1
|
Cho SH, Kim JH, Kim S. Perturbed cell cycle phase-dependent positioning and nuclear migration of retinal progenitors along the apico-basal axis underlie global retinal disorganization in the LCA8-like mouse model. Dev Biol 2024; 517:39-54. [PMID: 39284539 DOI: 10.1016/j.ydbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/29/2024]
Abstract
Combined removal of Crb1 and Crb2 from the developing optic vesicle evokes cellular and laminar disorganization by disrupting the apical cell-cell adhesion in developing retinal epithelium. As a result, at postnatal stages, affected mouse retinas show temporarily thickened, coarsely laminated retinas in addition to functional deficits, including a severely abnormal electroretinogram and decreased visual acuity. These features are reminiscent of Leber congenital amaurosis 8, which is caused in humans by subsets of Crb1 mutations. However, the cellular basis of the abnormalities in retinal progenitor cells (RPCs) that lead to retinal disorganization is largely unknown. In this study, we analyze specific features of RPCs in mutant retinas, including maintenance of the progenitor pool, cell cycle progression, cell cycle phase-dependent nuclear positioning, cell survival, and generation of mature retinal cell types. We find crucial defects in the mutant RPCs. Upon removal of CRB1 and CRB2, apical structures of the RPCs, determined by markers of cilia and centrosomes, are basally shifted. In addition, the positioning of the somata of the M-phase cells, normally localized at the apical surface of the retinal epithelium, is basally shifted in a nearly randomized pattern along the apico-basal axis. Consequently, we propose that positioning of RPCs is desynchronized from cell cycle phase and largely randomized during embryonic development at E17.5. Because the resultant postmitotic cells inevitably lose positional information, the outer and inner nuclear layers (ONL and INL) fail to form from ONBL during neonatal development and retinal cells become mixed locally and globally. Additional results of the lost tissue polarity in Crb1/Crb2 dKO retinas include atypical formation of heterotopic cell patches containing photoreceptor cells in the ganglion cell layer and acellular patches filled with neural processes. Collectively, these changes lead to a mouse model of LCA8-like pathology. LCA8-like pathology differs substantially from the well-characterized, broad range of degeneration phenotypes that arise during the differentiation of photoreceptor and Muller glial cells in retinitis pigmentosa 12, a closely related disease caused by mutated human Crb1. Importantly, the present results suggest that Crb1/Crb2 serve indispensable functions in maintaining cell-cycle phase-dependent positioning of RPCs along the apico-basal axis, regulating cell cycle progression, and maintaining structural laminar integrity without significantly affecting the size of the RPC pools, generation of the subsets of the retinal cell types, or the distribution of cell cycle phases during RPC division. Taken together, these findings provide the crucial cellular basis of the thickening and severely disorganized lamination that are the unique features of the retinal abnormalities in LCA8 patients.
Collapse
Affiliation(s)
- Seo-Hee Cho
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Ji Hyang Kim
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Seonhee Kim
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
2
|
Karuntu JS, Nguyen XT, Boon CJF. Correlations between the Michigan Retinal Degeneration Questionnaire and visual function parameters in patients with retinitis pigmentosa. Acta Ophthalmol 2024; 102:555-563. [PMID: 38158751 DOI: 10.1111/aos.16601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/19/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE To validate the use of best-corrected visual acuity (BCVA), low-luminance visual acuity (LLVA), low-luminance deficit (LLD; the difference between BCVA and LLVA), mean macular sensitivity and fixation stability as parameters of vision-related quality of life based on the novel Michigan Retinal Degeneration Questionnaire (MRDQ) in retinitis pigmentosa (RP) patients. METHODS In this prospective cross sectional study, 30 patients with RP (47% female) were included with a median age of 41.0 years (interquartile range: 24.1-58.3 years). BCVA, LLVA and LLD were measured with Early Treatment Diabetic Retinopathy Study (ETDRS) charts. Mesopic microperimetry was performed to measure mean macular sensitivity and fixation stability. Patients completed a Dutch translation of the MRDQ which results in an experienced disability (Θ-)score of seven domains. Spearman's rank correlation was used. RESULTS BCVA correlated significantly to the MRDQ domain of central vision (r = 0.657; p < 0.001) and colour vision (r = 0.524; p = 0.003). Lower LLVA significantly correlated to higher experienced disability in the MRDQ domains for central vision (=0.550; p = 0.002) and contrast sensitivity (r = 0.502; p = 0.005). LLD was significantly correlated to the MRDQ domains of scotopic function (r = -0.484; p = 0.007) and mesopic peripheral function (r = -0.533; p = 0.002). Lower mean macular sensitivity was significantly associated with high experienced disability in all domains except for photosensitivity. CONCLUSIONS The majority of the MRDQ domains is strongly associated with visual function parameters. These findings show that visual function measurements, especially LLVA, LLD and mean macular sensitivity on microperimetry, reflect vision-related quality of life and can be used as relevant outcome measures in clinical trials for RP.
