin that can absorb metals directly from the water. However, the sublethal effects of metals on this life stage are not well understood. This study assessed the sublethal toxicity of Cu on purple-spotted gudgeon sacfry (PSG, Mogurnda adspersa). For this purpose, 96 h Cu toxicity bioassays were performed and toxic effects of Cu on PSG were measured at different levels of biological organization, from the individual (loss of equilibrium, wet weight), to tissue (chemical changes in retinal tissue composition) and molecular responses (whole body amino acid (AA) profiles). The EC10 and EC50 (ECx: effect concentration that affected X% of test organisms) were found to be 12 (9 - 15) µg Cu L-1 and 22 (19 - 24) µg Cu L-1, respectively. Copper stress caused a decrease in total amino acid content and changed the AA profile of PSG compared to the controls. Proton-induced X-ray emission (PIXE) mapping techniques showed accumulation of Cu in the retinal tissues disturbing the distribution of other elements such as zinc, sulfur, phosphorus and potassium. Fourier-transform infrared (FTIR) microspectroscopy of control and Cu treated eye tissues revealed a change in protein secondary structure in retinal tissues in response to Cu accumulation, as well as decreased levels of the molecular retinal, consistent with the degradation of rhodopsin, a key protein in the visual sensory system. This is the first study to demonstrate the multi-level responses of PSG arising from exposure to environmentally realistic Cu concentrations and suggests that AA profiling can serve as a useful tool to assess the impacts of metals on fresh-water organisms.
Collapse
Affiliation(s)
- Manisha Shakya
- Centre for Freshwater Ecosystems, Department of Ecology, Environment and Evolution (DEEE), La Trobe University, Albury/Wodonga Campus, VIC, 3690, Australia.
| | - Aleicia Holland
- Centre for Freshwater Ecosystems, Department of Ecology, Environment and Evolution (DEEE), La Trobe University, Albury/Wodonga Campus, VIC, 3690, Australia
| | - Annaleise R Klein
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Gavin N Rees
- CSIRO Land and Water, and Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW, 2640, Australia
| | - Jamie Laird
- School of Chemistry, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jeffrey C McCallum
- School of Physics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Chris G Ryan
- Commonwealth Scientific and Industrial Research Organisation, Normanby Road, Clayton, VIC, Australia
| | - Ewen Silvester
- Centre for Freshwater Ecosystems, Department of Ecology, Environment and Evolution (DEEE), La Trobe University, Albury/Wodonga Campus, VIC, 3690, Australia
| |
Collapse
|
14
|
Valencia E, García M, Fernández-Vega B, Pereiro R, Lobo L, González-Iglesias H. Targeted Analysis of Tears Revealed Specific Altered Metal Homeostasis in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:10. [PMID: 35426907 PMCID: PMC9034717 DOI: 10.1167/iovs.63.4.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Specific altered metal homeostasis has been investigated in the tear film of age-related macular degeneration (AMD) patients considering that metal dyshomeostasis contributes to the production of free radicals, inflammation, and apoptosis and results in conformational changes of proteins. Methods A multitargeted approach based on spectrophotometry and mass spectrometry techniques has been implemented to the multiplexed quantitation of lactoferrin (LF), S100 calcium binding protein A6 (S100A6), metallothionein 1A (MT1A), complement factor H (CFH), clusterin (CLU), amyloid precursor protein (APP), Mg, P, Na, Fe, Cu, Zn, and Ca, in the tear film from 60 subjects, 31 patients diagnosed with the dry form of AMD, and 29 healthy individuals Results Significant up-regulations of MT1A (1.9-fold) and S100A6 (1.4-fold) and down-regulations of LF (0.7-fold), Fe (0.6-fold), Mg (0.7-fold), and Cu (0.7-fold) were observed in AMD patients, when compared to control subjects. Of all the studied variables, only APP showed negative correlation with age in the AMD group. Also, positive correlations were observed for the variables Mg and Na, Cu and Mg, and P and Mg in both the AMD and control groups, whereas positive correlations were exclusively determined in the AMD group for Cu and LF, Na and Ca, and Mg and Ca. The panel constituted of MT1A, Na, and Mg predicts AMD disease in 73% of cases. Conclusions The different levels of target metals and (metallo-)proteins in the tear film suggest altered metal homeostasis in AMD patients. These observed pathophysiological changes may be related with the anomalous protein aggregation in the macula.
Collapse
Affiliation(s)
- Eva Valencia
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Montserrat García
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Ophthalmological Institute Fernández-Vega, Oviedo, Spain
| | - Beatriz Fernández-Vega
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Ophthalmological Institute Fernández-Vega, Oviedo, Spain
| | - Rosario Pereiro
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Lara Lobo
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Héctor González-Iglesias
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Ophthalmological Institute Fernández-Vega, Oviedo, Spain
| |
Collapse
|
15
|
Automated SEM-EDS Analysis of Transition Metals and Other Metallic Compounds Emitted from Incinerating Agricultural Waste Plastic Film. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Illegal open burning, which is criticized as a leading source of air pollutants among agricultural activities, currently requires constant effort and attention from countries around the world. A speciation analysis method is required to examine the harmful effects of particulate matter generated by incineration on the human body. In this study, to simulate open-air incineration, infrastructure for incineration tests complying with US EPA method 5G was built, and a large-area analysis was conducted on the particulate matter through automated SEM-EDS. For test specimens, waste mulching LDPE collected by Korea Environment Corporation Dangjin Office was used. To raise the identifiability of analyzed particles, the specimen was sampled on a plate made of Ag, which has a high atomic number, three times. Metal particulate matter showed a high reaction to C and C-O. The ratio of metal particulate matters that reacted to C and C-O was in the order of Cu (94.1%) > Fe (83.3%) > Al (79.7%). In this study, it was verified that waste mulching adsorbs metal chemicals originating from the soil due to its properties and deterioration, and that when it is incinerated, it emits particulate matter containing transition metals and other metals that contribute to excessive ROS production and reduction.
Collapse
|
16
|
Hsueh YJ, Chen YN, Tsao YT, Cheng CM, Wu WC, Chen HC. The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. Int J Mol Sci 2022; 23:ijms23031255. [PMID: 35163178 PMCID: PMC8835903 DOI: 10.3390/ijms23031255] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is an important pathomechanism found in numerous ocular degenerative diseases. To provide a better understanding of the mechanism and treatment of oxidant/antioxidant imbalance-induced ocular diseases, this article summarizes and provides updates on the relevant research. We review the oxidative damage (e.g., lipid peroxidation, DNA lesions, autophagy, and apoptosis) that occurs in different areas of the eye (e.g., cornea, anterior chamber, lens, retina, and optic nerve). We then introduce the antioxidant mechanisms present in the eye, as well as the ocular diseases that occur as a result of antioxidant imbalances (e.g., keratoconus, cataracts, age-related macular degeneration, and glaucoma), the relevant antioxidant biomarkers, and the potential of predictive diagnostics. Finally, we discuss natural antioxidant therapies for oxidative stress-related ocular diseases.
Collapse
Affiliation(s)
- Yi-Jen Hsueh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan
| | - Yen-Ning Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Yu-Ting Tsao
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30012, Taiwan;
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Hung-Chi Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 7855); Fax: +886-3-328-7798
| |
Collapse
|
17
|
Bede-Ojimadu O, Orish CN, Bocca B, Ruggieri F, Frazzoli C, Orisakwe OE. Trace elements exposure and risk in age-related eye diseases: a systematic review of epidemiological evidence. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:293-339. [PMID: 34114934 DOI: 10.1080/26896583.2021.1916331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This systematic review aimed to evaluate existing evidence on the associations between trace elements exposure and age-related eye diseases. PubMed and Google scholar databases were searched for epidemiological and postmortem studies on the relationship between exposure to trace elements and Age-related eye diseases such as age-related macular degeneration (AMD), cataract, glaucoma and diabetic retinopathy (DR), in population groups aged 40 years and above. Available evidence suggests that cadmium (Cd) exposure may be positively associated with the risks of AMD and cataract. There is also evidence that exposure to lead (Pb) may be positively associated with higher risk of cataract and glaucoma. There is limited number of relevant studies and lack of prospective studies for most of the investigated associations. Evidence for other trace elements is weak and inconsistent, and the number of available studies is small. Likewise, there are very few relevant studies on the role of trace elements in DR. Chemical elements that affect the distribution and absorption of other trace elements have never been investigated. The suggestive but limited evidence motivates large and quality prospective studies to fully characterize the impact of exposure to trace (toxic and essential) elements on age-related eye diseases.
