1
|
Wu KY, Tabari A, Mazerolle É, Tran SD. Towards Precision Ophthalmology: The Role of 3D Printing and Bioprinting in Oculoplastic Surgery, Retinal, Corneal, and Glaucoma Treatment. Biomimetics (Basel) 2024; 9:145. [PMID: 38534830 DOI: 10.3390/biomimetics9030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
In the forefront of ophthalmic innovation, biomimetic 3D printing and bioprinting technologies are redefining patient-specific therapeutic strategies. This critical review systematically evaluates their application spectrum, spanning oculoplastic reconstruction, retinal tissue engineering, corneal transplantation, and targeted glaucoma treatments. It highlights the intricacies of these technologies, including the fundamental principles, advanced materials, and bioinks that facilitate the replication of ocular tissue architecture. The synthesis of primary studies from 2014 to 2023 provides a rigorous analysis of their evolution and current clinical implications. This review is unique in its holistic approach, juxtaposing the scientific underpinnings with clinical realities, thereby delineating the advantages over conventional modalities, and identifying translational barriers. It elucidates persistent knowledge deficits and outlines future research directions. It ultimately accentuates the imperative for multidisciplinary collaboration to enhance the clinical integration of these biotechnologies, culminating in a paradigm shift towards individualized ophthalmic care.
Collapse
Affiliation(s)
- Kevin Y Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Adrian Tabari
- Southern Medical Program, Faculty of Medicine, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Éric Mazerolle
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Reinhard J, Urban P, Bell S, Carpenter D, Sagoo MS. Automatic data-driven design and 3D printing of custom ocular prostheses. Nat Commun 2024; 15:1360. [PMID: 38413561 PMCID: PMC10899237 DOI: 10.1038/s41467-024-45345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Millions of people require custom ocular prostheses due to eye loss or congenital defects. The current fully manual manufacturing processes used by highly skilled ocularists are time-consuming with varying quality. Additive manufacturing technology has the potential to simplify the manufacture of ocular prosthetics, but existing approaches just replace to various degrees craftsmanship by manual digital design and still require substantial expertise and time. Here we present an automatic digital end-to-end process for producing custom ocular prostheses that uses image data from an anterior segment optical coherence tomography device and considers both shape and appearance. Our approach uses a statistical shape model to predict, based on incomplete surface information of the eye socket, a best fitting prosthesis shape. We use a colour characterized image of the healthy fellow eye to determine and procedurally generate the prosthesis's appearance that matches the fellow eye. The prosthesis is manufactured using a multi-material full-colour 3D printer and postprocessed to satisfy regulatory compliance. We demonstrate the effectiveness of our approach by presenting results for 10 clinic patients who received a 3D printed prosthesis. Compared to a current manual process, our approach requires five times less labour of the ocularist and produces reproducible output.
Collapse
Affiliation(s)
- Johann Reinhard
- Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany.
- Department of Computer Science, Technical University Darmstadt, Darmstadt, Germany.
| | - Philipp Urban
- Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany
- Department of Computer Science, Norwegian University of Science and Technology, Gjøvik, Norway
| | - Stephen Bell
- Ocupeye Ltd., Kenilworth, UK
- NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - David Carpenter
- Ocular Prosthetics Department, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mandeep S Sagoo
- NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
- Ocular Oncology Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Retinoblastoma Service, Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
3
|
Hu Q, Cui J, Zhang H, Liu S, Ramalingam M. A 5 + 1-Axis 3D Printing Platform for Producing Customized Intestinal Fistula Stents. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:955-970. [PMID: 37886400 PMCID: PMC10599436 DOI: 10.1089/3dp.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Tailored intestinal fistula stents with a hollow bent pipe structure prepared by using a three-axis bio-printing platform are often unsuitable due to low printing efficiency and quality caused by the unavoidable need for a supporting structure. Herein, a 5 + 1-axis 3D printing platform was built and developed for producing support-free intestinal fistula stents. A 3D model of the target stent shape and dimensions was treated by a dynamic slicing algorithm, which was then used to prepare a motion control code. Our printing method showed improved printing efficiency, superior stent surface properties and structure and ideal elasticity and mechanical strength to meet the mechanical requirements of the human body. Static simulations showed the importance of axial printing techniques, whereas the stent itself was shown to have excellent biocompatibility with wettability and cell proliferation tests. We present a customizable, efficient, and high-quality method with the potential for preparing bespoke stents for treating intestinal fistulas.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Jian Cui
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Suihong Liu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
| | - Murugan Ramalingam
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
4
|
Wu SY, Sun MH, Yen CH, Tsai YJ, Liao YL. Fabrication of a facial prosthesis for a 13-year-old child by using a point-and-shoot three-dimensional scanner and CAD/CAM technology. Taiwan J Ophthalmol 2022; 12:219-222. [PMID: 35813808 PMCID: PMC9262021 DOI: 10.4103/tjo.tjo_49_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/16/2021] [Indexed: 11/04/2022] Open
|
5
|
Puls N, Carluccio D, Batstone MD, Novak JI. The rise of additive manufacturing for ocular and orbital prostheses: A systematic literature review. ANNALS OF 3D PRINTED MEDICINE 2021. [DOI: 10.1016/j.stlm.2021.100036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Larochelle RD, Mann SE, Ifantides C. 3D Printing in Eye Care. Ophthalmol Ther 2021; 10:733-752. [PMID: 34327669 PMCID: PMC8320416 DOI: 10.1007/s40123-021-00379-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional printing enables precise modeling of anatomical structures and has been employed in a broad range of applications across medicine. Its earliest use in eye care included orbital models for training and surgical planning, which have subsequently enabled the design of custom-fit prostheses in oculoplastic surgery. It has evolved to include the production of surgical instruments, diagnostic tools, spectacles, and devices for delivery of drug and radiation therapy. During the COVID-19 pandemic, increased demand for personal protective equipment and supply chain shortages inspired many institutions to 3D-print their own eye protection. Cataract surgery, the most common procedure performed worldwide, may someday make use of custom-printed intraocular lenses. Perhaps its most alluring potential resides in the possibility of printing tissues at a cellular level to address unmet needs in the world of corneal and retinal diseases. Early models toward this end have shown promise for engineering tissues which, while not quite ready for transplantation, can serve as a useful model for in vitro disease and therapeutic research. As more institutions incorporate in-house or outsourced 3D printing for research models and clinical care, ethical and regulatory concerns will become a greater consideration. This report highlights the uses of 3D printing in eye care by subspecialty and clinical modality, with an aim to provide a useful entry point for anyone seeking to engage with the technology in their area of interest.