Collapse
Affiliation(s)
- J S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - X T Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - C J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Heutinck PAT, van den Born LI, Vermeer M, Iglesias Gonzales AI, Hoyng CB, Pott JWR, Kroes HY, van Schooneveld MJ, Boon CJF, van Genderen MM, Plomp AS, de Jong-Hesse Y, van Egmond-Ebbeling MB, Hoefsloot LH, A. Bergen A, Klaver CCW, Meester-Smoor MA, Thiadens AAHJ, Verhoeven VJM. Frequency and Genetic Spectrum of Inherited Retinal Dystrophies in a Large Dutch Pediatric Cohort: The RD5000 Consortium. Invest Ophthalmol Vis Sci 2024; 65:40. [PMID: 39189993 PMCID: PMC11361385 DOI: 10.1167/iovs.65.10.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024] Open
Abstract
Purpose Gene-based therapies for inherited retinal dystrophies (IRDs) are upcoming. Treatment before substantial vision loss will optimize outcomes. It is crucial to identify common phenotypes and causative genes in children. This study investigated the frequency of these in pediatric IRD with the aim of highlighting relevant groups for future therapy. Methods Diagnostic, genetic, and demographic data, collected from medical charts of patients with IRD aged up to 20 years (n = 624, 63% male), registered in the Dutch RD5000 database, were analyzed to determine frequencies of phenotypes and genetic causes. Phenotypes were categorized as nonsyndromic (progressive and stationary IRD) and syndromic IRD. Genetic causes, mostly determined by whole-exome sequencing (WES), were examined. Additionally, we investigated the utility of periodic reanalysis of WES data in genetically unresolved cases. Results Median age at registration was 13 years (interquartile range, 9-16). Retinitis pigmentosa (RP; n = 123, 20%), Leber congenital amaurosis (LCA; n = 97, 16%), X-linked retinoschisis (n = 64, 10%), and achromatopsia (n = 63, 10%) were the most frequent phenotypes. The genetic cause was identified in 76% of the genetically examined patients (n = 473). The most frequently disease-causing genes were RS1 (n = 32, 9%), CEP290 (n = 28, 8%), CNGB3 (n = 21, 6%), and CRB1 (n = 17, 5%). Diagnostic yield after reanalysis of genetic data increased by 7%. Conclusions As in most countries, RP and LCA are the most prominent pediatric IRDs in the Netherlands, and variants in RS1 and CEP290 were the most prominent IRD genotypes. Our findings can guide therapy development to target the diseases and genes with the greatest needs in young patients.
Collapse
Affiliation(s)
- Pam A. T. Heutinck
- Department of Ophthalmology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | - Maikel Vermeer
- Department of Ophthalmology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- The Rotterdam Eye Hospital and Rotterdam Ophthalmic Institute, Rotterdam, the Netherlands
| | | | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan Willem R. Pott
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hester Y. Kroes
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mary J. van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria M. van Genderen
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Astrid S. Plomp
- Department of Human Genetics, Amsterdam Reproduction & Development, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Yvonne de Jong-Hesse
- Department of Ophthalmology, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Lies H. Hoefsloot
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Arthur A. Bergen
- Department of Human Genetics, Amsterdam Reproduction & Development, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- The Rotterdam Eye Hospital and Rotterdam Ophthalmic Institute, Rotterdam, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- The Rotterdam Eye Hospital and Rotterdam Ophthalmic Institute, Rotterdam, the Netherlands
| | | | - Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Hensman J, Hahn LC, van Schooneveld MJ, Diederen RMH, Ten Brink JB, Florijn RJ, Bergen AA, Strubbe I, Heutinck P, van Genderen MM, van den Born LI, Thiadens AA, de Zaeytijd J, Leroy BP, Hoyng CB, Boon CJF. Efficacy of Carbonic Anhydrase Inhibitors on Cystoid Fluid Collections and Visual Acuity in Patients with X-Linked Retinoschisis. Ophthalmol Retina 2024; 8:600-606. [PMID: 38104928 DOI: 10.1016/j.oret.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE To date, there is no standard treatment regimen for carbonic anhydrase inhibitors (CAIs) in X-linked retinoschisis (XLRS) patients. This retrospective study aims to evaluate the efficacy of CAIs on visual acuity and cystoid fluid collections (CFC) in XRLS patients in Dutch and Belgian tertiary referral centers. DESIGN Retrospective cohort study. PARTICIPANTS Forty-two patients with XLRS. METHODS In total, 42 patients were enrolled. To be included, patients had to have previous treatment with an oral CAI (acetazolamide), a topical CAI (brinzolamide/dorzolamide), or a combination of an oral and a topical CAI for at least 4 consecutive weeks. We evaluated the effect of the CAI on best-corrected visual acuity (BCVA) and central foveal thickness (CFT) on OCT. MAIN OUTCOME MEASURES Central foveal thickness and BCVA. RESULTS The median age at the baseline visit of the patients in this cohort study was 14.7 (range, 43.6) years, with a median (interquartile range [IQR]) follow-up period of 4.0 (2.2-5.2) years. During the follow-up period, 25 patients were treated once with an oral CAI (60%), 24 patients were treated once with a topical CAI (57%), and 11 patients were treated once with a combination of both topical and oral CAI (26%). We observed a significant reduction of CFT for oral CAI by 14.37 μm per 100 mg per day (P < 0.001; 95% confidence interval [CI], -19.62 to -9.10 μm) and for topical CAI by 7.52 μm per drop per day (P = 0.017; 95% CI, -13.67 to -1.32 μm). The visual acuity changed significantly while on treatment with oral CAI by -0.0059 logMAR per 100 mg (P = 0.008; 95% CI, -0.010 to -0.0013 logMAR). Seven patients (17%) had side effects leading to treatment discontinuation. CONCLUSIONS Our data indicate that treatment with (oral) CAI may be beneficial for short-term management of CFC in patients with XLRS. Despite a significant reduction in CFT, the change in visual acuity was modest and not of clinical significance. Nonetheless, the anatomic improvement of the central retina in these patients may be of value to create an optimal retinal condition for future potential treatment options such as gene therapy. FINANCIAL DISCLOSURE(S) The authors have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Jonathan Hensman