Collapse
Affiliation(s)
- Onyinyechi Bede-Ojimadu
- Department of Chemical Pathology, Faculty of Medicine, Nnamdi Azikiwe University, Nnewi, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences University of Port Harcourt, Port Harcourt, Choba, Nigeria
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità, Rome, Italy
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Rivers, Nigeria
| |
Collapse
|
18
|
Banerjee M, Chawla R, Kumar A. Antioxidant supplements in age-related macular degeneration: are they actually beneficial? Ther Adv Ophthalmol 2021; 13:25158414211030418. [PMID: 34471798 PMCID: PMC8404659 DOI: 10.1177/25158414211030418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Age-related macular degeneration (ARMD) is one of the prominent causes of central visual loss in the older age group in the urbanized, industrialized world. In recent years, many epidemiological studies and clinical trials have evaluated the role of antioxidants and micronutrients to prevent the progression of ARMD. In this article, we review some of these major studies. In addition, we review the absorption and bioavailability and possible undesirable effects of these nutrients after ingestion. The role of genotypes and inappropriate use of these supplements are also discussed. From all the above evidence, we conclude that it may not be prudent to prescribe these formulations without a proper assessment of the individual's health and dietary status. The effectiveness of all the components in antioxidant formulations is controversial. Thus, these supplements should not be prescribed just for the purpose of providing patients some kind of therapy, which may give a false sense of mental satisfaction.
Collapse
Affiliation(s)
- Mousumi Banerjee
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Rohan Chawla
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Atul Kumar
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Dharamdasani Detaram H, Liew G, Russell J, Vu KV, Burlutsky G, Mitchell P, Gopinath B. Dietary antioxidants are associated with presence of intra- and sub-retinal fluid in neovascular age-related macular degeneration after 1 year. Acta Ophthalmol 2020; 98:e814-e819. [PMID: 32162461 DOI: 10.1111/aos.14394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/20/2020] [Indexed: 01/16/2023]
Abstract
PURPOSE To assess whether dietary intake of antioxidants, fruits, vegetables and fish is associated with 12-month treatment outcomes in neovascular age-related macular degeneration (nAMD) patients. METHODS A total of 547 participants were diagnosed with nAMD at baseline, of whom 494 were followed up after 12 months of antivascular endothelial growth factor therapy. Dietary intakes were determined using a validated food frequency questionnaire. Presence of intra-retinal and sub-retinal fluid (IRF, SRF), pigment epithelial detachment (PED) and central macular thickness (CMT) were recorded from optical coherence tomography images. Best-corrected visual acuity was recorded using log of the Minimum Angle of Resolution (LogMAR) charts. RESULTS Participants in the upper three quartiles combined compared to those in the first quartile of baseline dietary zinc intake had 49% reduced odds of SRF 12 months later, multivariable-adjusted odds ratio (OR) 0.51 [95% confidence interval (CI) 0.30-0.89]. The upper three quartiles combined compared to the first quartile of β-carotene intake had 90% greater odds of IRF presence at 12-month follow-up, multivariable-adjusted OR 1.90 (95% CI 1.04-3.46). The highest versus lowest quartile of dietary β-carotene intake had a nearly twofold greater odds of PED presence, multivariable-adjusted OR 1.99 (95% CI 1.03-3.84). CONCLUSION A higher intake of dietary zinc was associated with a reduced likelihood of SRF at 1 year. Conversely, a higher intake of dietary β-carotene was associated with an increased risk of IRF and PED. These findings underscore the importance of ongoing nutritional advice for nAMD patients presenting for treatment.
Collapse
Affiliation(s)
- Harshil Dharamdasani Detaram
- Centre for Vision Research Department of Ophthalmology and The Westmead Institute for Medical Research The University of Sydney Sydney New South Wales Australia
| | - Gerald Liew
- Centre for Vision Research Department of Ophthalmology and The Westmead Institute for Medical Research The University of Sydney Sydney New South Wales Australia
| | - Joanna Russell
- Faculty of Social Sciences School of Health and Society University of Wollongong Sydney New South Wales Australia
| | - Kim Van Vu
- Centre for Vision Research Department of Ophthalmology and The Westmead Institute for Medical Research The University of Sydney Sydney New South Wales Australia
| | - George Burlutsky
- Centre for Vision Research Department of Ophthalmology and The Westmead Institute for Medical Research The University of Sydney Sydney New South Wales Australia
| | - Paul Mitchell
- Centre for Vision Research Department of Ophthalmology and The Westmead Institute for Medical Research The University of Sydney Sydney New South Wales Australia
| | - Bamini Gopinath
- Centre for Vision Research Department of Ophthalmology and The Westmead Institute for Medical Research The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
20
|
Emri E, Kortvely E, Dammeier S, Klose F, Simpson D, den Hollander AI, Ueffing M, Lengyel I. A Multi-Omics Approach Identifies Key Regulatory Pathways Induced by Long-Term Zinc Supplementation in Human Primary Retinal Pigment Epithelium. Nutrients 2020; 12:E3051. [PMID: 33036197 PMCID: PMC7601425 DOI: 10.3390/nu12103051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
In age-related macular degeneration (AMD), both systemic and local zinc levels decline. Elevation of zinc in clinical studies delayed the progression to end-stage AMD. However, the molecular pathways underpinning this beneficial effect are not yet identified. In this study, we used differentiated primary human fetal retinal pigment epithelium (RPE) cultures and long-term zinc supplementation to carry out a combined transcriptome, proteome and secretome analysis from three genetically different human donors. After combining significant differences, we identified the complex molecular networks using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA). The cell cultures from the three donors showed extensive pigmentation, development of microvilli and basal infoldings and responded to zinc supplementation with an increase in transepithelial electrical resistance (TEER) (apical supplementation: 443.2 ± 79.3%, basal supplementation: 424.9 ± 116.8%, compared to control: 317.5 ± 98.2%). Significant changes were observed in the expression of 1044 genes, 151 cellular proteins and 124 secreted proteins. Gene set enrichment analysis revealed changes in specific molecular pathways related to cell adhesion/polarity, extracellular matrix organization, protein processing/transport, and oxidative stress response by zinc and identified a key upstream regulator effect similar to that of TGFB1.
Collapse
Affiliation(s)
- Eszter Emri
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, Northern Ireland, UK; (E.E.); (D.S.)
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Elod Kortvely
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - Sascha Dammeier
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - Franziska Klose
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - David Simpson
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, Northern Ireland, UK; (E.E.); (D.S.)
| | | | - Anneke I. den Hollander
- Departments of Ophthalmology and Genetics, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands;
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - Imre Lengyel
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, Northern Ireland, UK; (E.E.); (D.S.)
| |
Collapse
|
21
|
Micera A, Bruno L, Cacciamani A, Rongioletti M, Squitti R. Alzheimer's Disease and Retinal Degeneration: A Glimpse at Essential Trace Metals in Ocular Fluids and Tissues. Curr Alzheimer Res 2020; 16:1073-1083. [PMID: 31642780 DOI: 10.2174/1567205016666191023114015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/28/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Life expectancy is increasing all over the world, although neurodegenerative disorders might drastically affect the individual activity of aged people. Of those, Alzheimer's Disease (AD) is one of the most social-cost age-linked diseases of industrialized countries. To date, retinal diseases seem to be more common in the developing world and characterize principally aged people. Agerelated Macular Degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with AD, including stress stimuli such as oxidative stress, inflammation and amyloid formations. METHODS In both diseases, the detrimental intra/extra-cellular deposits have many similarities. Aging, hypercholesterolemia, hypertension, obesity, arteriosclerosis and smoking are risk factors to develop both diseases. Cellular aging routes have similar organelle and signaling patterns in retina and brain. The possibility to find out new research strategies represent a step forward to disclose potential treatment for both of them. Essential trace metals play critical roles in both physiological and pathological condition of retina, optic nerve and brain, by influencing metabolic processes chiefly upon complex multifactorial pathogenesis. CONCLUSION Hence, this review addresses current knowledge about some up-to-date investigated essential trace metals associated with AD and AMD. Changes in the levels of systemic and ocular fluid essential metals might reflect the early stages of AMD, possibly disclosing neurodegeneration pathways shared with AD, which might open to potential early detection.
