1
|
Nowroozzadeh MH, Bagheri M. The role of optical coherence tomography angiography in assessing diabetic choroidopathy: a systematic review. Int J Retina Vitreous 2025; 11:10. [PMID: 39891221 PMCID: PMC11786548 DOI: 10.1186/s40942-024-00618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/08/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a leading cause of vision impairment worldwide, affecting both retinal and choroidal vasculature. While advances in imaging technology, particularly optical coherence tomography angiography (OCTA), provide new opportunities to assess choroidal changes in diabetic patients, the role of OCTA in early diagnosis and monitoring of diabetic choroidopathy remains unclear. OBJECTIVE This review aims to evaluate the potential role of OCTA in diagnosing and monitoring diabetic choroidopathy. METHODS A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. Databases including PubMed, Embase, Cochrane Library, Google Scholar, ISI, and Scopus were searched for studies on diabetic choroidopathy assessed by OCTA. Studies included were peer-reviewed, published in English, and excluded case reports, conference proceedings, and studies on treated DR patients. Two independent reviewers screened articles for eligibility based on predefined criteria. RESULTS OCTA allows for non-invasive, high-resolution visualization of retinal and choroidal microvasculature, providing both qualitative and quantitative data. The majority of studies indicate a significant decrease in choroidal perfusion parameters in diabetic patients without DR compared to healthy controls. Conflicting evidence exists regarding the correlation between choriocapillaris flow reduction and DR severity. OCTA may also predict changes in visual function related to choroidal perfusion, though it cannot fully replace clinical examinations. CONCLUSIONS OCTA is a valuable tool for early detection and monitoring of diabetic choroidopathy. However, its role is limited by variability in findings and its inability to detect certain features of diabetic microangiopathy. Further studies are needed to clarify its clinical utility and standardize assessment methods.
Collapse
Affiliation(s)
- M Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansoureh Bagheri
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Surgical Subspecialties, Service of Ophthalmology at Health Sciences North, Northern Ontario School of Medicine University, Sudbury, ON, P3E 5J1, Canada.
| |
Collapse
|
2
|
Li Y, Hu X, Guo X, Ye X, Wang D, Zhang J, Ren W, Zhao N, Zhao Y, Lu Q. Unveiling the hidden: a deep learning approach to unraveling subzone-specific changes in peripapillary atrophy in type 2 diabetes. Front Cell Dev Biol 2024; 12:1459040. [PMID: 39258228 PMCID: PMC11385310 DOI: 10.3389/fcell.2024.1459040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Purpose This study aimed to evaluate the optical coherence tomography angiography (OCTA) changes in subzones of peripapillary atrophy (PPA) among type 2 diabetic patients (T2DM) with or without diabetic retinopathy (DR) using well-designed deep learning models. Methods A multi-task joint deep-learning model was trained and validated on 2,820 images to automate the determination and quantification of the microstructure and corresponding microcirculation of beta zone and gamma zone PPA. This model was then applied in the cross-sectional study encompassing 44 eyes affected by non-proliferative diabetic retinopathy (NPDR) and 46 eyes without DR (NDR). OCTA was utilized to image the peripapillary area in four layers: superficial capillary plexus (SCP), deep capillary plexus (DCP), choroidal capillary (CC) and middle-to-large choroidal vessel (MLCV). Results The patients in both groups were matched for age, sex, BMI, and axial length. The width and area of the gamma zone were significantly smaller in NPDR group compared to the NDR group. Multiple linear regression analysis revealed a negative association between the diagnosis of DR and the width and area of the gamma zone. The gamma zone exhibited higher SCP, DCP and MLCV density than the beta zone, while the beta zone showed higher CC density than the gamma zone. In comparison to the NDR group, the MLCV density of gamma zone was significantly lower in NPDR group, and this density was positively correlated with the width and area of the gamma zone. Discussion DR-induced peripapillary vascular changes primarily occur in gamma zone PPA. After eliminating the influence of axial length, our study demonstrated a negative correlation between DR and the gamma zone PPA. Longitudinal studies are required to further elucidate the role of the gamma zone in the development and progression of DR.