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Leo C Hahn
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Roselie M H Diederen
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacoline B Ten Brink
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ralph J Florijn
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ine Strubbe
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Pam Heutinck
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maria M van Genderen
- Bartiméus, Diagnostic Centre for Complex Visual Disorders, Zeist, The Netherlands
| | | | - Alberta A Thiadens
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Julie de Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
5
|
Karuntu JS, Nguyen XTA, Talib M, van Schooneveld MJ, Wijnholds J, van Genderen MM, Schalij-Delfos NE, Klaver CCW, Meester-Smoor MA, van den Born LI, Hoyng CB, Thiadens AAHJ, Bergen AA, van Nispen RMA, Boon CJF. Quality of life in patients with CRB1-associated retinal dystrophies: A longitudinal study. Acta Ophthalmol 2024; 102:469-477. [PMID: 37749859 DOI: 10.1111/aos.15769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE To assess the longitudinal vision-related quality of life among patients with CRB1-associated inherited retinal dystrophies. METHODS In this longitudinal questionnaire study, the National Eye Institute Visual Function Questionnaire (39 items, NEI VFQ-39) was applied at baseline, two-year follow-up, and 4-year follow-up in patients with pathogenic CRB1 variants. [Correction added on 20 November 2023, after first online publication: The preceding sentence has been updated in this version.] Classical test theory was performed to obtain subdomain scores and in particular 'near activities' and 'total composite' scores. The Rasch analysis based on previous calibrations of the NEI VFQ-25 was applied to create visual functioning and socio-emotional subscales. RESULTS In total, 22 patients with a CRB1-associated retinal dystrophy were included, […] with a median age of 25.0 years (interquartile range: 13-31 years) at baseline and mean follow-up of 4.0 ± 0.3 years. [Correction added on 20 November 2023, after first online publication: The preceding sentence has been updated in this version.] A significant decline at 4 years was observed for 'near activities' (51.0 ± 23.8 vs 35.4 ± 14.7, p = 0.004) and 'total composite' (63.0 ± 13.1 vs 52.0 ± 12.1, p = 0.001) subdomain scores. For the Rasch-scaled scores, the 'visual functioning' scale significantly decreased after 2 years (-0.89 logits; p = 0.012), but not at 4-year follow-up (+0.01 logits; p = 0.975). [Correction added on 20 November 2023, after first online publication: In the preceding sentence, "…after 4 years…" has been corrected to "…after 2 years…" in this version.] The 'socio-emotional' scale also showed a significant decline after 2 years (-0.78 logits, p = 0.033) and 4 years (-0.83 logits, p = 0.021). CONCLUSION In the absence of an intervention, a decline in vision-related quality of life is present in patients with pathogenic CRB1 variants at 4-year follow-up. Patient-reported outcome measures should be included in future clinical trials, as they can be a potential indicator of disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mays Talib
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | - Maria M van Genderen
- Bartiméus, Diagnostic Centre for complex visual disorders, Zeist, The Netherlands
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | | | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
| | - Ruth M A van Nispen
- Department of Ophthalmology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Tsai WS, Thottarath S, Gurudas S, Zhao J, Cheung CMG, Yamaguchi TCN, Giani A, Pearce E, Sivaprasad S. The Natural History of Retinal Sensitivity Loss in Diabetic Macular Ischemia over One Year Evaluated by Microperimetry. J Clin Med 2024; 13:2219. [PMID: 38673492 PMCID: PMC11051127 DOI: 10.3390/jcm13082219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Background/Objectives: This one-year prospective observational study, conducted at two centers, aimed to report the natural history of retinal sensitivity (RS) loss in diabetic macular ischemia (DMI). Methods: Patients with stable-treated proliferative diabetic retinopathy (PDR) were recruited if there was evidence of DMI on optical coherence tomography angiography, defined as a foveal avascular zone ≥ 0.5 mm2 or parafoveal capillary dropout ≥ 1 quadrant. The minimal visual acuity required for performing microperimetry (MP) was ≥54 Early Treatment Diabetic Retinopathy Study letters (Snellen equivalent 20/80). The overall RS (oRS) and pointwise sensitivity (PWS) within the 3 × 3 mm macula were assessed at baseline and twelve months. A value <25 decibels (dB) was defined as impaired RS, and a decrease of 2 and 7 dB was regarded as mild and severe loss, respectively. Results: A total of 88 patients (97 eyes) were included. No statistically significant MP changes were detected at one year. However, 10% of the cohort lost oRS ≥ 2 dB, and 73% lost ≥2 dB PWS in ≥5 loci, whereas 1% lost oRS ≥ 7 dB, and 4% lost ≥7 dB PWS in ≥5 loci. The foveola and temporal parafovea were the most vulnerable to severe RS loss. Compared to their counterpart, eyes with baseline oRS ≥ 25 dB had significantly more RS loss in the macula and superior parafovea (55% versus 32% and 53% versus 28%, both p = 0.01). Conclusions: Rather than oRS loss, ≥2 dB loss in PWS in ≥5 loci is a more feasible outcome measure for clinical trials in DMI.
Collapse
Affiliation(s)
- Wei-Shan Tsai
- Moorfields Clinical Research Facility, NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK; (W.-S.T.); (S.T.); (S.G.)
| | - Sridevi Thottarath
- Moorfields Clinical Research Facility, NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK; (W.-S.T.); (S.T.); (S.G.)
| | - Sarega Gurudas
- Moorfields Clinical Research Facility, NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK; (W.-S.T.); (S.T.); (S.G.)
| | - Jinzhi Zhao
- Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751, Singapore; (J.Z.); (C.M.G.C.)
| | - Chui Ming Gemmy Cheung
- Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751, Singapore; (J.Z.); (C.M.G.C.)
| | | | - Andrea Giani
- Boehringer Ingelheim, Binger Street 173, 55218 Ingelheim am Rhein, Germany; (T.C.N.Y.); (A.G.); (E.P.)
| | - Elizabeth Pearce
- Boehringer Ingelheim, Binger Street 173, 55218 Ingelheim am Rhein, Germany; (T.C.N.Y.); (A.G.); (E.P.)