Collapse
Affiliation(s)
- Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Luca Bruno
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Andrea Cacciamani
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Rosanna Squitti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, BS, Italy
| |
Collapse
|
22
|
Copper mediates mitochondrial biogenesis in retinal pigment epithelial cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165843. [PMID: 32454166 DOI: 10.1016/j.bbadis.2020.165843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/29/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022]
Abstract
Age related macular degeneration (AMD) is a multifactorial disease with genetic, biochemical and environmental risk factors. We observed a significant increase in copper levels in choroid-RPE from donor eyeballs with AMD. Adult retinal pigment epithelial cells (ARPE19 cells) exposed to copper in-vitro showed a 2-fold increase in copper influx transporter CTR1 and copper uptake at 50 μM concentration. Further there was 2-fold increase in cytochrome C oxidase activity and a 2-fold increase in the mRNA expression of NRF 2 with copper treatment. There was a significant increase in mitochondrial biogenesis markers PGC1β and TFAM which was confirmed by mitochondrial mass and copy number. On the contrary, in AMD choroid-RPE, the CTR1 mRNA was found to be significantly down-regulated compared to its respective controls. SCO1 and PGC1β mRNA showed an increase in choroid-RPE. Our study proposes copper to play an important role in mitochondrial biogenesis in RPE cells.
Collapse
|
23
|
Aranaz M, Costas-Rodríguez M, Lobo L, González-Iglesias H, Vanhaecke F, Pereiro R. Pilot study of homeostatic alterations of mineral elements in serum of patients with age-related macular degeneration via elemental and isotopic analysis using ICP-mass spectrometry. J Pharm Biomed Anal 2019; 177:112857. [PMID: 31557587 DOI: 10.1016/j.jpba.2019.112857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/26/2022]
Abstract
Age-related macular degeneration (AMD), the main cause of irreversible blindness in people over 60 years of age, is an eye disease that evolves with loss of central vision. Although AMD manifests itself in the eye, blood is continuously flowing through the macular region, such that potential alterations in this region could be reflected in the composition of whole blood or plasma/serum. Therefore, the potential clinical relevance of analysis of serum samples was assessed because of the low degree of invasiveness of blood sampling. 40 initial samples (20 from controls and 20 from patients with the dry form of AMD) have been analysed in this work to investigate the possible occurrence of homeostatic alterations of essential mineral elements caused by the disease. Both major (Na, Mg, P and K) and trace (Fe, Cu and Zn) essential mineral elements were determined in blood serum using single-collector ICP-mass spectrometry. Also, the isotopic composition of Cu (an element proposed to be directly involved in the onset of AMD) was determined using multi-collector ICP-mass spectrometry. Unexpected light Cu isotopic compositions in three individuals assumed as controls, resulted in a re-evaluation of their clinical information and a later exclusion due to pathologies initially not accounted for. In this pilot study, a significant alteration in the δ65Cu value has been found between the two final cohorts (AMD patients: n = 20; controls n = 17), with lower δ65Cu values (i.e. an enrichment in the light 63Cu isotope) in the case of AMD. Also, higher serum concentrations of the elements P and Zn were established in AMD at a systemic level.
Collapse
Affiliation(s)
- Marta Aranaz
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Spain
| | - Marta Costas-Rodríguez
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000 Ghent, Belgium
| | - Lara Lobo
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Spain.
| | - Héctor González-Iglesias
- Instituto Oftalmológico Fernández-Vega, Avda. Fernández-Vega 34, 33012 Oviedo, Spain; Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Spain
| | - Frank Vanhaecke
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000 Ghent, Belgium
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Spain; Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Spain
| |
Collapse
|
24
|
Gilbert R, Peto T, Lengyel I, Emri E. Zinc Nutrition and Inflammation in the Aging Retina. Mol Nutr Food Res 2019; 63:e1801049. [PMID: 31148351 DOI: 10.1002/mnfr.201801049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/18/2019] [Indexed: 12/16/2022]
Abstract
Zinc is an essential nutrient for human health. It plays key roles in maintaining protein structure and stability, serves as catalytic factor for many enzymes, and regulates diverse fundamental cellular processes. Zinc is important in affecting signal transduction and, in particular, in the development and integrity of the immune system, where it affects both innate and adaptive immune responses. The eye, especially the retina-choroid complex, has an unusually high concentration of zinc compared to other tissues. The highest amount of zinc is concentrated in the retinal pigment epithelium (RPE) (RPE-choroid, 292 ± 98.5 µg g-1 dry tissue), followed by the retina (123 ± 62.2 µg g-1 dry tissue). The interplay between zinc and inflammation has been explored in other parts of the body but, so far, has not been extensively researched in the eye. Several lines of evidence suggest that ocular zinc concentration decreases with age, especially in the context of age-related disease. Thus, a hypothesis that retinal function could be modulated by zinc nutrition is proposed, and subsequently trialled clinically. In this review, the distribution and the potential role of zinc in the retina-choroid complex is outlined, especially in relation to inflammation and immunity, and the clinical studies to date are summarized.
Collapse
Affiliation(s)
- Rosie Gilbert
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, EC1V 2PD, UK.,UCL Institute of Ophthalmology, Bath Street, London, EC1V 2EL, UK
| | - Tunde Peto
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Imre Lengyel
- UCL Institute of Ophthalmology, Bath Street, London, EC1V 2EL, UK.,School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Eszter Emri
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| |
Collapse
|
25
|
Determination of Zn, Cu and Fe in human patients' serum using micro-sampling ICP-MS and sample dilution. Talanta 2019; 204:663-669. [PMID: 31357350 DOI: 10.1016/j.talanta.2019.05.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/27/2022]
Abstract
A high-throughput, sensitive and rapid method was developed for the determination of Zn, Cu and Fe in small volumes (30 μL) of human serum using inductively coupled plasma mass spectrometry (ICP-MS). The sample preparation procedure employed simple 100-fold dilution of the serum samples with 1.0% butanol, 0.5% v/v ammonia, 0.02% v/v Triton X-100 and 0.01% v/v HNO3. The reliability of the method was evaluated using serum UTAK certified reference material, and the results matched well with the certified values. The method was applied to determine Zn, Cu and Fe in 81 human serum samples from participants in Alzheimer disease (AD) and age-related macular degeneration (AMD) studies. No significant differences were found in Zn and Cu levels between age matched controls, AD and AMD patients. Whilst iron levels appeared marginally higher in the AMD group, compared with the AD group, iron showed larger overall variability than the other two elements.
Collapse
|
26
|
Romano MR, Cennamo G, Montorio D, Del Prete S, Ferrara M, Cennamo G. Correlation between various trace elements and ultramicroscopic structure of epiretinal macular membranes and glial cells. PLoS One 2018; 13:e0204497. [PMID: 30265684 PMCID: PMC6162081 DOI: 10.1371/journal.pone.0204497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/10/2018] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Elements such as zinc, iron, copper, sulphur and phosphorus have been identified in retinal layers and implicated in vital retinal functions. Regarding mineral composition of epiretinal membranes (ERMs), literature is lacking. This study aimed to analyze both mineral composition and anatomical ultrastructure of ERMs to clarify the pathophysiology of this disease. METHODS Twenty ERMs (10 diabetic ERMs and 10 idiopathic ERMs) from 20 patients were harvested during pars plana vitrectomy. Scanning Electron Microscopy (SEM) was used to investigate the anatomical ultrastructure of the peeled ERMs. Mineral composition was analyzed using energy-dispersive spectrometry (EDS). The most frequent elements were evaluated in relation to appearance of ERMs analyzed at SEM and at OCT images. RESULTS Sulphur was the most frequent element found (in 80% of the samples), followed by sodium (50%) and phosphorus (45%). The presence of these elements was not significantly different between diabetic and idiopathic ERMs (P >0.05). Using SEM we found a folded tissue in all ERMs, except in 4 ERMs, where we observed only a smooth tissue. There was a trend of sodium to be more frequent in ERMs with folded layers at SEM examination. CONCLUSIONS Several elements were identified in ERMs, and sulphur, sodium and phosphorus were the most frequent ones. This finding may help to understand their role in the physiopatology of epiretinal proliferation and in glial activation.