Collapse
Affiliation(s)
- Yingying Li
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, China
| | - Xinxin Hu
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, China
| | - Xinyu Guo
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Xueqiong Ye
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, China
| | - Dandan Wang
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, China
| | - Juntao Zhang
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, China
| | - Weina Ren
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, China
| | - Na Zhao
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, China
| | - Yitian Zhao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Qinkang Lu
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, China
| |
Collapse
|
3
|
Nouri H, Abtahi SH, Mazloumi M, Samadikhadem S, Arevalo JF, Ahmadieh H. Optical coherence tomography angiography in diabetic retinopathy: A major review. Surv Ophthalmol 2024; 69:558-574. [PMID: 38521424 DOI: 10.1016/j.survophthal.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Diabetic retinopathy (DR) is characterized by retinal vasculopathy and is a leading cause of visual impairment. Optical coherence tomography angiography (OCTA) is an innovative imaging technology that can detect various pathologies and quantifiable changes in retinal microvasculature. We briefly describe its functional principles and advantages over fluorescein angiography and perform a comprehensive review on its clinical applications in the screening or management of people with prediabetes, diabetes without clinical retinopathy (NDR), nonproliferative DR (NPDR), proliferative DR (PDR), and diabetic macular edema (DME). OCTA reveals early microvascular alterations in prediabetic and NDR eyes, which may coexist with sub-clinical neuroretinal dysfunction. Its applications in NPDR include measuring ischemia, detecting retinal neovascularization, and timing of early treatment through predicting the risk of retinopathy worsening or development of DME. In PDR, OCTA helps characterize the flow within neovascular complexes and evaluate their progression or regression in response to treatment. In eyes with DME, OCTA perfusion parameters may be of predictive value regarding the visual and anatomical gains associated with treatment. We further discussed the limitations of OCTA and the benefits of its incorporation into an updated DR severity scale.
Collapse
Affiliation(s)
- Hosein Nouri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed-Hossein Abtahi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Mazloumi
- Eye Research Center, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sanam Samadikhadem
- Department of Ophthalmology, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - J Fernando Arevalo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Crincoli E, Sacconi R, Querques L, Querques G. OCT angiography 2023 update: focus on diabetic retinopathy. Acta Diabetol 2024; 61:533-541. [PMID: 38376579 DOI: 10.1007/s00592-024-02238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
Optical coherence tomography angiography (OCTA) has become part of the clinical practice and its growing applications are in continuous development. Coherently with the growing concern about the human and economic cost of diabetes, diabetic retinopathy (DR) was the most popular topic for OCTA studies in the past year. The analysis of the literature reveals that applications of OCTA in DR are in continuous growth. In particular, ultrawide field (UWF) OCTA and artificial intelligence (AI) based on OCTA images are affirming as the new frontiers of scientific research in the field. Diagnostic accuracy of AI methods based on OCTA is equal or superior to the one based on OCT methods and also bears potential to detect systemic associations. UWF OCTA is noninvasive method that is reaching similar accuracy of FA in detection of neovascularization and intraretinal microvascular abnormalities (IRMAs) and has allowed better characterization of microvascular peripherical changes in DR. Lastly, deep capillary plexus (DCP) characteristics seem to play a pivotal role in the development of diabetic macular edema (DME) and refinement of biomarkers for different phenotypes of DME and diabetic macular ischemia (DMI) is currently on its way.