| | - Sobha Sivaprasad
- Moorfields Clinical Research Facility, NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK; (W.-S.T.); (S.T.); (S.G.)
| |
Collapse
|
7
|
Jin Y, Li S, Jiang Z, Sun L, Huang L, Zhang T, Liu X, Ding X. Genotype-Phenotype of CRB1-Associated Early-Onset Retinal Dystrophy: Novel Insights on Retinal Architecture and Therapeutic Window for Clinical Trials. Invest Ophthalmol Vis Sci 2024; 65:11. [PMID: 38466290 DOI: 10.1167/iovs.65.3.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Purpose The purpose of this study was to investigate the genotypic and phenotypic characteristics of CRB1-associated early onset retinal dystrophy (CRB1-eoRD) and retinal architecture by swept-source optical coherence tomography (SS-OCT). Methods Eleven probands with CRB1-eoRD were recruited. Clinical information, genetic analysis, and comprehensive ophthalmic examinations including SS-OCT and SS-OCT angiography (SS-OCTA) were conducted. Results A total of 81.8% (9/11) of CRB1-eoRD presented as Leber congenital amaurosis (LCA). Common clinical manifestations included coin-like yellow-white retinal spots (20/22, 90.9%) and para-arteriolar retinal pigment epithelial retention (12/22, 54.5%). Nineteen different CRB1 variants were detected in our case series, including 12 missense, 3 frameshifts, 3 nonsense, and 1 splicing. Of them, 12 variants had been reported, and 7 were novel. SS-OCT showed thinner central macula (the LCA group, P < 0.0001), thicker total retina (P < 0.0001), thinner outer retina (P < 0.05), and thicker inner retina (P < 0.0001) compared with the healthy control. The inner/outer (I/O) retina thickness ratio of CRB1-eoRD was 3.0, higher than the healthy control of 1.2 and other inherited retinal diseases (IRDs) of 2.2 (P < 0.0001 and P = 0.0027, respectively). SS-OCTA revealed an increased vascular density and perfusion area of the superficial vascular complex and deep vascular complex in CRB1-eoRD. Conclusions LCA emerges as a frequently occurring phenotype in CRB1-eoRD. The unique features of SS-OCT and SS-OCTA are illustrated, and the novel biomarker, I/O ratio, may facilitate early diagnosis. The insights gained from this study hold significant value in determining the treatment window for potential forthcoming CRB1 gene therapy.
Collapse
Affiliation(s)
- Yili Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Songshan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zhaoxin Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xinyu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
8
|
Sakai D, Maeda T, Yamamoto M, Yokota S, Maeda A, Hirami Y, Nakamura M, Kurimoto Y, Mandai M. Relationship between residual visual field and full-field stimulus testing in patients with late-stage retinal degenerative diseases. Sci Rep 2024; 14:2793. [PMID: 38307956 PMCID: PMC10837419 DOI: 10.1038/s41598-024-53474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
This study aimed to investigate how the extent and central/peripheral location of the residual visual field (VF) in patients with late-stage inherited retinal diseases (IRDs) are related to retinal sensitivity detected using full-field stimulus testing (FST). We reviewed the results of Goldmann perimetry and FST from the medical records of patients with IRDs whose VF represents central (within 10°) and/or peripheral islands, or undetectable. In total, 19 patients (19 eyes) were analyzed in this study. The median value of residual VF area was 1.38%. The median values of rod and cone sensitivities were - 14.9 dB and 7.4 dB, respectively. Patients with only the peripheral island (- 33.9 dB) had better median rod sensitivity than other groups (only central, - 18.9 dB; both, - 3.6 dB). VF area significantly correlated with rod sensitivity (r = - 0.943, p = 0.005) in patients with only peripheral island, but not with cone sensitivity. Peripheral VF islands were significant contributors to FST results, especially rod sensitivity. With reduced or loss of central vision, the extent of residual peripheral VF significantly affected rod sensitivity, suggesting that FST can be useful in quantitatively estimating the overall remaining vision in patients with late-stage IRD.
Collapse
Affiliation(s)
- Daiki Sakai
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan.
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Tadao Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Midori Yamamoto
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Satoshi Yokota
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yasuhiko Hirami
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Makoto Nakamura
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuo Kurimoto
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Michiko Mandai
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
9
|
Shi LF, Hall AJ, Thompson DA. Full-field stimulus threshold testing: a scoping review of current practice. Eye (Lond) 2024; 38:33-53. [PMID: 37443335 PMCID: PMC10764876 DOI: 10.1038/s41433-023-02636-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The full-field stimulus threshold (FST) is a psychophysical measure of whole-field retinal light sensitivity. It can assess residual visual function in patients with severe retinal disease and is increasingly being adopted as an endpoint in clinical trials. FST applications in routine ophthalmology clinics are also growing, but as yet there is no formalised standard guidance for measuring FST. This scoping review explored current variability in FST conduct and reporting, with an aim to inform further evidence synthesis and consensus guidance. A comprehensive electronic search and review of the literature was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews (PRISMA-ScR) checklist. Key source, participant, methodology and outcomes data from 85 included sources were qualitatively and quantitatively compared and summarised. Data from 85 sources highlight how the variability and insufficient reporting of FST methodology, including parameters such as units of flash luminance, colour, duration, test strategy and dark adaptation, can hinder comparison and interpretation of clinical significance across centres. The review also highlights an unmet need for paediatric-specific considerations for test optimisation. Further evidence synthesis, empirical research or structured panel consultation may be required to establish coherent standardised guidance on FST methodology and context or condition dependent modifications. Consistent reporting of core elements, most crucially the flash luminance equivalence to 0 dB reference level is a first step. The development of criteria for quality assurance, calibration and age-appropriate reference data generation may further strengthen rigour of measurement.