Collapse
Affiliation(s)
- Mario R. Romano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele—Milan, Italy
- * E-mail:
| | - Gilda Cennamo
- Department of Public Health, University Federico II, Naples, Italy
| | - Daniela Montorio
- Department of Neuroscience, Reproductive and Odontostomatological Science, University Federico II, Naples, Italy
| | - Salvatore Del Prete
- Interdepartment Electron Microscope Centre, University Federico II, Naples, Italy
| | - Mariantonia Ferrara
- Department of Neuroscience, Reproductive and Odontostomatological Science, University Federico II, Naples, Italy
| | - Giovanni Cennamo
- Department of Neuroscience, Reproductive and Odontostomatological Science, University Federico II, Naples, Italy
| |
Collapse
|
27
|
Pao PJ, Emri E, Abdirahman SB, Soorma T, Zeng HH, Hauck SM, Thompson RB, Lengyel I. The effects of zinc supplementation on primary human retinal pigment epithelium. J Trace Elem Med Biol 2018. [PMID: 29523386 DOI: 10.1016/j.jtemb.2018.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Population-based and interventional studies have shown that elevated zinc levels can reduce the progression to advanced age-related macular degeneration. The objective of this study was to assess whether elevated extracellular zinc has a direct effect on retinal pigment epithelial cells (RPE), by examining the phenotype and molecular characteristics of increased extracellular zinc on human primary RPE cells. Monolayers of human foetal primary RPE cells were grown on culture inserts and maintained in medium supplemented with increasing total concentrations of zinc (0, 75, 100, 125 and 150 μM) for up to 4 weeks. Changes in cell viability and differentiation as well as expression and secretion of proteins were investigated. RPE cells developed a confluent monolayer with cobblestone morphology and transepithelial resistance (TER) >200 Ω*cm2 within 4 weeks. There was a zinc concentration-dependent increase in TER and pigmentation, with the largest effects being achieved by the addition of 125 μM zinc to the culture medium, corresponding to 3.4 nM available (free) zinc levels. The cells responded to addition of zinc by significantly increasing the expression of Retinoid Isomerohydrolase (RPE65) gene; cell pigmentation; Premelanosome Protein (PMEL17) immunoreactivity; and secretion of proteins including Apolipoprotein E (APOE), Complement Factor H (CFH), and High-Temperature Requirement A Serine Peptidase 1 (HTRA1) without an effect on cell viability. This study shows that elevated extracellular zinc levels have a significant and direct effect on differentiation and function of the RPE cells in culture, which may explain, at least in part, the positive effects seen in clinical settings. The results also highlight that determining and controlling of available, as opposed to total added, zinc will be essential to be able to compare results obtained in different laboratories.
Collapse
Affiliation(s)
- Po-Jung Pao
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1 V9EL, United Kingdom; Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| | - Eszter Emri
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1 V9EL, United Kingdom; Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom.
| | - Safiya Bishar Abdirahman
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1 V9EL, United Kingdom.
| | - Talha Soorma
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1 V9EL, United Kingdom.
| | - Hui-Hui Zeng
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, United States.
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health(GmbH), Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
| | - Richard B Thompson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, United States.
| | - Imre Lengyel
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1 V9EL, United Kingdom; Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom.
| |
Collapse
|
28
|
Pereira R, Leite E, Raimundo J, Guilherme S, Puga S, Pinto-Ribeiro F, Santos MA, Canário J, Almeida A, Pacheco M, Pereira P. Metals(loids) targeting fish eyes and brain in a contaminated estuary - Uncovering neurosensory (un)susceptibility through bioaccumulation, antioxidant and morphometric profiles. MARINE ENVIRONMENTAL RESEARCH 2018; 140:403-411. [PMID: 30054132 DOI: 10.1016/j.marenvres.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/08/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
This study examined the susceptibility of fish (Liza aurata) eyes and brain to metals(loids) contamination under realistic exposure conditions. A multidimensional approach was applied to fish caught at a chronically contaminated site (BAR) and at a reference site of the Tagus estuary (Portugal), which comprised metals(loids) accumulation in eyes and brain together with a battery of enzymatic and non-enzymatic antioxidants, as well as brain morphometry (i.e. cell density). Trace element levels in the blood, gills, liver and kidney allowed interpretations on their preferential pathway(s) to the eyes and brain. Metals(loids) accumulation pointed out the elevated vulnerability of the fish eyes at BAR, probably related with the direct waterborne uptake. Pb uptake in L. aurata eyes could be associated both with water and indirect pathways. At the most contaminated site, metals(loids) were on the basis of pro-oxidant conditions in the ocular tissues, while no indication of toxicity was recorded in the brain. Overall, the results disclosed a differential bioaccumulation among fish organs, suggesting that, in the L. aurata population studied, metal organotropism underlie the lower susceptibility of the brain comparing to the eyes. However, mechanisms remain little understood and further work is needed.
Collapse
Affiliation(s)
- Ricardo Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Leite
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Raimundo
- IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Sofia Guilherme
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sónia Puga
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Ana Santos
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Canário
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
29
|
Ackerman CM, Weber PK, Xiao T, Thai B, Kuo TJ, Zhang E, Pett-Ridge J, Chang CJ. Multimodal LA-ICP-MS and nanoSIMS imaging enables copper mapping within photoreceptor megamitochondria in a zebrafish model of Menkes disease. Metallomics 2018; 10:474-485. [PMID: 29507920 DOI: 10.1039/c7mt00349h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper is essential for eukaryotic life, and animals must acquire this nutrient through the diet and distribute it to cells and organelles for proper function of biological targets. Indeed, mutations in the central copper exporter ATP7A contribute to a spectrum of diseases, including Menkes disease, with symptoms ranging from neurodegeneration to lax connective tissue. As such, a better understanding of the fundamental impacts of ATP7A mutations on in vivo copper distributions is of relevance to those affected by these diseases. Here we combine metal imaging and optical imaging techniques at a variety of spatial resolutions to identify tissues and structures with altered copper levels in the Calamitygw71 zebrafish model of Menkes disease. Rapid profiling of tissue slices with LA-ICP-MS identified reduced copper levels in the brain, neuroretina, and liver of Menkes fish compared to control specimens. High resolution nanoSIMS imaging of the neuroretina, combined with electron and confocal microscopies, identified the megamitochondria of photoreceptors as loci of copper accumulation in wildtype fish, with lower levels of megamitochondrial copper observed in Calamitygw71 zebrafish. Interestingly, this localized copper decrease does not result in impaired photoreceptor development or altered megamitochondrial morphology, suggesting the prioritization of copper at sufficient levels for maintaining essential mitochondrial functions. Together, these data establish the Calamitygw71 zebrafish as an optically transparent in vivo model for the study of neural copper misregulation, illuminate a role for the ATP7A copper exporter in trafficking copper to the neuroretina, and highlight the utility of combining multiple imaging techniques for studying metals in whole organism settings with spatial resolution.
Collapse
Affiliation(s)
- Cheri M Ackerman
- Department of Chemistry, University of California, Berkeley, California, USA.
| | - Peter K Weber
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California, USA.
| | - Tong Xiao
- Department of Chemistry, University of California, Berkeley, California, USA. and Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| | - Bao Thai
- Department of Chemistry, University of California, Berkeley, California, USA.
| | - Tiffani J Kuo
- Department of Chemistry, University of California, Berkeley, California, USA.
| | - Emily Zhang
- Department of Chemistry, University of California, Berkeley, California, USA.
| | - Jennifer Pett-Ridge
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California, USA.