Collapse
Affiliation(s)
- Emanuele Crincoli
- Department of Ophthalmology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Riccardo Sacconi
- Department of Ophthalmology, University Vita-Salute IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Lea Querques
- Department of Ophthalmology, University Vita-Salute IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Giuseppe Querques
- Department of Ophthalmology, University Vita-Salute IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
| |
Collapse
|
5
|
Tan TE, Jampol LM, Ferris FL, Tadayoni R, Sadda SR, Chong V, Domalpally A, Blodi BL, Duh EJ, Curcio CA, Antonetti DA, Dutta S, Levine SR, Sun JK, Gardner TW, Wong TY. Imaging Modalities for Assessing the Vascular Component of Diabetic Retinal Disease: Review and Consensus for an Updated Staging System. OPHTHALMOLOGY SCIENCE 2024; 4:100449. [PMID: 38313399 PMCID: PMC10837643 DOI: 10.1016/j.xops.2023.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 02/06/2024]
Abstract
Purpose To review the evidence for imaging modalities in assessing the vascular component of diabetic retinal disease (DRD), to inform updates to the DRD staging system. Design Standardized narrative review of the literature by an international expert workgroup, as part of the DRD Staging System Update Effort, a project of the Mary Tyler Moore Vision Initiative. Overall, there were 6 workgroups: Vascular Retina, Neural Retina, Systemic Health, Basic and Cellular Mechanisms, Visual Function, and Quality of Life. Participants The Vascular Retina workgroup, including 16 participants from 4 countries. Methods Literature review was conducted using standardized evidence grids for 5 modalities: standard color fundus photography (CFP), widefield color photography (WFCP), standard fluorescein angiography (FA), widefield FA (WFFA), and OCT angiography (OCTA). Summary levels of evidence were determined on a validated scale from I (highest) to V (lowest). Five virtual workshops were held for discussion and consensus. Main Outcome Measures Level of evidence for each modality. Results Levels of evidence for standard CFP, WFCP, standard FA, WFFA, and OCTA were I, II, I, I, and II respectively. Traditional vascular lesions on standard CFP should continue to be included in an updated staging system, but more studies are required before they can be used in posttreatment eyes. Widefield color photographs can be used for severity grading within the area covered by standard CFPs, although these gradings may not be directly interchangeable with each other. Evaluation of the peripheral retina on WFCP can be considered, but the method of grading needs to be clarified and validated. Standard FA and WFFA provide independent prognostic value, but the need for dye administration should be considered. OCT angiography has significant potential for inclusion in the DRD staging system, but various barriers need to be addressed first. Conclusions This study provides evidence-based recommendations on the utility of various imaging modalities for assessment of the vascular component of DRD, which can inform future updates to the DRD staging system. Although new imaging modalities offer a wealth of information, there are still major gaps and unmet research needs that need to be addressed before this potential can be realized. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Tien-En Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Programme (EYE ACP), Duke-National University of Singapore Medical School, Singapore
| | - Lee M. Jampol
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Ramin Tadayoni
- Ophthalmology Department, Lariboisière, AP-HP, Saint Louis and Fondation Adolphe de Rothschild Hospitals, Université Paris Cité, Paris, France
| | - Srinivas R. Sadda
- Doheny Eye Institute, Pasadena, California
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Victor Chong
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Amitha Domalpally
- Department of Ophthalmology and Visual Sciences, Wisconsin Reading Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Barbara L. Blodi
- Department of Ophthalmology and Visual Sciences, Wisconsin Reading Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Elia J. Duh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
| | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - S. Robert Levine
- The Mary Tyler Moore & S. Robert Levine, MD Charitable Foundation, Greenwich, Connecticut
| | - Jennifer K. Sun
- Joslin Diabetes Center, Beetham Eye Institute, Harvard Medical School, Boston, Massachusetts
| | - Thomas W. Gardner
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Programme (EYE ACP), Duke-National University of Singapore Medical School, Singapore
- Tsinghua Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Lin W, Chen X, Wang L, Wang Q, Li Y, Zhang L, Cao X, Wang Y, Yu X, Wang G, Zhang J, Dong Z. Optical coherence tomography angiography for the differentiation of diabetic nephropathy from non-diabetic renal disease. Photodiagnosis Photodyn Ther 2024; 46:104099. [PMID: 38663487 DOI: 10.1016/j.pdpdt.2024.104099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND To provide a new non-invasive method for the differentiation of diabetic nephropathy (DN) from non-diabetic renal disease (NDRD) by assessing retinal microstructure using optical coherence tomography angiography (OCTA). METHODS OCTA parameters were recorded and their relationship with DN was analysed. A differential diagnosis regression model for DN was established, and the diagnostic efficiency was evaluated. RESULTS Based on the pathological results of renal biopsy, 31 DN patients and 35 NDRD patients were included. Multivariate logistic regression analysis showed that DN was independently associated with the following parameters: 15.3 mm-1 ≤ vessel density (VD) full < 17.369 mm-1 (odds ratio [OR]=8.523; 95% confidence interval [CI]=1.387-52.352; P = 0.021), VD full < 15.3 mm-1 (OR=8.202; 95% CI=1.110-60.623; P = 0.039), DM duration > 60 months (OR=7.588; 95% CI=1.569-36.692; P = 0.012), and estimated glomerular filtration rate < 60 mL/min/1.73 m2 (OR=24.484; 95% CI=4.308-139.142; P < 0.001). The area under the receiver operating characteristic curve was 0.911, indicating a high diagnostic efficiency. CONCLUSIONS VD full < 17.369 mm-1, DM duration > 60 months, and eGFR < 60 mL/min/1.73 m2 may indicate the presence of DN. OCTA may be an effective non-invasive method for identifying DN and NDRD.