Collapse
Affiliation(s)
- Linda F Shi
- Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Amanda J Hall
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Dorothy A Thompson
- Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- UCL Great Ormond Street Institute for Child Health, University College London, London, UK.
| |
Collapse
|
10
|
Boon N, Lu X, Andriessen CA, Orlovà M, Quinn PM, Boon CJ, Wijnholds J. Characterization and AAV-mediated CRB gene augmentation in human-derived CRB1KO and CRB1KOCRB2+/- retinal organoids. Mol Ther Methods Clin Dev 2023; 31:101128. [PMID: 37886604 PMCID: PMC10597801 DOI: 10.1016/j.omtm.2023.101128] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
The majority of patients with mutations in CRB1 develop either early-onset retinitis pigmentosa as young children or Leber congenital amaurosis as newborns. The cause for the phenotypic variability in CRB1-associated retinopathies is unknown, but might be linked to differences in CRB1 and CRB2 protein levels in Müller glial cells and photoreceptor cells. Here, CRB1KO and CRB1KOCRB2+/- differentiation day 210 retinal organoids showed a significant decrease in the number of photoreceptor nuclei in a row and a significant increase in the number of photoreceptor cell nuclei above the outer limiting membrane. This phenotype with outer retinal abnormalities is similar to CRB1 patient-derived retinal organoids and Crb1 or Crb2 mutant mouse retinal disease models. The CRB1KO and CRB1KOCRB2+/- retinal organoids develop an additional inner retinal phenotype due to the complete loss of CRB1 from Müller glial cells, suggesting an essential role for CRB1 in proper localization of neuronal cell types. Adeno-associated viral (AAV) transduction was explored at early and late stages of organoid development. Moreover, AAV-mediated gene augmentation therapy with AAV.hCRB2 improved the outer retinal phenotype in CRB1KO retinal organoids. Altogether, these data provide essential information for future gene therapy approaches for patients with CRB1-associated retinal dystrophies.
Collapse
Affiliation(s)
- Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Xuefei Lu
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Charlotte A. Andriessen
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Michaela Orlovà
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Peter M.J. Quinn
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Camiel J.F. Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, 1000 AE Amsterdam, the Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
11
|
Buck TM, Quinn PMJ, Pellissier LP, Mulder AA, Jongejan A, Lu X, Boon N, Koot D, Almushattat H, Arendzen CH, Vos RM, Bradley EJ, Freund C, Mikkers HMM, Boon CJF, Moerland PD, Baas F, Koster AJ, Neefjes J, Berlin I, Jost CR, Wijnholds J. CRB1 is required for recycling by RAB11A+ vesicles in human retinal organoids. Stem Cell Reports 2023; 18:1793-1810. [PMID: 37541258 PMCID: PMC10545476 DOI: 10.1016/j.stemcr.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/06/2023] Open
Abstract
CRB1 gene mutations can cause early- or late-onset retinitis pigmentosa, Leber congenital amaurosis, or maculopathy. Recapitulating human CRB1 phenotypes in animal models has proven challenging, necessitating the development of alternatives. We generated human induced pluripotent stem cell (iPSC)-derived retinal organoids of patients with retinitis pigmentosa caused by biallelic CRB1 mutations and evaluated them against autologous gene-corrected hiPSCs and hiPSCs from healthy individuals. Patient organoids show decreased levels of CRB1 and NOTCH1 expression at the retinal outer limiting membrane. Proximity ligation assays show that human CRB1 and NOTCH1 can interact via their extracellular domains. CRB1 patient organoids feature increased levels of WDFY1+ vesicles, fewer RAB11A+ recycling endosomes, decreased VPS35 retromer complex components, and more degradative endolysosomal compartments relative to isogenic control organoids. Taken together, our data demonstrate that patient-derived retinal organoids enable modeling of retinal degeneration and highlight the importance of CRB1 in early endosome maturation receptor recycling in the retina.
Collapse
Affiliation(s)
- Thilo M Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands
| | - Peter M J Quinn
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands
| | - Lucie P Pellissier
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam 1105 BA, the Netherlands
| | - Aat A Mulder
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden 2300 RC, the Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Epidemiology & Data Science, Amsterdam University Medical Centers, Amsterdam 1105 AZ, the Netherlands
| | - Xuefei Lu
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands
| | - Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands
| | - Daniëlle Koot
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands
| | | | - Rogier M Vos
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam 1105 BA, the Netherlands
| | - Edward J Bradley
- Department of Genome Analysis, Amsterdam University Medical Centers, Amsterdam 1105 AZ, the Netherlands
| | - Christian Freund
- Leiden University Medical Center hiPSC Hotel, Leiden 2333 ZA, the Netherlands
| | - Harald M M Mikkers
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden 2300 RC, the Netherlands; Leiden University Medical Center hiPSC Hotel, Leiden 2333 ZA, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam 1000 AE, the Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Epidemiology & Data Science, Amsterdam University Medical Centers, Amsterdam 1105 AZ, the Netherlands
| | - Frank Baas
- Department of Genome Analysis, Amsterdam University Medical Centers, Amsterdam 1105 AZ, the Netherlands; Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Abraham J Koster
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden 2300 RC, the Netherlands
| | - Jacques Neefjes
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden 2300 RC, the Netherlands
| | - Ilana Berlin
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden 2300 RC, the Netherlands
| | - Carolina R Jost
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden 2300 RC, the Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands; Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam 1105 BA, the Netherlands.