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, California, USA. and Howard Hughes Medical Institute, University of California, Berkeley, California, USA and Department of Molecular and Cellular Biology, University of California, Berkeley, California, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
30
|
Rodríguez-Menéndez S, Fernández B, García M, Álvarez L, Luisa Fernández M, Sanz-Medel A, Coca-Prados M, Pereiro R, González-Iglesias H. Quantitative study of zinc and metallothioneins in the human retina and RPE cells by mass spectrometry-based methodologies. Talanta 2018; 178:222-230. [DOI: 10.1016/j.talanta.2017.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 12/17/2022]
|
31
|
Zinc Protects Oxidative Stress-Induced RPE Death by Reducing Mitochondrial Damage and Preventing Lysosome Rupture. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6926485. [PMID: 29348791 PMCID: PMC5733978 DOI: 10.1155/2017/6926485] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 11/30/2022]
Abstract
Zinc deficiency is known to increase the risk of the development of age-related macular degeneration (AMD), although the underlying mechanism remains poorly defined. In this study, we investigated the effect of zinc on retinal pigment epithelium (RPE) survival and function under oxidative conditions. Zinc level was 5.4 μM in normal culture conditions (DMEM/F12 with 10% FCS) and 1.5 μM in serum-free medium (DMEM/F12). Under serum-free culture conditions, the treatment of RPE cells with oxidized photoreceptor outer segment (oxPOS) significantly increased intracellular ROS production, reduced ATP production, and promoted RPE death compared to oxPOS-treated RPE under normal culture condition. Serum deprivation also reduced RPE phagocytosis of oxPOS and exacerbated oxidative insult-induced cathepsin B release from lysosome, an indicator of lysosome rupture. The addition of zinc in the serum-free culture system dose dependently reduced ROS production, recovered ATP production, and reduced oxidative stress- (oxPOS- or 4-HNE) induced cell death. Zinc supplementation also reduced oxidative stress-mediated cathepsin B release in RPE cells. Our results suggest that zinc deficiency sensitizes RPE cells to oxidative damage, and zinc supplementation protects RPE cells from oxidative stress-induced death by improving mitochondrial function and preventing lysosome rupture.
Collapse
|
32
|
Ugarte M, Geraki K, Jeffery G. Iron accumulates in the primate choroid of the eye with aging as revealed with synchrotron X-ray fluorescence microscopy. Metallomics 2017; 8:1071-1080. [PMID: 27504972 DOI: 10.1039/c6mt00125d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Aging leads to an increase in iron-loaded cellular structures in the choroid of the eye. This study was carried out to determine the distribution and content of iron, zinc and copper in the macular retina, choroid and retrobulbar optic nerve of young (4-5 years, n = 3) and aged (15-16 years, n = 5) male non-human primates, Macaca fascicularis, whose ocular anatomy is similar to humans. Thirty μm-thick tissue sections were analysed with synchrotron X-ray fluorescence and stained histologically for iron deposition. Quantitative measurements showed high levels of iron, zinc and copper in the choroid and retinal pigment epithelium in the macular area and arachnoid layer in the retrobulbar optic nerve. In aged animals compared to young ones, there was an increase in iron in the choroid with larger deposits and iron-loaded cellular structures. Iron-accumulation within these cellular structures may contribute to choroidal function impairment in aging and age-related macular degeneration.
Collapse
Affiliation(s)
- Marta Ugarte
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK. and NIHR Biomedical Research Centre, Moorfields Eye hospital and UCL Institute of Ophthalmology, London, UK
| | - Kalotina Geraki
- I18, Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot, Oxfordshire OX11 0DE, UK
| | - Glen Jeffery
- UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| |
Collapse
|
33
|
Grubman A, Guennel P, Vessey KA, Jones MWM, James SA, de Jonge MD, White AR, Fletcher EL. X-ray fluorescence microscopic measurement of elemental distribution in the mouse retina with age. Metallomics 2017; 8:1110-1121. [PMID: 27481440 DOI: 10.1039/c6mt00055j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biologically important metals such as zinc, copper and iron play key roles in retinal function, yet no study has mapped the spatio-temporal distribution of retinal biometals in healthy or diseased retina. We investigated a natural mouse model of retinal degeneration, the Cln6nclf mouse. As dysfunctional metabolism of biometals is observed in the brains of these animals and deregulated metal homeostasis has been linked to retinal degeneration, we focused on mapping the elemental distribution in the healthy and Cln6nclf mouse retina with age. Retinal and RPE elemental homeostasis was mapped in Cln6nclf and C57BL6/J mice from 1 to 8 months of age using X-ray Fluorescence Microscopy at the Australian Synchrotron. In the healthy retina, we detected a progressive loss of phosphorus in the outer nuclear layer and significant reduction in iron in the inner segments of the photoreceptors. Further investigation revealed a unique elemental signature for each retinal layer, with high areal concentrations of iron and sulfur in the photoreceptor segments and calcium, phosphorus, zinc and potassium enrichment predominantly in the nuclear layers. The analysis of retinae from Cln6nclf mice did not show significant temporal changes in elemental distributions compared to age matched controls, despite significant photoreceptor cell loss. Our data therefore demonstrates that retinal layers have unique elemental composition. Elemental distribution is, with few exceptions, stably maintained over time in healthy and Cln6nclf mouse retina, suggesting conservation of elemental distribution is critical for basic retinal function with age and is not modulated by processes underlying retinal degeneration.
Collapse
Affiliation(s)
- Alexandra Grubman
- Department of Pathology, The University of Melbourne, Victoria, Australia
| | - Philipp Guennel
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| | - Kirstan A Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| | - Michael W M Jones
- Australian Synchrotron, Clayton, Victoria, Australia and ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Victoria, Australia
| | - Simon A James
- Australian Synchrotron, Clayton, Victoria, Australia and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Martin D de Jonge
- Australian Synchrotron, Clayton, Victoria, Australia and ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Victoria, Australia
| | - Anthony R White
- Department of Pathology, The University of Melbourne, Victoria, Australia and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia and A.I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
34
|
Gorusupudi A, Nelson K, Bernstein PS. The Age-Related Eye Disease 2 Study: Micronutrients in the Treatment of Macular Degeneration. Adv Nutr 2017; 8:40-53. [PMID: 28096126 PMCID: PMC5227975 DOI: 10.3945/an.116.013177] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of vision loss in the elderly. With an increasingly aged population worldwide, the need for the prevention of AMD is rising. Multiple studies investigating AMD with the use of animal models and cell culture have identified oxidative stress-related retinal damage as an important contributing factor. In general, diet is an excellent source of the antioxidants, vitamins, and minerals necessary for healthy living; moreover, the general public is often receptive to recommendations made by physicians and health care workers regarding diet and supplements as a means of empowering themselves to avoid common and worrisome ailments such as AMD, which has made epidemiologists and clinicians enthusiastic about dietary intervention studies. A wide variety of nutrients, such as minerals, vitamins, ω-3 (n-3) fatty acids, and various carotenoids, have been associated with reducing the risk of AMD. Initial results from the Age-Related Eye Disease Study (AREDS) indicated that supplementation with antioxidants (β-carotene and vitamins C and E) and zinc was associated with a reduced risk of AMD progression. The AREDS2 follow-up study, designed to improve upon the earlier formulation, tested the addition of lutein, zeaxanthin, and ω-3 fatty acids. In this review, we examine the science behind the nutritional factors included in these interventional studies and the reasons for considering their inclusion to lower the rate of AMD progression.
Collapse
Affiliation(s)
- Aruna Gorusupudi
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT
| | - Kelly Nelson
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT
| | - Paul S Bernstein
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
35
|
Karthikeyan B, Arun A, Harini L, Sundar K, Kathiresan T. Role of ZnS Nanoparticles on Endoplasmic Reticulum Stress-mediated Apoptosis in Retinal Pigment Epithelial Cells. Biol Trace Elem Res 2016; 170:390-400. [PMID: 26329999 DOI: 10.1007/s12011-015-0493-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/24/2015] [Indexed: 01/22/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause for irreversible visual impairment affecting 30-50 million individuals every year. Oxidative stress and endoplasmic reticulum stress have been identified as crucial factors for the pathogenesis of AMD. Current treatments do not focus on underlying stimuli responsible for the disease like AMD. Zinc is an important trace metal in retina and its deficiency leads to AMD. Recent studies on zinc sulphide nanoparticles (ZnS-NPs) are gaining attention in the field of physical and biological research. In this present study, in investigating the role of ZnS-NPs on hydrogen peroxide and thapsigargin-treated primary mice retinal pigment epithelial (MRPE) cells, we synthesized ZnS-NPs and characterized using atomic force microscope (AFM) and SEM-EDX. The ZnS-NPs abrogate the primary MRPE cell death through inhibition of oxidative stress-induced reactive oxygen species production and cell permeability. Oxidant molecules hydrogen peroxide and thapsigargin alter unfolded protein response such as glucose-regulated protein 78 (GRP78) and C/EBP homology protein (CHOP) expressions, whereas ZnS-NPs-pre-treated primary MRPE cells downregulated the overexpression of such proteins. The expressions of apoptotic proteins caspase 12 and cleaved caspase 9 and caspase 3 were also significantly controlled in ZnS-NPs-treated primary MRPE cells when comparing with thapsigargin- and hydrogen peroxide-treated cells. From these results, ZnS-NPs stabilize reactive oxygen species elevation, when subjected to hydrogen peroxide- and thapsigargin-mediated oxidant injury and helps in maintaining normal homeostasis through regulating endoplasmic reticulum (ER) stress response proteins which is the lead cause for apoptosis-mediated pathogenesis of AMD.