Collapse
Affiliation(s)
- Wenwen Lin
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, PR China; School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Xiaoniao Chen
- Senior Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, PR China; Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China.
| | - Liqiang Wang
- Senior Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Qian Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, PR China
| | - Ying Li
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, PR China
| | - Li Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, PR China
| | - Xueying Cao
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, PR China
| | - Yong Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, PR China
| | - Xinyue Yu
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, PR China
| | - Guoyan Wang
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, PR China
| | - Jianxin Zhang
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, PR China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, PR China.
| |
Collapse
|
7
|
Wijesingha N, Tsai WS, Keskin AM, Holmes C, Kazantzis D, Chandak S, Kubravi H, Sivaprasad S. Optical Coherence Tomography Angiography as a Diagnostic Tool for Diabetic Retinopathy. Diagnostics (Basel) 2024; 14:326. [PMID: 38337841 PMCID: PMC10855126 DOI: 10.3390/diagnostics14030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes mellitus, leading to visual impairment if left untreated. This review discusses the use of optical coherence tomography angiography (OCTA) as a diagnostic tool for the early detection and management of DR. OCTA is a fast, non-invasive, non-contact test that enables the detailed visualisation of the macular microvasculature in different plexuses. OCTA offers several advantages over fundus fluorescein angiography (FFA), notably offering quantitative data. OCTA is not without limitations, including the requirement for careful interpretation of artefacts and the limited region of interest that can be captured currently. We explore how OCTA has been instrumental in detecting early microvascular changes that precede clinical signs of DR. We also discuss the application of OCTA in the diagnosis and management of various stages of DR, including non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), diabetic macular oedema (DMO), diabetic macular ischaemia (DMI), and pre-diabetes. Finally, we discuss the future role of OCTA and how it may be used to enhance the clinical outcomes of DR.
Collapse
Affiliation(s)
- Naomi Wijesingha
- UCL Institute of Ophthalmology, London EC1V 9EL, UK;
- Moorfields Eye Hospital, London EC1V 2PD, UK; (W.-S.T.); (A.M.K.); (C.H.); (D.K.); (S.C.); (H.K.)
| | - Wei-Shan Tsai
- Moorfields Eye Hospital, London EC1V 2PD, UK; (W.-S.T.); (A.M.K.); (C.H.); (D.K.); (S.C.); (H.K.)
| | - Ayse Merve Keskin
- Moorfields Eye Hospital, London EC1V 2PD, UK; (W.-S.T.); (A.M.K.); (C.H.); (D.K.); (S.C.); (H.K.)
| | - Christopher Holmes
- Moorfields Eye Hospital, London EC1V 2PD, UK; (W.-S.T.); (A.M.K.); (C.H.); (D.K.); (S.C.); (H.K.)
| | - Dimitrios Kazantzis
- Moorfields Eye Hospital, London EC1V 2PD, UK; (W.-S.T.); (A.M.K.); (C.H.); (D.K.); (S.C.); (H.K.)
| | - Swati Chandak
- Moorfields Eye Hospital, London EC1V 2PD, UK; (W.-S.T.); (A.M.K.); (C.H.); (D.K.); (S.C.); (H.K.)
| | - Heena Kubravi
- Moorfields Eye Hospital, London EC1V 2PD, UK; (W.-S.T.); (A.M.K.); (C.H.); (D.K.); (S.C.); (H.K.)
| | - Sobha Sivaprasad
- UCL Institute of Ophthalmology, London EC1V 9EL, UK;
- Moorfields Eye Hospital, London EC1V 2PD, UK; (W.-S.T.); (A.M.K.); (C.H.); (D.K.); (S.C.); (H.K.)