| |
Collapse
|
12
|
Rodriguez-Martinez AC, Higgins BE, Tailor-Hamblin V, Malka S, Cheloni R, Collins AM, Bladen J, Henderson R, Moosajee M. Foveal Hypoplasia in CRB1-Related Retinopathies. Int J Mol Sci 2023; 24:13932. [PMID: 37762234 PMCID: PMC10531165 DOI: 10.3390/ijms241813932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The CRB1 gene plays a role in retinal development and its maintenance. When disrupted, it gives a range of phenotypes such as early-onset severe retinal dystrophy/Leber congenital amaurosis (EOSRD/LCA), retinitis pigmentosa (RP), cone-rod dystrophy (CORD) and macular dystrophy (MD). Studies in CRB1 retinopathies have shown thickening and coarse lamination of retinal layers resembling an immature retina. Its role in foveal development has not yet been described; however, this retrospective study is the first to report foveal hypoplasia (FH) presence in a CRB1-related retinopathy cohort. Patients with pathogenic biallelic CRB1 variants from Moorfields Eye Hospital, London, UK, were collected. Demographic, clinical data and SD-OCT analyses with FH structural grading were performed. A total of 15 (48%) patients had EOSRD/LCA, 11 (35%) MD, 3 (9%) CORD and 2 (6%) RP. FH was observed in 20 (65%; CI: 0.47-0.79) patients, all of whom were grade 1. A significant difference in BCVA between patients with FH and without was found (p = 0.014). BCVA continued to worsen over time in both groups (p < 0.001), irrespective of FH. This study reports FH in a CRB1 cohort, supporting the role of CRB1 in foveal development. FH was associated with poorer BCVA and abnormal retinal morphology. Nonetheless, its presence did not alter the disease progression.
Collapse
Affiliation(s)
- Ana Catalina Rodriguez-Martinez
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (A.C.R.-M.); (B.E.H.); (V.T.-H.); (S.M.); (R.C.); (A.M.C.); (R.H.)
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1LE, UK
| | - Bethany Elora Higgins
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (A.C.R.-M.); (B.E.H.); (V.T.-H.); (S.M.); (R.C.); (A.M.C.); (R.H.)
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Vijay Tailor-Hamblin
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (A.C.R.-M.); (B.E.H.); (V.T.-H.); (S.M.); (R.C.); (A.M.C.); (R.H.)
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- UCL Experimental Psychology, London WC1H 0AP, UK
| | - Samantha Malka
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (A.C.R.-M.); (B.E.H.); (V.T.-H.); (S.M.); (R.C.); (A.M.C.); (R.H.)
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Riccardo Cheloni
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (A.C.R.-M.); (B.E.H.); (V.T.-H.); (S.M.); (R.C.); (A.M.C.); (R.H.)
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Alexander Mark Collins
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (A.C.R.-M.); (B.E.H.); (V.T.-H.); (S.M.); (R.C.); (A.M.C.); (R.H.)
| | - John Bladen
- King’s College Hospital NHS Foundation Trust, Strand, London WC2R 2LS, UK;
| | - Robert Henderson
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (A.C.R.-M.); (B.E.H.); (V.T.-H.); (S.M.); (R.C.); (A.M.C.); (R.H.)
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1LE, UK
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (A.C.R.-M.); (B.E.H.); (V.T.-H.); (S.M.); (R.C.); (A.M.C.); (R.H.)
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1LE, UK
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
13
|
Nguyen XTA, Moekotte L, Plomp AS, Bergen AA, van Genderen MM, Boon CJF. Retinitis Pigmentosa: Current Clinical Management and Emerging Therapies. Int J Mol Sci 2023; 24:ijms24087481. [PMID: 37108642 PMCID: PMC10139437 DOI: 10.3390/ijms24087481] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Retinitis pigmentosa (RP) comprises a group of inherited retinal dystrophies characterized by the degeneration of rod photoreceptors, followed by the degeneration of cone photoreceptors. As a result of photoreceptor degeneration, affected individuals experience gradual loss of visual function, with primary symptoms of progressive nyctalopia, constricted visual fields and, ultimately, central vision loss. The onset, severity and clinical course of RP shows great variability and unpredictability, with most patients already experiencing some degree of visual disability in childhood. While RP is currently untreatable for the majority of patients, significant efforts have been made in the development of genetic therapies, which offer new hope for treatment for patients affected by inherited retinal dystrophies. In this exciting era of emerging gene therapies, it remains imperative to continue supporting patients with RP using all available options to manage their condition. Patients with RP experience a wide variety of physical, mental and social-emotional difficulties during their lifetime, of which some require timely intervention. This review aims to familiarize readers with clinical management options that are currently available for patients with RP.
Collapse
Affiliation(s)
- Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lude Moekotte
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Bartiméus, Diagnostic Center for Complex Visual Disorders, 3703 AJ Zeist, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
14
|
Boon N, Lu X, Andriessen CA, Moustakas I, Buck TM, Freund C, Arendzen CH, Böhringer S, Mei H, Wijnholds J. AAV-mediated gene augmentation therapy of CRB1 patient-derived retinal organoids restores the histological and transcriptional retinal phenotype. Stem Cell Reports 2023; 18:1123-1137. [PMID: 37084726 DOI: 10.1016/j.stemcr.2023.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023] Open
Abstract
Retinitis pigmentosa and Leber congenital amaurosis are inherited retinal dystrophies that can be caused by mutations in the Crumbs homolog 1 (CRB1) gene. CRB1 is required for organizing apical-basal polarity and adhesion between photoreceptors and Müller glial cells. CRB1 patient-derived induced pluripotent stem cells were differentiated into CRB1 retinal organoids that showed diminished expression of variant CRB1 protein observed by immunohistochemical analysis. Single-cell RNA sequencing revealed impact on, among others, the endosomal pathway and cell adhesion and migration in CRB1 patient-derived retinal organoids compared with isogenic controls. Adeno-associated viral (AAV) vector-mediated hCRB2 or hCRB1 gene augmentation in Müller glial and photoreceptor cells partially restored the histological phenotype and transcriptomic profile of CRB1 patient-derived retinal organoids. Altogether, we show proof-of-concept that AAV.hCRB1 or AAV.hCRB2 treatment improved the phenotype of CRB1 patient-derived retinal organoids, providing essential information for future gene therapy approaches for patients with mutations in the CRB1 gene.