Collapse
Affiliation(s)
- Bose Karthikeyan
- Department of Biotechnology, Kalasalingam University, Krishnankoil, Tamil Nadu, -626 126, India
| | - Arumugaperumal Arun
- Department of Biotechnology, Kalasalingam University, Krishnankoil, Tamil Nadu, -626 126, India
| | | | - Krishnan Sundar
- Department of Biotechnology, Kalasalingam University, Krishnankoil, Tamil Nadu, -626 126, India
- International Research Centre, Kalasalingam University, Krishnankoil, Tamil Nadu, -626 126, India
| | - Thandavarayan Kathiresan
- Department of Biotechnology, Kalasalingam University, Krishnankoil, Tamil Nadu, -626 126, India.
- International Research Centre, Kalasalingam University, Krishnankoil, Tamil Nadu, -626 126, India.
| |
Collapse
|
36
|
Berrow EJ, Bartlett HE, Eperjesi F. The effect of nutritional supplementation on the multifocal electroretinogram in healthy eyes. Doc Ophthalmol 2016; 132:123-35. [PMID: 26988845 DOI: 10.1007/s10633-016-9532-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 02/29/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Previous studies have demonstrated an increase in macular pigment optical density (MPOD) with lutein (L)-based supplementation in healthy eyes. However, not all studies have assessed whether this increase in MPOD is associated with changes to other measures of retinal function such as the multifocal ERG (mfERG). Some studies also fail to report dietary levels of L and zeaxanthin (Z). Because of the associations between increased levels of L and Z, and reduced risk of AMD, this study was designed to assess the effects of L-based supplementation on mfERG amplitudes and latencies in healthy eyes. METHODS Multifocal ERG amplitudes, visual acuity, contrast sensitivity, MPOD and dietary levels of L and Z were assessed in this longitudinal, randomized clinical trial. Fifty-two healthy eyes from 52 participants were randomly allocated to receive a L-based supplement (treated group), or no supplement (non-treated group). RESULTS There were 25 subjects aged 18-77 (mean age ± SD; 48 ± 17) in the treated group and 27 subjects aged 21-69 (mean age ± SD; 43 ± 16) in the non-treated group. All participants attended for three visits: visit one at baseline, visit two at 20 weeks and visit three at 40 weeks. A statistically significant increase in MPOD (F = 17.0, p ≤ 0.001) and shortening of mfERG ring 2 P1 latency (F = 3.69, p = 0.04) was seen in the treated group. CONCLUSIONS Although the results were not clinically significant, the reported trend for improvement in MPOD and mfERG outcomes warrants further investigation.
Collapse
Affiliation(s)
- Emma J Berrow
- Ophthalmic Research Group, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Hannah E Bartlett
- Ophthalmic Research Group, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Frank Eperjesi
- Ophthalmic Research Group, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
37
|
Langford-Smith A, Tilakaratna V, Lythgoe PR, Clark SJ, Bishop PN, Day AJ. Age and Smoking Related Changes in Metal Ion Levels in Human Lens: Implications for Cataract Formation. PLoS One 2016; 11:e0147576. [PMID: 26794210 PMCID: PMC4721641 DOI: 10.1371/journal.pone.0147576] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Age-related cataract formation is the primary cause of blindness worldwide and although treatable by surgical removal of the lens the majority of sufferers have neither the finances nor access to the medical facilities required. Therefore, a better understanding of the pathogenesis of cataract may identify new therapeutic targets to prevent or slow its progression. Cataract incidence is strongly correlated with age and cigarette smoking, factors that are often associated with accumulation of metal ions in other tissues. Therefore this study evaluated the age-related changes in 14 metal ions in 32 post mortem human lenses without known cataract from donors of 11 to 82 years of age by inductively coupled plasma mass spectrometry; smoking-related changes in 10 smokers verses 14 non-smokers were also analysed. A significant age-related increase in selenium and decrease in copper ions was observed for the first time in the lens tissue, where cadmium ion levels were also increased as has been seen previously. Aluminium and vanadium ions were found to be increased in smokers compared to non-smokers (an analysis that has only been carried out before in lenses with cataract). These changes in metal ions, i.e. that occur as a consequence of normal ageing and of smoking, could contribute to cataract formation via induction of oxidative stress pathways, modulation of extracellular matrix structure/function and cellular toxicity. Thus, this study has identified novel changes in metal ions in human lens that could potentially drive the pathology of cataract formation.
Collapse
Affiliation(s)
- Alex Langford-Smith
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Viranga Tilakaratna
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Paul R Lythgoe
- School of Earth, Atmospheric and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, United Kingdom
| | - Simon J Clark
- Centre for Ophthalmology and Vision Sciences, Institute of Human Development, University of Manchester, Manchester, United Kingdom.,Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul N Bishop
- Centre for Ophthalmology and Vision Sciences, Institute of Human Development, University of Manchester, Manchester, United Kingdom.,Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
38
|
Bose K, Lakshminarasimhan H, Sundar K, Kathiresan T. Cytotoxic effect of ZnS nanoparticles on primary mouse retinal pigment epithelial cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1764-73. [PMID: 26523428 DOI: 10.3109/21691401.2015.1102739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The multiple properties of zinc sulphide nanoparticles (ZnS-NPs) are attracting great attention in the field of chemical and biological research. ZnS-NPs also find their application in biosensor and photocatalysis. Zinc is an important metal ion in retina and its deficiency leads to age-related macular degeneration. As of now, not much research is available on bio-interaction of ZnS as nanoform with retinal pigment epithelial (RPE) cells. RPE cells in the retina help in maintaining normal photoreceptor function and vision. To begin with, ZnS-NPs were synthesized and characterized using UV-visible spectra, X-ray diffraction, Fourier transform infrared spectrum, transmission electron microscopy and dynamic light scattering. Followed by the confirmation of nanoparticles, our study extended to investigate the impact of ZnS-NPs in primary mouse RPE (MRPE) cells at different concentrations. ZnS-NPs showed dose-dependent cytotoxicity in MRPE cells and no changes were observed in cells' tight intactness at minimal concentration. In addition, exposure to ZnS-NPs increased cellular permeability in dose- and time-dependent manner in MRPE cells. The findings from DCFH-DA analysis revealed that ZnS-NPs-treated cells had elevated level of reactive oxygen species and partial activation of cell apoptosis was identified after exposure to ZnS-NPs at higher concentration. Furthermore, pre-treatment of the primary MRPE cells with ZnS-NPs led to phosphorylation of Akt (Ser 473), which indicates the crucial role of ZnS-NPs in regulating cell survival at minimal concentration. Altogether, this study enumerates requisite dose of using ZnS-NPs to maintain healthy RPE cells and contributes to future studies in development of therapeutic drug and drug carrier for ocular-related disorders.