| |
Collapse
|
8
|
Guo X, Zhu Z, Bulloch G, Huang W, Wang W. Impacts of Chronic Kidney Disease on Retinal Neurodegeneration: A Cross-Cohort Analysis. Am J Ophthalmol 2024; 258:173-182. [PMID: 37820988 DOI: 10.1016/j.ajo.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE To assess the cross-sectional and longitudinal associations between chronic kidney disease (CKD) and ganglion cell-inner plexiform layer (GCIPL) thickness in a UK Biobank population and a Chinese cohort. DESIGN Prospective observational cohort study and cross-sectional study. METHOD This study included 23,014 individuals without neurodegenerative diseases from the UK Biobank, and 3 years of annual follow-up data of 2197 individuals from a Chinese cohort. Three groups were defined by estimated glomerular filtration rate (eGFR) based on serum creatinine classifying CKD severity as no CKD, mild CKD, and moderate to severe CKD (MS-CKD). GCIPL thickness, measured using optical coherence tomography, was analyzed through linear regression over time to determine its decline rate in micrometers per year. Linear regression models were used to assess the correlation between renal function and both the baseline GCIPL thickness and the GCIPL decline rate. RESULTS The cross-sectional analysis in a largely white population showed that poorer renal function negatively correlated with GCIPL thickness with a mean of 0.15 µm thinner (95% confidence interval [CI] -0.30 to -0.01; P = .042) in mild CKD and 0.83 µm thinner (95% CI -1.34 to -0.32; P = .001) in MS-CKD compared with that of control subjects without CKD. Longitudinal analysis in the Chinese cohort showed that the GCIPL decreased more rapidly in persons with poorer renal function. After correcting for all confounding factors, the rate of GCIPL thinning was 0.30 µm/year (95% CI -0.41 to -0.19; P < .001) more in the mild CKD group and 0.52 µm/year (95% CI -0.79 to -0.26; P < .001) more in the MS-CKD group compared with control subjects without CKD. This relationship also occurred in individuals with diabetes or hypertension. CONCLUSIONS Poor renal function was associated with a lower baseline GCIPL thickness in the UK population and a faster decline rate in Chinese participants. However, the detailed underlying mechanisms still need further exploration.
Collapse
Affiliation(s)
- Xiao Guo
- From the State Key Laboratory of Ophthalmology (X.G., W.H., W.W.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zhuoting Zhu
- Centre for Eye Research Australia (Z.Z., G.B.), Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Gabriella Bulloch
- Centre for Eye Research Australia (Z.Z., G.B.), Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Wenyong Huang
- From the State Key Laboratory of Ophthalmology (X.G., W.H., W.W.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China; Hainan Eye Hospital and Key Laboratory of Ophthalmology (W.H., W.W.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China.
| | - Wei Wang
- From the State Key Laboratory of Ophthalmology (X.G., W.H., W.W.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China; Hainan Eye Hospital and Key Laboratory of Ophthalmology (W.H., W.W.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
9
|
Srinivasan S, Sivaprasad S, Rajalakshmi R, Anjana RM, Malik RA, Kulothungan V, Raman R, Bhende M. Association of OCT and OCT angiography measures with the development and worsening of diabetic retinopathy in type 2 diabetes. Eye (Lond) 2023; 37:3781-3786. [PMID: 37280352 PMCID: PMC10698183 DOI: 10.1038/s41433-023-02605-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/30/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVE To assess if optical coherence tomography (OCT) and OCT angiography (OCTA) measures are associated with the development and worsening of diabetic retinopathy (DR) over four years. METHODS 280 participants with type 2 diabetes underwent ultra-wide field fundus photography, OCT and OCTA. OCT-derived macular thickness measures, retinal nerve fibre layer and ganglion cell-inner plexiform layer thickness and OCTA-derived foveal avascular zone area, perimeter, circularity, vessel density (VD) and macular perfusion (MP) were examined in relation to the development and worsening of DR over four years. RESULTS After four years, 206 eyes of 219 participants were eligible for analysis. 27 of the 161 eyes (16.7%) with no DR at baseline developed new DR, which was associated with a higher baseline HbA1c and longer diabetes duration. Of the 45 eyes with non-proliferative DR (NPDR) at baseline, 17 (37.7%) showed DR progression. Baseline VD (12.90 vs. 14.90 mm/mm2, p = 0.032) and MP (31.79% vs. 36.96%, p = 0.043) were significantly lower in progressors compared to non-progressors. Progression of DR was inversely related to VD ((hazard ratio [HR] = 0.825) and to MP (HR = 0.936). The area under the receiver operating characteristic curves for VD was AUC = 0.643, with 77.4% sensitivity and 41.8% specificity for a cut-off of 15.85 mm/mm2 and for MP it was AUC = 0.635, with 77.4% sensitivity and 25.5% specificity for a cut-off of 40.8%. CONCLUSIONS OCTA metrics have utility in predicting progression rather than the development of DR in individuals with type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | - Ranjit Mohan Anjana
- Dr. Mohan's Diabetes Specialties Centre and Madras Diabetes Research Foundation, Chennai, India
| | - Rayaz A Malik
- Weill Cornell Medicine-Qatar, Education City, Doha, Qatar & Central Manchester University Hospitals Foundation Trust, Manchester, UK
| | - Vaitheeswaran Kulothungan
- National Centre for Disease Informatics and Research (NCDIR) & Indian Council of Medical Research (ICMR), Bangalore, India
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Muna Bhende
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India.