Collapse
Affiliation(s)
- Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Xuefei Lu
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Charlotte A Andriessen
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Ioannis Moustakas
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Thilo M Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Christian Freund
- hiPSC Hotel, Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Christiaan H Arendzen
- hiPSC Hotel, Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Stefan Böhringer
- Department of Biomedical Data Sciences, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Lopes da Costa B, Kolesnikova M, Levi SR, Cabral T, Tsang SH, Maumenee IH, Quinn PMJ. Clinical and Therapeutic Evaluation of the Ten Most Prevalent CRB1 Mutations. Biomedicines 2023; 11:385. [PMID: 36830922 PMCID: PMC9953187 DOI: 10.3390/biomedicines11020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Mutations in the Crumbs homolog 1 (CRB1) gene lead to severe inherited retinal dystrophies (IRDs), accounting for nearly 80,000 cases worldwide. To date, there is no therapeutic option for patients suffering from CRB1-IRDs. Therefore, it is of great interest to evaluate gene editing strategies capable of correcting CRB1 mutations. A retrospective chart review was conducted on ten patients demonstrating one or two of the top ten most prevalent CRB1 mutations and receiving care at Columbia University Irving Medical Center, New York, NY, USA. Patient phenotypes were consistent with previously published data for individual CRB1 mutations. To identify the optimal gene editing strategy for these ten mutations, base and prime editing designs were evaluated. For base editing, we adopted the use of a near-PAMless Cas9 (SpRY Cas9), whereas for prime editing, we evaluated the canonical NGG and NGA prime editors. We demonstrate that for the correction of c.2843G>A, p.(Cys948Tyr), the most prevalent CRB1 mutation, base editing has the potential to generate harmful bystanders. Prime editing, however, avoids these bystanders, highlighting its future potential to halt CRB1-mediated disease progression. Additional studies investigating prime editing for CRB1-IRDs are needed, as well as a thorough analysis of prime editing's application, efficiency, and safety in the retina.
Collapse
Affiliation(s)
- Bruna Lopes da Costa
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY 10032, USA
- Jonas Children′s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Federal University of São Paulo, São Paulo 04021-001, SP, Brazil
| | - Masha Kolesnikova
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY 10032, USA
- Jonas Children′s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- College of Medicine at the State University of New York at Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Sarah R. Levi
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY 10032, USA
- Jonas Children′s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Thiago Cabral
- Department of Ophthalmology, Federal University of São Paulo, São Paulo 04021-001, SP, Brazil
- Vision Center Unit/EBSERH and Department of Ophthalmology, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
- Young Leadership Physicians Programme, National Academy of Medicine, Rio de Janeiro 20021-130, RJ, Brazil
| | - Stephen H. Tsang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY 10032, USA
- Jonas Children′s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Irene H. Maumenee
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY 10032, USA
- Jonas Children′s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Peter M. J. Quinn
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY 10032, USA
- Jonas Children′s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
16
|
Ngo WK, Jenny LA, Kim AH, Kolesnikova M, Greenstein VC, Tsang SH. Correlations of Full-Field Stimulus Threshold With Functional and Anatomical Outcome Measurements in Advanced Retinitis Pigmentosa. Am J Ophthalmol 2023; 245:155-163. [PMID: 35870488 PMCID: PMC11149455 DOI: 10.1016/j.ajo.2022.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To compare full-field stimulus (FST) threshold values to conventional functional and anatomical measures commonly used in clinical practice. DESIGN Cross-sectional study. METHODS Patients with retinitis pigmentosa with nondetectable electroretinogram rod-mediated responses and light-adapted 3.0 cd·s·m2 30-Hz flicker (LA 3.0 flicker) amplitudes of 15 mV or less were included in this study. The threshold values for blue, white, and red stimuli on FST were correlated with best-corrected visual acuity, LA 3.0 flicker amplitude and implicit times, length of the ellipsoid zone (EZ) band and thickness of outer nuclear layer measurements on optical coherence tomography, and the vertical and horizontal diameters of the autofluorescent ring on autofluorescence imaging. RESULTS Forty-two eyes of 21 patients were included in the study. The mean FST thresholds were -22.5 ± 15.5 dB, -17.6 ± 11.5 dB, and -12.7 ± 6.0 dB for the blue, white, and red stimuli, respectively. The threshold values for the 3 FST stimuli were significantly correlated with selected functional and anatomical outcome measures. Specifically, they were strongly correlated with LA 3.0 flicker amplitude and EZ band length measured on optical coherence tomography. Using linear regression, blue and white stimulus values on FST were found to be predictive of EZ band length (R2 = 0.579 and 0.491, respectively), and the vertical (R2 = 0.694 and 0.532, respectively) and horizontal (R2 = 0.626 and 0.400, respectively) diameters of the hyperautofluorescent ring. CONCLUSIONS The significant correlations between FST and other clinical outcome measures highlight its potential as an adjunct outcome measure.