Collapse
Affiliation(s)
- Karthikeyan Bose
- a Department of Biotechnology , Kalasalingam University , Krishnankoil , Tamil Nadu , India
| | | | - Krishnan Sundar
- a Department of Biotechnology , Kalasalingam University , Krishnankoil , Tamil Nadu , India.,b International Research Centre, Kalasalingam University , Krishnankoil , Tamil Nadu , India
| | - Thandavarayan Kathiresan
- a Department of Biotechnology , Kalasalingam University , Krishnankoil , Tamil Nadu , India.,b International Research Centre, Kalasalingam University , Krishnankoil , Tamil Nadu , India
| |
Collapse
|
39
|
Flinn JM, Kakalec P, Tappero R, Jones B, Lengyel I. Correlations in distribution and concentration of calcium, copper and iron with zinc in isolated extracellular deposits associated with age-related macular degeneration. Metallomics 2015; 6:1223-8. [PMID: 24740686 DOI: 10.1039/c4mt00058g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc (Zn) is abundantly enriched in sub-retinal pigment epithelial (RPE) deposits, the hallmarks of age-related macular degeneration (AMD), and is thought to play a role in the formation of these deposits. However, it is not known whether Zn is the only metal relevant for sub-RPE deposit formation. Because of their involvement in the pathogenesis of AMD, we determined the concentration and distribution of calcium (Ca), iron (Fe) and copper (Cu) and compared these with Zn in isolated and sectioned macular (MSD), equatorial (PHD) and far peripheral (FPD) sub-RPE deposits from an 86 year old donor eye with post mortem diagnosis of early AMD. The sections were mounted on Zn free microscopy slides and analyzed by microprobe synchrotron X-ray fluorescence (μSXRF). Metal concentrations were determined using spiked sectioned sheep brain matrix standards, prepared the same way as the samples. The heterogeneity of metal distributions was examined using pixel by pixel comparison. The orders of metal concentrations were Ca ⋙ Zn > Fe in all three types of deposits but Cu levels were not distinguishable from background values. Zinc and Ca were consistently present in all deposits but reached highest concentration in MSD. Iron was present in some but not all deposits and was especially enriched in FPD. Correlation analysis indicated considerable variation in metal distribution within and between sub-RPE deposits. The results suggest that Zn and Ca are the most likely contributors to deposit formation especially in MSD, the characteristic risk factor for the development of AMD in the human eye.
Collapse
Affiliation(s)
- Jane M Flinn
- Psychology, George Mason University, Fairfax, VA, USA
| | | | | | | | | |
Collapse
|
40
|
Fox DA. Retinal and visual system: occupational and environmental toxicology. HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:325-40. [PMID: 26563796 DOI: 10.1016/b978-0-444-62627-1.00017-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Occupational chemical exposure often results in sensory systems alterations that occur without other clinical signs or symptoms. Approximately 3000 chemicals are toxic to the retina and central visual system. Their dysfunction can have immediate, long-term, and delayed effects on mental health, physical health, and performance and lead to increased occupational injuries. The aims of this chapter are fourfold. First, provide references on retinal/visual system structure, function, and assessment techniques. Second, discuss the retinal features that make it especially vulnerable to toxic chemicals. Third, review the clinical and corresponding experimental data regarding retinal/visual system deficits produced by occupational toxicants: organic solvents (carbon disulfide, trichloroethylene, tetrachloroethylene, styrene, toluene, and mixtures) and metals (inorganic lead, methyl mercury, and mercury vapor). Fourth, discuss occupational and environmental toxicants as risk factors for late-onset retinal diseases and degeneration. Overall, the toxicants altered color vision, rod- and/or cone-mediated electroretinograms, visual fields, spatial contrast sensitivity, and/or retinal thickness. The findings elucidate the importance of conducting multimodal noninvasive clinical, electrophysiologic, imaging and vision testing to monitor toxicant-exposed workers for possible retinal/visual system alterations. Finally, since the retina is a window into the brain, an increased awareness and understanding of retinal/visual system dysfunction should provide additional insight into acquired neurodegenerative disorders.
Collapse
Affiliation(s)
- Donald A Fox
- Departments of Vision Sciences, Biology and Biochemistry, Pharmacology, and Health and Human Performance, University of Houston, Houston, TX, USA.
| |
Collapse
|
41
|
Gonzalez-Iglesias H, Alvarez L, García M, Petrash C, Sanz-Medel A, Coca-Prados M. Metallothioneins (MTs) in the human eye: a perspective article on the zinc-MT redox cycle. Metallomics 2014; 6:201-8. [PMID: 24419560 DOI: 10.1039/c3mt00298e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metallothioneins (MTs) are zinc-ion-binding proteins with a wide range of functions, among which are neuroprotection, maintenance of cellular zinc homeostasis, and defense against oxidative damage and inflammation. The human eye is enriched in MTs, and multiple isoforms may contribute to distinct antioxidant defense mechanisms in various ocular tissues. Zinc is a main regulator of MT gene and protein expression, and we recently applied bioanalytical techniques to address key questions on its relationship with MTs, including the stoichiometry of zinc-MT, the fate of zinc tracers ((nat)Zn and (68)Zn) in MTs during activation by exogenous zinc and cytokines, and the concentration of MTs in human ocular cells. We found that exogenously introduced zinc induced a potent de novo synthesis of MTs as well as a strong inhibition of pro-inflammatory cytokines. Zinc and cytokines also promote a stoichiometric transition of the MT complex from Zn6Cu1-MT to Zn7-MT, suggesting that MTs may interact more effectively with reactive oxygen species to decrease potential oxidative damage. Levels of MTs decrease with aging and disease, which may result in zinc release that is potentially cytotoxic. This state is also observed with increased oxidative stress and inflammation, suggesting that the antioxidant function of MTs has been impaired. In this review we propose a working model of the "zinc-metallothionein redox cycle" to regenerate and enhance the antioxidant function of MTs with the aim of combating the progression of these disease states.
Collapse
Affiliation(s)
- Héctor Gonzalez-Iglesias
- Fundación de Investigación Oftalmológica, Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernandez-Vega, 34, 33012, Oviedo, Spain.
| | | | | | | | | | | |
Collapse
|
42
|
Park SJ, Lee JH, Woo SJ, Kang SW, Park KH. Five heavy metallic elements and age-related macular degeneration: Korean National Health and Nutrition Examination Survey, 2008-2011. Ophthalmology 2014; 122:129-37. [PMID: 25225109 DOI: 10.1016/j.ophtha.2014.07.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/17/2014] [Accepted: 07/22/2014] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To investigate the association between age-related macular degeneration (AMD) and 5 heavy metallic elements (lead, mercury, cadmium, manganese, and zinc). DESIGN A cross-sectional study using a complex, stratified, multistage, probability cluster survey. PARTICIPANTS Participants of the Korean National Health and Nutrition Examination Survey from 2008 to 2011. METHODS Using a standardized protocol, AMD was determined by fundus photograph grading. Blood concentrations of lead, mercury, cadmium, manganese, and zinc were measured. Associations between AMD and these 5 elements were estimated using logistic regression analyses (LRAs). The distributions of the 5 metallic elements in blood were analyzed, and the same set of LRAs estimating the association between AMD and logarithmic-transformed blood concentrations of the 5 elements were also conducted. MAIN OUTCOME MEASURES Association between AMD and 5 heavy metals. RESULTS Lead was positively associated with both early AMD and late AMD in all LRAs. Mercury and cadmium also had a positive association with late AMD in all LRAs, but not with early AMD. In contrast, manganese and zinc had an inverse association with late AMD in all LRAs. Manganese and zinc were not associated with early AMD. Using logarithmic-transformed blood concentrations for each metallic element, the LRAs showed similar results compared with those of the LRAs using nontransformed blood concentrations, despite the skewed distribution of these metallic elements in the blood. CONCLUSIONS This study suggests that the toxic heavy metals (lead, mercury, and cadmium) may negatively influence late AMD, whereas essential heavy metals (manganese and zinc) may favorably influence late AMD. Lead may widely affect the pathogenesis of both early and late AMD.