| |
Collapse
|
10
|
Zhong P, Tan S, Zhu Z, Zhang J, Chen S, Huang W, He M, Wang W. Brain and Cognition Signature Fingerprinting Vascular Health in Diabetic Individuals: An International Multi-Cohort Study. Am J Geriatr Psychiatry 2023; 31:570-582. [PMID: 37230837 DOI: 10.1016/j.jagp.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE To evaluate the correlation between cognitive signatures and the risk of diabetic vascular complications and mortality, based on a multicountry prospective study. METHODS The participants comprised 27,773 diabetics from the UK Biobank (UKB) and 1307 diabetics from the Guangzhou Diabetic Eye Study (GDES) cohort. The exposures were brain volume and cognitive screening tests for UKB participants, whilst the global cognitive score (GCS) measuring orientation to time and attention, episodic memory, and visuospatial abilities were determined for GDES participants. The outcomes for the UKB group were mortality, as well as macrovascular (myocardial infarction [MI] and stroke), microvascular (end-stage renal disease [ESRD], and diabetic retinopathy [DR]) events. The outcomes for the GDES group were retinal and renal microvascular damage. RESULTS In the UKB group, a 1-SD reduction in brain gray matter volume was associated with 34%-77% higher risks of incident MI, ESRD, and DR. The presence of impaired memory was associated with 18%-73% higher risk of mortality and ESRD; impaired reaction was associated with 1.2-1.7-fold higher risks of mortality, stroke, ESRD, and DR. In the GDES group, the lowest GCS tertile exhibited 1.4-2.2-fold higher risk of developing referable DR and a twofold faster decline in renal function and retinal capillary density compared with the highest tertile. Restricting data analysis to individuals aged less than 65 years produced consistent results. CONCLUSION Cognitive decline significantly elevates the risk of diabetic vascular complications and is correlated with retinal and renal microcirculation damage. Cognitive screening tests are strongly recommended as routine tools for management of diabetes.
Collapse
Affiliation(s)
- Pingting Zhong
- State Key Laboratory of Ophthalmology (PZ, SC, WH, MH, WW), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Shaoying Tan
- School of Optometry (ST, MH), The Hong Kong Polytechnic University, Hong Kong, China; Research Centre for SHARP Vision (ST, MH), The Hong Kong Polytechnic University, Hong Kong, China; Centre for Eye and Vision Research (CEVR) (ST, MH), 17W Hong Kong Science Park, Hong Kong
| | - Zhuoting Zhu
- Centre for Eye Research Australia (ZZ, JZ, MH), Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Junyao Zhang
- Centre for Eye Research Australia (ZZ, JZ, MH), Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Shida Chen
- State Key Laboratory of Ophthalmology (PZ, SC, WH, MH, WW), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Wenyong Huang
- State Key Laboratory of Ophthalmology (PZ, SC, WH, MH, WW), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology (PZ, SC, WH, MH, WW), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China; School of Optometry (ST, MH), The Hong Kong Polytechnic University, Hong Kong, China; Research Centre for SHARP Vision (ST, MH), The Hong Kong Polytechnic University, Hong Kong, China; Centre for Eye and Vision Research (CEVR) (ST, MH), 17W Hong Kong Science Park, Hong Kong; Centre for Eye Research Australia (ZZ, JZ, MH), Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Wei Wang
- State Key Laboratory of Ophthalmology (PZ, SC, WH, MH, WW), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
| |
Collapse
|
11
|