Collapse
Affiliation(s)
- Wei Kiong Ngo
- From the Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, USA; Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA; National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - Laura A Jenny
- From the Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, USA; Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Angela H Kim
- From the Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, USA; Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA; College of Medicine at the State University of New York at Downstate Medical Center, Brooklyn
| | - Masha Kolesnikova
- From the Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, USA; Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA; College of Medicine at the State University of New York at Downstate Medical Center, Brooklyn
| | - Vivienne C Greenstein
- From the Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, USA
| | - Stephen H Tsang
- From the Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, USA; Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA; Department of Pathology & Cell Biology, Institute of Human Nutrition, Columbia Stem Cell Initiative, Columbia University, New York, New York, USA.
| |
Collapse
|
17
|
Non-vasogenic cystoid maculopathies. Prog Retin Eye Res 2022; 91:101092. [PMID: 35927124 DOI: 10.1016/j.preteyeres.2022.101092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
Abstract
Besides cystoid macular edema due to a blood-retinal barrier breakdown, another type of macular cystoid spaces referred to as non-vasogenic cystoid maculopathies (NVCM) may be detected on optical coherence tomography but not on fluorescein angiography. Various causes may disrupt retinal cell cohesion or impair retinal pigment epithelium (RPE) and Müller cell functions in the maintenance of retinal dehydration, resulting in cystoid spaces formation. Tractional causes include vitreomacular traction, epiretinal membranes and myopic foveoschisis. Surgical treatment does not always allow cystoid space resorption. In inherited retinal dystrophies, cystoid spaces may be part of the disease as in X-linked retinoschisis or enhanced S-cone syndrome, or occur occasionally as in bestrophinopathies, retinitis pigmentosa and allied diseases, congenital microphthalmia, choroideremia, gyrate atrophy and Bietti crystalline dystrophy. In macular telangiectasia type 2, cystoid spaces and cavitations do not depend on the fluid leakage from telangiectasia. Various causes affecting RPE function may result in NVCM such as chronic central serous chorioretinopathy and paraneoplastic syndromes. Non-exudative age macular degeneration may also be complicated by intraretinal cystoid spaces in the absence of fluorescein leakage. In these diseases, cystoid spaces occur in a context of retinal cell loss. Various causes of optic atrophy, including open-angle glaucoma, result in microcystoid spaces in the inner nuclear layer due to a retrograde transsynaptic degeneration. Lastly, drug toxicity may also induce cystoid maculopathy. Identifying NVCM on multimodal imaging, including fluorescein angiography if needed, allows guiding the diagnosis of the causative disease and choosing adequate treatment when available.
Collapse
|
18
|
Bellingrath JS, McClements ME, Shanks M, Clouston P, Fischer MD, MacLaren RE. Envisioning the development of a CRISPR-Cas mediated base editing strategy for a patient with a novel pathogenic CRB1 single nucleotide variant. Ophthalmic Genet 2022; 43:661-670. [PMID: 35538629 DOI: 10.1080/13816810.2022.2073599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Inherited retinal degeneration (IRD) associated with mutations in the Crumbs homolog 1 (CRB1) gene is associated with a severe, early-onset retinal degeneration for which no therapy currently exists. Base editing, with its capability to precisely catalyse permanent nucleobase conversion in a programmable manner, represents a novel therapeutic approach to targeting this autosomal recessive IRD, for which a gene supplementation is challenging due to the need to target three different retinal CRB1 isoforms. PURPOSE To report and classify a novel CRB1 variant and envision a possible therapeutic approach in form of base editing. METHODS Case report. RESULTS A 16-year-old male patient with a clinical diagnosis of early-onset retinitis pigmentosa (RP) and characteristic clinical findings of retinal thickening and coarse lamination was seen at the Oxford Eye Hospital. He was found to be compound heterozygous for two CRB1 variants: a novel pathogenic nonsense variant in exon 9, c.2885T>A (p.Leu962Ter), and a likely pathogenic missense change in exon 6, c.2056C>T (p.Arg686Cys). While a base editing strategy for c.2885T>A would encompass a CRISPR-pass mediated "read-through" of the premature stop codon, the resulting missense changes were predicted to be "possibly damaging" in in-silico analysis. On the other hand, the transversion missense change, c.2056C>T, is amenable to transition editing with an adenine base editor (ABE) fused to a SaCas9-KKH with a negligible chance of bystander edits due to an absence of additional Adenines (As) in the editing window. CONCLUSIONS This case report records a novel pathogenic nonsense variant in CRB1 and gives an example of thinking about a base editing strategy for a patient compound heterozygous for CRB1 variants.
Collapse
Affiliation(s)
- J-S Bellingrath
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Shanks
- Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - P Clouston
- Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M D Fischer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - R E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
19
|
CRB1-Related Retinal Dystrophies in a Cohort of 50 Patients: A Reappraisal in the Light of Specific Müller Cell and Photoreceptor CRB1 Isoforms. Int J Mol Sci 2021; 22:ijms222312642. [PMID: 34884448 PMCID: PMC8657784 DOI: 10.3390/ijms222312642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/29/2023] Open
Abstract
Pathogenic variants in CRB1 lead to diverse recessive retinal disorders from severe Leber congenital amaurosis to isolated macular dystrophy. Until recently, no clear phenotype-genotype correlation and no appropriate mouse models existed. Herein, we reappraise the phenotype-genotype correlation of 50 patients with regards to the recently identified CRB1 isoforms: a canonical long isoform A localized in Müller cells (12 exons) and a short isoform B predominant in photoreceptors (7 exons). Twenty-eight patients with early onset retinal dystrophy (EORD) consistently had a severe Müller impairment, with variable impact on the photoreceptors, regardless of isoform B expression. Among them, two patients expressing wild type isoform B carried one variant in exon 12, which specifically damaged intracellular protein interactions in Müller cells. Thirteen retinitis pigmentosa patients had mainly missense variants in laminin G-like domains and expressed at least 50% of isoform A. Eight patients with the c.498_506del variant had macular dystrophy. In one family homozygous for the c.1562C>T variant, the brother had EORD and the sister macular dystrophy. In contrast with the mouse model, these data highlight the key role of Müller cells in the severity of CRB1-related dystrophies in humans, which should be taken into consideration for future clinical trials.
Collapse
|