Collapse
Affiliation(s)
- Ryan D Larochelle
- Department of Ophthalmology, University of Colorado, Sue Anschutz-Rodgers Eye Center, 1675 Aurora Court, F731, Aurora, CO, 80045, USA
| | - Scott E Mann
- Department of Otolaryngology, University of Colorado, Aurora, CO, USA
- Department of Surgery, Denver Health Medical Center, Denver, CO, USA
| | - Cristos Ifantides
- Department of Ophthalmology, University of Colorado, Sue Anschutz-Rodgers Eye Center, 1675 Aurora Court, F731, Aurora, CO, 80045, USA.
- Department of Surgery, Denver Health Medical Center, Denver, CO, USA.
| |
Collapse
|
7
|
Systematic Review of Clinical Applications of CAD/CAM Technology for Craniofacial Implants Placement and Manufacturing of Orbital Prostheses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111349. [PMID: 34769865 PMCID: PMC8582823 DOI: 10.3390/ijerph182111349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022]
Abstract
This systematic review was aimed at gathering technical and clinical applications of CAD/CAM technology for the preoperative planning of craniofacial implants placement, designing of molds and substructures and fabrication of orbital prostheses. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, an electronic search was executed. Human studies that utilized digital planning systems for the prosthetic rehabilitation of orbital defects were included. A total of 16 studies of 30 clinical cases, which were virtually planned through various digital planning and designing software, were included. The most common preoperative data required for digital planning were CT scans in 15 cases, the 3DSS-STD-II scanning system in 5 cases, an Artec Color 3D scanner in 3 cases and a NextEngine Desktop 3D laser scanner in 2 cases. Meanwhile, the digital designing software were Ease Orbital Implant Planning EOIPlan software in eight cases, Geomagic software in eight cases, Simplant software in four cases and Artec Studio 12 Professional in three cases. Surgical templates were fabricated for 12 cases to place 41 craniofacial implants in the orbital defect area. An image-guided surgical navigation system was utilized for the placement of five orbital implants in two cases. Digital designing and printing systems were reported for the preoperative planning of craniofacial implants placement, designing of molds and substructures and fabrication of orbital prostheses. The studies concluded that the digital planning, designing and fabrication of orbital prostheses reduce the clinical and laboratory times, reduces patient visits and provide a satisfactory outcome; however, technical skills and equipment costs are posing limitations on the use of these digital systems.
Collapse
|
8
|
Zare M, Ghomi ER, Venkatraman PD, Ramakrishna S. Silicone‐based biomaterials for biomedical applications: Antimicrobial strategies and 3D printing technologies. J Appl Polym Sci 2021. [DOI: 10.1002/app.50969] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| | | | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| |
Collapse
|
9
|
Digital Workflow in Maxillofacial Prosthodontics—An Update on Defect Data Acquisition, Editing and Design Using Open-Source and Commercial Available Software. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030973] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: A maxillofacial prosthesis, an alternative to surgery for the rehabilitation of patients with facial disabilities (congenital or acquired due to malignant disease or trauma), are meant to replace parts of the face or missing areas of bone and soft tissue and restore oral functions such as swallowing, speech and chewing, with the main goal being to improve the quality of life of the patients. The conventional procedures for maxillofacial prosthesis manufacturing involve several complex steps, are very traumatic for the patient and rely on the skills of the maxillofacial team. Computer-aided design and computer-aided manufacturing have opened a new approach to the fabrication of maxillofacial prostheses. Our review aimed to perform an update on the digital design of a maxillofacial prosthesis, emphasizing the available methods of data acquisition for the extraoral, intraoral and complex defects in the maxillofacial region and assessing the software used for data processing and part design. Methods: A search in the PubMed and Scopus databases was done using the predefined MeSH terms. Results: Partially and complete digital workflows were successfully applied for extraoral and intraoral prosthesis manufacturing. Conclusions: To date, the software and interface used to process and design maxillofacial prostheses are expensive, not typical for this purpose and accessible only to very skilled dental professionals or to computer-aided design (CAD) engineers. As the demand for a digital approach to maxillofacial rehabilitation increases, more support from the software designer or manufacturer will be necessary to create user-friendly and accessible modules similar to those used in dental laboratories.
Collapse
|