Lazăr AS, Stanca HT, Tăbăcaru B, Danielescu C, Munteanu M, Stanca S. Quantitative Parameters Relevant for Diabetic Macular Edema Evaluation by Optical Coherence Tomography Angiography. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1120. [PMID: 37374324 DOI: 10.3390/medicina59061120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Diabetic macular edema (DME) is one of the main ocular complications of diabetes mellitus (DM) that can lead to important vision loss in diabetic patients. In clinical practice, there are cases of DME with unsatisfying treatment responses, despite adequate therapeutic management. Diabetic macular ischemia (DMI) is one of the causes suggested to be associated with the persistence of fluid accumulation. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality, able to give in-depth information about retinal vascularization in a 3-dimensional manner. The OCTA devices currently available can provide various OCTA metrics that quantitatively assess the retinal microvasculature. In this paper, we reviewed the results of multiple studies that investigated the changes in OCTA metrics in the setting of DME and their possible contribution to the diagnosis, therapeutic management, follow-up and prognosis of patients with DME. We analyzed and compared relevant studies that investigated OCTA parameters related to changes in macular perfusion in the setting of DME and we evaluated the correlations between DME and several quantitative parameters, such as vessel density (VD), perfusion density (PD), foveal avascular zone (FAZ)-related parameters, as well as complexity indices of retinal vasculature. The results of our research showed that OCTA metrics, evaluated especially at the level of the deep vascular plexus (DVP), are useful instruments that can contribute to the assessment of patients with DME.
Collapse
Affiliation(s)
- Alina-Simona Lazăr
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, Strada Dionisie Lupu No. 37, 020021 Bucharest, Romania
- Clinical Department of Ophthalmology, "Prof. Dr. Agrippa Ionescu" Emergency Hospital, Strada Ion Mincu No. 7, 011356 Bucharest, Romania
| | - Horia T Stanca
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, Strada Dionisie Lupu No. 37, 020021 Bucharest, Romania
- Clinical Department of Ophthalmology, "Prof. Dr. Agrippa Ionescu" Emergency Hospital, Strada Ion Mincu No. 7, 011356 Bucharest, Romania
| | - Bogdana Tăbăcaru
- Clinical Department of Ophthalmology, "Prof. Dr. Agrippa Ionescu" Emergency Hospital, Strada Ion Mincu No. 7, 011356 Bucharest, Romania
| | - Ciprian Danielescu
- Department of Ophthalmology, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", Strada Universitatii No. 16, 700115 Iasi, Romania
| | - Mihnea Munteanu
- Department of Ophthalmology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Simona Stanca
- Clinical Department of Pediatrics, University of Medicine and Pharmacy "Carol Davila", Strada Dionisie Lupu No. 37, 020021 Bucharest, Romania
| |
Collapse
|
12
|
Deep Learning in Optical Coherence Tomography Angiography: Current Progress, Challenges, and Future Directions. Diagnostics (Basel) 2023; 13:diagnostics13020326. [PMID: 36673135 PMCID: PMC9857993 DOI: 10.3390/diagnostics13020326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Optical coherence tomography angiography (OCT-A) provides depth-resolved visualization of the retinal microvasculature without intravenous dye injection. It facilitates investigations of various retinal vascular diseases and glaucoma by assessment of qualitative and quantitative microvascular changes in the different retinal layers and radial peripapillary layer non-invasively, individually, and efficiently. Deep learning (DL), a subset of artificial intelligence (AI) based on deep neural networks, has been applied in OCT-A image analysis in recent years and achieved good performance for different tasks, such as image quality control, segmentation, and classification. DL technologies have further facilitated the potential implementation of OCT-A in eye clinics in an automated and efficient manner and enhanced its clinical values for detecting and evaluating various vascular retinopathies. Nevertheless, the deployment of this combination in real-world clinics is still in the "proof-of-concept" stage due to several limitations, such as small training sample size, lack of standardized data preprocessing, insufficient testing in external datasets, and absence of standardized results interpretation. In this review, we introduce the existing applications of DL in OCT-A, summarize the potential challenges of the clinical deployment, and discuss future research directions.
Collapse
|