Collapse
Affiliation(s)
- Sang Jun Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ju Hyun Lee
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Se Woong Kang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | | |
Collapse
|
43
|
Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, Ostan R, Cevenini E, Gonos ES, Monti D. Micronutrient-gene interactions related to inflammatory/immune response and antioxidant activity in ageing and inflammation. A systematic review. Mech Ageing Dev 2014; 136-137:29-49. [PMID: 24388876 DOI: 10.1016/j.mad.2013.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023]
Abstract
Recent longitudinal studies in dietary daily intake in human centenarians have shown that a satisfactory content of some micronutrients within the cells maintain several immune functions, a low grade of inflammation and preserve antioxidant activity. Micronutrients (zinc, copper, selenium) play a pivotal role in maintaining and reinforcing the performances of the immune and antioxidant systems as well as in affecting the complex network of the genes (nutrigenomic) with anti- and pro-inflammatory tasks. Genes of pro- and anti-inflammatory cytokines and some key regulators of trace elements homeostasis, such as Metallothioneins (MT), are involved in the susceptibility to major geriatric disease/disorders. Moreover, the genetic inter-individual variability may affect the nutrients' absorption (nutrigenetic) with altered effects on inflammatory/immune response and antioxidant activity. The interaction between genetic factors and micronutrients (nutrigenomic and nutrigenetic approaches) may influence ageing and longevity because the micronutrients may become also toxic. This review reports the micronutrient-gene interactions in ageing and their impact on the healthy state with a focus on the method of protein-metal speciation analysis. The association between micronutrient-gene interactions and the protein-metal speciation analysis can give a complete picture for a personalized nutrient supplementation or chelation in order to reach healthy ageing and longevity.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy.
| | - Laura Costarelli
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Robertina Giacconi
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Marco Malavolta
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Andrea Basso
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Francesco Piacenza
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Rita Ostan
- Department of Experimental Diagnostic and Specialty Medicine (DIMES) and Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Via San Giacomo, 12, 40126 Bologna, Italy
| | - Elisa Cevenini
- Department of Experimental Diagnostic and Specialty Medicine (DIMES) and Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Via San Giacomo, 12, 40126 Bologna, Italy
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Daniela Monti
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Viale Morgagni, 50, 50134 Florence, Italy
| |
Collapse
|
44
|
Ugarte M, Osborne NN. Recent advances in the understanding of the role of zinc in ocular tissues. Metallomics 2014; 6:189-200. [DOI: 10.1039/c3mt00291h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
45
|
Autophagy of iron-binding proteins may contribute to the oxidative stress resistance of ARPE-19 cells. Exp Eye Res 2013. [DOI: 10.1016/j.exer.2013.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
46
|
Ugarte M, Osborne NN, Brown LA, Bishop PN. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol 2013; 58:585-609. [DOI: 10.1016/j.survophthal.2012.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 12/09/2012] [Accepted: 12/11/2012] [Indexed: 12/26/2022]
|
47
|
Tokarz P, Kaarniranta K, Blasiak J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology 2013; 14:461-82. [PMID: 24057278 PMCID: PMC3824279 DOI: 10.1007/s10522-013-9463-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 09/03/2013] [Indexed: 12/20/2022]
Abstract
Cells in aerobic condition are constantly exposed to reactive oxygen species (ROS), which may induce damage to biomolecules, including proteins, nucleic acids and lipids. In normal circumstances, the amount of ROS is counterbalanced by cellular antioxidant defence, with its main components—antioxidant enzymes, DNA repair and small molecular weight antioxidants. An imbalance between the production and neutralization of ROS by antioxidant defence is associated with oxidative stress, which plays an important role in the pathogenesis of many age-related and degenerative diseases, including age-related macular degeneration (AMD), affecting the macula—the central part of the retina. The retina is especially prone to oxidative stress due to high oxygen pressure and exposure to UV and blue light promoting ROS generation. Because oxidative stress has an established role in AMD pathogenesis, proper functioning of antioxidant defence may be crucial for the occurrence and progression of this disease. Antioxidant enzymes play a major role in ROS scavenging and changes of their expression or/and activity are reported to be associated with AMD. Therefore, the enzymes in the retina along with their genes may constitute a perspective target in AMD prevention and therapy.
Collapse
Affiliation(s)
- Paulina Tokarz
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland,
| | | | | |
Collapse
|
48
|
Diminishing risk for age-related macular degeneration with nutrition: a current view. Nutrients 2013; 5:2405-56. [PMID: 23820727 PMCID: PMC3738980 DOI: 10.3390/nu5072405] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 02/02/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Clinical hallmarks of AMD are observed in one third of the elderly in industrialized countries. Preventative interventions through dietary modification are attractive strategies, because they are more affordable than clinical therapies, do not require specialists for administration and many studies suggest a benefit of micro- and macro-nutrients with respect to AMD with few, if any, adverse effects. The goal of this review is to provide information from recent literature on the value of various nutrients, particularly omega-3 fatty acids, lower glycemic index diets and, perhaps, some carotenoids, with regard to diminishing risk for onset or progression of AMD. Results from the upcoming Age-Related Eye Disease Study (AREDS) II intervention trial should be particularly informative.
Collapse
|
49
|
Ugarte M, Grime GW, Lord G, Geraki K, Collingwood JF, Finnegan ME, Farnfield H, Merchant M, Bailey MJ, Ward NI, Foster PJ, Bishop PN, Osborne NN. Concentration of various trace elements in the rat retina and their distribution in different structures. Metallomics 2013; 4:1245-54. [PMID: 23093062 DOI: 10.1039/c2mt20157g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the total amount of trace elements in retina from adult male Sprague-Dawley rats (n = 6). Concentration of trace elements within individual retinal areas in frozen sections of the fellow eye was established with the use of two methodologies: (1) particle-induced X-ray emission (PIXE) in combination with 3D depth profiling with Rutherford backscattering spectrometry (RBS) and (2) synchrotron X-ray fluorescence (SXRF) microscopy. The most abundant metal in the retina was zinc, followed by iron and copper. Nickel, manganese, chromium, cobalt, selenium and cadmium were present in very small amounts. The PIXE and SXRF analysis yielded a non-homogenous pattern distribution of metals in the retina. Relatively high levels of zinc were found in the inner part of the photoreceptor inner segments (RIS)/outer limiting membrane (OLM), inner nuclear layer and plexiform layers. Iron was found to accumulate in the retinal pigment epithelium/choroid layer and RIS/OLM. Copper in turn, was localised primarily in the RIS/OLM and plexiform layers. The trace elements iron, copper, and zinc exist in different amounts and locations in the rat retina.
Collapse
Affiliation(s)
- Marta Ugarte
- Centre for Advanced Discovery and Experimental Therapeutics, Institute of Human Development, University of Manchester and Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jünemann AGM, Stopa P, Michalke B, Chaudhri A, Reulbach U, Huchzermeyer C, Schlötzer-Schrehardt U, Kruse FE, Zrenner E, Rejdak R. Levels of aqueous humor trace elements in patients with non-exsudative age-related macular degeneration: a case-control study. PLoS One 2013; 8:e56734. [PMID: 23457607 PMCID: PMC3574106 DOI: 10.1371/journal.pone.0056734] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Trace elements might play a role in the complex multifactorial pathogenesis of age-related macular degeneration (AMD). The aim of this study was to measure alterations of trace elements levels in aqueous humor of patients with non-exsudative (dry) AMD. For this pilot study, aqueous humor samples were collected from patients undergoing cataract surgery. 12 patients with dry AMD (age 77.9±6.62, female 8, male 4) and 11 patients without AMD (age 66.6±16.7, female 7, male 4) were included. Aqueous levels of cadmium, cobalt, copper, iron, manganese, selenium, and zinc were measured by use of Flow-Injection-Inductively-Coupled-Plasma-Mass-Spectrometry (FI-ICP-MS), quality controlled with certified standards. Patients with AMD had significantly higher aqueous humor levels of cadmium (median: 0.70 µmol/L, IQR: 0.40–0.84 vs. 0.06 µmol/L; IQR: 0.01–.018; p = 0.002), cobalt (median: 3.1 µmol/L, IQR: 2.62–3.15 vs. 1.17 µmol/L; IQR: 0.95–1.27; p<0.001), iron (median: 311 µmol/L, IQR: 289–329 vs. 129 µmol/L; IQR: 111–145; p<0.001) and zinc (median: 23.1 µmol/L, IQR: 12.9–32.6 vs. 5.1 µmol/L; IQR: 4.4–9.4; p = 0.020) when compared with patients without AMD. Copper levels were significantly reduced in patients with AMD (median: 16.2 µmol/L, IQR: 11.4–31.3 vs. 49.9 µmol/L; IQR: 32.0–.142.0; p = 0.022) when compared to those without. No significant differences were observed in aqueous humor levels of manganese and selenium between patients with and without AMD. After an adjustment for multiple testing, cadmium, cobalt, copper and iron remained a significant factor in GLM models (adjusted for age and gender of the patients) for AMD. Alterations of trace element levels support the hypothesis that cadmium, cobalt, iron, and copper are involved in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Anselm G M Jünemann
- Department of Ophthalmology, University Hospital of Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|